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ABSTRACT 

An air handling unit (AHU) is a critical component of heating, 

ventilation, and air conditioning (HVAC) systems. Slip of 

AHU is an intuitive key feature for monitoring a belt 

looseness fault of an AHU. However, fluctuating rotation 

speed of the motor and fan makes slip hard to monitor. Since 

the role of the belt is to deliver torque between the motor and 

fan, this leads to change of the motor current signal.  

This paper suggests a normal data-based anomaly detection 

that utilizes motor current signal imaging to identify belt 

looseness in AHUs. The overall process proceeds as 

followings: (1) converting 1-dimensional motor current 

signal into 2-dimensional image in the amplitude domain, (2) 

extracting features of normal data by applying convolutional 

neural networks (CNN), (3) calculating health index to detect 

the belt looseness fault. The technique to transform time-

series current data to an image is based on its histogram. The 

image is obtained by the product of the histogram elements 

obtained from a current signal. The effect of torque load on a 

motor induces an amplitude modulation of the current signal. 

Current signal imaging based on histogram provides the fault 

features in a robust way. To validate the proposed method, a 

case study using an AHU testbed is conducted. The results 

demonstrate that the proposed method can detect belt 

looseness faults in AHU using only normal data, providing 

an approach for early fault detection in HVAC systems. 

1. INTRODUCTION 

An air handling unit (AHU) is a major subsystem of heating, 

ventilation, and air conditioning (HVAC) systems. Typical 

structure of AHU is belt-pulley system which connects 

driving motor and fan. However, the belt-pulley system is 

fragile to fatigue and wear, which leads a belt looseness fault 

in the system. Belt slip is induced by belt looseness. However, 

since the rotation speed of motor and fan both oscillates, 

detection of belt looseness by slip is difficult. Therefore, 

other feature instead of rotation speed is required for detect 

the belt looseness failure. Recently, current based motor 

condition monitoring is studied. Belt looseness is reflected in 

the current signal in the shape of an oscillating load. 

This paper is organized as follows: Section 2 provides a brief 

overview of recent deep learning application for anomaly 

detection and time-series signal imaging method. Section 3 

presents the proposed method which consists of histogram-

based signal imaging and algorithm using self-labeling 

technique. Section 4 describes a case study of AHU with belt 

looseness. Section 5 concludes the paper and extends future 

research. 

2. A BRIEF OVERVIEW OF ANOMALY DETECTION USING 

SIGNAL IMAGING WITH DEEP LEARNING 

2.1. Anomaly Detection with Deep Learning 

The application of deep learning for anomaly detection is 

underway (Lei et al., 2020). Autoencoder (AE) is used to 

extract latent features from the input data (Ko et al., 2022, 

Cheng et al., 2021). AE exhibits a greater reconstruction error 

for anomalous data, relative to the normal data which are used 

during the training process. However, this assumption fails in 

reality since the autoencoder is capable of reconstructing both 

normal and abnormal data. 

Generative adversarial networks (GAN) is used to solve the 

data imbalance problem. GAN accomplishes the task of 

generating similar data distributions to those of the provided 

training datasets, through the implementation of both 

generative and discriminative models (Lee et al., 2017, 

Ezeme et al., 2020). However, GAN-based anomaly 

detection model has significant limitations, including model 

instability and model collapse, that can be fatal to the 

effectiveness of the model. 
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Convolutional neural networks (CNN) capture spatial 

information, such as edges and shapes, by means of 

convolutional operations. CNN have demonstrated 

outstanding performance in the field of image recognition. 

Jiao et al. (2020) reviewed the usage of CNN in the area of 

fault diagnosis. It is known that the larger the number of 

layers is the better the performance is. Nevertheless, when the 

model becomes deeper, it may encounter the gradient 

vanishing problem, which can result in a decline in 

performance. He et al. (2016) developed ResNet to handle 

this problem. In the view of anomaly detection, CNN can be 

used for feature extractor. Jung et al. (2022) studied a simple 

CNN based feature extractor for anomaly detection of motor. 

To use CNN as a feature extractor, it is needed to make an 

image of time-series data. 

2.2. Signal Imaging 

Determining which features to utilize is a crucial decision 

when applying artificial intelligence techniques in fault 

diagnosis. Several researchers have tried to identify the most 

appropriate features that accurately represent the condition in 

fault diagnosis. Since visual information plays a critical role 

in human recognition, researchers have studied signal 

imaging as a means of representing the condition in fault 

diagnosis.  

Time frequency representation is used as it provides time and 

frequency information of a given signal simultaneously. 

Short time Fourier transform (STFT) enables the analysis of 

non-stationary signals by decomposing them into their 

frequency content over short time intervals. It can provide 

information about the time varying behavior of a signal in 

both time and frequency domains. However, STFT has a 

trade-off relation between time and frequency resolution. 

