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ABSTRACT 

As industries enhance efficiency, reliability, and sustainabil-
ity in Maintenance, Repair, and Overhaul (MRO) operations, 
digitalization plays a pivotal role. In this context, Industry 4.0 
technologies are transforming maintenance into autonomous, 
data-driven systems, improving performance and reducing 
costs. Within this shift, Prognostics and Health Management 
(PHM) provides a structured approach to organizing condi-
tion monitoring, event diagnosis, prediction and instruction. 
However, its implementation remains complex due to the het-
erogeneous nature of the assets, the large number of potential 
events (e.g. anomalies), the quality and incompleteness of the 
data, and the missing standardized data exchange. In this re-
gard, the paper explores how PHM can be effectively imple-
mented using proactive Asset Administration Shells (AAS) 
and Digital Product Passports (DPPs), enabling smart, self-
managed maintenance ecosystems on a common ground. 
Thus, the integration of AAS and DPPs facilitates PHM by 
enabling autonomous event detection, prediction, and service 
negotiation while translating predictive insights into actiona-
ble maintenance workflows. They also consolidate lifecycle 
data, ensuring regulatory compliance, traceability, and circu-
lar economy integration. 

An experimental setup utilizing an Unmanned Aircraft Sys-
tem (UAS) and a robotic MRO station verifies this approach. 
The system integrates Z-factor statistical analysis, multi-
tiered predictive modeling, and structured event-task map-
ping to automate maintenance actions and optimize decision-
making. Results demonstrate improved failure detection, ex-
tended asset lifetimes, and reduced material waste and oper-
ational downtime.  

1. INTRODUCTION 

Industry 4.0 (I4.0) has introduced a new era of connected, 
smart systems, presenting opportunities to enhance how in-
dustries manage assets and maintenance operations. Current 
maintenance practices often involve heterogeneous systems, 
manual interventions, and reliance on analog documentation, 
which can limit scalability and responsiveness in increasingly 
complex industrial environments (Timjerdine, Taibi , & 
Moubachir, 2024). Emerging approaches aim to complement 
these practices with self-managing, data-driven solutions that 
leverage technologies such as Internet of Things (IoT) de-
vices, digital twins, and artificial intelligence to streamline 
workflows, optimize resource use, and support sustainability 
goals (Zonta, da Costa, & da Rosa, 2020). For instance, pre-
dictive maintenance enabled by I4.0 technologies can reduce 
machine downtime by 30-50 % and extend machine lifespans 
by 20-40 %, leading to significant cost savings and improved 
operational reliability (Shaheen & Németh, 2022). 

In the recent years, research and development in academia 
and industry in the field of Prognostics and Health Manage-
ment (PHM) has increased. By leveraging physical 
knowledge and analyzing information and data of structures, 
systems, and components from design, production, operation 
and maintenance, PHM helps to identify potential issues be-
fore they occur, such as detecting and diagnosing faults and 
forecasting their progression towards failure. This enables the 
estimation of Remaining Useful Life (RUL). The outcomes 
support condition-based and predictive maintenance deci-
sions that can improve system performance, reliability, and 
safety. By implementing these strategies, organizations can 
adopt tailored, timely, and efficient maintenance practices. 
However, the application of PHM methods in real practice 
faces challenges. Some challenges originate from anomalies 
in real data collected in the field such as missing data due to 
malfunctioning sensors or transmission errors. Furthermore, 
the scarcity and incompleteness of available data related to 
the state of degradation of a component or system makes it 
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hard to provide suitable training data sets for PHM method 
development and calibration and their usage in real applica-
tions. In order to establish PHM methods, more requirements 
have to be met, especially when they are used in safety-criti-
cal applications. Sufficient levels of model security, inter-
pretability and uncertainty estimation must be provided to de-
cision makers (Zio, 2021). 

Supporting these transformations are Asset Administration 
Shells (AAS) and Digital Product Passports (DPP), which of-
fer promising pathways for advancing Maintenance, Repair, 
and Overhaul (MRO) operations (Rahal, Schwarz, Sahelices, 
Weis, & Antón, 2023) (Winkler, Gill, & Fay, 2022) (Weiss, 
Pakala, Wicke, Gill, & Wende, 2023). In this context, it is 
envisioned that these tools will enable real-time monitoring, 
autonomous decision-making, and seamless communication 
within interconnected systems, thereby promising highly ef-
ficient PHM (Donghan, Wei, Xiangyu, & Yan, 2021). This 
vision can be effectively realized through proactive AAS 
(Grunau, Redeker, Göllner, & Wisniewski, 2022). 

Complementary to the AAS, DPPs serve as structured digital 
repositories that consolidate and standardize critical lifecycle 
data, including technical specifications, regulatory compli-
ance, and environmental impact metrics (Jensen, Kristensen, 
Adamsen, Christensen, & Waehrens, 2023). By fostering 
transparency, traceability, and circularity across value chains, 
DPPs address both operational and sustainability challenges. 
Under the European Union's Ecodesign for Sustainable Prod-
ucts Regulation (EU 2024/1781, 2024), DPPs are becoming 
mandatory for certain product categories, starting with bat-
teries, and will play a critical role in ensuring compliance 
with sustainability and circular economy goals (CIRPASS-2, 
n.d.). By integrating into a proactive AAS, the DPP not only 
adopts a standardized metamodel but also extends its func-
tionality through the advanced features of the proactive AAS, 
enabling seamless data exchange and improved maintenance 
workflows among stakeholders in the MRO domain (Weiss, 
Raddatz, & Wende, 2024).  

