
Applications of Active Learning in Predictive Maintenance
You-Jung Jun1, Navid Zaman2, and Daniel Chan3

1,2,3 PHM Technology, Melbourne, Victoria, 3068, Australia
youjung.jun@phmtechnology.com

navid.zaman@phmtechnology.com

ABSTRACT

Nowadays, the common choice in maintenance strategies is
predictive maintenance (PdM), deprecating the corrective and
preventive kinds. Even with various machine learning tech-
niques to get advanced predictive models to achieve PdM, dif-
ficulties remain in the data acquisition process. While there is
a plethora of unlabeled data from sensors, most of those avail-
able techniques can only process labeled data, i.e, supervised
learning. To combat the fact that the availability of the labeled
data is limited, this paper proposes the use of Active Learning
to label and annotate the informative instances while mini-
mizing overall processing time. This approach maintains high
performance and decreases the number of labeled instances,
with support from experimental results and a discussion of
the applicability of this method.

1. INTRODUCTION

Data is more than abundant in most Reliability, Availability,
Maintenance and Safety (RAMS) solutions and implementa-
tions. Scalable and reliable infrastructures have been used to
store these datasets (Aydin, Hallac, & Karakus, 2015), while
the sensor readings themselves are collected and warehoused
efficiently, the context behind it is not sufficient. Labeled
data, which is annotated with some context, is crucial in the
field of RAMs to provide meaningful utilization of sensor
readouts. Amongst various reasons that render work with the
low quality of the data, lack of human readibility and poor
recording practices matter the most (L’Heureux, Grolinger,
Higashino, & Capretz, 2017; Teh, Kempa-Liehr, & Wang,
2020). To alleviate this problem, various solutions have been
proposed, ranging from machine-aided manual labeling to en-
hancing the quality of labeling (Woodward & Kanjo, 2020;
Rosenthal & Dey, 2010). However, these methods require
the person(s), an oracle to do all the annotation, to label the
instances. This paper contributes to the literature by show-
ing the use of Active Learning to efficiently choose partic-
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ular samples for the oracle, while the rest is labeled via the
machine. This improves cost-effectiveness and substantially
reduces time and effort.

2. DATA

Labeled data has several uses in the RAMS field. The main
focus of this paper is failure detection isolation (FDI).

2.1. Failure Detection and Isolation

Diagnostics into the possible functional issues and/or root
cause of a catastrophic failure may trigger immediate main-
tenance action or a post-mortem analysis may educate future
endeavors (an example for gear tooth FDI shows such a pro-
cess (Roan, Erling, & Sibul, 2002)). Data labeled with the
correct failure or fault information within a reasonable win-
dow of when the event occurred is crucial for reliable perfor-
mance.

2.2. Residual Useful Life

The knowledge of how long or how many cycles a system
or component has left in performing a certain task is invalu-
able information for system operations and also for schedul-
ing maintenance. This is where the residual useful life (RUL)
is used (Wen et al., 2021). With knowledge of how similar
components have run into failure, prediction methods may be
informed to estimate the RUL of a monitored item. The label
represents either the failure of the timestamp when it occurred
or the remaining life in intervals prior to failure.

3. PROBLEMS WITH FDI DATA

While the industry is employing constant improvement meth-
ods of collecting, storing and processing data for FDI-specific
applications, the actual data often lacks quality for various
reason noted in this section.

3.1. Lack of Useful Labels

In most cases, the work done in labeling is out of sync with
the actual event occurrence. This means that such annotations

1

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 OS08-01



Asia Pacific Conference of the Prognostics and Health Management Society 2023

are often neither reliable nor correct. This may cause poor
performance in case when using machine learning methods
or threshold-based strategies.

3.2. Ignored Data for Labeling

Machines are often monitored throughout their useful life
without catastrophic failure events. This limits the useful
trends and patterns that are required for detecting failures -
the anomalous sections. Since there is no event to report, in
those cases, none of the labels are recorded.This can occur
with both healthy states and less important anomalies, how-
ever, a supervised FDI tool will have significantly reduced
performance if events are not specified.

