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ABSTRACT

This paper presents a novel Active Fault-Tolerant Control
(AFTC) framework for a four-wheel drive (4WD) electric
vehicle equipped with independently actuated in-wheel
motors (IWMs). The presented approach consists of a fault
detection and diagnosis (FDD) module and a compensation
strategy. Once a fault is detected, the FDD module is
activated, and as a consequence the fault will be identified,
the faulty wheel will be isolated, and fault magnitude will be
estimated. Then, based on the FDD module outputs,
compensation module strategy is initiated. Compensation
module employs a multi-parametric optimization technique
to achieve the main objective of reducing the torque demand
to the faulty actuator. Through extensive
MATLAB/Simulink simulations, the results of this study
showcase the effectiveness of the proposed AFTC system in
managing multiplicative faults affecting the IWMs of the
electric vehicle.

1. INTRODUCTION

Electric vehicles with four-wheel independent drive are
considered a groundbreaking advancement in vehicle design,
offering significant benefits due to their chassis architecture.
These advantages include flexible actuation, rapid torque
response, and the ability to control each wheel independently
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(Lian et al., 2025). As a result, extensive research efforts are
being devoted to developing advanced stability control
methods for this redundant system, with a particular focus on
torque distribution strategies (Achdad et al., 2024), (Deng et

al., 2023). In parallel with these developments, increasing
demands on vehicle safety and passenger comfort have
driven research toward the integration of advanced control
frameworks that address the inherent complexity of fully
autonomous vehicles. This has led to the emergence of
Global Chassis Control (GCC), a control module designed to
coordinate multiple actuators and achieve various control
objectives simultaneously. Zhu et al. (2024) demonstrated a
multilayer GCC integrating differential drive-assist steering
with direct yaw control via a coordinated decision layer and
a torque distribution layer, improving both handling and
lateral stability. Similarly, the work in (Chokor et al., 2022)
compares a centralized multi-layer LPV/H,, approach with a
decentralized sliding-mode control scheme, highlighting
different actuator coordination strategies based on stability
metrics. More recent work continues this direction with
integrated coordination frameworks that reconcile competing
performance goals. For example, (Guo et al., 2024a) present
a three-layer AMPC-based coordination architecture for
distributed-drive EVs, and (Dong et al., 2023) optimize the
coordinated AFS—-DYC action for lateral stability.

While these technologies enhance driving flexibility and
active safety, they also increase the likelihood of actuator
faults due to the added system complexity and the higher
number of actuators. This highlights the important role of
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fault-tolerant control (FTC) in maintaining and improving
vehicle safety.

1.1. Related Works

A wide range of techniques have been employed in fault-
tolerant control to ensure the stability of vehicles
experiencing faults, including methods such as sliding mode
control (Sun et al., 2024), (Lu & Xu, 2021) linear parameter-
varying (LPV) control (Guo et al., 2024b), (Wang & Wang,
2018) and robust control (Sakthivel et al., 2020), (Guo &
Chen, 2020). Passive FTC of these systems has attracted a lot
of attention. Passive FTC is defined as the control approach
that ensures system stability and acceptable performance in
the presence of faults without requiring fault detection or
system reconfiguration. The authors in (Chen et al., 2019)
proposed a passive FTC scheme for an autonomous electric
vehicle with in-wheel drives, treating actuator faults as
uncertainties within a multiple-input multiple-output state-
feedback framework to preserve path tracking and stability
without explicit fault diagnosis or reconfiguration. Similarly,
the work in (Tong et al., 2022) proposed an integrated vehicle
control that consists of two main components: a Model
Predictive Control (MPC) path-following module, which
computes the required generalized forces/moments to track
the reference trajectory and a passive FT layer based on
sliding-mode control, which acts to preserve yaw stability
and limit sideslip under in-wheel motor faults while
mitigating chattering. While passive techniques are simpler
and more robust than active techniques under certain
conditions, they may fail to maintain stability or performance
under faults that were not anticipated during the design phase.
In addition, since faults are not explicitly detected or isolated,
undetected faults may accumulate over time, potentially
leading to progressive performance degradation or even
system failure (Saied et al., 2020). Active Fault-Tolerant
Control addresses this limitation by incorporating fault
detection and diagnosis mechanisms, allowing the system to
identify, isolate, and compensate for faults in real time.
Following this perspective, the authors in (Wang et al., 2024)
propose an approach that combines active FTC with a
Reference Target Reshaping Scheme (RTRS) to address
actuator faults in four-wheel independent drive vehicles.
Based on the calculation of the Fault Tolerant Feasible
Region, a control allocator for force distribution is designed.
The development and integration of fault diagnosis modules
essential for active fault-tolerant systems have received
limited attention in existing research. The work in (Zhu et al.,
2023) proposed an active motor fault-diagnosis scheme for
distributed four-wheel independent-drive electric vehicles.
Assuming a nominal path-tracking controller under healthy
conditions, residuals are built from the ratio between
expected and actual wheel-motor torque and then they are fed
to a fuzzy logic classifier that outputs a per-wheel failure
factor to detect and isolate the faulty in-wheel motor. The
authors in (Zhu et al., 2025) proposed a data-driven fault

diagnosis for such vehicles using a two-stream 2D-
Convolutional Neural Network (CNN) that fuses time-
domain signals with time—frequency maps, enhanced by a
Depthwise Convolution Block Attention (DCBA) module.
Tested across varying speeds/loads/roads, it achieves robust
per-wheel fault detection and isolation without explicit
vehicle modeling, outperforming single-stream baselines.

