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ABSTRACT

The purpose of this work is to discuss the possibility of the
concept of physical reservoir computing (PRC) in the field
of structural health monitoring (SHM) by regarding the tar-
get structure of SHM as the physical reservoir. To this end,
the dynamics of the structure, which is assumed extrinsically
linear, is tailored to be strongly nonlinear by installing non-
linear attachments. Our purpose is then to detect the change
occurred in this augmented physical reservoir. As one pos-
sible methodology to achieve this, we propose in this study
to train the output layer to learn a specific nonlinear mapping
of the input so that the increase of the error may indicate the
change of the reservoir. Numerical experiments are presented
to examine the validity of the proposed concept.

Keywords: physical reservoir computing, structural health
monitoring, damage detection, nonlinear dynamics

1. INTRODUCTION

The maintenance and management of infrastructure and in-
dustrial facilities is one of the most critical issues to be ad-
dressed to ensure the sustainability of advanced social life.
Giving self-diagnostic abilities to structures, i.e. the ability
to continuously monitor their own healthiness, is an essential
technology for efficient, labor-saving, and sustainable main-
tenance and management of structures. Such technology is
called structural health monitoring (SHM) (Farrar & Wor-
den, 2007) and has been researched and developed for over
20 years. Particularly in the last decade, SHM has made sig-
nificant progress at a practical level, thanks to the rapid de-
velopment of IoT and artificial intelligence technologies.

Most SHM systems use wireless sensor networks to col-
lect dynamic data, such as vibrations, from various parts of
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the structure, and then use high-performance computing re-
sources to process the multidimensional data and perform di-
agnostic algorithms to make decisions. The wireless sensor
networks utilized in SHM typically have a star or tree topol-
ogy, through which large amounts of data are aggregated in
a single location and fed to the diagnostic algorithms. Cur-
rently, sensor densities of several hundred to one thousand
nodes per structure can be achieved, but further increases
in sensor density will reach their limits due to saturation of
communication capacity and increased computational costs
caused by data concentration.

We intend to overcome the above-mentioned challenges in
SHM sensor networks by introducing the concept of physical
reservoir computing (PRC) (Tanaka et al., 2019), specifically
mechanical reservoir computing (Hauser, Ijspeert, Füchslin,
Pfeifer, & Maass, 2011; Caluwaerts, D’Haene, Verstraeten,
& Schrauwen, 2013; Nakajima, Hauser, Li, & Pfeifer, 2015;
Coulombe, York, & Sylvestre, 2017) to SHM. The idea is to
utilize the dynamics of the target structure as a physical reser-
voir (PR) to perform some or most of the data processing and
computation in SHM by using the structure itself as a compu-
tational resource. As a preliminary study, a simple nonlinear
oscillator network was used as a model of the target structure
in the previous paper (Masuda, Takashima, & Sakai, 2023),
and a PRC system was defined by attaching input and output
layers to the structural model as a PR, then a toy problem of
learning a nonlinear function was conducted. It was demon-
strated that changes in mechanical properties due to structural
damage can be detected as an increase in the PRC output er-
ror.

In this study, we conduct similar investigation on a differ-
ent target structure that is modified from the one used in the
previous study (Masuda et al., 2023) to be slightly more re-
alistic. There are two points of modification: first, it was as-
sumed in the previous paper that the target structure consists
of multiple oscillators with strong nonlinearity connected in a
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Figure 1. Conceptual drawing of PR-based SHM.

line, whereas the actual object structure is to be linear. Thus,
in this study, we adopt a linear target structure composed of
multiple linear oscillators connected in a line, some of which
have secondary devices attached to them to grant strong non-
linearity. Second, in the previous study, the input signal was
given to the PRC as an amplitude modulation signal produced
by multiplying the input signal by a carrier wave, which was
simultaneously applied to randomly selected approximately
half of the oscillators as excitation force. This specific config-
uration was adopted as it was just quoted from the reference
(Coulombe et al., 2017). In the PRC in this study, we apply
the input force only to the oscillator where the nonlinear de-
vices are added. This change comes from the assumption that
the forcing device to excite the structure is integrated with the
nonlinear device.

Then, the system with the above modifications is used as the
target structure to define the same toy problem as the previ-
ous study, and to examine how the changes in the structural
parameters such as stiffness and damping can be detected and
localized by the proposed PRC-based SHM.

2. CONCEPT OF PR-BASED SHM

Figure 1 illustrates the concept and entire workflow of the PR-
based SHM proposed by the authors (Masuda et al., 2023).
The most important aspect of this concept is to utilize the
target structure as a computing resource to reduce the local
concentration of information and computation costs. In other
words, the target structure is regarded as a PR. Since the target
structure is inherently linear, nonlinear devices are artificially
attached to the structure to fulfill the nonlinearity required by
the structure to perform as PR. Then, by implementing appro-
priate excitation and sensing points to define input and output
layers, a PRC system is parasitically built on the target struc-
ture, which is trained to learn a task to reproduce a specific
nonlinear input-output mapping.