3.3. Poor Labeling Procedures

In certain instances, the proper reporting procedures are
not followed and as a result, poor quality information are
recorded. This may include descriptions lacking in detail or
misleading information, therefore such labels are less useful
and in worse cases, equivalent to no label at all.

4. ACTIVE LEARNING

Active learning, as one of the popular machine learning meth-
ods, is often deployed to deal with data sparsity by interac-
tively querying an oracle (e.g., human annotator and expert).
By selecting the most useful samples within a certain pool
of unlabeled data points, it reduces the effort for the data la-
beling . While active learning is applicable in various situ-
ations (e.g., speech recognition and information extraction),
the specific role of active learning is investigated by labeling
queried data points and producing the model with the highest
performance. This method is often implemented to improve
the model’s efficiency as it keeps the minimum number of
supervised data points while achieving a higher level of per-
formance. The general workflow of active learning includes
selecting scenarios, estimators, parameters, and query strate-
gies, demonstrated in Figure 1.

Figure 1 shows the active learning workflow, specifically de-
signed for a pool-based scenario, which are used in our case
study in section 5. As demonstrated, when the data comes
in, it decides the type of scenario that would be implemented.
Then, depending on whether it is labeled or not, classify them
into either training data or pool data. Along with this, select
the appropriate estimator and parameter. After that, based on
the selected query strategy, the learner iteratively trains the
model until this goes beyond the threshold.

4.1. Scenarios

Depending on the characteristics of original datasets (such as
how many samples, how many labels, etc), different scenarios
in active learning can be utilized. Three scenarios that are

Figure 1. Active Learning Workflow.

frequently used when the learning algorithm asks queries to
label instances are: pool-based active learning, membership
query synthesis, and stream-based selective sampling.

First, the pool-based active learning, which is utilize in this
work, is used when a large number of unlabeled instances are
readily available. The learner evaluates the informativeness
of all unlabeled instances at once and chooses the most infor-
mative instance to query the oracle. As this pool-based active
learning only requires a small number of data points to get
high-level labeled data, it is cost-effective. Also, it is a use-
ful method as this is adaptable to numerous kinds of datasets.
In section 5, we apply this pool-based scenario for our case
study.

Membership query synthesis is the other form of scenario that
is used when the learner wants to generate its own unlabeled
instances rather than relying on the sample with the natural
underlying distribution. This approach can be effective only
when accessibility of the real data is limited as this only re-
quires a smaller number of labeled data to train an accurate
model. Although it is straightforward to create a data instance
due to its compatibility, membership query synthesis has the
possibility of misidentifying data.

Lastly, stream-based selective sampling works when there ex-
ists a continuous stream of data (e.g., online learning or real-
time applications). In this scenario, the learner evaluates the
informativeness of the unlabeled instances one at a time and
only queries the data when the informativeness of the instance
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is over the threshold. While this scenario is efficient to handle
the data with changing distribution and prioritizing the level
of informativeness in a relatively shorter period of time, this
might be a challenging scenario as it requires highly precise
design and evaluation.

4.2. Query Strategies

Active learning process evaluates the informativeness of un-
labeled data based on query strategies. As every active learn-
ing methodology evaluates the informativeness of unlabeled
data, selecting the informative instance is a crucial process.
More specifically, labeling instances is a costly task in terms
of its time due to its limited number of queries. The three
most commonly-used frameworks are Uncertainty Sampling,
Margin Sampling and Query-by-Committee (QBC).

The Uncertainty-Sampling query strategy is one of the active
learning approaches that iteratively trains the selected data
points to classify them. With this sampling, the learner finds
the nearest to the model’s decision boundary by using a prob-
abilistic model (Settles, 2009). The model chooses the most
uncertain data with the lowest confidence in their predicted
values, where it estimates the level of uncertainty based on
the probability distribution of all possible labels.