1.2. Motivation and Contribution

This work develops a unified active fault-tolerant control
framework for a four-wheel independently actuated electric
vehicle, aimed at tolerating actuator faults while preserving
vehicle stability and trajectory tracking. Building on the
general frameworks of (Laghmara et al., 2017) and (Tarhini,
2021), the proposed approach introduces two key advances:

e a behavior-based fault detection and isolation
scheme that first identifies the faulty side of the
vehicle and then applies a virtual gain-based
estimation to isolate the individual faulty wheel and
quantify its loss of effectiveness;

o the tight integration of this FDI scheme with a multi-
parametric optimization-based torque allocator,
which redistributes the driving torque among the
four wheels according to the estimated degradation,
while accounting for residual control capability,
energy consumption, and safety constraints. This
unified framework enables real-time diagnosis and
compensation, extending beyond a simple
combination of previously published techniques.

The main contributions
summarized as follows:

of the paper are therefore

e Proposition and validation of a behavior-based fault
diagnosis scheme for actuator faults in a four-wheel
independently actuated electric vehicle. The method
combines side-level behavior analysis with virtual
gain-based estimation to isolate the faulty wheel and
estimate its loss of effectiveness.

e Development of an original torque allocation
strategy within a multi-parametric optimization
framework, which explicitly exploits the estimated
loss of effectiveness to manage how torque is
redistributed among the four wheels in the presence
of a fault. The framework jointly considers residual
control authority, energy efficiency, and safety
constraints, thereby ensuring stable and safe vehicle
operation under faulty conditions.

The structure of this paper is as follows: Section 2 outlines
the implemented control strategy, detailing its hierarchical
levels. In Section 3, the fault detection and isolation method
is presented, along with the corresponding estimation
approach. This section also evaluates the effectiveness and
precision of the diagnostic process. Building on this
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diagnosis, the fault compensation approach is developed in
Section 4. Section 5 then showcases and analyses the
outcomes achieved using the proposed active fault-tolerant
control scheme, tested on a comprehensive vehicle model
within a Matlab/Simulink environment. Finally, Section 7
concludes the paper and discusses potential directions for
future research.

The vehicle models used in the following sections are mainly
adopted from the works in (Termous et al.,, 2019) and
(Chokor et al.,, 2016) and are built on Matlab/Simulink
according to the parameters presented in Table 1. In this
paper, the indices i ={f,r} and j = {[,r} denote the
positions of the vehicle's wheels, representing front f, rear r
and left [, right r sides respectively.

Symbol Parameter Value

M Mass of the | 600 Kg
vehicle

! Distance from CG | 2

J to the front axle 3 m

I Distance from CG | 4

T to the rear axle 3M

tr Half front axle 0.71m

t, Half rear axle 0.71m

I Yaw rate of inertia | 360 Kg.m?

z around CG

, Wheel effective | 0.3 m
radius

h Height from CG 0.5m

C Front tire | 34 KN /rad

f . .
cornering stiffness
Rear tire cornering | 19 KN /rad

C, _
stiffness

Table 1. Model Vehicle Parameters

2. CONTROL ARCHITECTURE

Global Chassis Control (GCC) can be implemented using
various architectural frameworks, including centralized,
decentralized, and multi-layer structures. As demonstrated in
(Chokor et al., 2022), each of these architectures offers
unique advantages and challenges depending on the
application and coordination needs. In this work, we adopt a
multi-layer architecture inspired by the approach in (Tarhini,
2021). This structure, illustrated in Fig. 1, is organized into
three distinct layers: the decision layer, the high-level control
layer, and the low-level control layer. Each layer plays a
specific role in managing vehicle dynamics and coordinating
actuator behaviour effectively.

2.1. High-Level Control
2.1.1. Longitudinal Control

A Longitudinal control is crucial when it comes to providing
stability and comfort to the driving experience. It aims at
tracking the longitudinal velocity V, to a desired velocity
profile and thus regulates the vehicle’s speed and acceleration
and ensures safe and efficient motion in the direction of
travel. The longitudinal velocity is produced by the full non-
linear model of the vehicle and is obtained from the dynamics
of the system according to Newton's laws. The control is
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achieved in this work through a PID controller, represented
by equation 1, that produces a total driving torque T;, as a
control input into the system by driving the error e, =V, —
Vi des to zero. The simple nature of the PID controller makes
it a good choice to control the longitudinal behavior of the
vehicle alongside the two more complex controllers used for

the manoeuvrability and lateral control.
t

d
Tn = Kpey, + Kl-j ey, dT + K, Ee”" (D
0

K,, K;, and K; denote respectively the proportional, integral,
and derivative gains of the controller carefully tuned to
achieve the desired control performance. The control input
generated from the longitudinal PID controller is the total
driving torque T;, which will drive V, to the desired profile
after distributing the driving torques on the four independent
in-wheel motors.