However, a systematic literature review by (Rahal, Schwarz, 
Sahelices, Weis, & Antón, 2023) unveiled a research gap in 
integrating AAS with Predictive Maintenance (PdM) and 
broader PHM solutions. While existing studies have explored 
the potential of digital twins and data-driven methods for 
fault diagnosis and RUL estimation, few have considered the 
role of AAS in these contexts. For instance, (Cavalieri & 
Salafia, 2020) presented an AAS-based model for predictive 
maintenance, but this remained conceptual and focused on 
standardized data access rather than realizing a proactive 
AAS with autonomous decision-making. (Winkler, Gill, & 
Fay, 2022) discussed AAS as an enabler for interoperable 
digital twins of aircraft components in MRO, yet did not ex-
tend it toward closed-loop PHM execution. Similarly, 
(Sakurada, Prieta, & Leitao, 2023) outlined AAS–Multi-
Agent System integration for collaborative decision-making, 
but without experimental verification in a physical testbed. In 

contrast, our work differentiates itself by combining a proac-
tive AAS with PHM algorithms and a DPP, and demonstrat-
ing this integration in an experimental MRO station setup. 
This operational example goes beyond prior studies by show-
ing how lifecycle data, predictive insights, and service nego-
tiation can be directly translated into execution and feedback, 
thereby closing the loop between anomaly detection and 
maintenance action. To address this question, the paper first 
examines the complementary roles of proactive AAS and 
DPP. Next, a standard PHM framework is mapped onto the 
functional capabilities of the proactive AAS to illustrate its 
alignment with predictive maintenance methodologies. Fi-
nally, an experimental verification using a UAS and a robotic 
MRO service station, serving as stakeholder surrogates, 
demonstrates the practical implementation of this integration 
and its impact on transforming industrial MRO ecosystems. 
Given this challenge, the subsequent research question is for-
mulated: 

How can a proactive AAS with DPP be used to leverage PHM 
methodologies in order to improve the efficiency, interoper-
ability, and sustainability of MRO operations in accordance 
with Industry 4.0 paradigms? 

2. DEVELOPMENT OF PROACTIVE AAS AND DPP 

As key technologies of I4.0, AAS and DPP redefine how as-
sets are represented, managed, and integrated into cyber-
physical systems and, in a broader scope, into data spaces. 
AAS provides a digital framework for embedding technical 
and lifecycle data, operational behaviors, and interaction ca-
pabilities into assets, transforming them into I4.0 components 
(I4.0C). Meanwhile, the DPP complements AAS by consoli-
dating and sharing lifecycle information, aligning with sus-
tainability objectives. Together, these technologies enable 
seamless interoperation, autonomous decision-making, and 
enhanced scalability in IoT-driven MRO ecosystems. 

2.1. Proactive Asset Administration Shell 

Briefly, the AAS consists of three distinct types, each tailored 
to specific levels of interaction and complexity (IDTA, 
2023a):  

• Type 1 (File-Based AAS): This form stores asset in-
formation as a static digital file, suitable for offline 
scenarios and basic data sharing. 

• Type 2 (Reactive AAS): A more advanced form that 
incorporates Application Programming Interfaces 
(APIs) like REST, enabling real-time data exchange 
between assets and external systems upon request. 

• Type 3 (Proactive AAS): The most sophisticated 
form, capable of autonomous interaction, decision-
making, and dynamic task execution within IoT eco-
systems. Proactive AAS utilizes embedded algorithms 
and semantic communication to initiate actions with-
out further intervention. 
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Common to all types of AAS is their already standardized 
meta-information model (DIN EN IEC 63278) and their com-
plementary role in jointly transforming the associated asset 
into an I4.0C, with the AAS serving as its digital counterpart. 
This is initially achieved through submodels that describe in 
a standardized way all the information and functionality re-
quired to support specific use cases, such as 

• features, • characteristics, 

• properties, • status, 

• parameters, • measurement data and 

• capabilities.  

These submodels include: 

1. Operational Data: Metrics such as efficiency, energy 
consumption, and performance indicators, enabling real-
time monitoring and decision-making. 

2. Behavioral Specifications: Functional descriptions de-
tailing expected interactions, including bidding for ser-
vices or negotiating schedules, to facilitate smooth inte-
gration with other components. 

3. Lifecycle Parameters: Dynamic updates reflecting us-
age history, maintenance events, and end-of-life condi-
tions, ensuring comprehensive asset management. 

The modelling of proactive AAS is not (yet) specified and 
realized only in few applications (Sakurada, Prieta, & Leitao, 
2023), but it is “one key factor for interdisciplinary infor-
mation exchange” (Sapel & Hopmann, 2023). We focus on 
its research and development as the most advanced approach, 
also including type 1 and type 2 AAS, to the digital represen-
tation of assets and their smart interactions within an MRO 
4.0 ecosystem. Going beyond the passive digital twins most 
commonly used “to study and predict the working of a phys-
ical object under particular conditions” (Crespi, Drobot, & 
Minerva, 2023), the proactive AAS incorporates capabilities 
for real-time monitoring, autonomous decision-making, and 
dynamic communication. These features make proactive 
AAS a valuable component of predictive maintenance and 
lifecycle management of the related assets, introducing new 
paradigms in asset management within the MRO 4.0 data 
spaces:  

The continuous monitoring of Key Condition Indicators 
(KCI) by the assets with their administering AAS themselves 
ensures the consistent capture and analysis of real-time data. 
This data, which includes metrics such as vibration levels, 
temperature, energy consumption or just time limits, is pro-
cessed using advanced syntheses and algorithms to detect 
anomalies, predict potential failures and facilitate effective 
decision-making. To illustrate this, consider a UAS equipped 
with a proactive AAS. In such an instance, the UAS can au-
tonomously identify an inefficiency in its system and negoti-
ate a maintenance service order before a critical failure occurs 
(see Chapter 3 for further details). 

