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ABSTRACT 

In this study, real-time anomaly detection in a wind tunnel 

was conducted using a threshold based on uncertainty 

quantification of a numerical model. A model-based 

numerical model of a wind tunnel was developed, and the 

uncertainty consisting of input uncertainty, model form 

uncertainty, and numerical approximation was 

quantitatively evaluated. The threshold of anomaly obtained 

here was demonstrated in a 6.5m×5.5m wind tunnel of 

Japan Aerospace Exploration Agency (JAXA). Synthetic 

anomaly injected into the measurement system was 

successfully detected.  

1. INTRODUCTION 

In large-scale satellite constellation projects, the number of 

satellites to be operated drastically increases. Conventional 

operations of satellites relying on expert knowledge could 

not cope with such a situation. Thus, the development of 

operational technology to achieve more efficient and low-

cost operations is an urgent task. To reduce the operational 

cost, autonomous operations not relying on expert 

knowledge is essential, but such new technologies should be 

demonstrated where trial and error is acceptable before 

being applied to mission-critical systems such as spacecraft. 

This study focused on the 6.5m ×  5.5m wind tunnel in 

Japan Aerospace Exploration Agency (JAXA), called 

LWT1, which has been operated manually for over 60 years. 

To achieve autonomous operation in LWT1, Prognostics, 

and Health Management (PHM) methodology are developed 

and demonstrated. (Tahan, Tsoutsanis, Muhammad, and 

Abdul, 2017, Kandukuri, Kalusen, Karimi, and Robbersmyr, 

2016, Wang, Tsui, and Miao, 2018) Generally, when 

performing anomaly detection in a system, the normal space 

of the system is determined by a large amount of normal 

data by using a data-driven approach. However, in the wind 

tunnel, the wind tunnel model has a wide variety depending 

on the user of the wind tunnel, leading to the difficulty to 

determine the normal space of the wind tunnel by using a 

data-driven approach. In this study, the model-based 

numerical model of the wind tunnel has developed, and the 

normal space for anomaly detection has been determined by 

the results of Uncertainty Quantification (UQ) of the 

numerical model. This paper reports the demonstration of 

real-time anomaly detection by using the UQ results of the 

model-based numerical model as the normal space in LWT1. 

2. LWT1 

Figure 1 shows an overview of LWT1, which is a 200 m 

closed-circuit wind tunnel capable of generating flow from 

1 m/s to 70 m/s with a 9.3 m diameter fan. Detailed 

information on LWT1 is available in the literature (Shigemi 

& Hirooka, 1967). 

 

Figure 1. Overview of LWT1 

A Pitot velocimetry is installed in the test section to measure 

wind velocity. An anomaly of leakage from the pressure 

tube is one of the failure modes in LWT1, resulting in an 

underestimation of wind velocity. In the demonstration of 

anomaly detection, this anomaly was produced by installing 

a needle value with a flowmeter in the total pressure tube of 

the pitot velocimetry. The rotational speed of the fan was 

fixed at 181 rpm. A general aircraft model (NASA Common 

Research Model, CRM) was used as a wind tunnel model 

(Levy, Laflin, Tinoco, Vassberg, Mani, Rider, Rumsey, 

Wahls, Morrison, Brodersen, Crippa, Mavriplis, and 
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Murayama, 2014, Koga, Kohzai, Ueno, Nakakita, and 

Sudani, 2013). The angle of attack was fixed at 0 degrees. 

3. NUMERICAL MODEL OF LWT1 

Because of the variety of shapes of wind tunnel models 

depending on users, training data of both normal and 

anomaly states does not exist in advance. To overcome this 

challenge, this study developed a numerical model, and then, 

evaluated the uncertainty of the numerical result by UQ. 

The uncertainty represents the normal space of the target 

system. The model-based numerical model of LWT1 was 

developed for real-time anomaly detection. Flow ducts were 

modeled by straight ducts with quasi-one-dimensional 

assumptions and diffusers based on an empirical model 

(Idelchick, 1996). Major sources of pressure loss are the 1st, 

2nd, and 3rd bends with guide vanes, and straightening screen 

in front of the test section, and a wind tunnel model. They 

are modeled by the quasi-one-dimensional orifice. The 

modeling of the fan was based on a fan map obtained 

experimentally. Given the rotational speed, the pressure 

head is determined. (Hamato, Tsutsumi, Yamashita, 

Shiohara, Hirotani, and Kato, 2021). This study employed 

AMESIM (Siemens Co.) in which the Bond graph method 

was used to connect these models. 

4. UQ 

By conducting UQ, it is possible to quantitatively estimate 

the uncertainty of numerical models resulting from 

computational errors and uncertainty of model parameters. 

