
A Survey of Prognostics and Health Management for Transformers:
From Statistical Analysis to Condition-Based Diagnostics

Jiaxiang Cheng1, Sungin Cho2, Yap-Peng Tan3, and Guoqiang Hu4

1,3,4 Nanyang Technological University, 639798, Singapore
jiaxiang002@e.ntu.edu.sg

eyptan@ntu.edu.sg
gqhu@ntu.edu.sg

2 SP Group, 349277, Singapore
chosungin@spgroup.com.sg

ABSTRACT

Power transformers are one of the key network components
for reliable and efficient operation of power grids. Over the
past few decades, there have been growing research efforts in
improving the prognostics and health management (PHM) for
transformers, including failure analysis using time-to-event
data and condition-based diagnostics for both single and mul-
tiple components. In this paper, we survey recent literature
and relevant works, focusing on widely used statistical mod-
els and advanced diagnostic techniques that leverage on con-
dition data and maintenance history. Additionally, we exam-
ine the role of artificial intelligence (AI) applications in PHM
for power transformers. Finally, we summarize the current
limitations and future opportunities to support new research
efforts for improving the monitoring of power transformers.

1. INTRODUCTION

Power transformers play a crucial role in the operation of
power grids. Any malfunction can have severe impacts on the
grid, resulting in significant costs. Therefore, research on ac-
curate failure analysis and fault diagnosis for transformers is
essential. To mitigate potential hazards, condition-based as-
sessments have been proposed using monitoring techniques
such as frequency response analysis (FRA), dynamic re-
sistance measurement (DRM), and dissolved gas analysis
(DGA), etc. In addition, utilities operators have conducted
failure analysis to gain insights into the general lifetime
and failure modes of transformers with statistical modeling
(Martin, Marks, Saha, Krause, & Mahmoudi, 2018), which
helps develop strategic plans.
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By understanding the major root causes of failures and per-
formance characteristics of different transformer models, util-
ities operators can better plan for maintenance and replace-
ment, reducing costs and improving grid reliability. Statis-
tical analysis and condition-based diagnostics methods can
enable better prognostics and health management (PHM)
practices at different implementation stages. This paper
presents a review of the applications of statistical analysis and
condition-based diagnostics to power transformers, as well as
trends of research in the past two decades. The study identi-
fies current challenges and future directions to improve PHM
applications to power transformers.

The remainder of paper is structured as follows. Section 2
presents the problem of failure analysis, including different
statistical models and relevant research. Section 3 covers the
research trends of component-level diagnostics and compre-
hensive assessment tools for transformers, focusing on novel
work from the past decade. Section 4 discusses the remaining
challenges, and Section 5 concludes the paper.

2. STATISTICAL ANALYSIS FOR TRANSFORMER

Statistical modeling of failure rate or reliability is a crucial
task across various sectors, including power industry, which
has received considerable attention in recent decades. Re-
liable estimation of transformer survivability is essential for
strategic decisions such as optimizing maintenance and re-
placement plans (Jürgensen, Nordström, & Hilber, 2016). It
provides valuable insights into the costs associated with po-
tential failures of either an individual transformer or a certain
fleet. By accurately estimating failure rates, utilities operators
can make informed decisions that optimize performance and
minimize costs, improving the reliability of the power grid.

In survival analysis, assume the cumulative distribution func-
tion (c.d.f ) of the lifetime random variable (r.v.) τ is repre-
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Table 1. Comparison of two-parameter Weibull models estimated by different studies using diverse data sources.

Source η β Population Failures Observation Voltage Class

Hong et al. (2009) 32.75 4.09 167 4 from 1980 -
Cota-Felix et al. (2009) 33.54 7.02 100 16 1975 - 2008 13.8 kV

Chmura et al. (2011) 71.15 3.20 ∼200 ∼16 1951 - 2011 110 & 150 kV

Zhou (2013) 79 3.3 >800 ∼70 10 years -
Martin et al. (2018) 112 3.49 <5,861 <198 2000 - 2015 ≤66 kV

(a) Failure statistics of power transformers from various sources. (b) Failure statistics in average per component.