In accordance with the (DIN EN IEC 63278) and guided by 
the IDTA specifications (IDTA, 2023a), (IDTA, 2023b), 
(IDTA, 2023c) and (IDTA, 2023d), the proactive AAS 
framework in our research is mainly developed in Python: 
Originated at the University of Magdeburg – Chair of Inte-
grated Automation – and further developed by the German 
Aerospace Center (DLR), the core provides a modular archi-
tecture (Figure 1 top) for structured and autonomous opera-
tion, managing I4.0-uniform data structures to encapsulate 
asset properties, capabilities, and behaviors within standard-
ized submodels. Communication adapters enable data ex-
change through different protocols (e.g. OPC UA, COAP, 
REST, MQTT), ensuring seamless interoperability of real as-
sets in Cyber-Physical-Social Systems (CPSS). These adapt-
ers are implemented for both directions, connecting the AAS 
northbound to the network (IoT) and southbound to the asset 
(Figure 1 below). A detailed description is published in 
(Weiss, Wicke, & Wende, 2022), (Weiss, Pakala, Wicke, 
Gill, & Wende, 2023). 

 
Figure 1. Industry 4.0 Component = AAS + Asset 

Operational logic is implemented through finite state ma-
chines (FSM) defined by discrete states, transitions and 
event-driven actions. These state machines primarily enable 
interaction workflows, decision making and asset operations. 
An internal message bus synchronizes data flows and man-
ages communication between modules, ensuring consistent 
processing of receiving and sending Industry 4.0 messages. 
Further enhancements introduced by DLR include special-
ized modules for autonomous task execution, with a focus on 
MRO activities: 
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1. Event Manager FSM: Monitors condition indicators 
and triggers threshold dependent event codes (EC) 
mapped to tasks (Step 1). Single tasks are ordered di-
rectly via the Service Requester (Step 2a), while task se-
quences are forwarded to the AAS Production Manager 
(Step 2b). For this, the FSM uses specific “Indicator-
Threshold-Event-Task” profiles of the asset, which are 
provided and administered by the Event Manager. 

2. Service Requester (SR) and Service Provider (SP) 
FSM: Handle Call for Proposals (CfPs) by matching re-
quested MRO capabilities with available MRO skills. 
The SP FSM validates skills and submits a proposal if 
requirements are met, while the SR FSM evaluates pro-
posals using algorithms (e.g., TOPSIS) to select the best 
match. 

3. Production Manager FSM: Oversees Bills of Processes 
(BoPs) and orchestrates task execution. When a task 
arises, it generates a capability request with task-specific 
parameters and forwards it to the Service Requester 
FSM. 

The asset-integrated decision-making enabled by the encap-
sulating AAS represents a significant advance through the 
use of robust FSM and multi-criteria decision analysis 
(MCDA). These mechanisms enable the AAS to evaluate 
complex scenarios, considering variables such as cost, ur-
gency, and operational constraints. In experimental studies 
from (Weiss, Pakala, Wicke, Gill, & Wende, 2023), these de-
cision-making algorithms proved to be critical in enabling the 
UAS to manage maintenance schedules autonomously, re-
ducing downtime and enhancing operational efficiency. 

2.2. Interacting Stakeholders in an MRO 4.0 ecosystem 

In an MRO 4.0 ecosystem, the treated asset itself can become 
an active individual, enabled by its extension with a proactive 
AAS. This transformation aligns with the methodology pro-
posed by (Sakurada, Prieta, & Leitao, 2023) for integrating 
AASs and Multi-Agent Systems (MAS), which underscores 
the potential of assets to achieve autonomy, intelligence, and 
collaborative capabilities. In this context, the asset, in con-
junction with asset owners, maintenance service providers, 
technology suppliers, regulatory bodies, and supply chain 
partners, the asset contributes to an interconnected, autono-
mous maintenance environment as we discussed in (Weiss, 
Wicke, & Wende, 2022). 

The interaction between these stakeholders, and the level of 
autonomy afforded to the system, is profoundly influenced by 
the paradigms of orchestrated and choreographed processes 
(Diedrich, Schroeder, & Belyaev, 2022): 

1. Orchestration: This approach uses centralized control 
mechanisms to manage workflows. For instance, a kind 
of MRO Supervision System (MSS) might aggregate 
data from AASs to plan and delegate maintenance tasks 
(Weiss, Wicke, & Wende, 2022). The MSS ensures 

compliance, optimizes scheduling, and monitors execu-
tion, providing a clear chain of command. 

2. Choreography: In contrast, choreography relies on de-
centralized interactions, where each AAS autonomously 
determines its actions based on predefined rules and real-
time data. This configuration fosters scalability and 
adaptability, as processes evolve in response to immedi-
ate conditions without requiring central oversight. In 
(Leitão, Queiroz, & Sakurada, 2022) such decentralized 
approach is described, driven by collective intelligence 
in MAS-based CPS, enable self-organization and emer-
gent behaviors that are critical for real-time decision-
making and adaptation 

Thus, the asset – such as an aircraft, a component, or a part – 
no longer plays a passive role. Through the Event Manager, 
introduced in Chapter 2.1, the proactive AAS continuously 
monitors key metrics such as vibration, energy consumption, 
deformation, degradation, usage cycles, or aggregated health 
indicators (Figure 2). The embedded algorithms detect anom-
alies, predict failures, and generate service requests. Broad-
casted as CfP via the Industrial Internet of Things (IIoT), 
these requests prompt relevant assets (stakeholders) to re-
spond. The requesting asset evaluates, negotiates, and orders 
maintenance actions based on the optimal proposal, achiev-
ing autonomous decision-making.  

 
Figure 2. AAS Event Manager workflow (reduced) 

To enable such seamless stakeholder interactions, the 
MRO 4.0 system is underpinned by a layered interoperability 
model. Based on the findings on the general descriptions of 
interoperability in (Zeid, Sundaram, Moghaddam, Kamarthi, 
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& Marion, 2019), four levels can be defined as in (Diedrich, 
Schroeder, & Belyaev, 2022):  
1. Technical Interoperability: Reliable data exchange re-

quires standardized communication protocols as sup-
ported by the AAS as described in Chapter 2.1.  

