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ABSTRACT 

This paper presents a novel Active Fault-Tolerant Control 

(AFTC) framework for a four-wheel drive (4WD) electric 

vehicle equipped with independently actuated in-wheel 

motors (IWMs). The presented approach consists of a fault 

detection and diagnosis (FDD) module and a compensation 

strategy. Once a fault is detected, the FDD module is 

activated, and as a consequence the fault will be identified, 

the faulty wheel will be isolated, and fault magnitude will be 

estimated. Then, based on the FDD module outputs, 

compensation module strategy is initiated. Compensation 

module employs a multi-parametric optimization technique 

to achieve the main objective of reducing the torque demand 

to the faulty actuator. Through extensive 

MATLAB/Simulink simulations, the results of this study 

showcase the effectiveness of the proposed AFTC system in 

managing multiplicative faults affecting the IWMs of the 

electric vehicle. 

1. INTRODUCTION 

Electric vehicles with four-wheel independent drive are 

considered a groundbreaking advancement in vehicle design, 

offering significant benefits due to their chassis architecture. 

These advantages include flexible actuation, rapid torque 

response, and the ability to control each wheel independently 

(Lian et al., 2025). As a result, extensive research efforts are 

being devoted to developing advanced stability control 

methods for this redundant system, with a particular focus on 

torque distribution strategies (Achdad et al., 2024), (Deng et  

al., 2023). In parallel with these developments, increasing 

demands on vehicle safety and passenger comfort have 

driven research toward the integration of advanced control 

frameworks that address the inherent complexity of fully 

autonomous vehicles. This has led to the emergence of 

Global Chassis Control (GCC), a control module designed to 

coordinate multiple actuators and achieve various control 

objectives simultaneously. Zhu et al. (2024) demonstrated a 

multilayer GCC integrating differential drive-assist steering 

with direct yaw control via a coordinated decision layer and 

a torque distribution layer, improving both handling and 

lateral stability. Similarly, the work in (Chokor et al., 2022) 

compares a centralized multi-layer LPV/𝐻∞ approach with a 

decentralized sliding-mode control scheme, highlighting 

different actuator coordination strategies based on stability 

metrics. More recent work continues this direction with 

integrated coordination frameworks that reconcile competing 

performance goals. For example, (Guo et al., 2024a) present 

a three-layer AMPC-based coordination architecture for 

distributed-drive EVs, and (Dong et al., 2023) optimize the 

coordinated AFS–DYC action for lateral stability. 

While these technologies enhance driving flexibility and 

active safety, they also increase the likelihood of actuator 

faults due to the added system complexity and the higher 

number of actuators. This highlights the important role of 
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fault-tolerant control (FTC) in maintaining and improving 

vehicle safety.  

1.1. Related Works 

A wide range of techniques have been employed in fault-

tolerant control to ensure the stability of vehicles 

experiencing faults, including methods such as sliding mode 

control (Sun et al., 2024), (Lu & Xu, 2021) linear parameter-

varying (LPV) control (Guo et al., 2024b), (Wang & Wang, 

2018) and robust control (Sakthivel et al., 2020), (Guo & 

Chen, 2020). Passive FTC of these systems has attracted a lot 

of attention. Passive FTC is defined as the control approach 

that ensures system stability and acceptable performance in 

the presence of faults without requiring fault detection or 

system reconfiguration. The authors in (Chen et al., 2019) 

proposed a passive FTC scheme for an autonomous electric 

vehicle with in-wheel drives, treating actuator faults as 

uncertainties within a multiple-input multiple-output state-

feedback framework to preserve path tracking and stability 

without explicit fault diagnosis or reconfiguration. Similarly, 

the work in (Tong et al., 2022) proposed an integrated vehicle 

control that consists of two main components: a Model 

Predictive Control (MPC) path-following module, which 

computes the required generalized forces/moments to track 

the reference trajectory and a passive FT layer based on 

sliding-mode control, which acts to preserve yaw stability 

and limit sideslip under in-wheel motor faults while 

mitigating chattering. While passive techniques are simpler 

and more robust than active techniques under certain 

conditions, they may fail to maintain stability or performance 

under faults that were not anticipated during the design phase. 

In addition, since faults are not explicitly detected or isolated, 

undetected faults may accumulate over time, potentially 

leading to progressive performance degradation or even 

system failure (Saied et al., 2020). Active Fault-Tolerant 

Control addresses this limitation by incorporating fault 

detection and diagnosis mechanisms, allowing the system to 

identify, isolate, and compensate for faults in real time. 

Following this perspective, the authors in (Wang et al., 2024) 

propose an approach that combines active FTC with a 

Reference Target Reshaping Scheme (RTRS) to address 

actuator faults in four-wheel independent drive vehicles. 

Based on the calculation of the Fault Tolerant Feasible 

Region, a control allocator for force distribution is designed. 

The development and integration of fault diagnosis modules 

essential for active fault-tolerant systems have received 

limited attention in existing research. The work in (Zhu et al., 

2023) proposed an active motor fault-diagnosis scheme for 

distributed four-wheel independent-drive electric vehicles. 

Assuming a nominal path-tracking controller under healthy 

conditions, residuals are built from the ratio between 

expected and actual wheel-motor torque and then they are fed 

to a fuzzy logic classifier that outputs a per-wheel failure 

factor to detect and isolate the faulty in-wheel motor. The 

authors in (Zhu et al., 2025) proposed a data-driven fault 

diagnosis for such vehicles using a two-stream 2D-

Convolutional Neural Network (CNN) that fuses time-

domain signals with time–frequency maps, enhanced by a 

Depthwise Convolution Block Attention (DCBA) module. 

Tested across varying speeds/loads/roads, it achieves robust 

per-wheel fault detection and isolation without explicit 

vehicle modeling, outperforming single-stream baselines.  

1.2. Motivation and Contribution 

This work develops a unified active fault-tolerant control 

framework for a four-wheel independently actuated electric 

vehicle, aimed at tolerating actuator faults while preserving 

vehicle stability and trajectory tracking. Building on the 

general frameworks of (Laghmara et al., 2017) and (Tarhini, 

2021), the proposed approach introduces two key advances: 

• a behavior-based fault detection and isolation 

scheme that first identifies the faulty side of the 

vehicle and then applies a virtual gain-based 

estimation to isolate the individual faulty wheel and 

quantify its loss of effectiveness;  

• the tight integration of this FDI scheme with a multi-

parametric optimization-based torque allocator, 

which redistributes the driving torque among the 

four wheels according to the estimated degradation, 

while accounting for residual control capability, 

energy consumption, and safety constraints. This 

unified framework enables real-time diagnosis and 

compensation, extending beyond a simple 

combination of previously published techniques. 

The main contributions of the paper are therefore 

summarized as follows: 

• Proposition and validation of a behavior-based fault 

diagnosis scheme for actuator faults in a four-wheel 

independently actuated electric vehicle. The method 

combines side-level behavior analysis with virtual 

gain-based estimation to isolate the faulty wheel and 

estimate its loss of effectiveness. 

• Development of an original torque allocation 

strategy within a multi-parametric optimization 

framework, which explicitly exploits the estimated 

loss of effectiveness to manage how torque is 

redistributed among the four wheels in the presence 

of a fault. The framework jointly considers residual 

control authority, energy efficiency, and safety 

constraints, thereby ensuring stable and safe vehicle 

operation under faulty conditions. 