2.1.2. Stability and Maneuverability Control

These two control objectives will be achieved through the
Direct Yaw-moment Control (DYC) controller on the same
actuator; this requires careful coordination between the
stability and manoeuvrability where the decision layer
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prompts one objective over the other depending on the
stability index of the vehicle and consequently generates
decision variables 4; to prompt the desired objectives based
on a set of coordination rules, where i = [w, ,B] with

denotes the side slip angle and 1 the yaw angle.
The sliding surfaces in defined in (Khelladi et al., 2020) are
used here:

Slb:elb:lp_l/)ref (2)
sp = €5 + Kgeg = (B — Brer) + Kp(B — Brey)
d}Tef and B, in equation 2 are modulated by the decision
layer and its parameters 4, and Ag defined later in Section
2.2.
lpref = /1¢¢bic +(1- /11/;)1/’ 3)
,Bref = Aﬁﬁbic +(1- /1,8)'8
The surfaces sy, and sg correspond to the control objectives

for yaw rate and sideslip angle, respectively. However, to
simultaneously regulate both variables through Direct Yaw
Control (DYC), a new combined sliding surface is
introduced:

Sypp = C1Sy T C25p 4)

Where c; and c, are positive constant weights, relatively
scaling the sliding variables s;, and sg, sy, ; has a relative
degree of 1 w.r.t the control input, hence:

Sp.6(sppt) = Pyp(sypt) +Eppsyp M, (5)
Figure 1. Control architecture layers
The control input produced by this controller is the additive
yaw moment M, which guarantees the convergence of sy 5
to zero in finite time and is presented below:

t
M, = —aszl|s¢,B|TMzsign(s¢,'B) - ay,, f sign(syg)dt  (6)
0

with Ty, @y, , and ay, , being constants to be tuned.

2.1.3. Lateral Control

Trajectory following is an essential task for an autonomous
electric vehicle. It is done by controlling the lateral dynamics
of the vehicle. It is achieved in this work by reducing the
lateral error between the vehicle’s centre of gravity and the
reference trajectory ey, = Yo — Yegrep to zero using the
sliding mode control. Y¢; and Y rof are determined using
the equations of motion built into the validation and reference
models respectively, as described in (Termous et al., 2019)
and (Mtairek, 2020), and depicted in equation 7.

Xeo®) = [ (g 05 (0) =, (2 sin ()t + Xego
@
Voo = [ (g sinth () + 1y () cos ()T + Yoo

The trajectory controller which is similarly explored in [24]
is defined first by the sliding surface s,,.

sy =€, +cyey ®

It converges through the generated control input §., defined
in Equation 9, which represents the additional steering angle
applied at the front wheels on top of the driver’s original
input.

t
8, = —a5_1|sy|rssign(sy) - a5,2f sign(sy)dt  (9)
0

The tuning parameters 75, as 1 and @ , are chosen such that
they adhere to the constraints of the super-twisting algorithm.
The tuned parameters of the controllers used throughout this
study are summarized in Table 2.

Parameters Value

Ky, Ki, K4 —35,—-13,0

Tu,r O, Oy, 0.5;1300;0.0001
0.5;0.355;0.0001

T5r A510 X5 2

Table 2. Controller’s parameter for simulation

2.2. Decision Layer

Achieving effective global chassis control requires a well-
orchestrated coordination among the three controllers
described earlier. This coordination module is responsible for
managing controller switching and assigning priorities based
on driving conditions. At the heart of this process lies the
real-time computation of the Stability Index (SI), which is
derived from the vehicle’s sideslip angle § and its rate of
change . The SI, as defined in Equation 10 and originally
introduced in (Doumiati et al., 2013), serves as a critical
indicator of vehicle stability. According to the stability
boundaries established in (He et al., 2006), the system is
considered stable when SI < 1.

SI = |2.498 + 9.558| (10)

Within the manoeuvrability and stability control unit, a
coordinated strategy is implemented to strike a balance
between two key objectives: achieving responsive
manoeuvrability, represented by the yaw rate, and
maintaining vehicle stability, indicated by the sideslip angle.
For normal driving situations with no risk of instability, ST <
SI the manoeuvrability control is always active (4, = 1),
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and the stability control is off (43 = 0). However, if the
vehicle is under a critical situation SI > SI the stability
objective is prompted forth off (/15 = 1) while the
manoeuvrability is turned off (/112, = 0). The two decision
variables Ay, and A € [0,1] act as weighting factors inside

the controller. They are modelled as sigmoid functions, given

by Equation 11 to ensure a smooth transition:
1

Ap =
B 8 —
= o SI+ SI
1+e SI-8L <SI — +—>

> (11)

Alp:l—lﬁ

Previous studies have explored coordination strategies
between active steering and differential braking. For
example, (Bardawil et al., 2014) introduced several
approaches that rely on the vehicle’s stability index (SI),
while (Termous et al., 2019) extended the coordination
framework to include active suspension, aiming to enhance
stability in critical driving scenarios. Although the Direct
Yaw-Moment Control (DYC) and Active Front Steering
(AFS) systems have each proven effective when applied
independently, addressing stability and trajectory tracking
respectively, their simultaneous application revealed
conflicts that could compromise overall performance. To
resolve this, a coordination strategy guided by the stability
index is proposed to harmonize their actions and ensure the
vehicle meets both manoeuvrability and stability goals.

The DYC being a limit handling stability controller, it should
not affect the vehicle handling under normal driving
conditions (Selby et al., 2001), thus it will only be promoted
for SI > SI (critical driving). While the AFS will be active
for normal driving situations. To emphasize the importance
of the stability though, a weighting factor was included to
give it more priority and to avoid interference between the
two controllers which were observed to happen while testing
the model. The tuning of the weighting factor is based on the
system’s behaviour observation.