2. Syntactic Interoperability: Uniform data formats and 
schemas, as defined by the AAS Metamodel (DIN EN 
IEC 63278), the I4.0 language (VDI2193-1, 2020) 
(VDI2193-2, 2022), IEC 61360, or AutomationML, en-
sure consistent representation and processing of asset 
data across systems. 

3. Semantic Interoperability: Accurate interpretation of as-
set data relies on embedding metadata and ontologies 
within the AAS to ensure consistency and shared under-
standing. For example, the data standard from 
(ECLASS, 2025) focuses on ensuring clear semantics for 
product and service specifications. 

4. Organizational Interoperability aligns workflows and 
interaction patterns across stakeholders through clearly 
defined roles. Business process models such as Business 
Process Model and Notation (BPMN) and Product-Pro-
cess-Resource (PPR) models define workflows with ca-
pability-specific process steps and decision points. The 
proactive AAS framework provides the modules and 
logic to operationalize workflows by translating these 
high-level processes into individual or sequential tasks 
and tendering them within the IoT ecosystem. 

2.3. Digital Product Passport in the MRO 4.0 context 

In terms of common syntactic and semantic interoperability 
between stakeholders, as highlighted in Chapter 2.2, the DPP 
is a promising and transformative enabler in digitized value 
chains, addressing the need for transparency, integrity, trace-
ability, and sustainability in asset lifecycle management. 
Emerging as a mandatory requirement under evolving legis-
lation – starting 2026 with batteries as outlined in the EU 
Ecodesign for Sustainable Products Regulation (EU 
2024/1781, 2024) – the DPP consolidates lifecycle data into 
a structured digital repository. To ensure consistency and 
maximize benefits, the use of standards and guidelines is crit-
ical to avoid that “the implementation of DPPs might become 
fragmented, leading to inconsistency and limiting their po-
tential benefits” (Kebede, Moscati, Tan, & Johansson, 2024). 
In return, we utilized it in (Weiss, Raddatz, & Wende, 2024) 
with the help of the AAS metamodel (DIN EN IEC 63278) to 
support the standardization of a semantic and syntactic in-
teroperability. 

The DPP includes elements such as nameplate (minimum), 
material composition (BoM), current and historic operational 
performance data, functional settings, events, manuals, com-
pliance records, or even environmental impact numbers, fos-
tering resource efficiency and supporting circular economy 
principles. As (Watson, Patzer, Schöppenthau, & Schnebel, 
2023) emphasize, “A DPP is a fundamental enabler to 

achieve… [a circular economy] as it holds all essential prod-
uct information needed to inform product purchasers, as well 
as facilitating repairs and recycling”. In combination with 
the proactive AAS, the DPP supports a data curation system 
that helps reduce downtime, optimize costs, and extend asset 
lifecycles, because, as described in general, such systems 
“utilize IoT sensors that are distributed to the infrastructure, 
collect the generated data, and proceed with thorough pre-
processing for appropriate ML [machine learning] models 
for the prediction and avoidance of potential production er-
rors before they occur” (Voulgaridis, et al., 2024). In this 
context, a key feature of the DPP is its ability to facilitate the 
seamless exchange of datasets, ensuring both syntactic and 
semantic interoperability across stakeholders, including man-
ufacturers, service providers, regulators, and end-users. As 
(Jensen, Kristensen, Adamsen, Christensen, & Waehrens, 
2023) highlight, “Digital product passports are expected to 
serve as vessels for data sharing, as supply-chain actors… 
may both utilize and insert data to support each other in tran-
sitioning towards a circular supply chain”. For detailed in-
sights into the development of DPP’s anatomy, system-level 
frameworks, and its alignment with global initiatives, refer to 
(CIRPASS-2, n.d.), (Weiss, Raddatz, & Wende, 2024). 

2.3.1. DPP implemented into the AAS Framework 

The implementation of the DPP into the AAS, interoperating 
within a dedicated data space, addresses the DPP system re-
quirements outlined by (Wiesner, Moreira, Guizzardi, & 
Scholz, 2024): They recommend a flexible granularity, use of 
standards, commonality with existing systems, the capability 
of dynamic data management, a micro-service event-driven 
architecture. The proactive AAS contributes to all of these 
demands by embedding the DPP as a dynamic, interoperable 
component, able to interact as a micro-service on events, 
through the subsequent features: 

1. Integration in the AAS Metamodel: The general AAS 
metamodel is “...providing a structured framework for 
modeling lifecycle data, supporting submodels that cap-
ture…” (Pourjafarian, et al., 2023) regulatory compli-
ance, lifecycle metrics, material composition, and oper-
ational data. Equally to (Plociennik, et al., 2022) and as 
described in (Weiss, Raddatz, & Wende, 2024), we or-
ganized the DPP as a set of submodels, which are con-
tainerized in an submodel element list (SML) with their 
semanticIds. Thus, compatibility and adaptability across 
diverse systems are ensured. 

2. Dynamic Data- and Event-Management: Embedded 
within the AAS, the DPP is dynamically updated with 
operational data and validated against lifecycle records. 
The AAS leverages event-managing mechanism to mon-
itor condition indicators and trigger PHM tasks based on 
DPP data. By utilizing event-sourcing logics inspired by 
(Ajdinović, Strljic, Lechler, & Riedel, 2024), the proac-
tive AAS aggregates real-time events, aligning DPP 
lifecycle data with operational conditions. This 
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continuous data synchronization and interpretation sup-
ports autonomous anomaly prediction, maintenance 
scheduling, and workflow adaptation, driving efficient, 
sustainable, and predictive maintenance actions. 

3. Semantic and Syntactic Interoperability: The AAS 
enables a seamless unitization of DPP data through uni-
form syntax and semantics, which “plays a critical role 
in enabling organizations to effectively manage and an-
alyze their data and make informed decisions based on 
accurate and reliable information” (Pourjafarian, et al., 
2023). Combined with standardized communication pro-
tocols, this ensures that all PHM processes can consist-
ently exchange, interpret, and utilize data across stake-
holders and systems. 

