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ABSTRACT 

In this study, an anomaly detection analysis of electronic 
components was conducted using deep learning algorithms 
on time-series data of voltage monitored during highly 
accelerated limit testing (HALT) on inverters used in 
automobiles and other vehicles. We demonstrated that the 
anomaly detection technology of time-series data using deep 
learning could detect equipment anomalies/failures to 
achieve effective data representation, improving the 
reliability assurance technology with HALT. 

1. INTRODUCTION 

A highly accelerated limit test (HALT) is a qualitative 
accelerated test to identify failure modes of products by 
applying external/internal stresses such as heating, cooling, 
vibration, and voltage ((International Electronics 
Commission, 2013). The operating or destructive limits are 
assessed to design the margin of products. The identified 
failure modes are treated as risks of products. The corrective 
actions are considered to improve products.  

HALT has been used to detect faults in electrical products. 
IPC 9592B, which provides the requirements for power 
conversion devices, uses HALT as a design and qualification 
method. Dynabook Inc. emphasizes the quality of their 
products using HALT.  

Though the main purpose of HALT is the identification of 
failure modes for products, it is not easy to identify failure 
modes of products during HALT. Chen et al. (2014) reported 
the application of HALT to improve DC/DC converter. They 
assessed three samples of DC/DC converter, and the 
functional degradation of the converter was found at a low-
temperature limit. The sample resumed normal operation 
after the test. They tried to identify the failure mode of the 

converter, but the failure mode of the converter was not 
reported.  

A typical method to identify failure modes of products is 
failure mode and effect analysis (FMEA). This method 
provides potential failure modes for each system component, 
and potential failure modes for each component are extracted 
based on the physics of failure. Hofmeister et al. (2010) 
proposed a diagnostics and prognostics tool for field 
programmable gate array (FPGA) devices and used HALT to 
confirm the validity of the tool. The four FPGA boards were 
assessed to identify failures due to thermal cycling and 
vibration stresses. Following the completion of HALT, the 
cross-section analysis confirmed that the fractures occurred 
at the solder ball joints of the FPGA. Sakamoto et al. (2018) 
assessed a small amplifier circuit board with FMEA and 
HALT. The FMEA was able to identify failure modes related 
to components. However, some failure modes observed in 
HALT resulted from the interaction between degraded 
components. FMEA often does not consider failure modes 
due to interactions between components.  

Another approach is the data-driven approach. Anomaly 
behaviors of products are detected using data analysis 
techniques such as multivariate statics and/or machine 
learning. HALT requires functional testing to detect anomaly 
behaviors. The input/output variables are monitored to check 
the functional behaviors of products. Moreover, the detected 
anomaly behaviors are complex and difficult to understand. 
As HALT uses multiple stresses, such as thermal, mechanical, 
and electrical stresses, anomaly behaviors depend on 
interactions between multiple stresses. Therefore, the 
monitoring data are affected by several components due to 
the complexity of products.  

The machine learning approach is an effective method for 
anomaly detection of functional tests with HALT. There are 
several algorithms proposed for the anomaly detection of data 
(Chandora, Banerjee, & Kumar, 2009). The nearest neighbor 
method is an unsupervised data driven approach for anomaly 
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detection. The anomaly scores are measured by the distance 
in the space of variables (Ramaswamy, Rastogi, & Shim, 
2000). A fast outlier detection algorithm is also proposed 
(Angiulli & Pizzuti, 2002). However, the scores provide no 
information on failure modes. A support vector machine is a 
supervised approach to classification. Moreover, various 
linear and non-linear approaches have been proposed. Failure 
modes can be classified into supervised classes (Cho, Jo, Kim 
Park, & Park, 2020). Basudhar and Missoum (2013) 
proposed probabilistic support vector machines to estimate 
failure probability with Monte Carlo samples. However, 
identified failure modes are limited to supervised learning.  