The structure of this paper is as follows: Section 2 outlines 

the implemented control strategy, detailing its hierarchical 

levels. In Section 3, the fault detection and isolation method 

is presented, along with the corresponding estimation 

approach. This section also evaluates the effectiveness and 

precision of the diagnostic process. Building on this 
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diagnosis, the fault compensation approach is developed in 

Section 4. Section 5 then showcases and analyses the 

outcomes achieved using the proposed active fault-tolerant 

control scheme, tested on a comprehensive vehicle model 

within a Matlab/Simulink environment. Finally, Section 7 

concludes the paper and discusses potential directions for 

future research.  

The vehicle models used in the following sections are mainly 

adopted from the works in (Termous et al., 2019) and 

(Chokor et al., 2016) and are built on Matlab/Simulink 

according to the parameters presented in Table 1. In this 

paper, the indices 𝑖 = {𝑓, 𝑟}  and 𝑗 = {𝑙, 𝑟}  denote the 

positions of the vehicle's wheels, representing front 𝑓, rear 𝑟 

and left 𝑙, right 𝑟 sides respectively. 

Symbol Parameter Value 

𝑀 
Mass of the 

vehicle 
600 𝐾𝑔 

𝑙𝑓 
Distance from CG 

to the front axle 

2

3
𝑚 

𝑙𝑟 
Distance from CG 

to the rear axle 

4

3
𝑚 

𝑡𝑓 Half front axle 0.71 𝑚 

𝑡𝑟 Half rear axle 0.71 𝑚 

𝐼𝑧 
Yaw rate of inertia 

around CG 
360 𝐾𝑔.𝑚2 

𝑟 
Wheel effective 

radius 
0.3 𝑚 

ℎ Height from CG 0.5 𝑚 

𝐶𝑓 
Front tire 

cornering stiffness 
34 𝐾𝑁/𝑟𝑎𝑑 

𝐶𝑟 
Rear tire cornering 

stiffness 
19 𝐾𝑁/𝑟𝑎𝑑 

Table 1. Model Vehicle Parameters 

 

2. CONTROL ARCHITECTURE 

Global Chassis Control (GCC) can be implemented using 

various architectural frameworks, including centralized, 

decentralized, and multi-layer structures. As demonstrated in 

(Chokor et al., 2022), each of these architectures offers 

unique advantages and challenges depending on the 

application and coordination needs. In this work, we adopt a 

multi-layer architecture inspired by the approach in (Tarhini, 

2021). This structure, illustrated in Fig. 1, is organized into 

three distinct layers: the decision layer, the high-level control 

layer, and the low-level control layer. Each layer plays a 

specific role in managing vehicle dynamics and coordinating 

actuator behaviour effectively. 

2.1. High-Level Control 

2.1.1. Longitudinal Control 

A Longitudinal control is crucial when it comes to providing 

stability and comfort to the driving experience. It aims at 

tracking the longitudinal velocity 𝑉𝑥  to a desired velocity 

profile and thus regulates the vehicle’s speed and acceleration 

and ensures safe and efficient motion in the direction of 

travel. The longitudinal velocity is produced by the full non-

linear model of the vehicle and is obtained from the dynamics 

of the system according to Newton's laws. The control is 

achieved in this work through a PID controller, represented 

by equation 1, that produces a total driving torque 𝑇𝑚 as a 

control input into the system by driving the error 𝑒𝑣𝑥 = 𝑉𝑥 −

𝑉𝑥,𝑑𝑒𝑠  to zero. The simple nature of the PID controller makes 

it a good choice to control the longitudinal behavior of the 

vehicle alongside the two more complex controllers used for 

the manoeuvrability and lateral control. 

             𝑇𝑚 =  𝐾𝑝𝑒𝑣𝑥 + 𝐾𝑖∫ 𝑒𝑣𝑥

𝑡

0

𝑑𝜏 + 𝐾𝑑
𝑑

𝑑𝑡
𝑒𝑣𝑥                (1) 

𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 denote respectively the proportional, integral, 

and derivative gains of the controller carefully tuned to 

achieve the desired control performance. The control input 

generated from the longitudinal PID controller is the total 

driving torque 𝑇𝑚 which will drive 𝑉𝑥 to the desired profile 

after distributing the driving torques on the four independent 

in-wheel motors. 

2.1.2. Stability and Maneuverability Control 

These two control objectives will be achieved through the 

Direct Yaw-moment Control (DYC) controller on the same 

actuator; this requires careful coordination between the 

stability and manoeuvrability where the decision layer 
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prompts one objective over the other depending on the 

stability index of the vehicle and consequently generates 

decision variables 𝜆𝑖 to prompt the desired objectives based 

on a set of coordination rules, where 𝑖 = [𝜓̇, 𝛽̇]  with 𝛽 

denotes the side slip angle and 𝜓 the yaw angle. 

The sliding surfaces in defined in (Khelladi et al., 2020) are 

used here: 

 
𝑠𝜓̇ = 𝑒𝜓̇ = 𝜓̇ − 𝜓̇𝑟𝑒𝑓

   𝑠𝛽 = 𝑒̇𝛽 +𝐾𝛽𝑒𝛽 = (𝛽̇ − 𝛽̇𝑟𝑒𝑓) + 𝐾𝛽(𝛽 − 𝛽𝑟𝑒𝑓)
             (2) 

𝜓̇𝑟𝑒𝑓  and 𝛽𝑟𝑒𝑓  in equation 2 are modulated by the decision 

layer and its parameters 𝜆𝜓̇ and 𝜆𝛽  defined later in Section 

2.2. 

                        
𝜓̇𝑟𝑒𝑓 = 𝜆𝜓̇𝜓̇𝑏𝑖𝑐 + (1 − 𝜆𝜓̇)𝜓̇

𝛽𝑟𝑒𝑓 = 𝜆𝛽𝛽𝑏𝑖𝑐 + (1 − 𝜆𝛽)𝛽
                         (3) 

The surfaces 𝑠𝜓̇ and 𝑠𝛽 correspond to the control objectives 

for yaw rate and sideslip angle, respectively. However, to 

simultaneously regulate both variables through Direct Yaw 

Control (DYC), a new combined sliding surface is 

introduced: 

                              𝑠𝜓̇,𝛽 = 𝑐1𝑠𝜓 + 𝑐2𝑠𝛽                                   (4) 

Where 𝑐1  and 𝑐2  are positive constant weights, relatively 

scaling the sliding variables 𝑠𝜓̇  and 𝑠𝛽 , 𝑠𝜓̇,𝛽  has a relative 

degree of 1 w.r.t the control input, hence: 

     𝑠̈𝜓̇,𝛽(𝑠𝜓̇,𝛽, 𝑡) = Φ𝜓,𝛽(𝑠𝜓̇,𝛽, 𝑡) + 𝜉𝜓,𝛽(𝑠𝜓̇,𝛽, 𝑡) 𝑀̇𝑧          (5) 

The control input produced by this controller is the additive 

yaw moment 𝑀𝑧 which guarantees the convergence of 𝑠𝜓̇,𝛽 

to zero in finite time and is presented below: 

𝑀𝑧 = −𝛼𝑀𝑧,1|𝑠𝜓̇,𝛽|
𝜏𝑀𝑧𝑠𝑖𝑔𝑛(𝑠𝜓̇,𝛽) − 𝛼𝑀𝑧,2

∫ 𝑠𝑖𝑔𝑛(𝑠𝜓̇,𝛽)𝑑𝜏
𝑡

0

     (6) 

with 𝜏𝑀𝑧, 𝛼𝑀𝑧,1 and 𝛼𝑀𝑧,2 being constants to be tuned. 