2.3. Low-Level Control

Once the control inputs are determined at the decision level,
they are passed down to the low-level controller, where they
are translated into actionable commands for the vehicle’s
actuators. Before reaching the actuators, however, these
inputs are processed by a torque allocation module. This
critical step ensures that driving and braking torques are
intelligently distributed among the four wheels, generating
the necessary traction force (T;,) and yaw moment (M,) to
fulfill both longitudinal motion and stability or
manoeuvrability objectives.

2.3.1. Torque Allocation

Torque vectoring, also known as torque allocation, refers to
the strategy used to distribute the driving torques,
originating from longitudinal control, and braking torques,
generated by the Direct Yaw Control (DYC), across the
wheels on the front and rear axles. This distribution plays a
crucial role in optimizing vehicle performance, particularly
in terms of stability and responsiveness. The specific
method adopted in this work follows the approach detailed
comprehensively in (Tarhini, 2021).

The core idea behind this approach is to allocate the total
driving torque T,,,, generated by the longitudinal controller,
and the corrective yaw moment M, provided by the DYC
controller, to each wheel in a way that aligns with the
system’s dynamic requirements. Thanks to the
independence of each in-wheel motor, the system can create
M, by applying braking torque on one side of the vehicle
while simultaneously delivering driving torque on the
opposite side. This enables fully independent torque control
across the wheels, significantly enhancing the controller’s
effectiveness. The distribution of both T;,, and moment M,
is governed by four allocation parameters p,k,q, and n
each ranging within [0, 1].

To maintain pure longitudinal motion without inducing
lateral drift, the total driving torque T,, is evenly split
between the two wheels on each axle. This principle is
reflected in Equation 12, which allocates T, between the
front and rear axles using a weighting factor p for the front
axle and (1 — p) for the rear axle:

T,
TrlzTrrZTm(l_p) ( )
12

Tm

Ty =T = 7(2’)

Since M, is a free vector in space, its generation can be
distributed between the front and rear axles to fully leverage
the capabilities of the four independent in-wheel motors, as
described in (Bardawil et al., 2014). This distribution is
represented by the total torque contributions from the rear T,
and front Ty axles, as defined in Equation 13. A weighting
parameter k controls how M, is split, assigning a portion k to
the rear and (1 — k) to the front. The value of k effectively
determines how much each axle contributes to producing the
corrective yaw moment.

T
T, = ——kM,
t,

- (13)
Ty == A= KOM,

where 7 is the wheel radius and t, is the half rear axle
distance. Once the total torques are allocated to the front and
rear axles, they are further distributed to the individual
wheels in a way that enables effective generation of the yaw
moment M, . This is achieved by applying opposite torques
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on wheels of the same axle, braking on one side and
accelerating on the other, ensuring that wheels on the same
side (left or right) receive torques in the same direction. This
torque symmetry respects a key constraint on yaw moment
generation, helping to prevent over-acceleration or excessive
braking, as highlighted in (Bardawil et al., 2014). The
distribution is guided by parameters g and n, which control
how T and T are split between the left and right wheels. A
higher q increases braking on the rear wheels, while a lower
value favours rear acceleration. Similarly, n adjusts the
balance on the front axle, higher values bias toward front
braking, and lower values toward front acceleration.
The torque distribution strategy is influenced by the desired
direction of the yaw moment M, . When a clockwise moment
is needed, the torques are allocated to the wheels based on the
following equation:

Ty = qT;

Tb,fr = Tle

Tor=QA-T;
Td,fl = (1 - n)Tf

(14)

while a counter-clockwise direction will result in the
following equation:
Tb,rl = qTr
Ty 51 = nTy
Td,rr ={1-T;
Topr = (A —=m)T¢

(15)

Where T,;; and Ty ;; represent the braking and accelerating
torques at the wheel i j respectively.

By varying the parameters p, k, q and n, the performance of
the vehicle changes. Therefore, finding their optimal values
will ensure the vehicle’s optimal behaviour, guaranteeing
both stability and energy efficiency.

To optimize the vehicle’s performance, the goal is to balance
the longitudinal forces between the front and rear wheels
based on their respective loads. Initially, this is achieved
according to the dynamic load distribution which utilizes
internal vehicle dynamics to make the ratio of the
longitudinal forces proportional to the loads between the rear
and front sides of the vehicle. During vehicle manoeuvres the
weight distribution changes leading to dynamic load transfer
between front and rear axles. This transfer affects the traction
and performance of the vehicle. To allow for a balance of the
loads on the front and rear wheels, the Load Distribution

Ratio k is defined below:
E F,, +F

Zf _ % Zfl
Kk=—-L=2r N 16
FZT Fzrr + Fzrl ( )

where le.]. are the loads acting on the wheels as defined in
(Bakker & Pacejka, 1987):

1
1
_M(l +lf , +lf >X<§+2tfg y) .
—M X 1 ) ar
- l+lf l+lf 2 Ztrgay
f
Fore = (l 1,97, +lf )x Ztrg y)

with M being the mass of the vehicle, [r and [, are the
distance from the centre of gravity to the front and rear axles
respectively. t; and t, are the half front and rear axles
respectively. h is the height from the centre of gravity. a,
and a,, are the longitudinal and lateral accelerations and g
denotes the acceleration due to gravity.