Similar to the Uncertainty-Sampling query strategy, the
Margin-Sampling query strategy is an effective method to
classify the data points by actively selecting the informative
ones to label. While both strategies are often used in active
learning to improve the prediction capability of the model,
they are different in ways measuring uncertainty. Margin-
Sampling (Balcan, Broder, & Zhang, 2007) chooses the data
points where the margin (i.e., difference) of the two predicted
classes is the smallest. This assumes that with the small size
of the margin, this implies that the area is more uncertain and
needs to be improved for the classification.

QBC selects informative instances by querying a committee
of learners rather than relying on a single learner (Settles,
2009). Multiple learners in QBC are trained with the same
training data and each committee member votes for the un-
labeled instances. The instance with the highest number of
votes is considered the most informative one and is queried
to the oracle for the label. While this alleviates the poten-
tial bias caused by actual learners from uncertainty sampling,
it comes with significant computation costs, especially when
working with high-dimensional data.

5. CASE STUDY

In this section, by using predictive maintenance (PdM) data,
a case study demonstrates the usability of active learning, ex-
amine how much this achieves the enhancement of model
accuracy, and verify whether active learning solves the data
sparsity issue. No clear rules for the required number of data

Failure Types
N. of Obs.

No Failure 2363
Flex Shaft Coupling Angular Velocity Low 2110
Check Valve Hydraulic Flow High 1995
Check Valve Hydraulic Flow Low 1923
Oil Nozzle B1 Hydraulic Flow High 1901
Oil Nozzle B1 Hydraulic Flow Low 1817

Table 1. Types of failures and the number of observations per
failure

points for the initial training dataset do exist, since this de-
pends on various factors such as the complexity of the prob-
lem, the overall size of the dataset, and the availability of
resources for annotation. Yet, the larger the initial training
dataset is, the higher quality of performance is likely to be
guaranteed, unless it does not drain the monetary budget as-
signed for annotating data.

5.1. Data

As a case study, a lubrication system for an aircraft engine is
used. Figure 2 shows a basic view of the engine and lubri-
cation flow. This data consists of 13 sensors and five failures
accordingly and includes 12,019 observations. As Table 1
shows, the data is well balanced between the failures given
that the number of counts for each failure is similar to each
other. For the experiments, 30 randomly sampled observa-
tions labeled as initial training data. An additional 30 ob-
servations were used to test the models. The remaining data
were considered as unlabeled data.

Figure 2. Simple schematic of the lubrication system

Figure 3 uses the Principal Component Analysis (PCA),
which is often used to reduce the dimensions(Aggarwal,
2017). This demonstrates the classes are divided into five
failures and one nominal state, and in most cases, they are
located farther away from each other, and relatively well dis-
persed. However, there are a handful of cases where there
exists an overlap and this is where the model needs to focus
more due to its uncertainty.
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Figure 3. Visualization of the reduced dimension of the lubri-
cation system data

Total training size
(Sample size per failure)

42 (7) 60 (10) 90 (15)
Decision Tree 0.794 0.844 0.844
Random Forest 0.794 0.844 0.844
KNN 0.552 0.603 0.681
Gradient Boosting 0.794 0.874 0.807
XGBoosting 0.768 0.855 0.896

Table 2. Performance based on Random Sampling

5.2. Results

5.2.1. Random Sampling

First, Random Sampling assessed model performance by
comparing accuracy across various machine learning algo-
rithms with different initial training dataset sizes. A relatively
small training dataset encompassing all failures was used.

Based on the PdM data, Table 2 demonstrates the changes in
the level of accuracy of each model. Each row represents
the different machine-learning models implemented in this
case study. Each column shows the total number of trained
data—initial training data—and the numbers in parentheses
represent the sample size per failure.

In the first two rows, the Decision Tree and Random Forest
are examined, respectively. The Decision Tree represents the
decisions and corresponding potential results in a tree-like al-
gorithm model, where each internal node and leaf show a de-
cision and an outcome, respectively. Random Forest is an ex-
tended version of the Decision Trees by incorporating more
samples and additional factors (e.g., the count of votes for
each classification) and handling and identifying the impor-
tant features and their interactions.