2.1.3. Lateral Control 

Trajectory following is an essential task for an autonomous 

electric vehicle. It is done by controlling the lateral dynamics 

of the vehicle. It is achieved in this work by reducing the 

lateral error between the vehicle’s centre of gravity and the 

reference trajectory 𝑒𝑦 = 𝑌𝐶𝐺 − 𝑌𝐶𝐺,𝑟𝑒𝑓  to zero using the 

sliding mode control. 𝑌𝐶𝐺  and 𝑌𝐶𝐺,𝑟𝑒𝑓  are determined using 

the equations of motion built into the validation and reference 

models respectively, as described in (Termous et al., 2019) 

and (Mtairek, 2020), and depicted in equation 7. 

  
𝑋𝐶𝐺(𝑡) = ∫(𝑉𝑥0 cos𝜓 (𝜏) − 𝑣𝑦(𝜏) sin 𝜓(𝜏))𝑑𝜏 + 𝑋𝐶𝐺0

𝑌𝐶𝐺(𝑡) = ∫(𝑉𝑥0 sin 𝜓 (𝜏) + 𝑣𝑦(𝜏) cos𝜓(𝜏))𝑑𝜏 + 𝑌𝐶𝐺0

(7) 

The trajectory controller which is similarly explored in [24] 

is defined first by the sliding surface 𝑠𝑦. 

                                    𝑠𝑦 = 𝑒̇𝑦 + 𝑐𝑦𝑒𝑦                                       (8) 

It converges through the generated control input 𝛿𝑐, defined 

in Equation 9, which represents the additional steering angle 

applied at the front wheels on top of the driver’s original 

input. 

      𝛿𝑐 = −𝛼𝛿,1|𝑠𝑦|
𝜏𝛿𝑠𝑖𝑔𝑛(𝑠𝑦) − 𝛼𝛿,2∫ 𝑠𝑖𝑔𝑛(𝑠𝑦)𝑑𝜏

𝑡

0

       (9) 

The tuning parameters 𝜏𝛿 , 𝛼𝛿,1 and 𝛼𝛿,2 are chosen such that 

they adhere to the constraints of the super-twisting algorithm. 

The tuned parameters of the controllers used throughout this 

study are summarized in Table 2. 

 

Parameters Value 

𝐾𝑝, 𝐾𝑖, 𝐾𝑑 −35,−13, 0 

𝜏𝑀𝑧 , 𝛼𝑀𝑧,1 ,𝛼𝑀𝑧,2  0.5; 1300;0.0001 

𝜏𝛿, 𝛼𝛿,1, 𝛼𝛿,2 0.5; 0.355; 0.0001 

Table 2. Controller’s parameter for simulation 

2.2. Decision Layer 

Achieving effective global chassis control requires a well-

orchestrated coordination among the three controllers 

described earlier. This coordination module is responsible for 

managing controller switching and assigning priorities based 

on driving conditions. At the heart of this process lies the 

real-time computation of the Stability Index (SI), which is 

derived from the vehicle’s sideslip angle 𝛽  and its rate of 

change 𝛽̇. The SI, as defined in Equation 10 and originally 

introduced in (Doumiati et al., 2013), serves as a critical 

indicator of vehicle stability. According to the stability 

boundaries established in (He et al., 2006), the system is 

considered stable when 𝑆𝐼 ≤ 1. 

                          𝑆𝐼 = |2.49𝛽 + 9.55𝛽̇|                                  (10) 

Within the manoeuvrability and stability control unit, a 

coordinated strategy is implemented to strike a balance 

between two key objectives: achieving responsive 

manoeuvrability, represented by the yaw rate, and 

maintaining vehicle stability, indicated by the sideslip angle. 

For normal driving situations with no risk of instability, 𝑆𝐼 ≤
𝑆𝐼  the manoeuvrability control is always active (𝜆𝜓̇ = 1), 

Figure 1. Control architecture layers 
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and the stability control is off (𝜆𝛽 = 0) . However, if the 

vehicle is under a critical situation 𝑆𝐼 ≥ 𝑆𝐼  the stability 

objective is prompted forth off (𝜆𝛽 = 1)  while the 

manoeuvrability is turned off (𝜆𝜓̇ = 0). The two decision 

variables 𝜆𝜓̇ and 𝜆𝛽  ∈ [0,1] act as weighting factors inside 

the controller. They are modelled as sigmoid functions, given 

by Equation 11 to ensure a smooth transition: 

                        

𝜆𝛽 =
1

1 + 𝑒
−

8

𝑆𝐼−𝑆𝐼 (𝑆𝐼 −
𝑆𝐼 + 𝑆𝐼
2 )

𝜆𝜓̇ = 1 − 𝜆𝛽

                  (11) 

Previous studies have explored coordination strategies 

between active steering and differential braking. For 

example, (Bardawil et al., 2014) introduced several 

approaches that rely on the vehicle’s stability index (SI), 

while (Termous et al., 2019) extended the coordination 

framework to include active suspension, aiming to enhance 

stability in critical driving scenarios. Although the Direct 

Yaw-Moment Control (DYC) and Active Front Steering 

(AFS) systems have each proven effective when applied 

independently, addressing stability and trajectory tracking 

respectively, their simultaneous application revealed 

conflicts that could compromise overall performance. To 

resolve this, a coordination strategy guided by the stability 

index is proposed to harmonize their actions and ensure the 

vehicle meets both manoeuvrability and stability goals. 

The DYC being a limit handling stability controller, it should 

not affect the vehicle handling under normal driving 

conditions (Selby et al., 2001), thus it will only be promoted 

for 𝑆𝐼 ≥ 𝑆𝐼 (critical driving). While the AFS will be active 

for normal driving situations. To emphasize the importance 

of the stability though, a weighting factor was included to 

give it more priority and to avoid interference between the 

two controllers which were observed to happen while testing 

the model. The tuning of the weighting factor is based on the 

system’s behaviour observation. 

2.3. Low-Level Control 

Once the control inputs are determined at the decision level, 

they are passed down to the low-level controller, where they 

are translated into actionable commands for the vehicle’s 

actuators. Before reaching the actuators, however, these 

inputs are processed by a torque allocation module. This 

critical step ensures that driving and braking torques are 

intelligently distributed among the four wheels, generating 

the necessary traction force (𝑇𝑚) and yaw moment (𝑀𝑧) to 

fulfill both longitudinal motion and stability or 

manoeuvrability objectives. 

2.3.1. Torque Allocation 

Torque vectoring, also known as torque allocation, refers to 

the strategy used to distribute the driving torques, 

originating from longitudinal control, and braking torques, 

generated by the Direct Yaw Control (DYC), across the 

wheels on the front and rear axles. This distribution plays a 

crucial role in optimizing vehicle performance, particularly 

in terms of stability and responsiveness. The specific 

method adopted in this work follows the approach detailed 

comprehensively in (Tarhini, 2021). 