The concept behind using dynamic load transfer for torque
allocation is to adapt the driving torques applied to the front
and rear axles, denoted by T,,, in response to changes in load
distribution. To ensure the wheels deliver the desired total
torque T,,, the individual torque values are distributed
according to the load distribution factor, p:

Fxf _ me/tf

K=—0F"=c——~<+~ 7
Fxr (1 - p)Tm/tr

(18)

where t; = t, are half the front and rear track of the vehicle.
Similarly, the generation of M, is split as well according to
this criterion while the braking and acceleration torques are
divided equally between the wheels to ultimately realize M,.
Hence, the four allocation parameters are given by:

Bk
p_FZf+FZT_1+K
1 19
K=1-p= (19)
p 1+«
1
Cl—n—z
2.3.2. Actuator’s Model

The model of the actuators should consider the dynamic
response with respect to the input signals. For this purpose, a
simple model of the AFS and the Electro-Mechanical-
Braking-System (EMB) actuators is used, as mentioned in
(Doumiati et al., 2013) and (Chokor et al., 2022).

The additive steering angle due to the lateral control is
achieved by the active front steering actuator which is a steer-
by-wire active steering system that generates an additive
angle applied to the front wheel axle. It is modelled as a Low
pass filter described by:

8, = 2nf, (6% — &,) (20)
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where f; = 10 Hz is the cut-off frequency. The AFS actuator
generates the additive steering angle &, that must track the
generated control input §*. The output of this actuator is
limited between [—5, 5].

The active differential braking is generated by the brake-by-
wire Electro-Mechanical-Braking-System to provide M,. Itis
modeled as a low-pass filter as well described by:

Ty, = 21f,(Ty,, = T, ) @1

Where f, =10 Hz is the cut-off frequency. The EMB
actuator generates Tg”. to track Tbrj which is the output of

the low-level controller. The output of the actuator is limited
between [0,1200] N.m.

In addition, the in-wheel motor actuator model is presented
as well in equation 22, which is a simplified first-order
electric motor model to relate the torque command generated
at the low level as T ;; at each wheel, and the effective motor
torque generated by the electric motor 7;; (Wang & Wang,

2018).
T ..
Ty = —T— (22)

1+5%s
R

L., and R,, are the motor’s internal inductance and resistance
respectively. This first-order model acts as low low-pass filter
with a time delay due to the response time needed to generate

the electric current to be transformed into torque on the motor
shaft.

3. FAULT DIAGNOSIS

In a complex system such as an electric vehicle, the risk of
faults, particularly in actuators, is relatively high. These faults
can significantly impact driving dynamics and compromise
handling performance. Whether they originate from in-wheel
motors or other actuators like the Active Front Steering
system, their effect on vehicle behaviour is often detrimental.
As such, early detection and accurate diagnosis are critical to
prevent potentially dangerous situations. The following
sections focus specifically on faults in in-wheel motors. First,
criteria for detecting which side of the vehicle are affected are
introduced. Then, an estimation module, based on the virtual
control gain approach described in (Laghmara et al., 2017),
is developed to identify and localize the faulty wheel.

3.1. Actuator Fault Model

Before discussing the diagnosis and estimation of the in-

wheel motor actuator faults, the motor fault can be modelled

by the following equation:
Tm,i j = AT*

mij T ATmij (23)

where Ty, ;; is the actual output of the IWM, while Ty, ;; is the
desired output, 4 € [0,1] is the loss of effectiveness
coefficient, and AT, ;; is the additive fault. It can be seen that
the fault-free case is for A = 1 and AT, ;; = 0. This research
will deal with multiplicative (loss of effectiveness) faults
only, so for what follows AT, ;; = 0 which makes the fault
model as in equation 24.

Aj
Loss of effectiveness (LOE) faults affecting one side of the
vehicle can result in an uneven distribution of torque, leading
to imbalances in yaw moment and a tendency for the vehicle
to steer more to one side. This torque asymmetry between the
left and right wheels disrupts the lateral force balance,
negatively impacting the vehicle’s lateral dynamics and
potentially compromising stability. To analyse the vehicle’s
behaviour under various fault conditions, LOE faults were
individually introduced to each wheel, as modelled in
Equation 24. These scenarios also serve to evaluate the
robustness of the control strategy in maintaining stable and
predictable vehicle performance.

The example below illustrates a test run of a single lane
change manoeuvre, performed at an initial speed of
80 km/h. At 2 seconds into the manoeuvre, a 20% loss of
effectiveness is introduced in the front-right in-wheel motor.
The vehicle’s behaviour in both the controlled and
uncontrolled fault cases is then compared to that of the
healthy (fault-free) vehicle.

Figure 2 highlights the effect of the fault on the uncontrolled
vehicle, which exhibits significant oversteering behaviour. In
contrast, the controlled vehicle is able to maintain a trajectory
closely aligned with that of the healthy (fault-free) vehicle,
showing only minor deviations. This demonstrates the
effectiveness of the robust control architecture in minimizing
the performance gap caused by the fault. Even with a loss of
effectiveness as high as 80% , the controlled vehicle
maintains a trajectory error of approximately 0.23m,
compared to a much larger error of around 1 m in the
uncontrolled case. Figure 3 further illustrates how the
vehicle’s internal dynamics are influenced by the fault,
comparing both the controlled and uncontrolled scenarios
against the reference model.