4. Intelligent Decision Support: By incorporating PHM 
logics with DPP data, the proactive AAS facilitates 
multi-criteria decision-making. Lifecycle data provides 
a foundation to optimize maintenance schedules while 
addressing operational constraints and sustainability 
goals. Event triggers activate decision-tree frameworks 
that assess maintenance options. These frameworks pri-
oritize tasks, balancing factors like urgency, cost-effec-
tiveness, and long-term asset health. 

2.4. Mapping to a PHM System 

A PHM system, as defined in (ISO 13374-1, 2003), can be 
abstracted into four key stages: Monitoring, Diagnosis, Prog-
nosis, and Advisory. This structure aligns with the work of 
(Bhat, Muench, & Roellig, 2023), as well as (Zhao, et al., 
2021), who further explored these stages in their studies. 
Mapping these stages onto the proactive AAS framework 
presented earlier, Figure 3 illustrates how this system is uti-
lized mainly through the AAS components Event Manager 
and DPP. The Event Manager ensures real-time monitoring, 
control, and coordination, while the DPP provides contextual 
and historical data, enabling a dynamic, scalable, and interop-
erable maintenance solution. The exchange of data between 
these components occurs within the upper layer of the proac-
tive AAS (e.g., via a data or message bus), as illustrated by 
the flow arrows in Figure 3, thereby linking the stages into a 
cohesive and adaptive PHM process. The subsequent sections 
detail each of the stages in the PHM process, beginning with 
Monitoring, followed by Diagnosis, Prognosis, and Advi-
sory: 

1. Monitoring (Events detection): It aims to detect anoma-
lies in the operational data. The implemented state ma-
chine of the AAS Event Manager (Chapters 2.1, 2.2, Fig-
ure 2) monitors Key Condition Indicators (KCIs) that 
originate from data-based sources (e.g., IoT sensors), 
model-based simulations (e.g., physics-based models), 
or hybrid approaches. These KCIs are checked against 
thresholds that are dynamically adjusted if necessary, us-
ing the data stored in the DPP (Chapter 2.3), including 
technical specifications and historical performance. 

Additionally, predicted values enhance event detection 
by identifying potential failures and enabling the optimi-
zation of operations before anomalies occur. As (Zio, 
2021) outlines, these values can also be summarized un-
der a set of aggregated Prognostic Performance Indica-
tors (PPI). 

 
Figure 3. General PHM scheme mapped to AAS + DPP 

2. Diagnosis (Event code and severity): Based on the mon-
itored KCIs, diagnosis aims to unveil the fault state, 
mode, location and further attributes. Any detected faults 
or other anomalies are primarily processed by assigning 
them to event codes (e.g., fault types) (see Chapter 2.1). 
The severity of each event is quantified based on the 
magnitude of the associated indicators in combination 
with their historic values, either retrieved from the DPP 
(long-term assessment) or a ring buffer (shot-term). A 
multi-event prioritization mechanism evaluates overlap-
ping events, factoring in their severity and operational 
impact to guide decision-making. 

3. Prognosis (Predicting RUL and degradation trends): 
This stage uses assessment logics to determine Remain-
ing Useful Life (RUL), degradation trends, and future 
conditions by integrating real-time data with historical 
data from the DPP. It provides predictive values to the 
monitoring stage, which can be sourced from three dis-
tinct mechanisms: 
• Onboard algorithms: Complex predictions are 

made by asset's embedded applications and re-
trieved from the AAS as KCIs. This approach offers 
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the fastest response time and is ideal for high-prior-
ity scenarios requiring immediate action. 

• AAS-embedded algorithms: Prediction models in-
tegrated into the AAS enable real-time actions based 
on current and historical data from the DPP or inte-
grated ring buffer, using the pre-processed KCIs. 

• Remote Prediction Services: External IoT-based 
services use DPP data and advanced algorithms to 
generate predictions in terms of KCIs. While highly 
robust, this approach incurs the highest reaction 
time, making it less suitable for urgent decisions. 

In addition, the knowledge gained is stored in the DPP 
and used to recalibrate models by comparing the predic-
tions with the actual realized states (e.g. degradation 
curves, parameters), ensuring more accurate and adap-
tive predictions. 

4. Advisory (Decision Support and Task Prioritization): 
Diagnosed event codes are mapped to advisory actions, 
such as specific maintenance services, through a contin-
uously updated matrix that incorporates learned experi-
ences. Among other things, depending on the number of 
tasks but also of potential service providers, the AAS 
evaluates maintenance priorities based on urgency, cost, 
and sustainability goals. Metrics from the DPP, such as 
carbon footprints and recyclability rates, guide deci-
sions, while task execution workflows generate feedback 
to enrich Monitoring and Prognosis stages. 

3. VERIFICATION BY APPLICATION 

This chapter demonstrates the application and verification of 
the framework developed in the previous chapter. This is 
achieved through an experimental setup involving assets such 
as a UAS (Holybro X500) and a maintenance robot system 
(UR10e), which serve as representatives in an experimental 
MRO data space. These assets act as surrogates to verify the 
broader applicability of the proactive AAS framework 

First, the practical operation of the different stages of the 
AAS-implemented PHM framework is described based on 
simulated failure scenarios leading to advisories and tasks. 
Then, the procedure of how the AAS requests and negotiates 
the required MRO services with MRO service providers is 
introduced. Finally, after the MRO executions, the return of 
the learnings into the DPP is sketched.  