The core idea behind this approach is to allocate the total 

driving torque 𝑇𝑚, generated by the longitudinal controller, 

and the corrective yaw moment 𝑀𝑧, provided by the DYC 

controller, to each wheel in a way that aligns with the 

system’s dynamic requirements. Thanks to the 

independence of each in-wheel motor, the system can create 

𝑀𝑧 by applying braking torque on one side of the vehicle 

while simultaneously delivering driving torque on the 

opposite side. This enables fully independent torque control 

across the wheels, significantly enhancing the controller’s 

effectiveness. The distribution of both 𝑇𝑚 and moment 𝑀𝑧 

is governed by four allocation parameters 𝑝, 𝑘, 𝑞 , and 𝑛 

each ranging within [0, 1].  
 

To maintain pure longitudinal motion without inducing 

lateral drift, the total driving torque 𝑇𝑚  is evenly split 

between the two wheels on each axle. This principle is 

reflected in Equation 12, which allocates 𝑇𝑚 between the 

front and rear axles using a weighting factor 𝑝 for the front 

axle and (1 − 𝑝) for the rear axle: 

                                 {
𝑇𝑟𝑙 = 𝑇𝑟𝑟 =

𝑇𝑚
2
(1 − 𝑝)

𝑇𝑓𝑙 = 𝑇𝑓𝑟 =
𝑇𝑚
2
(𝑝)

                      (12) 

Since 𝑀𝑧  is a free vector in space, its generation can be 

distributed between the front and rear axles to fully leverage 

the capabilities of the four independent in-wheel motors, as 

described in (Bardawil et al., 2014). This distribution is 

represented by the total torque contributions from the rear 𝑇𝑟 

and front 𝑇𝑓 axles, as defined in Equation 13. A weighting 

parameter 𝑘 controls how 𝑀𝑧 is split, assigning a portion 𝑘 to 

the rear and (1 − 𝑘) to the front. The value of 𝑘 effectively 

determines how much each axle contributes to producing the 

corrective yaw moment. 

                          {

𝑇𝑟 = −
𝑟

𝑡𝑟
𝑘𝑀𝑧

𝑇𝑓 = −
𝑟

𝑡𝑟
(1 − 𝐾)𝑀𝑧

                                (13) 

where 𝑟  is the wheel radius and 𝑡𝑟  is the half rear axle 

distance. Once the total torques are allocated to the front and 

rear axles, they are further distributed to the individual 

wheels in a way that enables effective generation of the yaw 

moment 𝑀𝑧 . This is achieved by applying opposite torques 
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on wheels of the same axle, braking on one side and 

accelerating on the other, ensuring that wheels on the same 

side (left or right) receive torques in the same direction. This 

torque symmetry respects a key constraint on yaw moment 

generation, helping to prevent over-acceleration or excessive 

braking, as highlighted in (Bardawil et al., 2014). The 

distribution is guided by parameters 𝑞 and 𝑛, which control 

how 𝑇𝑟 and 𝑇𝑓 are split between the left and right wheels. A 

higher 𝑞 increases braking on the rear wheels, while a lower 

value favours rear acceleration. Similarly, 𝑛  adjusts the 

balance on the front axle, higher values bias toward front 

braking, and lower values toward front acceleration. 

The torque distribution strategy is influenced by the desired 

direction of the yaw moment 𝑀𝑧 . When a clockwise moment 

is needed, the torques are allocated to the wheels based on the 

following equation: 

                                       

{
 

 
𝑇𝑏,𝑟𝑟 = 𝑞𝑇𝑟
𝑇𝑏,𝑓𝑟 = 𝑛𝑇𝑓

𝑇𝑑,𝑟𝑙 = (1 − 𝑞)𝑇𝑟
𝑇𝑑,𝑓𝑙 = (1 − 𝑛)𝑇𝑓

                          (14) 

 

while a counter-clockwise direction will result in the 

following equation: 

                                       

{
 

 
𝑇𝑏,𝑟𝑙 = 𝑞𝑇𝑟
𝑇𝑏,𝑓𝑙 = 𝑛𝑇𝑓

𝑇𝑑,𝑟𝑟 = (1 − 𝑞)𝑇𝑟
𝑇𝑑,𝑓𝑟 = (1 − 𝑛)𝑇𝑓

                          (15) 

Where 𝑇𝑏,𝑖𝑗 and 𝑇𝑑,𝑖𝑗 represent the braking and accelerating 

torques at the wheel 𝑖 𝑗 respectively. 

 

By varying the parameters 𝑝, 𝑘, 𝑞 and 𝑛, the performance of 

the vehicle changes. Therefore, finding their optimal values 

will ensure the vehicle’s optimal behaviour, guaranteeing 

both stability and energy efficiency. 

To optimize the vehicle’s performance, the goal is to balance 

the longitudinal forces between the front and rear wheels 

based on their respective loads. Initially, this is achieved 

according to the dynamic load distribution which utilizes 

internal vehicle dynamics to make the ratio of the 

longitudinal forces proportional to the loads between the rear 

and front sides of the vehicle. During vehicle manoeuvres the 

weight distribution changes leading to dynamic load transfer 

between front and rear axles. This transfer affects the traction 

and performance of the vehicle. To allow for a balance of the 

loads on the front and rear wheels, the Load Distribution 

Ratio 𝜅 is defined below: 

                               𝜅 =
𝐹𝑧𝑓
𝐹𝑧𝑟

=
𝐹𝑧𝑓𝑟 + 𝐹𝑧𝑓𝑙
𝐹𝑧𝑟𝑟 + 𝐹𝑧𝑟𝑙

                              (16) 

where 𝐹𝑧𝑖𝑗 are the loads acting on the wheels as defined in 

(Bakker & Pacejka, 1987): 

𝐹𝑧𝑓𝑙 = 𝑀(
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
𝑔 −

ℎ

𝑙𝑟 + 𝑙𝑓
𝑎𝑥) × (

1

2
−

ℎ

2𝑡𝑓𝑔
𝑎𝑦)

𝐹𝑧𝑓𝑟 = 𝑀(
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
𝑔 −

ℎ

𝑙𝑟 + 𝑙𝑓
𝑎𝑥) × (

1

2
+

ℎ

2𝑡𝑓𝑔
𝑎𝑦)

𝐹𝑧𝑟𝑙 = 𝑀(
𝑙𝑓

𝑙𝑟 + 𝑙𝑓
𝑔 +

ℎ

𝑙𝑟 + 𝑙𝑓
𝑎𝑥) × (

1

2
−

ℎ

2𝑡𝑟𝑔
𝑎𝑦)

𝐹𝑧𝑟𝑟 = 𝑀(
𝑙𝑓

𝑙𝑟 + 𝑙𝑓
𝑔 +

ℎ

𝑙𝑟 + 𝑙𝑓
𝑎𝑥) × (

1

2
+

ℎ

2𝑡𝑟𝑔
𝑎𝑦)

       (17) 

with 𝑀  being the mass of the vehicle, 𝑙𝑓  and 𝑙𝑟  are the 

distance from the centre of gravity to the front and rear axles 

respectively. 𝑡𝑓  and 𝑡𝑟  are the half front and rear axles 

respectively. ℎ is the height from the centre of gravity. 𝑎𝑥 

and 𝑎𝑦  are the longitudinal and lateral accelerations and 𝑔 

denotes the acceleration due to gravity. 