3.2. Fault Detection and Estimation

The control scheme proposed in section 2 can guarantee the
stability and performance of the vehicle for the faults injected
into the system as seen in section 3.1 with a slight degree of
error. It can be seen that the two wheels on the same side have
the same effect on the vehicle’s behaviour in terms of speed,
yaw, and trajectory as proposed by the authors in (Laghmara
etal., 2017).
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Furthermore, the tests conducted in this study suggest that a
fault on the left side leads to under-steering, while a fault on
the right side causes over-steering. Based on this, an active
fault diagnosis is proposed in this section to locate which side
of the vehicle has a faulty wheel actuator. Thus, the side of
the vehicle where the fault occurs can be located by
comparing the trajectory error of the actual trajectory of the
vehicle to that of the vehicle under normal (no fault) driving
conditions and then by thresholding this error to initiate the
detection process. If the trajectory error exceeds the
threshold, a left-side fault is identified; if it falls below the
negative threshold, a right-side fault is identified.

The proposed method yields to an average detection time of
0.408 s after fault injection. This result was obtained after
several tests for different manoeuvres (single lane change
(SLC), straight driving) at different velocities with varying
magnitudes of faults on the wheels actuator. On average,
faults of lesser severity took more time to be detected by the
system, the average detection time for 10% loss of
effectiveness (LOE) faults was 0.642 s while faults with
more severity like a 50% LOE were detected much earlier by
the system with an average detection time of 0.268 s. Within
the overall average detection time of 0.408 s the average
lateral drift for a single lane change (SLC) driving was equal
to 3.58 X 10~5 m. Another significant index to examine is
the stability index SI, where across 26 simulations with
different conditions it exhibited an average increase of
16.78%.
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Figure 2. Trajectory of the vehicle with a 20% fault on front
right IWM

o

@
o
I

uncontrolled with fault
controlled with fault

o
-

2 — — ~reference

|

o
)

n uncontrolled with faull
A\ controlled with fault
{ | Loz croterence

(rad)
)
—

o
e
o
a

yaw angle

side slip angle 3 (deg)
|
|
°

&
=
a

&
>

o
[
-
>
o

0 2 4 6 8

time (s) time (s)

o

M
o
w

uncontrolied with fault
2 controlled with fault
{\ = = -reterence
f

a uncontrolied with fault
[ \ controlled with fault
reference

e e
- m

;

o

v
ateral Velocity V), (m/s

el
—
L
S
[

-0.2 -0.3

Figure 3. Inner dynamics of the vehicle in case of 20% fault
on front right IWM

While a noticeable difference in vehicle behaviour allows
detecting the faulty side of the vehicle, distinguishing the
faulty in-wheel motor is hard since both wheels on the same
side are driving wheels and thus manifest similar behaviour
on the vehicle. The study conducted in (Laghmara et al.,
2017) proposed in their work an active diagnosis method to
introduce a virtual gain/fault into the system after the fault
has been detected to isolate and estimate the fault. This
method begins once the faulty side of the vehicle has been
identified. At that point, the motor control gain can be
virtually adjusted by scaling the control signal with a positive
factor, denoted as a. This simulates an additional fault in the
system but allows to estimate the magnitude of the loss of
effectiveness coefficient.

For the healthy system and the faulty one, the following holds
for two wheels on the faulty side j:

kf]Tnfl + kT}Tnfl” = kijTTZij + kOrj 1:10”' (25)

fi
Where Tr:zi,- represents the torque on the front or rear wheel
denoted by i on side j (left or right) under faulty conditions,
while Tpy,  corresponds to the torque on the wheel i in the
healthy scenario. The two unknown control parameters ky;
and k,.; represent the loss of effectiveness coefficient A for
the front and rear wheels for the faulty side j detected, and
ko i and kor,- for the ideal system equal to 1. To find the
unknown parameters another equation is needed, and it is
obtained after multiplying a virtual multiplicative fault of
value a on either the front or rear wheel of the detected faulty
side j. Thus, the new equation becomes:

(26)

(ZkijnZ + kT]'TT:lrj‘n = kij T);I.ij + koro;IOrj

fim
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Consequently, the two parameters can be estimated for the
suspected faulty side, where the parameter that deviates from
1 indicates the presence of a fault in the corresponding wheel.
The two equations 25 and 26 are built into a fault estimation
and isolation module in MATLAB. It processes torque inputs
from both the faulty and non-faulty models along with the
detected faulty side.

To better present the results of the estimation, the root-mean-
square error (RMSE) is calculated for the different faults that
were injected. RMSE measures the average difference
between values predicted by a model and the actual values
and is given by equation 27.

Zév=1(xi —x;)?
N

RMSE = (27)

where N is the number of data points, and x; and X; represent
the actual observation and estimated value respectively.

Table 3 summarizes the RMSE values of the estimated loss
of effectiveness coefficients that were tested on different
wheels in different driving scenarios. For each LOE value 8
distinct experiments were done to obtain the RMSE values
above. To evaluate the effectiveness of the estimation
method, a tolerance range was chosen as stated to tolerate the
estimation error of the fault and to obtain optimal results.