Deep learning is a state-of-the-art technique that is currently 
being researched for use in a wide range of fields, including 
image recognition, speech recognition, medicine, finance, 
security, and the military (Khan 2017). It can also be used to 
ensure the reliability of equipment in the engineering field. 
However, the amount of literature in the engineering field is 
small compared to other fields, and it is difficult to say that 
research activities are flourishing. In addition, most of the 
research papers are published from China, and even from a 
global perspective, there is a large regional bias and it is 
difficult to say that research is being conducted actively on a 
global scale (Khan & Yairi, 2017; Shao, Jiang, Zhao, & 
Wang, 2017; Sun, Shao, Zhao, Yan, Zhang, & Chen, 2016; 
Reddy, Sarkar, Venugopalan, & Giering, 2016; Zhao, Wang, 
Yan, & Mao, 2016; Xiang, Qu, Luo, Pu, & Tang, 2021; Vos, 
Peng, Jenkins, Shajriar, Borghesani, & Wang, 2022; Ye & 
Yu, 2021).  

Shao et al. (2017) attempted to utilize deep autoencoders for 
fault diagnosis of rotating machinery, which is widely used 
in modern industry. In vibration analysis, which is currently 
the main method used, the vibration signals obtained are 
usually nonlinear and non-stationary, and useful failure 
characteristic information is often canceled out by heavy 
background noise, leading to inaccurate failure diagnosis. 
The deep autoencoder was used to extract feature information 
superior to failure diagnosis from the miscellaneous 
information obtained in the analysis, because of its simple 
structure and high efficiency.  

Zhao et al. (2016) proposed an LSTM-based MHM algorithm 
for effectively monitoring equipment health. In the literature, 
raw sensory data was used to predict actual tool wear. The 
authors used LSTM as a prediction algorithm because it could 
capture long-term temporal dependencies. For comparison, 
single-layer LSTM, deep LSTM, and a conventional MHM 
method based on expert-generated features were considered. 
The analysis results showed that the LSTM model based on 
raw time-series data analysis outperformed the traditional 
expert top-down MHM method, and deep LSTM could learn 
more robust and abstract feature representations from the raw 
data. The deep LSTM predictions of tool wear progression 
were found to closely follow the actual wear condition of the 
tool as measured under a microscope.  

Xiang et al. (2021) proposed an LSTM-based prediction 
model modified by the authors to accurately predict the 
remaining useful life (RUL) of aero engines. The authors 
attempted to develop an AI-based prediction model because 
of the lack of versatility, and traditional model-based 
approaches were difficult to apply to complex equipment 
such as aero engines. As the monitoring data obtained from 
the sensors around the aeroengine were time series, the 
authors considered LSTM to be the most suitable for RUL 
prediction. Accordingly, they designed a unit to determine 
the importance of the input data set and a multi-cellular unit 
with different data update modes based on the importance of 
the input data set. A unique improved model was constructed 
by incorporating a multi-cellular unit, and other units were 
designed to have different data update modes based on 
importance. To evaluate the proposed model, a 
demonstration of RUL prediction was conducted using open 
datasets of aero engines such as the widely used C-MAPSS. 
The demonstration results confirmed that the authors' 
proposed model outperformed traditional machine learning 
and deep learning-based RUL prediction.  

Vos et al. (2022) attempted to develop an automated 
algorithm to identify any abnormal mechanical behavior 
captured by vibration measurements. They used as training 
data normal samples from a reduction gear endurance test and 
test flight data obtained from sensors installed at multiple 
locations on the helicopter, and designed a deep learning 
model combining LSTM and a one-class support vector 
machine (SVM) as an anomaly detection model. The model 
was designed as an anomaly detection model. In analyzing 
the data, by considering the physical mechanisms by which 
different failure modes (gearbox wear and bearing failure) 
affect the vibration signal, a two-stage model was designed: 
(1) an LSTM regression and 1-class SVM models to detect 
new deterministic features of the data set due to gearbox 
failure, and (2) an LSTM regression and 1-class SVM models 
to detect new random feature components generated in the 
data set by a bearing failure. The authors claimed that these 
improved task-specific LSTM models could detect abnormal 
machine failures from continuous time-series monitoring 
data with high accuracy by failure mode. However, they 
concluded that including LSTM did not improve the 
detection accuracy for continuous data sets, such as those 
consisting of multiple sensor data from different test flights 
of a helicopter. They also suggested that using a simple one-
class SVM for outlier detection was more reasonable.  