 

The concept behind using dynamic load transfer for torque 

allocation is to adapt the driving torques applied to the front 

and rear axles, denoted by 𝑇𝑚 in response to changes in load 

distribution. To ensure the wheels deliver the desired total 

torque 𝑇𝑚 , the individual torque values are distributed 

according to the load distribution factor, 𝑝: 

                          𝜅 =
𝐹𝑥𝑓
𝐹𝑥𝑟

=
𝑝𝑇𝑚/𝑡𝑓

(1 − 𝑝)𝑇𝑚/𝑡𝑟
                            (18) 

where 𝑡𝑓 = 𝑡𝑟 are half the front and rear track of the vehicle. 

Similarly, the generation of 𝑀𝑧 is split as well according to 

this criterion while the braking and acceleration torques are 

divided equally between the wheels to ultimately realize 𝑀𝑧. 

Hence, the four allocation parameters are given by: 

                                

𝑝 =
𝐹𝑧𝑓

𝐹𝑧𝑓 + 𝐹𝑧𝑟
=

𝜅

1 + 𝜅

𝐾 = 1 − 𝑝 =
1

1 + 𝜅

𝑞 = 𝑛 =
1

2

                           (19) 

2.3.2. Actuator’s Model 

The model of the actuators should consider the dynamic 

response with respect to the input signals. For this purpose, a 

simple model of the AFS and the Electro-Mechanical-

Braking-System (EMB) actuators is used, as mentioned in 

(Doumiati et al., 2013) and (Chokor et al., 2022).  

 

The additive steering angle due to the lateral control is 

achieved by the active front steering actuator which is a steer-

by-wire active steering system that generates an additive 

angle applied to the front wheel axle. It is modelled as a Low 

pass filter described by: 

                                  𝛿̇𝑐 = 2𝜋𝑓1(𝛿
+ − 𝛿𝑐)                            (20) 
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where 𝑓1 = 10 𝐻𝑧 is the cut-off frequency. The AFS actuator 

generates the additive steering angle 𝛿𝑐 that must track the 

generated control input 𝛿+ . The output of this actuator is 

limited between [−5, 5]. 
 

The active differential braking is generated by the brake-by-

wire Electro-Mechanical-Braking-System to provide 𝑀𝑧. It is 

modeled as a low-pass filter as well described by: 

                                   𝑇̇𝑏𝑟𝑗 = 2𝜋𝑓2(𝑇𝑏𝑟𝑗 − 𝑇𝑏𝑟𝑗
∗ )                   (21) 

Where 𝑓2 = 10 𝐻𝑧  is the cut-off frequency. The EMB 

actuator generates 𝑇𝑏𝑟𝑗
∗  to track 𝑇𝑏𝑟𝑗  which is the output of 

the low-level controller. The output of the actuator is limited 

between [0, 1200] 𝑁.𝑚. 

 

In addition, the in-wheel motor actuator model is presented 

as well in equation 22, which is a simplified first-order 

electric motor model to relate the torque command generated 

at the low level as 𝑇𝑑,𝑖𝑗 at each wheel, and the effective motor 

torque generated by the electric motor 𝑇𝑖𝑗
∗  (Wang & Wang, 

2018). 

                                           𝑇𝑖𝑗
∗ =

𝑇𝑚,𝑖𝑗

1 +
𝐿𝑚
𝑅𝑚

𝑠
                             (22) 

𝐿𝑚 and 𝑅𝑚 are the motor’s internal inductance and resistance 

respectively. This first-order model acts as low low-pass filter 

with a time delay due to the response time needed to generate 

the electric current to be transformed into torque on the motor 

shaft. 

3. FAULT DIAGNOSIS 

In a complex system such as an electric vehicle, the risk of 

faults, particularly in actuators, is relatively high. These faults 

can significantly impact driving dynamics and compromise 

handling performance. Whether they originate from in-wheel 

motors or other actuators like the Active Front Steering 

system, their effect on vehicle behaviour is often detrimental. 

As such, early detection and accurate diagnosis are critical to 

prevent potentially dangerous situations. The following 

sections focus specifically on faults in in-wheel motors. First, 

criteria for detecting which side of the vehicle are affected are 

introduced. Then, an estimation module, based on the virtual 

control gain approach described in (Laghmara et al., 2017), 

is developed to identify and localize the faulty wheel. 

3.1. Actuator Fault Model 

Before discussing the diagnosis and estimation of the in-

wheel motor actuator faults, the motor fault can be modelled 

by the following equation: 

                                   𝑇𝑚,𝑖𝑗 = 𝜆𝑇𝑚,𝑖𝑗
∗ + Δ𝑇𝑚,𝑖𝑗                        (23) 

where 𝑇𝑚,𝑖𝑗 is the actual output of the IWM, while 𝑇𝑚,𝑖𝑗
∗  is the 

desired output, 𝜆 ∈ [0, 1]  is the loss of effectiveness 

coefficient, and Δ𝑇𝑚,𝑖𝑗  is the additive fault. It can be seen that 

the fault-free case is for 𝜆 = 1 and Δ𝑇𝑚,𝑖𝑗 = 0. This research 

will deal with multiplicative (loss of effectiveness) faults 

only, so for what follows Δ𝑇𝑚,𝑖𝑗 = 0 which makes the fault 

model as in equation 24. 

                                                𝑇𝑚,𝑖𝑗 = 𝜆𝑇𝑚,𝑖𝑗
∗                            (24) 

Loss of effectiveness (LOE) faults affecting one side of the 

vehicle can result in an uneven distribution of torque, leading 

to imbalances in yaw moment and a tendency for the vehicle 

to steer more to one side. This torque asymmetry between the 

left and right wheels disrupts the lateral force balance, 

negatively impacting the vehicle’s lateral dynamics and 

potentially compromising stability. To analyse the vehicle’s 

behaviour under various fault conditions, LOE faults were 

individually introduced to each wheel, as modelled in 

Equation 24. These scenarios also serve to evaluate the 

robustness of the control strategy in maintaining stable and 

predictable vehicle performance. 

 

The example below illustrates a test run of a single lane 

change manoeuvre, performed at an initial speed of 

80 𝑘𝑚/ℎ. At 2 seconds into the manoeuvre, a 20% loss of 

effectiveness is introduced in the front-right in-wheel motor. 

The vehicle’s behaviour in both the controlled and 

uncontrolled fault cases is then compared to that of the 

healthy (fault-free) vehicle. 

 

Figure 2 highlights the effect of the fault on the uncontrolled 

vehicle, which exhibits significant oversteering behaviour. In 

contrast, the controlled vehicle is able to maintain a trajectory 

closely aligned with that of the healthy (fault-free) vehicle, 

showing only minor deviations. This demonstrates the 

effectiveness of the robust control architecture in minimizing 

the performance gap caused by the fault. Even with a loss of 

effectiveness as high as 80% , the controlled vehicle 

maintains a trajectory error of approximately 0.23 𝑚 , 

compared to a much larger error of around 1 m in the 

uncontrolled case. Figure 3 further illustrates how the 

vehicle’s internal dynamics are influenced by the fault, 

comparing both the controlled and uncontrolled scenarios 

against the reference model. 