Error Estimated RMSE
injected | ranges

0.9 0.897 — 0.93 0.008
0.8 0.86 — 0.8 0.02
0.7 0.72 — 0.64 0.0389
0.6 0.67 — 0.55 0.041
0.5 0.579 — 0.42 0.047

Table 3. Estimated ranges of LOE coefficients and their
mean RMSE

4. COMPENSATION

While the control architecture demonstrated strong fault
tolerance, optimizing torque distribution to alleviate the load
on the faulty motor remains essential for ensuring vehicle
safety. In over-actuated systems, control reallocation
strategies are particularly effective, allowing the
redistribution of control efforts to healthy actuators, making
them a key component in active fault-tolerant control
frameworks. This section explores torque allocation through
a multi-parametric optimization algorithm that adjusts four
key parameters, (p, k,q,n), once a fault has been detected
and estimated. The goal is to intelligently redistribute the

control torque, easing the load on the faulty wheel while still
preserving the vehicle’s overall performance.

4.1. Cost Function

The objective of the multi-parametric optimization here is to
reduce the torque on the faulty wheel by achieving an optimal
distribution through the parameters p, k, q, and n that take
into account the magnitude of the fault present on the wheel.
The cost function proposed in (Tarhini, 2021), which was
used for energy consumption optimization, includes terms
related to the driving torques, rotational velocities, and the
motor efficiency to build a power consumption model. The
authors in (Tarhini, 2021) applied various optimization
strategies, including the 2-step optimization with the cost
function. They conducted an acceleration test and compared
several performance indices, notably Accumulated Energy
Consumption and Total Energy Gain. Their strategies
showed promising results in terms of energy efficiency. In
this work, we extended the use of this cost function and the
2-step optimization to consider the actuator fault on the
wheel. For this reason, the cost function has been updated to
include the loss of effectiveness coefficient estimated
previously instead of the motor’s efficiency, while the
healthy motors will be given an efficiency of 1. In this way,
the optimization will look to penalize the faulty motor and
thus reducing the control effort on the faulty wheel.

Moreover, the distribution of the driving/braking torques is
based on the direction of the yaw moment to be generated.
Thus, two forms for the cost function are to be considered:
the first one for the case where the required M, is counter-
clockwise, given by equation 28a, and the other one for the
case where the required M, is clock-wise, given by equation
28b. Then either of these functions is minimized
accordingly.
h
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4.2. Offline Optimization
Optimization Approach

Problem: Two-Step

Applying a two-step approach to this problem with four
parameters that require optimization serves two purposes.
Firstly, it reduces computational time, and more importantly,
it enables us to achieve results that are more in line with
proper vehicle behaviour. It works by pre-assigning q and n
then obtaining p and k from the cost function.

Step 1: The first step will consist of assigning values for q
and n according to the multi-objective criteria that considers
the behaviour of the vehicle. This is done to relieve the
vehicle from activating the braking through the DYC
unnecessarily which causes wear for wheels if done for
extended periods. Thus, by allowing q and n to be assigned
according to the stability of the vehicle, DYC is only
promoted when the vehicle is in critical driving conditions.
The assignment works as follows:

e  When the vehicle is in normal driving condition
SI < SI: the DYC is working for manoeuvrability
objective meaning that M, is generated solely by the
traction torques. This gives g =n =0 in the
normal driving conditions which is the most
common driving case.

e If the vehicle is experiencing a low stability error,
then SI < SI < SI: in this scenario, the goal is to
maintain the vehicle’s longitudinal dynamics,
ensuring it remains balanced while also conserving
energy and avoiding abrupt acceleration or braking.
In this context, generating M, through half-driving/
half-braking actions is prioritized which gives q =
n = 0.5.

e IfSI > SI: this indicates a critical driving situation
where M, needs to be generated by braking torques
only, requiring g =n = 1.

Step 2: After obtaining g and n, they are used in the cost
function as predetermined values then p and k are
determined by minimizing the cost function. The objective

here is to find a vector x = [p k] that is a local minimum to
the function f(x) and is subject to constraints in equation 30,
this makes up the objective function defined below:

rr)lcin f(x) subject to {lb Agxxsgbub (29)
ST [P A L e

The problem is initialized with the vector x, in equation 31,
setting each value to 0.5 as a midpoint between the defined
constraint bounds.

_[05
%0 =] (31)
The optimization is performed offline to reduce

computational costs. In advance, optimized parameters are
derived for various fault magnitudes and different faulty
wheels. Subsequently, a lookup table is constructed to
accommodate two fault magnitudes of 20%, 50% and two
fault positions front and rear. The lookup table is designed to
accept inputs, including estimates of the loss of the
effectiveness coefficient and the location of the faulty wheel.
It then interpolates to determine the appropriate p and k
parameters for the vehicle, aligning with the objectives of
torque reduction.

The lookup table, tailored for these two levels of LOE,
provides a good range for the produced p and k parameters
to effectively satisfy the objectives of better trajectory
tracking, torque redistribution, and torque reduction on the
faulty motor. Table 4 illustrates the impact of the p and k,
produced by the look-up table, on the redistribution and
subsequent compensation taking place on the motors of the
vehicle

Healthy Motor Faulty Motor
Torque Torque
LOE Before After Before After
Coefficient
0.9 9.18 22.466 | 23.08 7.863
0.8 9 21.348 | 239 7.439
0.7 10.22 25 24.76 6
0.6 11.05 279 25.57 4.5
0.5 11 29 26.36 32
0.4 13.985 29.54 27.179 4.03
0.3 14.412 30.03 28.03 4,102
0.2 14.902 30.5 28.99 4172

Table 4. Torque redistribution before and after
compensation using LUT

10
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For certain induced loss of effectiveness values, the average
torque on one of the healthy motors is presented before and
after compensation as well as those of the faulty motor. It
becomes evident that the redistribution effort works to
increase the torque on the healthy motors and decrease it on
the faulty one.