This study employed UQ framework proposed by Roy and 

Oberkampf (2011). In this method, the uncertainty of the 

numerical model is evaluated in the following steps. 

1. Identify the objective variables (System Response 

Quantity, SRQ), and the uncertainty of explanatory 

variables are classified into epistemic and aleatory 

uncertainties. Epistemic uncertainty comes from the 

lack of knowledge and information about the model or 

explanatory variables. It can be reduced by 

accumulating knowledge and information through 

experimental measurement, for example. Uncertainty 

whose probabilistic distribution is unclear because of 

insufficient information is classified as epistemic 

uncertainty, and in such cases, the probabilistic 

distribution of epistemic uncertainty is modeled as 

uniform distribution. On the other hand, aleatory 

uncertainty comes from the variance in time and space 

of variables. It is difficult to reduce aleatory uncertainty 

because its variability is the nature of variables. The 

probabilistic distribution of aleatory uncertainty is 

modeled as Gaussian distribution, for example (Ogata, 

2009). 

2. Evaluate the propagation of input uncertainties to the 

objective variables. For epistemic uncertainty, Latin 

Hypercube Sampling (LHS) is often used to make 

samples. For aleatory uncertainty, Monte-Carlo (MC) 

method is used. These samples are given to the 

numerical model to calculate the objective variables. 

The probabilistic distribution of the objective variables 

can be obtained.  

3. Evaluate the model form uncertainty which corresponds 

to the difference between the experimental and 

numerical results. The difference is called validation. 

The model form uncertainty is evaluated by calculating 

the expectation of difference between the probabilistic 

distributions of the experimental and numerical results.  

4. Evaluating the error comes from numerical calculations, 

which is called numerical approximation. This includes 

rounding error, discretization error, and convergence 

error. Rounding errors can be minimized by double-

precision calculations. Discretization error can be 

qualitatively evaluated by grid convergence study. 

Convergence error can be minimized by calculating 

until the solution converges sufficiently. 

5. Evaluate total uncertainty by integrating input 

uncertainty, model form uncertainty, and numerical 

approximation. The uncertainty of the objective 

variables is obtained from the 95% confidence interval 

of total uncertainty. 

In this paper, the wind velocity in the test section is set as 

the objective variable. The  1st, 2nd, and 3rd bends, the 

straightening screen, the characteristic curve of the fan, and 

the drag of the generic aircraft model are identified as the 

sources of uncertainty. Sensitivity analysis for the numerical 

model showed that the 1st bend and the characteristic curve 

of the fan have a significant effect on the wind velocity. 

Thus the probabilistic distribution of parameters for the 1st 

bend and the characteristic curve is determined by 

measurements (111 points), and these two variables were 

classified as aleatory uncertainty. Measurements of the  2nd 

and 3rd bend and straightening screen are limited (only 3 

points) and the drag is also limited (4 points) so these four 

variables were classified as epistemic uncertainty because 

measurements are too few to determine their probabilistic 

distributions. The drag of the generic aircraft model was 

measured with an angle of attack of 0 degrees. 125 points 

are samples from four epistemic uncertainties by LHS, and 

20 points are samples from two aleatory uncertainty by the 

MC method. A total of 1 million samples were generated. 

The rotational speed was fixed at 181 rpm. 1 million times 

computation of the numerical model was performed, and the 

probabilistic distribution of the wind velocity was obtained. 

Figure 2 shows the Cumulative Density Function (CDF) of 

the wind velocity. In every single CDF, epistemic 

uncertainties are fixed, and aleatory uncertainties are 

propagated through the model. The enclosed area by the 

CDFs is called the p-box (probability box). The advantage 

of the p-box is to simultaneously evaluate both the 

epistemic and aleatory uncertainties having bias and random 

components, respectively. It is found from Fig. 2 that the 
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input uncertainty of the wind velocity is 57.96 ~ 58.49 m/s 

from the 95% confidence interval in the present numerical 

model. 

 

Figure 2. Input uncertainty of the predicted wind velocity in 

p-box form. Colors indicate every single CDF. 

To evaluate the model form uncertainty, the experimental 

measurements and numerical prediction of the wind velocity 

are compared. The wind velocity was measured four times 

in this study. Instead of the model form uncertainty 

proposed by Roy and Oberkampf (2011), the modified area 

validation metric (Voyles & Roy, 2015) was used to avoid 

over-estimation of model form uncertainty and consider the 

number and confidence interval of measurements. In Fig.3, 

the blue dotted lines show the CDF of the measurements, 

the red dotted line shows the input uncertainty of the 

numerical model, and the solid lines in each color show the 

95% confidence interval of each CDF. The hatched area 

(yellow, pink, with overlapping parts in orange) represents 

the model form uncertainty, which are 𝑑0.95
+ = 1.73 m/s 

and 𝑑0.95
− = 1.83 m/s. 