This study presents a method to identify failure modes of the 
inverter circuit at HALT with a machine-learning approach. 
The graphical model-based approaches were used to identify 
the failure modes. The neighborhood graph approach was 
employed to identify components related to failure modes. 
Gaussian graphical models were also used to investigate the 
interaction between components. Deep learning approaches 
were also adapted for anomaly detection of the inverter 
circuit due to HALT stresses. 
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2. EXPERIMENTAL PROCEDURE 

2.1. Unit under Test 

The unit under test in this study was a commercial inverter 
circuit board kit for learning (CQ Publishing). The functional 
block chart of the unit under test is shown in Figure 1. The 
unit consisted of a drive circuit board and a control circuit 
board. The three-phase motor was driven by supply voltage, 
and its speed was controlled by a 32-bit single-chip 
microcontroller (Renesas Electronics V850ES/FG3). A DC-
to-DC converter (Cosel SUS62412) lowered the supply 
voltage to 12 V for the control circuit board. The 
microcontroller provided signals of PWM to the motor via 
gate driver IC and MOSFET (Infineon IRFZ48VPBF) based 
on the throttle of variable resistor. The Hall sensor attached 
to the motor sensed the rotating speed of three phase motor 
and fed it back to the microcontroller. 

2.2. Highly Accelerated Limit Testing 

The highly accelerated limit test (HALT) was conducted to 
identify the failure modes. HALT uses vibration and heat as 
stressors to identify failure modes as many products have 
failed due to vibration and/or temperature effects. HALT 
stressed the unit under test by applying cold, heat, rapid 
temperature change, and vibration. 

The low-temperature stress step was started at 20 °C. The 
temperature decrease in the chamber was set to 10 °C every 
10 minutes. The step was terminated when a malfunction of 
the unit appeared, and the temperature at the end of the step 
was defined as the lower operating limit (LOL). The high-
temperature stress step was started at 30 °C. The temperature 
rise in the chamber was set to 10 °C every 10 minutes. 

The rapid temperature change step is a stress step for 
specifying a failure mode of a product due to a rapid 
temperature change. The starting temperature was set 
between 20 [°C] and 30 [°C], and changed between the low-
temperature and high-temperature sides. The temperature on 
the low-temperature side was the operation limit +10 [°C], 
confirmed by the low-temperature step stress test, and the 
temperature on the high-temperature side was the operation 
limit -10 [°C], confirmed by the high-temperature step stress 
test. The temperature was maintained constant for at least 5 
minutes after the product temperature reached the set 
temperature. In addition, the temperature was changed at the 
maximum change rate given by the HALT tester. The testing 
was continued until a product failure was identified or a 
minimum of 5 temperature cycles were completed. 

The vibration step stress test is a test for specifying a failure 
mode associated with vibration, including mechanical fatigue. 
Vibration is applied to the HALT tester's shaking table by 
random vibration of a total of six axes in translation and 
rotation directions with respect to two horizontal axes and 
one vertical axis. This vibration comprised a frequency 

component of 10 Hz to 5000 Hz. The test was started with an 
acceleration of 5 Grms] and then increased the acceleration by 
5 Grms. The acceleration was kept constant for a minimum of 
10 minutes at each acceleration. For 30 Grms or more, it was 
recommended that after holding at each acceleration, reduce 
the acceleration to 5 Grms and check whether the function was 
normal. The temperature during the test was maintained 
constant, considering the effect of self-heating of the product. 
The increase and hold of the acceleration will continue until 
the product failure is identified or the maximum acceleration 
given by the HALT tester, and if possible, the test will be 
continued until the failure limit can be confirmed. 