Wavelet transform (WT) is a signal processing skill which 

decomposes a signal into a set of wavelets which are small 

waves of different frequencies and lengths. It can capture 

both time and frequency information at different resolution 

together. However, the effectiveness of WT depends on the 

selection of a right mother wavelet that is well-suited to the 

signal being analyzed. 

Gu et al. (2020) used symmetric dot pattern (SDP) image for 

bearing fault diagnosis using vibration signal. SDP is to 

transform the one-dimensional signal into a pattern in the 

polar coordinate system. Jo et al. (2018) suggested nested 

scatter plot (NSP) which is a data wrangling method that uses 

image transformation of correlated time series data. Suh et al. 

(2022) used NSP image for predicting remaining useful life. 

Recently, current signal imaging is used for anomaly 

detection of motor system. Jung et al. (2022) suggested 

modified recurrence plot (RP) for detecting inter-turn short 

circuit in the motor. RP is an image method that visualize 

periodic behavior of a system. RP provides visualized 

representation of periodic signals. When the inter-turn short 

circuit fault occurs, there is a distortion in the shape of the 

current signal due to the change of resistance in the stator 

winding. RP is sensitive to these distortions in the sinusoidal 

waveform, allowing for the detection of minor changes in the 

current signal. However, since the current signal is modulated 

in the case of belt looseness, RP is unable to accurately 

represent the characteristics of this condition. 

3. PROPOSED METHOD 

3.1. Histogram-based Signal Imaging 

Since CNN is specialized in image recognition, converting 

one-dimensional signal into two-dimensional image is 

considered. In this paper, histogram-based signal imaging is 

proposed. 

For a measured signal �⃗� , histogram frequency vector ℎ⃗⃗  is 

obtained by the number of bins and the range which are 

hyperparameter for the histogram. The image matrix (A) is 

defined as follows:  

𝐴(𝑖, 𝑗) = {
ℎ(𝑖) × ℎ(𝑗)

0
            

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
ℎ(𝑖) × ℎ(𝑗) ≤ 𝜖

  
(1) 

where ℎ(𝑖) is the element of ℎ⃗⃗ which means the number of 

data points in the given bin. The threshold value ϵ is selected 

in order to emphasize the character of the image. Figure 1 

shows an example signal imaging process. Figure 1 a) is the 

original raw current signal �⃗�. With predefined number of bins 

and range, the histogram ℎ⃗⃗ is obtained and the Figure 1 b) is 

the plot of histogram. In Figure 1 c), the green arrows mean 

the x-axis of histogram which is amplitude domain. The 

brightness of the images represents the number of data points. 

3.2. CNN for Feature Extractor and Mahalanobis 

Distance for Health Index 

The overall anomaly detection algorithm is shown in Figure 

2. In the training procedure, normal data is collected from the 

healthy state. Self-labeling process is a data augmentation 

technique to create a new label class. Since CNN is a typical 

example of supervised learning which requires labeled data, 

CNN cannot be trained by normal data only without self-

labeling process. Therefore, the training dataset is composed 

of two class data: Normal and Self-labeled normal data. This 

paper uses a simple CNN architecture which consists of two 

convolution layers, one pooling layer, and two fully 

connected layers. For the first convolution layer, the kernel 

size is 5 × 5 and ReLU is used for activation function. The 

next convolution layer used 3 × 3 sized kernel and ReLU as 

activation function. Cross entropy loss and Adam optimizer 

are used for the loss function and optimizer, respectively.  
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a) 

 

b) 

 

c) 

Figure 1 a) raw current signal, b) histogram of given signal, 

c) histogram-based image 

 

During the training process, the training parameters are 

updated until the training loss converges. Once the training 

process is completed, the trained CNN is saved. The 

activation vector from the last convolutional layer of pre-

trained CNN is extracted for health index. 

Mahalanobis distance (MD) is a distance between a point and 

a distribution. Unlike Euclidean distance, MD considers the 

distributional information of data. MD is defined and 

calculated as follows: 

𝑀𝐷 = (𝑥 − 𝜇)Σ−1(𝑥 − 𝜇)𝑇  (2) 

where 𝑀𝐷 is mahalanobis distance, 𝑥 is activation vector, 𝜇 

and Σ is mean and covariance of saved activation map from 

training process. As the looseness becomes more severe, the 

distance tends to gradually increases from the distribution of 

the normal data. In this paper, health index is defined using 

the MD. 

 
a) 

 
b) 

Figure 2 Framework of the proposed algorithm.  

a) Training process, b) Test process 

 

4. CASE STUDY 

4.1. Experimental Set up and Data Acquisition 

A belt looseness simulation AHU testbed is shown in Figure 

3. The testbed is composed of a commercial AHU, two 

encoders and three current sensors. A commercial AHU 

consists of several components including a motor, belt, and 

fan. The motor in the AHU is controlled by an inverter, which 

regulates its rotation speed. The motor transfers torque to the 

fan through a belt, which drives the rotation of the fan. The 

current sensors are attached to the motor. Encoder 1 is 

attached to get angular velocity of pulley at the motor end. 

