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ABSTRACT

Industrial processes suffer from a wide range of damages in-
cluding normal wear, environmental changes, physical struc-
tural defects and so on. This paper describes the possibility
of system health management based on a prediction model,
i.e., state space model realized by Kalman filter. The categor-
ical target was mapped to numerical values in advance for this
purpose. To deal with the time-varying and streaming char-
acteristics of the industrial process, the model is applied in
an online fashion. Comparing with conventional fault detec-
tion techniques, this model has the advantages of monitoring
not only the production process of interests through obser-
vation equation, but also the structural anomalies described
via unseen states estimation. In addition, the process and
measurement noises provide valuable information about the
unstructured uncertainties caused by other reasons. Experi-
ments have been conducted to valid the effectiveness of the
proposed method.

1. INTRODUCTION

Industrial facilities may incur damage over time as a result
of prolonged use and the typical deterioration associated with
regular operation. It is imperative to identify such damage at
an early stage to mitigate further deterioration and avoid asso-
ciated losses. The corresponding system health management
is usually delivered by the data-driven models.

In this domain, the fault detection, or anomaly detection is
usually formulated as the classification problem of multivari-
ate time series. Typically, the data in this domain is com-
monly known as ”sensor data” as it is instrumented through
various sensors utilized for process monitoring and subse-
quently collected for the purpose of analysis. These data pro-
vide valuable and relevant information related to the system
health. Unlike detecting outliers for univariate time series
and multivariate time series (Blázquez-Garcı́a, Conde, Mori,
& Lozano, 2021; Braei & Wagner, 2020), which focus on
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the data mining of the time series to get rid of unwanted
and uninteresting data, such as noise, we aim to explore fault
types that are related to physical failure and structural dam-
ages (Chandola, Banerjee, & Kumar, 2009).

In this context, each data instance is associated with a label
that denoting the health state of the data as normal or abnor-
mal, or other multiple fault types. These labels are usually
obtained by domain experts, resulting in a significant amount
of effort required to acquire the labeled training dataset. The
process of classification involves training a model or classifier
using a set of labeled data instances, and subsequently using
the trained model to classify a new or test instance into one
of the available classes.

One challenge of classification-based techniques is that the
assigned label provides no other useful or meaningful infor-
mation regarding the test instances. For example, some times
the health condition for the data instance might be somewhere
between completely abnormal and healthy, which makes an
anomaly score a better and more reasonable choice. This can
be realized by transforming the categorical labels to contin-
uous values and then a regression model can be trained for
prediction of the anomaly scores (Platt, 1999). This way, the
human expert can be alarmed when early abnormal pattern is
showing up but not to the point of completely abnormal yet
and take the necessary precautions

Another challenge of fault detection for industrial processes
is the normal behavior of the system keeps evolving and
changing, as a result of the dynamical and nonstationary char-
acteristics of the dynamical system (Kadlec, Grbić, & Gabrys,
2011). Therefore, a fixed model fail to capture this important
feature can has difficulty being applied in real-world applica-
tions. One solution for this dynamic factor is to utilize dy-
namic models rather than static models. In this study, we take
advantage of the state-space models (SSM) to represent the
model evolve via state transition equation.

Traditionally, SSM have been used for a wide range of ap-
plications, such as controller design and observer selection
for multiple input and multiple output systems (Zhang, Xue,
& Gao, 2014), system identification(Favoreel, De Moor, &
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Overschee, 2000), and data fusion of multi-rate sampled and
delayed data (Fatehi & Huang, 2017), etc. This study dis-
cusses the possibility of taking advantage of SSM for online
fault detection in industrial processes.

For state estimation and prediction, Kalman filter is ap-
plied (Meinhold & Singpurwalla, 1983; Bishop & Nasrabadi,
2006). Since it was proposed by Rudolf Kalman in 1960s,
Kalman filter has been applied in numerous fields and various
applications including but not limited to engineering, naviga-
tion, and economic research. The algorithm is simple, effi-
cient but powerful, adopting a Bayesian approach to estimate
the system state.

2. METHODOLOGY

First, we introduce the transformation of categorical target
labels into continuous variable which work with a regression
model. This can be done by setting up a mapping rule man-
ually. For example, in the case of binary classes, i.e., normal
and faulty conditions, they can be mapped into two distinctive
values. In this study, we map them to 0 and 1, respectively.
As shown in the figure, the normal status as well as the abnor-

Figure 1. The mapping of the target labels.

mal status are now represented by numerical values of 0 and
1, but they are not necessarily integers when it comes to pre-
diction. A value between 0 and 1 suggests different severity
of the system fault.