The composite step stress test is a test for specifying a failure 
mode associated with a combined stress of vibration and 
rapid temperature change. The temperature change was 
obtained by a sudden temperature change cycle test method. 
The amount of increase in the vibration acceleration in each 
step was “the value obtained by dividing the value of the 
fracture limit confirmed in the vibration step stress test by 5”. 
At each acceleration, it was held for one cycle of the 
temperature cycle. The test was continued until a product 
failure was identified or this temperature cycle was 
performed for a minimum of 5 cycles. 

 

Table 1. Monitoring data. 
 

Measurement 
point Monitoring parameter 

1 Throttle voltage 
2 Throttle supply voltage 

3 Hall sensor output voltage 
(U phase) 

4 Hall sensor output voltage 
(V phase) 

5 Hall sensor output voltage 
(W phase) 

6 Hall sensor supply voltage 

7 Motor supply voltage (U 
phase) 

8 Motor supply voltage (V 
phase) 

9 Motor supply voltage (W 
phase) 
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Figure 1. Functional block chart of the unit under test. The 

dashed arrows represent three-phase signal lines. 

2.3. Experimental setup 

The HALT chamber used was a commercial Qualmark 
Typhoon 2.5 chamber. The temperature range was -100– 
200 °C and the chamber had a vibrating table with 762 mm 
square. The inverter circuit board was assessed in the 
chamber. An aluminum plate (A5052P) jig was used to attach 
the substrate to the vibrating table. The motor body, Hall 
sensor, and throttle were installed outside the chamber, and 
the power supply voltage and signal voltage were measured 
while rotating the motor. Parameters monitored during 
HALT are listed in Table 1. LabVIEW of National 
Instruments was used for data acquisition. The sampling rate 
of parameters in Table 1 was 1,000 Sa/s. The temperature was 
measured by connecting a T-type thermocouple to Typhoon 
2.5, and the sampling rate was 1 Sa/s. We used polyimide 
tape with excellent insulation and heat resistance when 
attaching the thermocouple to the inverter. 

3. DATA ANALYSIS 

We collected data from nine measurement points, as shown 
in Table 1. Data for each stress step were analyzed using 
machine learning. We employed a neighborhood graph 
approach and a Gaussian graphical model to identify the 
failure mechanism. The neighborhood graph approach was 
used to identify components related to observed anomaly 
behaviors. The Gaussian graphical model was used to 
characterize the interaction between components to anomaly 
behaviors. 

3.1. Neighborhood graph approach 

Ide (2009) proposed a neighborhood preservation principle 
(NPP) for anomaly analysis. NPP assumed that the 
neighborhood graph kept its structure under normal state. In 
other words, an anomaly of a system could be detected from 
a change in the neighborhood graph. The node exhibiting 
anomalous behavior could be identified by calculating the 
anomaly score of each node.  

A training data set 𝒟𝒟tr and a test data set 𝒟𝒟 were prepared to 
calculate the anomaly scores.  

When N time series measurement data were obtained, the 
neighbor graph was constructed based on 𝑁𝑁 × 𝑁𝑁 
dissimilarity matrix 𝐷𝐷. The element of D, 𝑑𝑑𝑖𝑖,𝑗𝑗 is expressed as 
follows: 

 𝑑𝑑𝑖𝑖,𝑗𝑗 = −𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑐𝑐𝑖𝑖,𝑗𝑗

�𝑐𝑐𝑖𝑖,𝑖𝑖𝑐𝑐𝑗𝑗,𝑗𝑗
� (1) 

Here, 𝑐𝑐𝑖𝑖,𝑗𝑗  is the covariance of time series data 𝑖𝑖 and 𝑗𝑗. The 
neighbor graph was constructed based on 𝐷𝐷. The 𝑘𝑘-nearest 
neighbor graph for 𝑖𝑖-th node was a graph in which the 𝑖𝑖-th 
node was connected from the nearest neighbor to the 𝑘𝑘-th 
neighbor.  