Figure 1. Failure statistics of power transformers from [1] Singh et al. (2019), [2] Kalbfleisch and Prentice (2011), [3] Koch and
Kruger (2012), [4] Murugan and Ramasamy (2015), [5] Murugan and Ramasamy (2019), [6] Yasid et al. (2019), [7] Tenbohlen
et al. (2012), [8] Vahidi and Tenbohlen (2014). C&MC stands for Core & Magnetic Circuits.

sented by F (t), while the probability density function (p.d.f )
is represented by f(t), which is differentiated from F (t). The
reliability or survival function, denoted as R(t), is equal to
1−F (t), representing the probability of survival after a given
time t. The failure or hazard rate, λ(t), can be defined as,

λ(t) =
f(t)

R(t)
, (1)

where λ(t) is sometimes referred to as h(t), corresponding to
the hazard rate. Many statistical models have been proposed
for survival analysis, among which, Weibull distributions are
the most commonly used parametric models for estimating
lifetimes (Weibull, 1961), and the Cox proportional hazards
model is a popular semi-parametric model for identifying the
covariates’ effects to the hazard rate (Cox, 1972). When prior
information on the distribution of failure probability is un-
certain, the Kaplan-Meier estimator is a useful model for ap-
proximation (Kaplan & Meier, 1958).

The two-parameter Weibull model is most commonly used
for failure analysis of power transformers. Table 1 provides a
summary of its applications. Variants of Weibull distribution
have been proposed to enhance the regression performance

(Jiang, 2013; A. M. Sarhan, 2013). A study by Martin et al.
(2017) demonstrated that using separate Weibull distributions
to model early-stage failures and aging-related failures can
improve the fitting performance.

The accuracy of parameter estimation in statistical analysis
of transformers depends on data quality. Due to the long
lifespan of transformers, the available data are often highly
left-truncated and right-censored. The Weibull distribution is
popular due to its efficiency in handling censored data (Cota-
Felix et al., 2009). To ensure data quality, Zhou, Wang, Jar-
man, and Li (2014) proposed using Monte Carlo simulation to
generate samples with pre-set Weibull distributions and em-
ploying maximum likelihood estimation (MLE) to estimate
the parameters, establishing criteria for total sample sizes and
censoring rates. However, data quality still remains an major
issue, and researchers have explored various approaches. For
example, Hong et al. (2009) marked rare failure events oc-
curring within the early phase as right-censored data to avoid
misleading model regression.

The estimation of failure rates of an individual transformer
has been studied by incorporating the relative measurements
of condition variables among transformers. Jürgensen et al.
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Figure 2. Trend of the number of publications retrieved from
Scopus using the search criteria ’Keywords: Power Trans-
former’ AND ’Keywords: different components’. The num-
ber of publications with the search criteria ’Keywords: Power
Transformer’ is shown as the benchmark for comparison.

Figure 3. Trend of the number of publications retrieved from
Scopus using the search criteria ’Keywords: Transformer’
AND ’Keywords: different techniques’. The number of pub-
lications with the search criteria ’Keywords: Power Trans-
former’ is shown as the benchmark for comparison.

(2016) proposed a method to calculate the relative condition
measurements, which can be paired with corresponding fault
locations or failed components to derive individual failure
rates. This method provides a clear view of priority for main-
tenance and replacement. It was further improved by using
the ARIMA model for predicting trends of each covariate, en-
abling the estimation of future failure rates within a certain
horizon (Jurgensen, Nordstrom, & Hilber, 2019).

Figure 4. Trend of the number of publications and cita-
tions retrieved from Scopus using the search criteria ’Key-
words: Power Transformer’ AND (’Keywords: Artificial In-
telligence’ OR ’Keywords: Machine Learning’ OR ’Key-
words: Deep Learning’).