3.1. Autonomous MRO Task Identification 

An enabler of the operational setup is the proAAS BOX, a 
DLR-engineered edge device (microcomputer) that hosts the 
Python-based proactive AAS and its supporting feeder appli-
cation (Weiss, Pakala, Wicke, Gill, & Wende, 2023): Physi-
cally connected to the assets (here: UAS and robot), the 
proAAS BOXs provide the necessary processing capabilities 
and connectivity to run the proactive AAS, creating an oper-
ational Industry 4.0 Component (I4.0C). While the proAAS 
BOX manages the asset's primary data and provides 

connectivity to the data space (via LTE, Ethernet), its soft-
ware uses this data to manage the asset by contextualizing, 
storing, preparing, distributing, and evaluating it, and ulti-
mately making autonomous decisions. 

The UAS I4.0C continuously measures properties such as vi-
bration, acceleration, strain, temperature, power consump-
tion, attitude or RPM. All values are accessible within the 
proactive AAS and are used by the Event Manager as KCIs, 
either raw or pre-processed, e.g. as a synthesized health indi-
cator. When a KCI, whether real-time or predicted, exceeds a 
threshold, the Event Manager flags the issue and maps it to a 
maintenance task. Task templates stored in the AAS, which 
can be predefined or dynamically updated, specify procedural 
steps, required components, and compliance criteria. For ex-
ample, the detection of a potential motor failure triggers a 
motor replacement task, informed by DPP data and technical 
specifications. In the experimental use case, we focus on vi-
bration and battery voltage as KCIs to investigate advanced 
health management of the UAS propulsion system: 

1. Normal Operation Phase (0 s – 100 s): The system oper-
ates normally, and the normalized battery voltage gradi-
ent and the vibration signals remain steady within the ac-
ceptable range (Figure 4: lower and upper curves). The 
proactive AAS evaluates the data in real-time, storing it 
in the DPP and ring buffer for ongoing analysis: 
• Event Detection: No anomaly is detected since the 

observation values stay well within the predefined 
thresholds, and no event codes are triggered. 

• Event Severity: The system continues evaluating the 
health of the asset, with no issues identified. 

2. Fault Insertion and Degradation Phase (100 s – 300 s): 
At 100 seconds, an unbalance in the form of an asym-
metrical propeller (with a tip cut off by 5 mm) is attached 
to one of the four idling motors of the UAS, causing a 
sudden increase in vibrations. To notify anomalies and 
assess theirs causes and severity, the Z-Factor is contin-
uously checked for both KCIs: 
• Event Classification based on Z-Factor: 

𝑍𝐾𝐶𝐼 =
𝑥𝐾𝐶𝐼 − μ𝐾𝐶𝐼

σ𝐾𝐶𝐼
 (1) 

where xKCI is the observed indicator, μ is the mean, 
and σ is the standard deviation of the past phase. 

The results of the intercorrelation between Z-Factors are 
primarily assigned to initial event codes (EC) as shown 
in Table 1 with considering Z-Factor thresholds only. 
The implemented logic uses this statistical anomaly de-
tection with a dynamically updated Z-factor (see Appen-
dix a.) and thus operates in two modes: 

• Non-adaptive mode (standard mode) →  Uses a 
fixed historical reference to detect anomalies based 
on deviations from a predefined statistical baseline 
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(e.g. from the DPP). This is particularly useful for 
applications requiring strict fault detection against 
known conditions. 

• Adaptive mode → Continuously learns from real-
time data, dynamically updating its reference set 
(ring-buffer + DPP data) to detect evolving trends 
and gradual shifts. This mode is beneficial in self-
learning systems and environments with changing 
operational baselines. If no historical data is availa-
ble, the logic automatically switches to adaptive 
modes. 

 
Figure 4. Detection of events (anomaly, threshold crossing) 

 
Z-Factor 
Vibration 

Z-Factor 
Power 

Possible Root 
Causes EC 

 Normal  Normal --- --- 

 High  Normal Mechanical unbalance, 
structural issue only #1 

 Normal  High Battery degradation, 
electrical issue only #2 

 High  High Electromechanical fault 
(e.g., failing motor) #3 

Table 1. General intercorrelation cases using Z-Factor inter-
pretation (Z > 1: Abnormal) assigned to initial Event Codes 

 
In the use case (Figure 5), anomalies are detected when 
the Z-Factor exceeds 1 (first dotted horizontal line): 

• Detection 0 (D0): The proactive AAS detects the 
first anomaly in the vibration signal at 100 s based 
on the deviation from its Z-Factor baseline (Figure 
5: bottom left). 

To simulate degradation, the throttle is then raised, caus-
ing vibration to increase and battery voltage to decline. 

Both parameters deviate from normal ranges, indicated 
by their gradients of change, and approaching the thresh-
olds of their direct value (Figure 4 → D1 – D4). The non-
adaptive Z-Factor increases continuously as it references 
fixed historical data, while the adaptive Z-Factor stabi-
lizes as it learns from new inputs. In addition, fixed 
thresholds (T1, T2) define critical limits, while the sta-
tistical Z-Factor thresholds (Z > 1, 2, 3) also classify the 
anomaly's severity. 

By combining fixed (T) and statistical (Z) threshold vio-
lations, this method differentiates short-term fluctuations 
from persistent failures and aligns with an Event Classi-
fication Table (Table 2). This table covers over 36 clas-
sification scenarios, considering single and combined 
failures across multiple systems (here vibration and 
power anomalies). For example, a high vibration Z-Fac-
tor (> 2.0) with stable power may indicate an isolated 
mechanical issue, whereas a simultaneous increase in vi-
bration and power deviations suggests electromechanical 
intercorrelation. Event code 0 to 3 Normal degradations 
are classified too, where an indicator breaches the fixed 
threshold, but its related Z-Factor remains below 1 (us-
ing historic data). 

 
Figure 5. Vibration Z-Factor (non-adaptive: related to his-

toric reference data; adaptive: reference data learned) 
 

Thus, the system enables a complex context-aware deci-
sion-making, allowing predictive maintenance models to 
prioritize failures based on severity and interdepend-
ency. 