We used the probability 𝑝𝑝(𝑗𝑗|𝑖𝑖) of the nearest neighbor pair of 
nodes 𝑗𝑗 and 𝑖𝑖 to express the change in the 𝑘𝑘-nearest neighbor 
graph quantitatively. 𝑝𝑝(𝑗𝑗|𝑖𝑖) can be expressed as follows: 

 
𝑝𝑝(𝑗𝑗|𝑖𝑖)

=
1

1 + ∑ 𝑒𝑒−𝑑𝑑𝑖𝑖,𝑙𝑙𝑙𝑙∈𝛮𝛮𝑖𝑖
𝑒𝑒−𝑑𝑑𝑖𝑖,𝑙𝑙 (2) 

𝑁𝑁𝑖𝑖 is a set of 𝑘𝑘 nearest neighbors, including the first nearest 
neighbor to the 𝑘𝑘-th nearest neighbor, for a node 𝑖𝑖. 𝑝𝑝(𝑗𝑗|𝑖𝑖) 
takes zero when 𝑗𝑗 is neither 𝑖𝑖 nor 𝑁𝑁𝑖𝑖.  

Anomaly score for node 𝑖𝑖  could be calculated from the 
probabilities of the nearest neighbor pairs. Anomaly score of 
the node 𝑖𝑖 is defined as follows: 

 

𝐸𝐸

= 𝑚𝑚𝑚𝑚𝑚𝑚 ����𝑝𝑝(𝑗𝑗|𝑖𝑖)
𝑗𝑗∈𝛮𝛮𝑖𝑖

− �̅�𝑝(𝑗𝑗|𝑖𝑖)�� , ���𝑝𝑝(𝑗𝑗|𝑖𝑖) − �̅�𝑝(𝑗𝑗|𝑖𝑖)�
𝑗𝑗∈𝛮𝛮�𝑖𝑖

�� 

(3) 

where �̅�𝑝(𝑗𝑗|𝑖𝑖) is the probability of nearest neighbor pairs for 
the training data set, and 𝛮𝛮�𝑖𝑖  is a set of 𝑘𝑘 nearest neighbors 
constructed by the training data set.  

The training data were taken within 10 s after the beginning. 

3.2. Deep learning algorithms 

There are two types of learning methods in machine learning, 
including deep learning: (1) supervised learning, in which 
correct labels are prepared during learning and compared 
with AI output values, and (2) unsupervised learning, in 
which learning is performed using only normal data and the 
degree to which the input data deviates from normal is output 
as an anomaly. As it is difficult to label the time series data 
as normal/abnormal, using unsupervised learning in this 
analysis is appropriate. In this study, two unsupervised deep 
learning algorithms, called "Autoencoder" and " Long Short-
Term Memory (LSTM)," are employed for comparison. 
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The auto-encoder model consists of two assumptions: an 
"encoder" that compresses the input data for low-dimensional 
data representation and a "decoder" that restores the original 
input data from the compressed data. Data compression in the 
encoder means that excess data is removed from the input 
data, and only data that is considered important for data 
representation is left. The data left by the encoder is called 
"features." Therefore, the essence of auto-encoders is a 
strategy for obtaining a function that calculates features from 
input data. 

In this study, we employed the Deep Auto Encoder (DAE), 
which is a derivative model of the auto-encoder. The number 
of layers in the encoder and decoder portions was assumed to 
be equal and symmetric. According to the universality 
theorem, a neural network could approximate any function if 
it has at least one intermediate layer and a sufficiently large 
number of neurons. This would theoretically increase the 
expressive power and enable the representation of complex 
data such as large time-series data. In a previous study, a 
comparison of anomaly detection in time-series data by a 
general autoencoder and another derived model called deep 
auto encoder (DAE) and sparse auto-encoder was conducted, 
and it was confirmed that the deep auto-encoder has the 
highest data expressive power compared to the other two 
models, such as responding to more detailed anomalies. The 
DAE model responded to more detailed anomalies. Therefore, 
DAE was adopted as one of the analysis algorithms in this 
study. 