Results in the third row represent the model accuracy based
on K-Nearest Neighbour (KNN) algorithm, a non-parametric
strategy. With the Euclidean distance, KNN searches for the
K nearest points to determine the class for the input according
to the average label of the neighbors.

Total training size
(Number of Queries)

42 (12) 60 (30) 90 (60)
Decision Tree 0.623 0.623 0.623
Random Forest 0.727 0.927 0.999
KNN 0.555 0.58 0.64
Gradient Boosting 0.844 0.886 0.886
XGBoosting 0.844 0.943 0.97

Table 3. Performance based on the Uncertainty-Sampling
query strategy

Results based on the Gradient Boosting are presented in the
fourth row in Table 2. By training the base model on the
residuals, Gradient Boosting (Bentéjac, Csörgő, & Martı́nez-
Muñoz, 2021) applies the predictions based on the weaker
models (e.g., Decision Trees) to enhance the performance and
handle the complicated associations between features by de-
creasing the errors of the earlier models. By improving its
scalability, speed, and accuracy, Gradient Boosting can be
transformed into a higher version of its own, the eXtreme
Gradient Boosting (XGBoosting). The last row in Table 2
shows the level of performance based on this XGBoosting al-
gorithm.

In Table 2, regardless of the type of machine learning algo-
rithms, higher accuracy was observed when a large initial
sample size was used. This table with Random Sampling
serves as the reference (or base model) that can be used to
measure the level of improvement by using the query strate-
gies, presented in Tables 3 and 4.

5.2.2. Uncertainty Sampling

Table 3 compares the changes in performance depending on
the different number of training data sizes to identify the
learning curve for each algorithm. To be aligned with Table
2, the same number of total training sizes for each column
were used. The number in parentheses, however, shows the
number of queries for each trained dataset, which is different
from that of Table 2.

Table 3 demonstrates improved overall performance com-
pared to Table 2 for Random Forest, Gradient Boosting,
and XGBoosting, indicating the superiority of Uncertainty-
Sampling over Table 2’s Random Sampling.

For Random Forest, it reaches up to 92.7 % accuracy with the
query strategy only with the 60 number of the total trained
dataset; yet, in Table 2, it only achieves 84.4 % with the
same amount of training size. For the Gradient Boosting,
the accuracy level in Table 3 is consistently higher than that
of Table 2 regardless of the size of the data points. With
the XGBoosting, while it gets only 85.5% accuracy with the
size of 60 in Table 2, Table 3 shows that active learning with
an Uncertainty-Sampling query strategy reaches up to 94.3%
only with 30 queries. Along this line, with the size of 90 total
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Total training size
(Number of Queries)

42 (12) 60 (30) 90 (60)
Decision Tree 0.623 0.623 0.623
Random Forest 0.86 0.86 0.86
KNN 0.555 0.58 0.64
Gradient Boosting 0.788 0.622 0.685
XGBoosting 0.839 0.869 0.99

Table 4. Performance based on the Margin-Sampling query
strategy

training data points and 60 queries, XGBoosting achieves an
accuracy level of 97% and significantly outperforms the Ran-
dom Sampling in Table 2. Since this level of accuracy in the
last column presents sufficient performance, it also suggests
that 60 queries are the optimal number of queries to effec-
tively get the results.

However, Decision Tree shows minor improvement in Table
3 due to its sensitivity to data distribution and overfitting with
a small dataset. For K-Nearest Neighbors (KNN), it’s a sub-
optimal choice due to computational costs, sensitivity to out-
liers, and inability to adapt to input distribution changes.

5.2.3. Margin Sampling

In Table 3, the accuracy of each machine learning algorithms
based on Margin-Sampling query strategies are shown. As in
Table 3, each column represents the total number of trained
data and the numbers in parentheses show the number of
queries used. For XGBoosting and Random Forest, the levels
of accuracy are enhanced than those results based on Random
Sampling (shown in Table 2). Random Forest with Margin
Sampling consistently shows 86.0% as the accuracy level re-
gardless of the number of queries used. XGBoosting with
a Margin-Sampling query strategy reaches 86.9% with 60
trained data and 30 queries. With 60 queries, its performance
improves up to 99.0%, demonstrating that it outperforms the
Random Sampling in Table 2.