 

Figure 3. Model from the uncertainty of the predicted wind 

velocity. 

Regarding numerical approximation, the diffuser is modeled 

empirically (Idelchick, 1996) so that there is no 

discretization error. On the other hand, differential equations 

are solved for the straight duct model where discretization 

error may occur. The straight duct model was divided into 1, 

2, and 4 segments, and the convergence of the result was 

examined. It was found that the discretization error was less 

than 0.01% which was negligible. Moreover, the present 

software uses a double-precision floating point, so the 

rounding error is negligible. Therefore, the numerical 

approximation is negligible in this numerical model. 

Figure 4 shows the total uncertainty of the wind velocity 

obtained by integrating the input uncertainty and the model 

form uncertainty. The p-box of the total uncertainty is 

obtained by moving the lower and upper bound  of the input 

uncertainty by model form uncertainty of 𝑑0.95
+  and 𝑑0.95

− , 

respectively as shown in Fig. 4.  It is found that the 95% 

confidence interval of the wind velocity is 56.13 ~ 60.21 

m/s. 
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Figure 4. The total uncertainty of the predicted wind 

velocity. 

5. DEMONSTRATION OF ANOMALY DETECTION 

A demonstration of real-time anomaly detection was 

conducted. Anomaly detection is possible by defining the 

normal space from the training dataset including both 

normal and anomaly conditions in general. Since the test 

model changes depending on users in the wind tunnel test, 

there is no training dataset to determine the normal space. 

Therefore, the result of UQ is used to define the normal 

space. 

Figure 5 shows the results of the demonstration. The red 

line shows the measured wind velocity. As described in 

Section 2, leakage of the total pressure tube in the pitot 

velocimetry was injected. Since the opening ratio of the 

need valve was opened at 78 s and 143 s, the measured wind 

velocity was decreased. The blue line shows the predicted 

wind velocity by the numerical model in real time. The 

green area represents the normal space (56.13 ~ 60.21 m/s) 

determined by the UQ result. There was no leakage from 0 s 

to 78 s, and the measured wind velocity remains within the 

normal space. This shows that the present method 

successfully detected the normal condition. At 79 s, the 

wind velocity drops from 60 m/s to 56.2 m/s. This is the 

anomaly of underestimation of the wind velocity because of 

the valve opening. The measured wind velocity remains 

within the normal space, which indicates that the anomaly 

state was not detected. At 143 s, the wind speed drops again 

from 56.2 m/s to 52.5 m/s by increasing the valve opening. 

The measured wind velocity deviates from the normal state, 

and the present method could detect the anomaly. From this 

demonstration, it is found that anomaly detection can be 

performed by using the UQ result of the model-based 

numerical model. To increase the accuracy of anomaly 

detection, it is necessary to determine the normal space 

more accurately, i.e., reduce the uncertainty of the 

numerical model through Uncertainty Management (UM) 

(Pecht&Kang, 2018) which is the attempt to reduce the 

uncertainty of numerical models. Sensitivity analysis is 

conducted in UM to clearify the influence of explanatory 

variables (model parameters) on objective variables 

(uncertainty of the numerical model). Reducing the 

uncertainty of most influential explanatory variables will 

effectively reduce the uncertainty of objective variables. To 

reduce the uncertainty of the most influential explanatory 

variables, additional measuremens are conducted to 

determine or improve the probability distribution.  

 

Figure 5. Result of the demonstration of real-time anomaly 

detection with the normal space determined by UQ. 

6. CONCLUSION 

To develop autonomous technology for spacecraft, this 

study demonstrates real-time anomaly detection in the 6.5m 

×  5.5m wind tunnel in Japan Aerospace Exploration 

Agency (JAXA), called LWT1. To overcome the difficulty 

of insufficient training data including both normal and 

anomaly conditions, this study developed a numerical model, 

and the Uncertainty Quantification (UQ) consisting of input 

uncertainty, model form uncertainty, and numerical 

approximation was conducted to define the confidence 

interval of the numerical result. It was found that the 95% 

confidence interval of the wind velocity in the test section 

was 56.13 ~ 60.21 m/s, which was used to define the normal 

space. In this study, the present method was demonstrated 

by injecting a synthetic anomaly caused by flow leakage in 

the pitot velocimetry. It was found that real-time anomaly 

detection was possible when the leakage flow was large. To 

increase the accuracy of anomaly detection, Uncertainty 

Management (UM) is needed to reduce the uncertainty. 
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