3. Prognosis: In a parallel running stage, future events and 
their severity are estimated continuously in both the nor-
mal and the anomaly phases. This prediction is AAS-in-
ternally based on ring buffer (short-term) and/or DPP 
(long-term) indicator data, allowing the dynamic 
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generation of preliminary prediction functions (linear, 
quadratic, exponential), that improve as more data be-
comes available. For more complex predictions, external 
services can be involved (see before). Prediction curves 
for both vibration and battery are depicted in Figure 6: 
• Early prediction curves (e.g., P1a, P1b, P2a, P2b) 
• Late prediction curves (e.g., P1c, P1d, P2c, P2d) 

 
Figure 6. Prediction of early and late events 

 
Fixed 
Threshold 

Z-Factor 
Affected System 

Z-Factor 
Other System EC 

below abnormal abnormal #0–3 
D1 (T1) normal Power normal #4 
 medium 1.0 - 2.0 Power normal #5 
 high (> 2.0) Power normal #6 
Vibration … … … 
> 0.5 g medium (1.0 - 2.0) Power (-1.0 to -2.0) #8 
 high (> 2.0) Power (-1.0 to -2.0) #9 
 … … … 
 high (> 2.0) Power (< -2.0) #12 
D2 (T1) normal Vibration normal #13 
Battery medium (-1.0 to -2.0) Vibration normal  
< 0.9 V … … … 
 high (< -2.0) Vibration (> 2.0) #21 
D3 (Vibr.) … … … 
> 1.0 g (T2) high (> 2.0) Power (< -2.0) #30 
D4 (Batt.) … … … 
< 0.8 V (T2) high (< -2.0) Vibration (> 2.0) #39 

Table 2. Event Classification Matrix (reduced) 

Each prediction curve has a corresponding probability of 
occurrence. The predicted value is finally the result of 
weighting the two prediction curves according to their 
probabilities. The predicted values are treated equally 

compared to the real-time value as described above. In 
this way, predicted Z-Factors and threshold violations 
help to assign to an event code (Table 2) with its time of 
occurrence. Thus, measurements to handle normal and 
irregular events are detected early by the asset, announc-
ing it to service providers and enabling them for proper 
preparations to avoid downtimes.   

4. Advisory: The diagnosed event codes (Table 2) are as-
signed by the UAS-AAS Event Manager to specific ad-
vice or tasks related to maintenance services. It uses a 
map (Table 3) where a task is described as a more or less 
comprehensive combination of required capabilities 
(bold) expressed in single or multiple service requests 
(Bill of Process). For initialization, maintenance manu-
als for UAS, such as (DJI, 2024), were used to identify 
and assign applicable treatments to event codes, with this 
assignment being made with respect to the expected con-
ditions. In cases where multiple event codes are trig-
gered, a prioritized task list is configured and sent as re-
quest to potential service providers (see next Chapter). 

 

EC Condition Prescriptive Tasks (Capabilities) 
… … … 

#5 
Moderate me-
chanical unbal-
ance 

1. Inspect, repair fasteners. 
2. Calibrate rotors. 
3. Check for deformations. 
4. Adjust vibration damping.   

#6 Severe mechan-
ical unbalance 

1. Inspect, replace damaged propellers. 
2. Check motor alignment and bearings. 
3. Calibrate motor RPM. 

… … … 

#9 
Severe vibra-
tion with elec-
trical effects 

1. Inspect full structure. 
2. Check all power connections. 
3. Reset power connections. 
4. Run diagnosis motor and ESC. 

… … … 

#30 

Severe mechan-
ical issue with 
major electrical 
impact 

1. Analyze motor failure deeply. 
2. Inspect motor, damaged propellers. 
3. Replace motor, damaged propellers. 
4. Recalibrate propulsion system and 

power regulation. 
… … … 

Table 3. Example of Event-Task mapping matrix (reduced) 

3.2. Autonomous MRO Task Negotiation and Execution 

Once the maintenance task list has been configured by the 
Event Manager, following the advice given in the previous 
chapter, they are attached to a standardized Service Request 
Notification template like (IDTA, 2023e). This is sent into 
the experimental data space as a Call for Proposals (CfP) in 
I4.0-compliant language (VDI2193-1, 2020) (VDI2193-2, 
2022), ensuring syntactic and semantic consistency, and in-
cludes: 
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• Frame (Metadata): Sender/receiver ID, Message ID, 
Conversation ID, … 

• Interaction Element (Content): List of tasks, tasks re-
lated diagnostic details (e.g., predicted vibration ex-
ceeding safe thresholds), relevant DPP submodels (e.g., 
bill of materials, component specifications, mainte-
nance history), and task-specific requirements such as 
urgency and environmental constraints, … 

The UAS AAS broadcasts this CfPs to all IoT registered Ser-
vice Providers (SPs) via a registry as presented in (Weiss, 
Pakala, Wicke, Gill, & Wende, 2023). This overall sequence 
of broadcast, proposal exchange, and decision is depicted in  
Figure 7. Upon receiving the CfP, SPs evaluate the outlined 
SR’s requirements from the notification and submit proposals 
that specify their skill characteristics, resource requirements, 
and associated costs to process the tasks. The UAS AAS eval-
uates the received proposals using MCDA algorithms, weigh-
ing factors like cost-effectiveness, compliance with technical 
standards, and task urgency. The optimal proposal is ac-
cepted, with confirmation sent to the selected SP and rejec-
tions are issued to others.  

 
Figure 7. Interaction sequence of UAS AAS, registry AAS 

and MRO stations’ AAS in the data space 

In the experimental setup, the robotic MRO station, part of 
the institute, is selected for practical reasons (in Figure 7 the 
SP AAS #2). After selection, the robotic MRO station takes 
on a bilateral role as both service provider (executing mainte-
nance tasks) and service requester (retrieving specific data or 
requesting actions from the UAS AAS). 