3. CONDITION-BASED DIAGNOSTICS

The contributions of different components to transformer fail-
ures are summarized in Figure 1 based on various studies.
The results indicate that winding, bushing, and tap changer
are the main components responsible for failures, with insula-
tion systems also showing a significant percentage of failures
in some studies (Singh et al., 2019; Murugan & Ramasamy,
2015, 2019). However, the definitions of insulation systems
vary among studies, making the causes of failures ambiguous.
Futhermore, windings and insulation systems are closely re-
lated, further complicating the analysis of failure causes.

In this study, we used different combinations of keywords to
extract relevant publications from the Scopus database and
analyze the research trends. Figures 2 and 3 show the number
of publications related to different components and diagnos-
tic techniques in the past two decades. Figure 2 reveals that
research on winding has consistently contributed to a signifi-
cant proportion of power transformer studies, consistent with
the finding in Figure 1 that winding is the major cause of
transformer failures. Figure 3 highlights that FRA and DGA
are the main diagnostic techniques studied for power trans-
formers over the years, with FRA mainly used for diagnos-
ing winding in various studies (Aljohani & Abu-Siada, 2014,
2016, 2017). DGA is a comprehensive diagnostic tool that
can be used to analyze the health condition of power trans-
formers by examining different indicators (Duval, 1989).

We also conducted an analysis of publications on both power
transformers and artificial intelligence (AI). To highlight
the trends in AI-related studies on power transformers, we
present Figure 4, which shows the number of publications and
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Table 2. Application of DGA gas ratio for various fault detection.

Fault Type CH4/H2 C2H2/CH4 C2H2/C2H4 C2H4/CH4 C2H4/C2H6 C2H6/C2H2 CO2/CO

Thermal Faults [1]-[4]* [1]† [1]-[4]* [3] [1]-[4]‡ [1]†

Partial Discharge [2]-[4] [1]†,[2] [1]‡,[3],[4] [3],[4] [1]‡,[2] [1]†

Arcing [2],[4] [1]† [1],[4] [1]‡,[4] [1]†

Discharges of Low Energy [2],[3] [2],[3] [2],[3]

Discharges of High Energy [2],[3] [2],[3] [2],[3]
Ref.: [1] Doernenburg Ratio & Rogers Ratio (IEEE PES Transformers Committee et al., 2019), [2] IEC Ratio (Duval, 2008), [3] Kim et al. (2013), [4]

NBR7274 Method (IEEE PES Transformers Committee et al., 1992);
* Not significant for thermal faults < 300oC in [2] IEC Ratio (Duval, 2008);
† Only Doernenburg Ratio in [1] Doernenburg Ratio & Rogers Ratio (IEEE PES Transformers Committee et al., 2019) included; ‡ Only Rogers Ratio in

[1] Doernenburg Ratio & Rogers Ratio (IEEE PES Transformers Committee et al., 2019) included.

Figure 5. Word cloud of author keywords extracted from
publications retrieved from Scopus using the search crite-
ria ’Keywords: Power Transformer’ AND (’Keywords: Ar-
tificial Intelligence’ OR ’Keywords: Machine Learning’ OR
’Keywords: Deep Learning’). The searched keywords in the
criterion are not included in the word cloud. The size of each
phrase corresponds to its frequency of occurrence among the
author keywords.

their corresponding citations, thereby indicating the extent to
which they have been cited. Notably, we observe a clear and
significant increase in the number of studies on power trans-
formers with AI-related keywords, particularly after 2015. It
is to be noted that as more citations are expected with increas-
ing years of exposure, it may take longer time to show the
actual trending of citations for publications in recent years.
Nevertheless, the trend underscores the growing importance
of AI in the domain of power transformers, and the increas-
ing emphasis on harnessing AI-based solutions to address the
challenges associated with these systems.