As an effective model for anomaly detection in time series 
data, this study also employed an algorithm called LSTM, 
which is one of the most popular variations derived from the 
recurrent neural network (RNN), which was invented to 
handle sequential data. Moreover, it is one of the most 
popular models. 

LSTM was invented by Sepp et al. (1997) as a solution to the 
"gradient loss/divergence problem" of RNNs. LSTM 
overcame the structural problems of RNNs by introducing 
memory cells with these features and achieved remarkable 
results in the field of time series data processing. In particular, 
LSTM was used to predict future data of time-series data, and 
it could be further applied to anomaly detection of time-series 
data. The model was constructed to predict the data at the 
time of detection. The LSTM model could output predictions 
with minimal error for normal data by learning to predict data 
using only normal data that did not contain anomalies. The 
LSTM model could detect anomalies in time series data using 
this property by judging that the input data contains 
anomalies when the prediction error is large. In this study, 
LSTM was employed as one of the anomaly analysis 
algorithms to analyze the results of the HALT test. 

4. RESULTS AND DISCUSSION 

4.1. Summary of failure modes observed by HALT 

Observed failure modes at HALT are summarized in Table 2. 
In the low-temperature step stress test, the motor stopped 
rotating when the set temperature was -50 °C. The test was 
terminated at this point. After the test was completed, the 
motor was recovered at room temperature. It means that 
destructive failure did not occur at the low-temperature stress 
step and the observation at -50 °C showed the occurrence of 
operating failure. The motor and power source were outside 
of the HALT chamber. The failure causes were dependent on 
the inverter circuit board. The drive power of the motor was 
supplied via the MOSFET with a filter capacitor. The 
operating temperature of MOSFET ranged from -55 to 
175 °C. In this case, the power supply line to the motor 
worked. 

The motor speed dropped at 130 °C in the high-temperature 
stress step test. After the stress step test, the motor was 
recovered at room temperature, and the operating failure 
occurred. 

Based on low and high-temperature stress step tests, the 
temperature-changing test was conducted with five 
temperature cycles from -40 °C to 120 °C. No failure was 
confirmed after five cycles. 

In the vibration stress step test, intermittent spike noises were 
observed at 35 Grms, but the motor was operated normally. In 
this study, spike noises at 35 Grms were defined as operating 
failure of UUT. 

The combination stress step test was performed based on 
low/high-temperature stress step tests and vibration stress 
step tests. Five cycle temperature stresses were from -40 °C 
to 120 °C, and the acceleration of the shaking table was 
increased by 7 Grms for each cycle. The motor stopped at 14 
Grms and -40 °C. The test was terminated and the motor was 
confirmed to be recovered at room temperature. The recovery 
of function indicates the operating failure occurred. 

 

Table 2. Summary of HALT results. 
 

Stresses Result Observation 

Low temperature -50 °C Motor stopped 

High Temperature 130 °C Motor speed down 
Rapid temperature 
change N/A No anomaly 

behavior 

Vibration 35 Grms Intermittent spike 
noises 

Combined stresses 14 Grms (-
40 °C) Motor stopped 
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4.2. Identification of anomaly components 

Figure 2 shows the anomaly scores of measuring points for 
the HALT stress steps. The degree of the neighborhood graph 
is set to 2 in the figure. The anomaly scores of throttle and 
Hall sensor supply voltages (measurement points 1, 2, and 6) 
were relatively high at low temperatures, rapid temperature 
change, and combined stress steps. The increase in anomaly 
score indicated that the topology of the neighborhood graph 
centered on the measurement point had changed. The throttle 
supply voltage (measurement point 2) had the highest value 
of anomaly score at the combined stress step where the motor 
stopped. The score at the low-temperature stress step was also 
high, and the motor stopped. The scores at the high-
temperature stress step were less than 0.1, and a reduction in 
motor speed was observed. The score of the vibration stress 
step was more than 0.1 at measurement points 2 and 6. 
Intermittent spike noises were observed at the 35 Grms of 
vibration stress. The highest value of anomaly score 
depended on the observed failure behaviors of the unit under 
test. The scores at Hall sensor output and motor supply 
voltage were less than 0.01. These values were not sensitive 
to the observed failure behaviors. 