Encoder 2 gets angular velocity of pulley at the fan end. 
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Figure 3 Testbed description 

 

The rotation speed of the motor is 1800 RPM. The frequency 

of input current is 60 Hz. To simulate a belt looseness fault 

in an AHU testbed, the motor was moved to the right 

(indicated by a red arrow in Figure 3), which would cause the 

belt to become loose and potentially affect the performance 

of the fan. The default position of motor is considered as 

normal state, denoted as 𝑑0. The severity of the looseness is 

adjusted by changing the distance between each pully by 

moving the motor to the right. Four different location, 

denoted as 𝑑1 to 𝑑4,  were examined. The examine condition 

is summarized in Table 1. 

 

To assure enough current and RPM sampling points, the 

sampling frequency of the current sensor and encoder is set 

100kHz. Data were collected for each condition, i.e. 𝑑0, 𝑑1, 

𝑑2 , 𝑑3 , and  𝑑4 , for 5 minutes. To facilitate analysis, the 

collected data was divided into 1-second units each.  

4.2. Experimental Results 

The role of the belt is to transfer torque from the motor to the 

fan. Since the motor and fan are connected by a belt, any 

changes in the torque of the motor can affect the torque of the 

fan and vice versa. The angular velocity of fan is shown in 

Figure 4. As the belt looseness gets severer, the rotation speed 

of fan is getting lower which means that the belt cannot 

deliver the motor torque. To detect the belt looseness fault, 

slip is intuitive feature. Slip is defined and calculated by: 

 S = (1 −
𝐷𝑓𝑎𝑛

𝐷𝑚𝑜𝑡𝑜𝑟

×
Ω𝑓𝑎𝑛

Ωmotor

) × 100 (3) 

where S  is slip, Ωmotor  is rotation speed of motor, Ωfan  is 

rotation speed of fan, Dmotor is diameter of pulley at motor, 

and Dfan is diameter of pulley at fan. The diameter of each 

pulley is given as Dmotor = 6.5 𝑐𝑚 and Dfan = 5.5 𝑐𝑚. The 

slip of each condition is shown in Figure 5. Slips of each 

condition overlap each other, making it challenging to 

distinguish between them. The images based on the proposed 

imaging method of each conditions are shown in Figure 6. As 

looseness gets worse, the edge of the image becomes thicker. 

Thicker edges in the image indicate weaker amplitude 

modulation in the current signal, which shows that load is not 

transferred fully due to belt looseness.  

 

Figure 4 Angular velocity of pulley at fan end according to 

belt looseness condition 

 

 

Figure 5 Slip of belt-pulley system according to belt 

looseness condition 
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Motor

Fan
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Table 1. Center distances and belt conditions 

Center distance Condition 

𝑑0 Healthy belt 

𝑑1 Weak belt looseness 

𝑑2 Moderate belt looseness 

𝑑3 Strong belt looseness 

𝑑4 Critical belt looseness 
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To compare the performance of the proposed signal imaging 

method, RP image is used which is proposed by Jung et al. 

(2022). The RP images are shown in Figure 7. The health 

index of each method is shown in Figure 8. As shown in 

Figure 8 a), RP image cannot detect belt looseness. Low 

health index indicates that the RP images of each fault 

condition are similar to that of normal condition. However, 

the proposed method shows the status of belt in Figure 8 b). 

             

a)                              b)                               c) 

       

           d)                                e) 

Figure 6 Proposed current signal imaging: a) healty belt 

condition, b) weak belt looseness, c) moderate belt 

looseness, d) severe belt looseness, e) critical belt looseness 

 

             
a)                              b)                               c) 

       
d)                                e) 

Figure 7 RP images: a) healty belt condition, b) weak belt 

looseness, c) moderate belt looseness, d) severe belt 

looseness, e) critical belt looseness 

 

 

 

 

a) 

 

b) 

Figure 8 Health index of looseness condition:  

a) Recurrence plot images, b) proposed images 

5. CONCLUSION 

This paper presents an anomaly detection of belt looseness 

using current signal imaging. The proposed method is made 

up of three steps: (1) time-series current signal imaging based 

on histogram (2) extracting feature of normal state by using 

self-labeling and CNN (3) calculating health index using 

Mahalanobis distance. Current signal imaging based on 

histogram is applied to represent the feature of belt looseness. 

Self-labeling technique is also used to learn the feature of 

normal condition by CNN. Health index defined by MD is 

suggested to quantify the severity of belt looseness. The 

proposed method shows the possibility of detecting belt 

looseness with current data not pulley rotation data. Future 

research can extend the proposed method to detect other 

motors whose load is oscillating and cluster the normal 

distribution narrowly using contrastive loss. 
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