5. SIMULATION VALIDATION

A fault is injected onto the front left wheel at t = 1.5s of
30% magnitude. The detection module detects the presence
of fault at 1.809s and locates the faulty side. After the fault
is detected, a virtual fault of magnitude @ = 0.5 is injected
into the front left wheel; the estimation output is displayed in
Fig. 4 below. The virtual fault injected after the fault
detection, causes the estimation to rise for a few seconds as
the system adjusts to the new fault injected as seen in Fig. 4
then it stabilizes to a true estimate of the fault.

The allocation parameters p and k seen in Fig. 5(a) and 5(b)
are distributed as in section 2.3.1, where g and n are kept
constant with 0.5.

After the fault occurs, the parameter p increases, indicating a
shift in torque distribution toward the front wheels. This
increase is later corrected by the robust control system,
bringing it back in line with the healthy case. Similarly,
parameter k decreases after the fault is injected, signifying
increased yaw moment generation towards the front of the
vehicle.
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The torque demand to the IWM actuators increases after the
fault occurs as a way for the robust controller to adjust in the
presence of a fault, as shown in Fig. 6. As mentioned
previously, increased torque demand to a faulty actuator can
cause more harm and damage to the wheel, thus the
compensation method proposed above is engaged after the
isolation and estimation of the fault. The compensation is
integrated into the model using a lookup table with
predetermined values of p and k that are determined
according to the location of the faulty wheel and the fault
estimate. In this case, p and k are extrapolated from the
lookup table and illustrated in Fig. 7(a) and 7(b) respectively
and it is observed that the optimized parameters are engaged
after the estimation around t = 3.2s in this case. To elaborate
on the figures, parameter p after compensation takes on
values lower than the uncompensated assignment, which was
previously around p = 0.66 . This indicates that the
production of driving torques is switched towards the rear
wheels instead of the front wheels. Similarly, k was adjusted
to take a higher value, indicating that the production of the
corrective yaw moment shifts towards the rear wheels as
well.

Moreover, the preassigned values for q and n according to
4.2 are zero in this SLC manoeuvre since the vehicle does not
encounter instability, thus when the compensation is
activated g and n shift from 0.5 to 0 meaning that the M, is
generated through acceleration on both sides.

As shown in Fig. 8, the compensated vehicle demonstrates
improved trajectory tracking compared to the pre-
compensation case. The zoomed-in view clearly shows that
the optimized trajectory closely follows that of the healthy
vehicle, with only minor fluctuations resulting from
variations in the optimization parameters.
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The torques in Fig. 9 show that the torque demand on the
front wheels is reduced while the demand on the rear wheels
is increased significantly to make up for it. Consequently, the
desired torque reduction on the faulty wheel and the re-
distribution of torques to the other IWM is seen in effect in
Fig. 10.

Although the input torques to the actuators experience
oscillations that are related to those of the parameters p and
k which are treated by the model of the actuator presented in
equation 22. The actuator model filters out high oscillations
and gives the output displayed in Fig. 10, which represents
the torques generated by the wheels. The benefits of this
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Figure 8. Trajectory of the vehicle after optimization

compensation strategy can also be observed in the inner
dynamics of the system which are illustrated in the figures
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below. Figure 11(a) shows that the compensation restored the
yaw angle closely to the healthy vehicle although with some
oscillations present. Also, in Fig. 11(b), the longitudinal
velocity can be seen to have increased more than the healthy
after the compensation started which is likely due to the
absence of the braking torques allowing the vehicle to have
more acceleration.

Overall, these results confirm that torque redistribution is
essential for effective fault mitigation. While the robust
controller alone responds to the fault by increasing torque
demand, it is unable to reallocate this demand appropriately,
leading to additional stress on the faulty actuator. In contrast,
once the fault is detected and estimated, the proposed
compensation strategy ensures proper torque redistribution
across the healthy wheels, enhances overall stability, and
restores vehicle performance close to healthy conditions.

6. CONCLUSION

This paper investigates the problem of active fault-tolerant
control and compensation for four-wheel-drive electric
vehicles. The study begins by implementing a robust control
architecture to ensure vehicle stability and control under
nominal and faulty conditions. Multiplicative faults affecting
the in-wheel motor actuators were then modelled and
individually simulated for each wheel to observe the specific
impact on vehicle dynamics.

A fault diagnosis method was developed to identify the faulty
side of the vehicle, left or right, based on behavioural
indicators. Following detection, a virtual fault injection
method was used to estimate the severity of the fault (i.e., the
loss of effectiveness), enabling precise isolation of the faulty
IWM. The final step involved fault compensation, achieved
through an offline multi-parametric optimization strategy.
This was integrated with a look-up table that redistributes
torque in real time based on the detected and estimated fault
conditions.

The key contribution of this work lies in its novel behaviour-
based fault detection strategy, combined with a multi-
parametric torque redistribution scheme tailored to the
diagnosed fault. The offline-optimized look-up table proved
effective across different fault magnitudes and can be
enhanced further with additional system data to increase its
adaptability.
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Looking ahead, future work could extend the fault-tolerant
framework to include additive faults in the IWMs, as well as
faults in the active front steering actuator. Investigating the
combined effects of multiple simultancous faults and
developing robust mitigation strategies would represent a
significant and valuable direction for further research.
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