 

3.2. Fault Detection and Estimation 

The control scheme proposed in section 2 can guarantee the 

stability and performance of the vehicle for the faults injected 

into the system as seen in section 3.1 with a slight degree of 

error. It can be seen that the two wheels on the same side have 

the same effect on the vehicle’s behaviour in terms of speed, 

yaw, and trajectory as proposed by the authors in (Laghmara 

et al., 2017).  
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Furthermore, the tests conducted in this study suggest that a 

fault on the left side leads to under-steering, while a fault on 

the right side causes over-steering. Based on this, an active 

fault diagnosis is proposed in this section to locate which side 

of the vehicle has a faulty wheel actuator. Thus, the side of 

the vehicle where the fault occurs can be located by 

comparing the trajectory error of the actual trajectory of the 

vehicle to that of the vehicle under normal (no fault) driving 

conditions and then by thresholding this error to initiate the 

detection process. If the trajectory error exceeds the 

threshold, a left-side fault is identified; if it falls below the 

negative threshold, a right-side fault is identified. 

 

The proposed method yields to an average detection time of 

0.408 𝑠 after fault injection. This result was obtained after 

several tests for different manoeuvres (single lane change 

(SLC), straight driving) at different velocities with varying 

magnitudes of faults on the wheels actuator. On average, 

faults of lesser severity took more time to be detected by the 

system, the average detection time for 10%  loss of 

effectiveness (LOE) faults was 0.642 𝑠  while faults with 

more severity like a 50% LOE were detected much earlier by 

the system with an average detection time of 0.268 𝑠. Within 

the overall average detection time of 0.408 𝑠  the average 

lateral drift for a single lane change (SLC) driving was equal 

to 3.58 × 10−5 𝑚. Another significant index to examine is 

the stability index 𝑆𝐼, where across 26  simulations with 

different conditions it exhibited an average increase of 

16.78%.  

 

 

 

 
 

Figure 2. Trajectory of the vehicle with a 20% fault on front 

right IWM 

 

 
 

Figure 3. Inner dynamics of the vehicle in case of 20% fault 

on front right IWM 

 

 

While a noticeable difference in vehicle behaviour allows 

detecting the faulty side of the vehicle, distinguishing the 

faulty in-wheel motor is hard since both wheels on the same 

side are driving wheels and thus manifest similar behaviour 

on the vehicle. The study conducted in (Laghmara et al., 

2017) proposed in their work an active diagnosis method to 

introduce a virtual gain/fault into the system after the fault 

has been detected to isolate and estimate the fault. This 

method begins once the faulty side of the vehicle has been 

identified. At that point, the motor control gain can be 

virtually adjusted by scaling the control signal with a positive 

factor, denoted as 𝛼. This simulates an additional fault in the 

system but allows to estimate the magnitude of the loss of 

effectiveness coefficient. 

 

For the healthy system and the faulty one, the following holds 

for two wheels on the faulty side 𝑗: 
       𝑘𝑓𝑗𝑇𝑚𝑓𝑗

∗ + 𝑘𝑟𝑗𝑇𝑚𝑟𝑗
∗ = 𝑘0𝑓𝑗𝑇𝑚0𝑓𝑗

∗ + 𝑘0𝑟𝑗𝑇𝑚0𝑟𝑗
∗            (25) 

Where 𝑇𝑚𝑖𝑗
∗   represents the torque on the front or rear wheel 

denoted by 𝑖 on side 𝑗 (left or right) under faulty conditions, 

while 𝑇𝑚0𝑖𝑗
∗  corresponds to the torque on the wheel 𝑖 in the 

healthy scenario. The two unknown control parameters 𝑘𝑓𝑗 

and 𝑘𝑟𝑗 represent the loss of effectiveness coefficient 𝜆 for 

the front and rear wheels for the faulty side 𝑗 detected, and 

𝑘0𝑓𝑗  and 𝑘0𝑟𝑗  for the ideal system equal to 1. To find the 

unknown parameters another equation is needed, and it is 

obtained after multiplying a virtual multiplicative fault of 

value 𝛼 on either the front or rear wheel of the detected faulty 

side 𝑗. Thus, the new equation becomes: 

 𝛼𝑘𝑓𝑗𝑇𝑚𝑓𝑗,𝑛
∗ + 𝑘𝑟𝑗𝑇𝑚𝑟𝑗,𝑛

∗ = 𝑘0𝑓𝑗𝑇𝑚0𝑓𝑗
∗ + 𝑘0𝑟𝑗𝑇𝑚0𝑟𝑗

∗          (26) 
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Consequently, the two parameters can be estimated for the 

suspected faulty side, where the parameter that deviates from 

1 indicates the presence of a fault in the corresponding wheel. 

The two equations 25 and 26 are built into a fault estimation 

and isolation module in MATLAB. It processes torque inputs 

from both the faulty and non-faulty models along with the 

detected faulty side. 

To better present the results of the estimation, the root-mean-

square error (RMSE) is calculated for the different faults that 

were injected. RMSE measures the average difference 

between values predicted by a model and the actual values 

and is given by equation 27. 

                                  𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑥̂𝑖)2
𝑁
𝑖=1

𝑁
                 (27) 

where 𝑁 is the number of data points, and 𝑥𝑖 and 𝑥̂𝑖 represent 

the actual observation and estimated value respectively. 

 

Table 3 summarizes the RMSE values of the estimated loss 

of effectiveness coefficients that were tested on different 

wheels in different driving scenarios. For each LOE value 8 

distinct experiments were done to obtain the RMSE values 

above. To evaluate the effectiveness of the estimation 

method, a tolerance range was chosen as stated to tolerate the 

estimation error of the fault and to obtain optimal results. 

 

 

 

Error 

injected 

Estimated 

ranges 

RMSE 

0.9 0.897 − 0.93 0.008 

0.8 0.86 − 0.8 0.02 

0.7 0.72 − 0.64 0.0389 

0.6 0.67 − 0.55 0.041 

0.5 0.579 − 0.42 0.047 

Table 3. Estimated ranges of LOE coefficients and their 

mean RMSE 

4. COMPENSATION 

While the control architecture demonstrated strong fault 

tolerance, optimizing torque distribution to alleviate the load 

on the faulty motor remains essential for ensuring vehicle 

safety. In over-actuated systems, control reallocation 

strategies are particularly effective, allowing the 

redistribution of control efforts to healthy actuators, making 

them a key component in active fault-tolerant control 

frameworks. This section explores torque allocation through 

a multi-parametric optimization algorithm that adjusts four 

key parameters, (𝑝, 𝑘, 𝑞, 𝑛), once a fault has been detected 

and estimated. The goal is to intelligently redistribute the 

control torque, easing the load on the faulty wheel while still 

preserving the vehicle’s overall performance. 

4.1. Cost Function 

The objective of the multi-parametric optimization here is to 

reduce the torque on the faulty wheel by achieving an optimal 

distribution through the parameters 𝑝, 𝑘, 𝑞, and 𝑛 that take 

into account the magnitude of the fault present on the wheel. 

The cost function proposed in (Tarhini, 2021), which was 

used for energy consumption optimization, includes terms 

related to the driving torques, rotational velocities, and the 

motor efficiency to build a power consumption model. The 

authors in (Tarhini, 2021) applied various optimization 

strategies, including the 2-step optimization with the cost 

function. They conducted an acceleration test and compared 

several performance indices, notably Accumulated Energy 

Consumption and Total Energy Gain. Their strategies 

showed promising results in terms of energy efficiency. In 

this work, we extended the use of this cost function and the 

2-step optimization to consider the actuator fault on the 

wheel. For this reason, the cost function has been updated to 

include the loss of effectiveness coefficient estimated 

previously instead of the motor’s efficiency, while the 

healthy motors will be given an efficiency of 1. In this way, 

the optimization will look to penalize the faulty motor and 

thus reducing the control effort on the faulty wheel. 