2.1. Problem formulation

Next, the online fault detection is formulated under the frame-
work of SSM. Assuming the unobserved k×1 state vector θn,
the regression parameter, and the transformed labels yn, the
model can be written as follows:

(state equation) θn = Aθn−1 +wn (1)
(Observation equation) yn = xnθn + vn, (2)

where A is the k × k transition matrix and wn the additive
Gaussian noise, with zero mean and covariance matrix Q. xn

is the 1 × k sensor data that relates the measurements to the

state, and vn is an error term distributed with mean zero and
covariance matrix R.

Figure 2. Illustration of dynamic system by SSM.

According to the above formulation, an illustration for this
dynamic model is provided in Fig. 2. The system is initial-
ized by the initial regression coefficient θ0, and then passed
on to the next states. For each of the estimated state θ, the
system health can be obtained when the sensor data x is avail-
able. Compared to traditional model with a fixed model, the
dynamic model allows the regression to vary with time. For
the optimal estimate of the state, we apply Kalman filter for
state estimation and prediction.

2.2. Kalman filter

Generally speaking, Kalman filter is a recursive procedure
that fuses mixed sources of information. For soft sensor ap-
plications, we are particularly interested to find the optimal
state estimate based on the prediction of the next latent state
θ−n and the actual corresponding observation yn. Suppose
the previous optimal state mean vector θ+n−1 and optimal es-
timated state covariance matrix P+

n−1 are known, then θ+n
and P+

n will be updated by the following forward recursions
of Kalman filter equations

θ−n = Aθ+n−1 (3)

θ+n = θ−n +Kn(yn − xnθ
−
n ) (4)

P−
n = AP+

n−1A
T +Q (5)

P+
n = (I−Knxn)P

−
n (6)

Kn = P−
nx

T
n (xnP

−
nx

T
n +R)−1, (7)

with initialization of θ−0 and P−
0 . According to these equa-

tions, the update of the state variable θ+n in (4) is done by take
the prediction θ−n and add a correction term, proportional to
the prediction error (yn − xnθ

−
n ). The weight of the latter is

controlled by the Kalman gain Kn, which is the ratio of the
uncertainty of the prediction and the uncertainty of the new
measurement. While the state covariance P+

n is estimated in
a similar way.

The recursive process determines the state estimate and pre-
diction is done in an online manner, i.e., the system model
will be adjusted as the new measurement comes in. This is an
advantage for application in real-time environments.
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3. EXPERIMENT RESULTS

3.1. Data set

To validate the proposed method, we used a open data set
available in Kaggle datasets1. The data were collected in a
small-scale centrifugal water pump in the USA during April
1st 2018 to August 31st 2018, and sampled minute-by-minute
throughout the day. There are 52 sensors provided in total,
likely to representing the motor frequency, motor speed, mo-
tor current, pump impeller speed, pump bearing temperature,
pump inlet pressure, etc. Correspondingly, the system health
was marked either as normal or failure. The objective is to
predict the future machine status based on the sensor obser-
vations.

Some important preprocessing steps performed on this data
set need to be clarified. First, the original data was down-
sampled to a daily frequency, which largely decreases the
data size to more manageable level. Next, the sensors that
contain missing values were removed from the feature set.
After these two steps, the data set was composed by 153 ob-
servations of 44 features, among which the first 76 instances
are utilized as the training data and the rest for testing. Fur-
thermore, the categorical target variable was mapped to nu-
merical values, as shown in the beginning of Sec.2. Finally,
dimensionality reduction was performed by recursive feature
elimination with cross validation (Granitto, Furlanello, Biasi-
oli, & Gasperi, 2006), which resulted in selecting 8 features
as the representation of the whole 44 sensors.

3.2. Evaluation metrics

Since we transform and formulated the fault detection prob-
lem as a regression model, the prediction error based evalu-
ation metrics are utilized. Specifically, the root mean square
error (RMSE) and mean absolute error (MAE) were calcu-
lated according to

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (8)

MAE =
1

n

n∑
i=1

|yi − ŷi|. (9)

In the formula, yi denote the ground truth of the ith observa-
tion of machine status while ŷi refers to the prediction made
by the dynamic model.