Then, the structural damage to be detected can be regarded
as a change of the dynamic property of the PR. Therefore, if
the PRC is trained a specific task while it is in its intact state,
the structural damage can be detected as the increase of the
prediction error.

Figure 2. Schematic drawing of target structure with nonlin-
ear attachments, and the PR built on it.

3. MODIFIED TOY PROBLEM FOR CONCEPT VALIDA-
TION

3.1. Definition of target structure and damage

Figure 2 shows the schematic drawing of target structure with
nonlinear attachments used in this study, and the PR built
on it. The target structure is a mass-spring network con-
sisting of N = 400 linear oscillators, each of which has a
unit mass, linear stiffness of ω0

2, and linear damping ratio
of 1/(2Q1), all aligned in a line connected each other with
stiffness of ω1

2. In order to augment the target structure as a
strongly nonlinear system, Duffing oscillators with mass ra-
tio of 1/10, linear stiffness of ω2

2, cubic stiffness coefficients
of β, and linear damping ratio 1/(2Q2) are introduced as
nonlinear attachments mounted on every 40 oscillators, i.e.,
i = 20, 60, 100, . . . , 380. The mass of the oscillator to which
the nonlinear device is attached is excited by an amplitude
modulated sinusoidal force with a mean amplitude A mod-
ulated by the input signal u(t), scaled by a scaling factor
∆i. The input u(t) is supposed to be a temporal sequence,
of which value changes at t = kT , where k is an integer and
T is a period.

Thus, the equation of motion for the ith oscillator with the
nonlinear attachment is given by

ẍi(t) +
ω0

Q1
ẋi(t) + ω0

2xi(t)

+ω1
2[−xi−1(t) + 2xi(t)− xi+1(t)]

+δi{ω2
2[xi(t)− zi(t)] +

ω2

Q2
[ẋi(t)− żi(t)]

+β[xi(t)− zi(t)]
3} = A[1 + ∆iu(t)] cos(Ωt)

(1)

where xi(t) is the displacement of the ith oscillator, δi takes
one when the ith oscillator has the nonlinear attachment, oth-
erwise zero, and zi(t) is the displacement of the mass of
the nonlinear attachment mounted on the ith oscillator. The
forth term of the left-hand side of equation (1) is replaced by
ω1

2[x1(t) − x2(t)] when i = 1, and by ω1
2[−xN−1(t) +

xN (t)] when i = N . The equation of motion of the nonlinear
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Table 1. Design parameter values

Description Symbol Value
Number of oscillators N 400
Linear stiffness of oscillator ω0 1.3
Q factor of oscillator Q1 60
Linear stiffness of connecting spring ω1 1.5
Cubic stiffness coefficient βi 1
Linear stiffness of attachment ω2 =

√
10ω0 4.111

Q factor of attachment Q2 60
Frequency of excitation force Ω 1.5
Mean amplitude of excitation force A 8
Input scaling factor ∆i 0.7
Input period T 65

Table 2. Definition of structural damage

Failure mode Parameter altered Amount
Loss of stiffness
in oscillator

ω0 of 50th oscillator 1, 5, 10 %
decrease

Loss of stiffness
in connection

ω1 on both sides of 50th
oscillator

5, 10, 20 %
decrease

attachment is given by

z̈i(t) + ω2
2(zi(t)− xi(t))

+
ω2

Q2
(żi(t)− ẋi(t)) + βi(zi(t)− xi(t))

3 = 0
(2)

The values of the parameters are summarized in Table 1.

As the structural damage, two damage modes are defined as
described in Table 2, in which the structural parameters, ω0

and ω1 involved in the 50th oscillator are altered indepen-
dently, to represent the deterioration of the target structure.

3.2. PRC design

In order to define the output layer of PRC, the displacement
of every mass is measured with a sampling period of 0.1, and
then amplitude demodulated using Hilbert transform to ob-
tain the envelope, followed by low-pass filtering with fourth-
order Butterworth filter. The resultant envelope signal χi(t)
are used to define the PRC output signal as

y(t) =

i2−i1+1∑
i=1

wi+i1−1χi+i1−1(t) (3)

where the output is defined as a linear sum of the envelope
signal at the masses of i=i1, . . . , i2. The linear weights wi

are determined in the training phase so that the output sig-
nal y(t) becomes as close as possible to the desired signal
yd(t) in terms of minimizing the least square error (super-
vised learning). This is done by a simple matrix calculation
given by

w = (Ξ⊤Ξ+ λI)−1Ξ⊤yd (4)

Figure 3. Output of PRC compared with desired output.

where [w]i = wi+i1−1, [Ξ]j,i = χi+i1−1(tj), and [yd]j =
yd(tj), for i=1, . . . , i2−i1+1 and j=1, . . . , J ; further, I is
the identity matrix and λ is the parameter for Tikhonov regu-
larization.

Multiple PRCs are defined for the same input by using partial
subsets of masses to extract localized information about the
structural healthiness. Each subset is organized from 40 con-
tiguous masses, i.e., the mth subset consists of mth through
(m+39)th masses. Note that the sampling is cyclic so that
the number of the masses are equally 40 for all 400 subsets.
The resultant 400 PRCs are trained independently to learn a
specific task described next.