 
Figure 2. Anomaly scores of the unit under test by 

neighborhood graph approach (k=2). 

4.3. Anomaly detection due to autoencoder 

Abnormality detection using an auto-encoder showed a sharp 
increase in abnormality scores when the motors stopped 
rotating in the low-temperature step stress test and the 
combined stress step test. In the high-temperature step stress 
test, the increase in abnormality score was smaller than in the 
low-temperature stress test. This was because the 
abnormality at low temperatures was due to motor stoppage, 
whereas at high temperatures, it was a decrease in motor 
rotation speed. In other words, the auto-encoder abnormality 
score can be used as a measure of the degree of equipment 
abnormality. Moreover, in the vibration stress test, s-spike 
noise was observed at an average acceleration of 35 Grms in 
the voltage measurements. However, the autoencoder 

showed an increase in abnormality only at some 
measurement points (1, 2, and 6). 

Figure 3 shows the evolution in anomaly score of the motor 
supply voltage (U phase) by DAE. The results were obtained 
at the high-temperature stress step. In the experiment, the 
motor speed was observed to drop at 130 °C. However, the 
score indicated the anomaly alarm at 80 °C. This implied that 
the DAE worked as a precursor of anomaly detection for 
motors. As thermal reliability in electronics is a key issue, 
early detection of high-temperature stresses is expected to 
improve the reliability of electronics. 

 
Figure 3. Anomaly score of motor supply voltage (Phase U) 

at high temperature stress step (deep autoencoder). 

4.4. Anomaly detection due to LSTM 

Figure 4 shows anomaly scores of the motor supply voltage 
(Phase U) obtained from LSTM. Comparing between two 
algorithms in Figures 3 and 4, the LSTM indicated the 
increase at -30 °C though the motor was observed to stop at -
50 °C. However, the anomaly score of DAE showed a 
significant increase in the score at -50 °C. The autoencoder 
used the restoration error of the input data as the anomaly. As 
it detected anomalies only with the current value, it did not 
consider the behavior of past values or other time-series 
characteristics. Therefore, when a large anomaly occurred in 
the short term, the degree of abnormality was considered to 
have reacted drastically. 

LSTM used prediction error, which compared the actual 
value with the output predicted from past values. In this 
method, the output at the time of a major failure was also 
affected by data from a small point in the past, leading to a 
gradual accumulation of anomaly severity and a response in 
anomaly severity at the point of stress level change rather 
than a sudden increase in the severity of anomaly. 
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Figure 4. Anomaly score of motor supply voltage (Phase U) 

at low temperature stress step based on deep autoencoder 
and LSTM. 

5. CONCLUSION 

We conducted HALT to identify failure modes of an inverter 
circuit board for a three-phase motor. Failure modes were 
observed during the HALT. The three-phase motor was 
observed to stop at the low temperature stress and 
combination stress steps. 

The data analysis implied that the anomaly behaviors 
observed were related to the throttle and Hall sensor power 
supply. The neighborhood graph approach successfully 
identified failure modes. 

Deep learning approaches were used for anomaly detection 
of monitored data. DAE reacted to even small anomalies 
observed at the high-temperature stress step. These anomalies 
were not identified using the conventional machine learning 
approach, such as the k-th nearest neighbor method. LSTM 
was able to detect anomalies even earlier than DAE at the 
low-temperature stress step. Time-series monitoring data was 
suitable for LSTM because LSTM considers past time-series 
data. 
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