 

Moreover, the distribution of the driving/braking torques is 

based on the direction of the yaw moment to be generated. 

Thus, two forms for the cost function are to be considered: 

the first one for the case where the required 𝑀𝑧 is counter-

clockwise, given by equation 28a, and the other one for the 

case where the required 𝑀𝑧 is clock-wise, given by equation 

28b. Then either of these functions is minimized 

accordingly. 

  𝑓1

=
𝑇𝑚
2
  [(1 − 𝑝)(

𝜔𝑟𝑙

𝜆𝑟𝑙
𝑠𝑖𝑔𝑛(𝑇𝑚)

+
𝜔𝑟𝑟

𝜆𝑟𝑟
𝑠𝑖𝑔𝑛(𝑇𝑚)

)

+ 𝑝(
𝜔𝑓𝑙

𝜆𝑓𝑙
𝑠𝑖𝑔𝑛(𝑇𝑚)

+
𝜔𝑓𝑟

𝜆𝑓𝑟
𝑠𝑖𝑔𝑛(𝑇𝑚)

)]

+𝑀𝑧 (
−𝑟

𝑡𝑟
) [𝑘 [−𝑞 

𝜔𝑟𝑙

𝜆𝑟𝑙
𝑠𝑖𝑔𝑛(𝑇𝑚)

+ (1 − 𝑞)
𝜔𝑟𝑟

𝜆𝑟𝑟
𝑠𝑖𝑔𝑛(𝑇𝑚)

] + (1

− 𝑘) [−𝑛
𝜔𝑓𝑟

𝜆𝑓𝑟
𝑠𝑖𝑔𝑛(𝑇𝑚)

+ (1 − 𝑛)
𝜔𝑓𝑙

𝜆𝑓𝑙
𝑠𝑖𝑔𝑛(𝑇𝑚)

]]                     (28𝑎) 
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𝑓1

=
𝑇𝑚
2
[(1 − 𝑝)(

𝜔𝑟𝑙

𝜆𝑟𝑙
𝑠𝑖𝑔𝑛(𝑇𝑚)

+
𝜔𝑟𝑟

𝜆𝑟𝑟
𝑠𝑖𝑔𝑛(𝑇𝑚)

)

+ 𝑝(
𝜔𝑓𝑙

𝜆𝑓𝑙
𝑠𝑖𝑔𝑛(𝑇𝑚)

+
𝜔𝑓𝑟

𝜆𝑓𝑟
𝑠𝑖𝑔𝑛(𝑇𝑚)

)]

−𝑀𝑧 (
−𝑟

𝑡𝑟
) [𝑘 [−𝑞 

𝜔𝑟𝑟

𝜆𝑟𝑟
𝑠𝑖𝑔𝑛(𝑇𝑚)

+ (1 − 𝑞)
𝜔𝑟𝑙

𝜆𝑟𝑙
𝑠𝑖𝑔𝑛(𝑇𝑚)

] + (1

− 𝑘) [−𝑛
𝜔𝑓𝑙

𝜆𝑓𝑙
𝑠𝑖𝑔𝑛(𝑇𝑚)

+ (1 − 𝑛)
𝜔𝑓𝑟

𝜆𝑓𝑟
𝑠𝑖𝑔𝑛(𝑇𝑚)

]]                     (28𝑏) 

4.2. Offline Optimization Problem: Two-Step 

Optimization Approach 

Applying a two-step approach to this problem with four 

parameters that require optimization serves two purposes. 

Firstly, it reduces computational time, and more importantly, 

it enables us to achieve results that are more in line with 

proper vehicle behaviour. It works by pre-assigning 𝑞 and 𝑛 

then obtaining 𝑝 and 𝑘 from the cost function. 

 

Step 1: The first step will consist of assigning values for 𝑞 

and 𝑛 according to the multi-objective criteria that considers 

the behaviour of the vehicle. This is done to relieve the 

vehicle from activating the braking through the DYC 

unnecessarily which causes wear for wheels if done for 

extended periods. Thus, by allowing 𝑞 and 𝑛 to be assigned 

according to the stability of the vehicle, DYC is only 

promoted when the vehicle is in critical driving conditions. 

The assignment works as follows: 

• When the vehicle is in normal driving condition 

𝑆𝐼 ≤ 𝑆𝐼: the DYC is working for manoeuvrability 

objective meaning that 𝑀𝑧 is generated solely by the 

traction torques. This gives 𝑞 = 𝑛 = 0  in the 

normal driving conditions which is the most 

common driving case. 

• If the vehicle is experiencing a low stability error, 

then 𝑆𝐼 < 𝑆𝐼 ≤ 𝑆𝐼: in this scenario, the goal is to 

maintain the vehicle’s longitudinal dynamics, 

ensuring it remains balanced while also conserving 

energy and avoiding abrupt acceleration or braking. 

In this context, generating 𝑀𝑧 through half-driving/ 

half-braking actions is prioritized which gives 𝑞 =
𝑛 = 0.5. 

• If 𝑆𝐼 ≥ 𝑆𝐼: this indicates a critical driving situation 

where 𝑀𝑧 needs to be generated by braking torques 

only, requiring 𝑞 = 𝑛 = 1. 

 

Step 2: After obtaining 𝑞 and 𝑛, they are used in the cost 

function as predetermined values then 𝑝  and 𝑘  are 

determined by minimizing the cost function. The objective 

here is to find a vector 𝑥 = [𝑝 𝑘]𝑇 that is a local minimum to 

the function 𝑓(𝑥) and is subject to constraints in equation 30, 

this makes up the objective function defined below: 

                    min
𝑥
𝑓(𝑥)  subject to  {

𝐴𝑥 ≤ 𝑏
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

                (29) 

       𝐴 = [
1 0
0 1

]    𝑏 = [
1
1
]   𝑙𝑏 = [

0
0
]    𝑢𝑏 = [

1
1
]             (30) 

The problem is initialized with the vector 𝑥0 in equation 31, 

setting each value to 0.5 as a midpoint between the defined 

constraint bounds. 

                                        𝑥0 = [
0.5
0.5
]                                        (31) 

The optimization is performed offline to reduce 

computational costs. In advance, optimized parameters are 

derived for various fault magnitudes and different faulty 

wheels. Subsequently, a lookup table is constructed to 

accommodate two fault magnitudes of 20%, 50% and two 

fault positions front and rear. The lookup table is designed to 

accept inputs, including estimates of the loss of the 

effectiveness coefficient and the location of the faulty wheel. 

It then interpolates to determine the appropriate 𝑝  and 𝑘 

parameters for the vehicle, aligning with the objectives of 

torque reduction.  