3.3. Learning Task

The learning task used in the presented toy problem is the
same as the previous work (Masuda et al., 2023), which was
quoted from the reference (Coulombe et al., 2017). The learn-
ing task is defined as the nth-order parity function.

Pn(t) =

n∏
i=1

u(t− iT ) (5)

where u(t) is a binary signal that randomly switches between
−1 and +1 whenever t is an integer multiple of the period T .
This function is a multiplication of the past inputs, therefore,
this task requires both memory and nonlinear computational
capabilities.

4. RESULTS AND DISCUSSIONS

4.1. Training of PRC

Before performing anomaly detection, it is necessary to first
confirm that the above PRC has been properly trained. We di-
vided randomly generated input u(t) into 100T for both train-
ing and validation data and calculated the desired signal yd(t)
(in this toy problem, Pn(t)) by equation (5). The output layer
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(a) 1% decrease of ω0 (b) 5% decrease of ω0 (c) 10% decrease of ω0

(d) 5% decrease of ω0 (e) 10% decrease of ω0 (f) 20% decrease of ω0

Figure 4. Increment of local average of BER by failures introduced at 50th location

weight wi was calculated using the training data with λ = 0.1
by equation (4).

Figure 3 shows a comparison of the output signal y(t) cal-
culated by equation (3) and the desired signal yd(t), repre-
senting the training and validation phases from n = 1 to 5.
The desired signal yd(t) is plotted in blue lines, whereas the
outputs from 400 PRC are averaged and plotted in green lines
for the training phase and in red lines for the evaluation phase.
The estimation error in the evaluation phase was quantified by
bit error rate (BER) given by

BER =
Dh

L
(6)

where Dh is the Hamming distance between the estimated
bits ybit(t) and the true bits yd(t), and L is the length of the
data. The estimated bit is evaluated as

ybit =

{
1 (y ≥ 0)

−1 (y < 0)
(7)

The BERs for the results shown in Figure 3 were 1%, 0%, 6%,
15%, and 37% for n = 1, 2, 3, 4, and 5, respectively. The fact
that the estimation of first, second, and third parities exhibited
satisfactory accuracy suggests the capability of the PRC to
remember past input and to express nonlinear mapping.

The maximum amplitude of the relative displacement of
zi(t) − xi(t) in equation (2) for the case plotted in Figure 3
was examined to see how the nonlinear attachments worked
during the task. The ratio of the equivalent stiffness to the

linear stiffness ω2
2 for each attachment was calculated to in-

vestigate how much the cubic nonlinearity of the attachment
contributed. The ratios were 1.0507, 1.0456, 1.0456, 1.0461,
1.0458, 1.0459, 1.0458, 1.0496, 1.0456, respectively. These
results suggest that the effects of nonlinearity on the behav-
ior of the attachments may be quite limited. This is contrary
to the common understandings that the physical reservoir has
to be strongly nonlinear. The question how the nonlinearity
affects the learning performance and what kind of nonlinear-
ity can improve the learning of the physical reservoir must be
addressed in the future study.

4.2. Damage detection and localization

Using the PRC trained in the above, damage detection tests
were conducted. Using the same input, the BER of the out-
put from 400 PRCs was calculated when there was no dam-
age to the structure, and compared with the BER when there
was damage to the structure. Figure 6 shows the increase in
BER for damage shown in Table 2. The horizontal axis rep-
resents the position of the oscillator, and the height of the bar
indicates the local average increase of the BER of the PRC
associated with a specific position.

What can be seen from Figure 4 is that the larger the damage,
the greater the error. The highest increase in error occurs near
the damaged oscillator 50. Among the parities from the 1st to
the 5th, it is found that the 2nd parity is the most sensitive to
damage. This is the same as the result reported in the previous
study (Masuda et al., 2023). The reason why the 1st parity is
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less sensitive than the 2nd parity may be due to the simplicity
of the task, which could introduce the trained PRC some un-
desirable tolerance to the parameter variation. Moreover, the
BER was more sensitive to the change of ω0 than that of ω1.
This is again the same result as the previous study. It is cer-
tain, however, that the parameter sensitivity observed here is
highly dependent on the design of PR. Establishing a design
theory for PR and task selection to maximize the parameter
sensitivity is the major challenge in future study.

5. CONCLUSION

In this study, we discussed the potential of the concept of
PRC-based SHM, in which the target structure itself is used
as a computational resource, conceptually a promising way
to relieve the heavy computational burden associated with the
increase of the sensor density in sensor networks. Particularly
in this paper, we examined a specific configuration of PRC,
in which the target structure was tailored strongly nonlin-
ear by retrofitting nonlinear attachments, that was trained to
learn nonlinear functions. We consider structural damages as
changes of the mechanical properties of the PR layer, which
allows us to detect the damages as the increase of the predic-
tion error. To demonstrate the effectiveness of the proposed
concept, we conducted numerical experiments through a toy
problem using a network of interconnected linear oscillators
with nonlinear attachments, and performed prediction tasks
for parity functions. As a result, it was found that the PRC
was able to detect damages in the structure and identify its
location.
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