Figure 5 presents a word cloud generated from the keywords
of the same set of AI-related publications, which reveals the
most frequent keywords found in relevant studies. It can
be noticed that fault diagnosis and dissolved gas analysis
emerge as the most frequently included terms. The applica-
tion of AI in traditional diagnostics has been widely adopted

thanks to advances in data collection and storage techniques.
Meanwhile, DGA data are easy to collect within power utili-
ties, which has prompted researchers to apply diverse AI/ML
methodologies to obtain insights for diagnosis and to under-
take more comprehensive analyses (Lu et al., 2018; Lin et
al., 2018; Zeng et al., 2020). Table 2 summarizes the most
commonly used gas indicators from DGA for checking health
conditions at a general level, which can serve as the reference
for feature selection when applying AI with DGA data.

4. CHALLENGES FOR TRANSFORMER DIAGNOSTICS

4.1. Limited Failure Data for Statistical Analysis

The lifespan of a transformer typically ranges from 20 to 50
years. As a result, there are limited failure data available
within a fleet of transformers, which can be noticed from Ta-
ble 1. This poses significant challenges for researchers in
building feasible survival models. Therefore, for the fore-
seeable future, a major focus and challenge will be on the
treatment of highly censored and unbalanced data. Although
Monte-Carlo simulation methods have been proposed for pre-
liminary assessments of data usability (Zhou et al., 2014),
techniques for data augmentation and optimizing statistical
model estimation are expected to handle cases with poor data
quality and limited failure data.

4.2. Study on Critical Components Besides Winding

The windings, bushings, and tap changers are widely con-
sidered the most critical components of power transformers
and are responsible for a significant portion of failures, as
shown in Figure 1. Research on windings and associated di-
agnostic techniques have been developing with the research
on power transformers, but less attention has been paid to
bushings and tap changers, as presented in Figures 2 and 3.
It also worths focusing more on other critical components,
such as the bushings, which are more vulnerable due to their
unique structure (Johnson & Iliev, 2012). To closely monitor
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the health condition of bushings, diagnostic techniques in-
volving capacitance, dissipation factor, and thermal analysis
can be further studied (Stih & Mikulecky, 2013; Mariprasath
& Kirubakaran, 2018).

4.3. Feasible Application of Artificial Intelligence (AI)

The use of AI holds promise for condition monitoring of
transformers. Recent research demonstrates that advanced
ML techniques have already been applied in various areas,
including survival analysis, DGA, etc. Traditional methods,
e.g., Weibull distribution for survival analysis, can provide
reliable insights with the ability to handle truncated and cen-
sored data, while advanced techniques, especially end-to-end
methods, require further development and validation to gen-
erate more interpretable outcomes. Rather than replacing tra-
ditional methods, ML techniques can also serve as auxiliary
tools to improve the performance of conventional techniques.
For instance, they can aid in data pre-processing and dimen-
sionality reduction. Therefore, it is essential to explore the
potential benefits of ML techniques while also acknowledg-
ing the strengths of traditional methods.

5. CONCLUSION

This paper provides a review of the relevant work on fail-
ure analysis and diagnosis of transformers. From survival
analysis to component-level diagnostics, the health profiles of
transformers can be illustrated from various aspects. Poten-
tials can be seen that the condition information from different
diagnostic techniques can be combined with the traditional
way of statistical modeling, to help utilities operators moni-
tor the health condition of individual assets more accurately.

Challenges remain for both improvements on conventional
methods and implementation of advanced techniques as dis-
cussed in the previous section. Some possible future work is
provided below:

1. The questions remain for statistical analysis of trans-
formers including how various models perform for dif-
ferent cases; how to select the best model for a given case
with clear criteria; how to properly define the remain-
ing useful life based on the estimated models; and how
the models help make better maintenance or replacement
plans for transformers;

2. Advanced condition-based monitoring techniques can
be combined with semi-parametric statistical models to
achieve a clear view of how different condition variables
impact the lifetime trending of transformers;

3. The AI/ML techniques can potentially be applied to
many tasks including early prediction of failure rate, data
processing for modeling, analysis of the data obtained
from different diagnostic techniques, etc.
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