Random Forest and XGBoosting show better results with
Margin-Sampling compared to Random Sampling. This is
likely due to Random Forest’s Majority voting and XG-
Boosting’s tree pruning, which mitigate overfitting (Chen &
Guestrin, 2016). Margin Sampling’s diverse selection and
noise handling then improve performance further by assess-
ing data uncertainty and extracting valuable patterns.

Similar to results based on Uncertainty Sampling (shown in
Table 3), Margin Sampling in Table 4 does not improve the
accuracy level of KNN and Decision-Tree algorithms com-
pared to Random Sampling. In addition, this table shows
the possibility where even Gradient Boosting may under-
perform compared to one Random Sampling. All these
under-performances are expected due to the possibility of
over-fitting. Since the query strategy continuously selects

Figure 4. Performance Comparison between Query Strategies

the most uncertain data, all learners only recognize the data
points with high uncertainty without considering the distribu-
tion for each failure. This may lead to misrepresentation of
the data distribution, while Random Sampling in Table 2 is
suitable to learn the overall distribution of the data for each
failure.

5.2.4. Query Strategy Comparison

Examining two distinct query strategies, Uncertainty Sam-
pling and Margin Sampling, Figure 4 compares their perfor-
mance levels. The top graph represents the changes in per-
formance for the Uncertainty Sampling, and the bottom one
is for the Margin Sampling. These two graphs mainly illus-
trate the possibility that the learner’s results can be different
depending on which query strategy is implemented.

In both graphs, the performance level for KNN and Deci-
sion Trees are relatively lower compared to XGBoosting and
the Random Forest across the different number of queries
(when it is higher than 10). This is consistent with what
was observed in Table 3 and Table 4 above. Unlike the
KNN and Decision Trees, XGBoosting and Random Forest
show proportionally-increased performance as the number of
queries increases for both Uncertainty-Sampling and Margin-
Sampling strategies. This is because XGBoosting and Ran-
dom Forest are less likely to over-fit than other machine learn-
ing algorithms, ultimately helping both query strategies to se-
lect more informative data points than Random Sampling.

When comparing two different query strategies per-se, it was
observed that Gradient Boosting with Uncertainty-Sampling
produces results with higher accuracy than Margin Sampling.
This difference arises because of the characteristics of the
dataset. While Margin Sampling works well with highly im-
balanced data, the Uncertainty-Sampling query strategy is
more suitable with well-balanced data that have relatively
straightforward decision boundaries. Therefore, as demon-
strated in section 5.1, our PdM dataset, which is highly bal-
anced with a reasonable number of classes, is expected to per-
form better with Uncertainty Sampling.

5



Asia Pacific Conference of the Prognostics and Health Management Society 2023

To summarize, depending on the type of datasets used, the
optimal query strategies and machine learning algorithms
may all vary; however, given that the optimal active-learning
methods were chosen, this substantially improves the perfor-
mance compared to simply using Random Sampling.

6. CONCLUSION

This paper extensively explores the workflow of active learn-
ing from scenarios to query strategies and conducts the case
study by implementing two query strategies (i.e., Uncertainty
Sampling and Margin Sampling) with PdM data. By compar-
ing them with the results from Random Sampling, it is opti-
mal active learning methods could enhance the performance
even with the relatively smaller size of the data. While there
are a plethora of previous papers that examine active learning
methods, our paper specifically examines the performance of
the two query strategies and contributes to the literature by
applying the well-balanced PdM data that has not been exten-
sively used with the active-learning strategies. As this data is
well-balanced and is with relatively simpler decision bound-
ary, for future works, more query strategies (e.g., QBC or
Diversity Sampling) can be applied to this data to generalize
the performance of the active learning methods. Also, if re-
searchers further compare the results of various query strate-
gies between balanced and imbalanced data, this type of fu-
ture work can be promising.
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