 

The lookup table, tailored for these two levels of LOE, 

provides a good range for the produced 𝑝 and 𝑘 parameters 

to effectively satisfy the objectives of better trajectory 

tracking, torque redistribution, and torque reduction on the 

faulty motor. Table 4 illustrates the impact of the 𝑝 and 𝑘, 

produced by the look-up table, on the redistribution and 

subsequent compensation taking place on the motors of the 

vehicle 

 

 Healthy Motor 

Torque 

Faulty Motor 

Torque 

LOE 

Coefficient 

Before After Before After 

0.9 9.18 22.466 23.08 7.863 

0.8 9 21.348 23.9 7.439 

0.7 10.22 25 24.76 6 

0.6 11.05 27.9 25.57 4.5 

0.5 11 29 26.36 3.2 

0.4 13.985 29.54 27.179 4.03 

0.3 14.412 30.03 28.03 4.102 

0.2 14.902 30.5 28.99 4.172 

Table 4. Torque redistribution before and after 

compensation using LUT 
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For certain induced loss of effectiveness values, the average 

torque on one of the healthy motors is presented before and 

after compensation as well as those of the faulty motor. It 

becomes evident that the redistribution effort works to 

increase the torque on the healthy motors and decrease it on 

the faulty one. 

5. SIMULATION VALIDATION 

A fault is injected onto the front left wheel at 𝑡 = 1.5𝑠 of 

30% magnitude. The detection module detects the presence 

of fault at 1.809𝑠 and locates the faulty side. After the fault 

is detected, a virtual fault of magnitude 𝛼 = 0.5 is injected 

into the front left wheel; the estimation output is displayed in 

Fig. 4 below. The virtual fault injected after the fault 

detection, causes the estimation to rise for a few seconds as 

the system adjusts to the new fault injected as seen in Fig. 4 

then it stabilizes to a true estimate of the fault. 

The allocation parameters 𝑝 and 𝑘 seen in Fig. 5(a) and 5(b) 

are distributed as in section 2.3.1, where 𝑞  and 𝑛  are kept 

constant with 0.5. 

 

After the fault occurs, the parameter 𝑝 increases, indicating a 

shift in torque distribution toward the front wheels. This 

increase is later corrected by the robust control system, 

bringing it back in line with the healthy case. Similarly, 

parameter 𝑘 decreases after the fault is injected, signifying 

increased yaw moment generation towards the front of the 

vehicle.  

 

 

Figure 4. Estimation of the fault 

 

 

 
(a) Allocation parameter 𝒑 

 
(b) Allocation parameter 𝒌 

 

             Figure 5. Allocation parameters  

 

 

    Figure 6. Driving torque demand to the IWM actuators 
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The torque demand to the IWM actuators increases after the 

fault occurs as a way for the robust controller to adjust in the 

presence of a fault, as shown in Fig. 6. As mentioned 

previously, increased torque demand to a faulty actuator can 

cause more harm and damage to the wheel, thus the 

compensation method proposed above is engaged after the 

isolation and estimation of the fault. The compensation is 

integrated into the model using a lookup table with 

predetermined values of 𝑝  and 𝑘  that are determined 

according to the location of the faulty wheel and the fault 

estimate. In this case, 𝑝  and 𝑘  are extrapolated from the 

lookup table and illustrated in Fig. 7(a) and 7(b) respectively 

and it is observed that the optimized parameters are engaged 

after the estimation around 𝑡 = 3.2𝑠 in this case. To elaborate 

on the figures, parameter 𝑝  after compensation takes on 

values lower than the uncompensated assignment, which was 

previously around 𝑝 = 0.66 . This indicates that the 
production of driving torques is switched towards the rear 

wheels instead of the front wheels. Similarly, 𝑘 was adjusted 

to take a higher value, indicating that the production of the 

corrective yaw moment shifts towards the rear wheels as 

well.  

Moreover, the preassigned values for 𝑞 and 𝑛 according to 

4.2 are zero in this SLC manoeuvre since the vehicle does not 

encounter instability, thus when the compensation is 

activated 𝑞 and 𝑛 shift from 0.5 to 0 meaning that the 𝑀𝑧 is 

generated through acceleration on both sides. 

As shown in Fig. 8, the compensated vehicle demonstrates 

improved trajectory tracking compared to the pre-

compensation case. The zoomed-in view clearly shows that 

the optimized trajectory closely follows that of the healthy 

vehicle, with only minor fluctuations resulting from 

variations in the optimization parameters. 

 

 

 
(a) Optimized parameter 𝒑 

 

 
(b) Optimized parameter 𝒌 

   

     Figure 7. Optimized parameters 

 

The torques in Fig. 9 show that the torque demand on the 

front wheels is reduced while the demand on the rear wheels 

is increased significantly to make up for it. Consequently, the 

desired torque reduction on the faulty wheel and the re-

distribution of torques to the other IWM is seen in effect in 

Fig. 10.  
Although the input torques to the actuators experience 

oscillations that are related to those of the parameters 𝑝 and 

𝑘 which are treated by the model of the actuator presented in 

equation 22. The actuator model filters out high oscillations 

and gives the output displayed in Fig. 10, which represents 

the torques generated by the wheels. The benefits of this 

compensation strategy can also be observed in the inner 

dynamics of the system which are illustrated in the figures 

 

Figure 8. Trajectory of the vehicle after optimization 
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below. Figure 11(a) shows that the compensation restored the 

yaw angle closely to the healthy vehicle although with some 

oscillations present. Also, in Fig. 11(b), the longitudinal 

velocity can be seen to have increased more than the healthy 

after the compensation started which is likely due to the 

absence of the braking torques allowing the vehicle to have 

more acceleration. 

 

Overall, these results confirm that torque redistribution is 

essential for effective fault mitigation. While the robust 

controller alone responds to the fault by increasing torque 

demand, it is unable to reallocate this demand appropriately, 

leading to additional stress on the faulty actuator. In contrast, 

once the fault is detected and estimated, the proposed 

compensation strategy ensures proper torque redistribution 

across the healthy wheels, enhances overall stability, and 

restores vehicle performance close to healthy conditions. 

 

6. CONCLUSION 

This paper investigates the problem of active fault-tolerant 

control and compensation for four-wheel-drive electric 

vehicles. The study begins by implementing a robust control 

architecture to ensure vehicle stability and control under 

nominal and faulty conditions. Multiplicative faults affecting 

the in-wheel motor actuators were then modelled and 

individually simulated for each wheel to observe the specific 

impact on vehicle dynamics. 

A fault diagnosis method was developed to identify the faulty 

side of the vehicle, left or right, based on behavioural 

indicators. Following detection, a virtual fault injection 

method was used to estimate the severity of the fault (i.e., the 

loss of effectiveness), enabling precise isolation of the faulty 

IWM. The final step involved fault compensation, achieved 

through an offline multi-parametric optimization strategy. 

This was integrated with a look-up table that redistributes 

torque in real time based on the detected and estimated fault 

conditions. 

The key contribution of this work lies in its novel behaviour-

based fault detection strategy, combined with a multi-

parametric torque redistribution scheme tailored to the 

diagnosed fault. The offline-optimized look-up table proved 

effective across different fault magnitudes and can be 

enhanced further with additional system data to increase its 

adaptability. 

 

      

 
           Figure 9. Driving torque demand to the IWM 

actuators, optimized 

 

 
Figure 10. Driving Torques generated by the IWM, 

optimized 
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(a) Yaw rate 

 
(b) Longitudinal Velocity 

Figure 11. Yaw rate and Longitudinal velocity 

 

Looking ahead, future work could extend the fault-tolerant 

framework to include additive faults in the IWMs, as well as 

faults in the active front steering actuator. Investigating the 

combined effects of multiple simultaneous faults and 

developing robust mitigation strategies would represent a 

significant and valuable direction for further research. 
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