3.3. Comparative experiments

In this section, the results of the comparative experiments are
shown. First, the least square regression (OLS) is viewed as
the base line. Then, the recursive least square approach (R-
OLS) was compare as well, as there are some similarities be-

1https://www.kaggle.com/datasets/nphantawee/pump-sensor-data

tween them. As for the Kalman filter, two types of prediction
are considered. The first is off-line prediction (KF-offline),
where the regression coefficient θt = θn for all t > n, which
means the future model parameter remains the same as the
last time step estimate of the training data. While the other
way is making predictions and updating the model online
(KF-online) as the new measurement becomes available. This
approach is consistent with the equations in (3) - (7) and will
adjust the model taking in to the system change and is more
accurate usually. Note that the initialization state vectors for
Kalman filter is the OLS solution, the initial state covariance
matrix a diagonal matrix with the diagonal elements equal to
0.0001, the transition matrix A identity matrix, the process
noise covariance matrix also the same diagonal matrix, and
measurement variance set as 0.005.

Evaluation OLS R-OLS KF-offline KF-online
RMSE 0.1811 0.1194 0.1781 0.0987
MAE 0.1099 0.0739 0.1055 0.0608

Table 1. Prediction errors of the comparative methods.

The prediction errors of 4 comparative methods are shown
in Table 1. The two static models, the OLS and KF-offline
had less desirable prediction performance than the other two
dynamic models, and among which Kalman filter offline had
lower prediction error than OLS. On the other hand, the re-
cursive OLS has improved by 34% compared by OLS, but
still was inferior than the Kalman filter online prediction.

Figure 3. Predictions plot of the comparative methods.

Fig. 3 provided more details about the performance of com-
parative methods. It can be observed that Kalman filter of-
fline prediction gave higher predictions for system failure and
lower predictions for normal status. However, both of them
predicted system failure with values around 0.5, which in-
clude ambiguities in terms of accuracy. In comparison, the
two recursive methods gave predictions much closer to the
ground truth. Particularly, the Kalman filter predictions come
with a prediction interval, and in the case of offline prediction,
the prediction uncertainty accumulated and piled up little by
little as no feedback from the actual measurements were of-
fered.
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Figure 4. Change of some regression coefficients

To understand the model dynamic, the regression coefficients
of several selected sensor data as well as the intercept are
shown in Fig.4. This figure demonstrates the variations of
the regression parameters, particularly around July, all the
coefficients had obvious changes. After that, the regression
parameters were more stable and only minor variations were
observed. This figure highlights the adaptability of the dy-
namic model and helps understand the nature of the proposed
method.

4. DISCUSSION AND CONCLUSION

To cope with the challenge of system dynamics existed in the
industrial processes for fault detection problem, we propose
to utilize the framework of SSM to explicitly represent the
model dynamic. Particularly, the fault detection problem is
formulated and interpreted as a regression problem for more
explainable and convincing detection result. Therefore, we
first transformed the categorical machine status into contin-
uous values. In this context, the proposed model resembles
traditional soft sensor models. Next, we applied Kalman filter
for optimal state estimates and state predictions, where the re-
cursive procedure updates the state variables online. Compar-
ison experiments on a real-world water pump data set showed
the effectiveness of the online Kalman filter. Furthermore, the
analysis of the results confirmed the assumption of the dy-
namics of the system and the corresponding adaptability of
the proposed method.

There are some aspects that need further discussion and clar-
ifications. First, although the case study in this paper has bi-
nary labels for the health condition of the system, in practice,
however, the historical data may be inadequate to accurately
represent the full range, and industrial processes can often
encounter unprecedented issues. To handle unseen anoma-
lies, the proposed model has online learning in nature that
can adapt and update the model parameters. Furthermore, the
change of the system noise and measurement noise represent
and indicate dynamics or external factors that can not be cap-

tured by the system, as well as inaccuracies in the measure-
ment process itself.

Last, we list some potential future extensions to make the pro-
posed model more flexible and effective. First, the SSM in
this paper are limited to the linear cases, which can be ex-
tended to nonlinear SSM or particle filters to account for more
complex dynamics. Meanwhile, sophisticated algorithms can
be developed to deliver more quantified estimations for the
unstructured model uncertainties. Finally, it is important to
incorporate domain-specific knowledge into the model, and
this could involve in combining physics-based models.
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