After acceptance of the proposal, the propeller exchange fol-
lows (steps 4 – 5 in Figure 7), supported by bilateral interac-
tions between the UAS AAS and the robotic MRO station: 

1. Requesting Data: The MRO robot station’s AAS re-
quests the UAS AAS to access specific submodels of its 
DPP. This allows the MRO provider to tailor its mainte-
nance actions to the UAS precise requirements. For ex-
ample: 
• Component Tolerances: Ensures that replacement 

parts meet the required operational specifications, 
reducing the risk of improper installation. 

• Historical Recalibration Settings: Guides recalibra-
tion steps by referencing prior adjustments, ensuring 
consistency and minimizing deviations from ex-
pected performance. 

2. Updating Data → chapter 3.3 

3. Operation Requests: The MRO station’s AAS may is-
sue real-time requests to the UAS AAS to facilitate spe-
cific tasks during maintenance. For instance: 
• Rotating the motor to a predefined position to enable 

access to a component. 
• Activating diagnostic functions to verify post-

maintenance performance. 

4. Direct Data Access: The robotic station’s AAS may re-
quest live data streams directly from the UAS AAS dur-
ing critical maintenance operations. These real-time pa-
rameters provide the context necessary for dynamic ad-
aptation of workflows. For example: 
• During a recalibration step, if live data indicates de-

viations from predicted operational thresholds, the 
station dynamically adjusts its maintenance actions 
to restore alignment with system tolerances. 

• Real-time vibration or temperature readings can in-
form precise adjustments to ensure component sta-
bility. 

3.3. Post-Maintenance Execution Updates 

At the end of the maintenance process, the MRO station (ser-
vice provider) updates the DPP of the UAS with comprehen-
sive records to provide a complete and up-to-date overview 
of the life cycle. These updates are made either directly, if the 
robot has access to the UAS DPP, or indirectly by transmit-
ting the modified data to the UAS AAS, which processes and 
integrates it into two key domains (steps 6 – 7 in Figure 7): 
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1. MRO Documentation and Compliance Records: 
• Details of Maintenance Actions: Replaced compo-

nents, recalibration results, tools used, and proce-
dural notes. 

• Compliance Records: Documentation to ensure ad-
herence to regulatory and procedural standards. 

• Sustainability Metrics: 
▪ CO₂-Equivalent Emissions: Recorded to assess 

environmental impact. 
▪ Material and Energy Consumption: Logged for 

lifecycle analysis and circular economy tracking. 

2. System-Internal Refinement and Diagnostics: 
• Process Parameters: Updated calibration thresholds, 

adjustment protocols, or control logic learned during 
operations. 

• Post-Maintenance KCIs: Revised key condition in-
dicators like vibration levels and energy efficiency, 
used to recalibrate monitoring baselines. 

• Component Lifespan Updates: New estimates of re-
maining useful life (RUL) for critical components, 
enabling predictive maintenance. 

 
These updates not only enrich the DPP but also significantly 
enhance the UAS PHM capabilities. By integrating Lifecy-
cle, real-time and predicted data, the AAS supports: 

• Improved Anomaly Detection: Updated metrics and 
historical trends enable the system to detect subtle de-
viations earlier, reducing the risk of undetected fail-
ures. 

• Enhanced Predictive Maintenance: Refined RUL 
models optimize maintenance schedules, minimizing 
both premature interventions and unexpected break-
downs. 

• Sustainability: Maintenance actions align with circu-
lar economy goals by tracking metrics such as recy-
clability and environmental impact. 

Furthermore, the updated DPP facilitates transparency and 
traceability, ensuring stakeholders have access to the latest 
lifecycle data. This data supports compliance verification, as-
set management, and informed decision-making, driving 
more efficient and sustainable operations. 

4. CONCLUSION 

The findings demonstrate that proactive AAS and DPPs en-
hance PHM frameworks by supporting real-time event detec-
tion, predictive maintenance, and automated service negotia-
tion. AAS facilitates dynamic decision-making and process 
execution, while DPPs ensure structured lifecycle data man-
agement, traceability, and compliance. Their integration 
strengthens data availability and interoperability, improving 
information flow within MRO processes. An experimental 
verification using an Unmanned Aircraft System (UAS) and 

a robotic MRO station has demonstrated how an AAS-inte-
grated PHM system improves real-time monitoring, anomaly 
detection, and predictive maintenance. The implementation 
of Z-factor statistical analysis, multi-tiered predictive model-
ing, and structured event-task mapping has shown measura-
ble benefits, including more effective fault detection, ex-
tended asset lifetimes, and optimized maintenance schedul-
ing.  

Taken together, these results confirm that a proactive AAS, 
extended by a DPP, can effectively leverage PHM methodol-
ogies to increase efficiency, interoperability, and sustainabil-
ity of MRO operations within Industry 4.0 ecosystems. 

Despite these advancements, challenges remain in standardi-
zation, event-task mapping (prescriptions), and modeling 
precise prediction functions. Future research should focus on 
refining PHM methodologies within AAS, improving system 
interoperability, and developing adaptive learning mecha-
nisms to enhance predictive accuracy. Additionally, the pro-
gressive integration of AI-driven analytics will be essential 
for advancing automation, optimizing maintenance work-
flows, and enhancing decision adaptability. 

This research contributes to the development of scalable and 
sustainable PHM-driven MRO ecosystems, supporting the 
long-term evolution of Industry 4.0 maintenance strategies 
while enabling more effective, data-driven, and interoperable 
maintenance solutions. 

APPENDIX 

a. Dynamic Z-Factor calculation based on formula (1) 

𝑍𝑡 = max (
𝑥𝑡 − μmode,𝑡
σmode,𝑡

(1 − 𝑒
𝑥𝑡−1−𝑥𝑡
𝑥𝑡+ϵ ) , 𝐶𝑡) 

With adaptive correction to prevent false positives and 
smooth results: 

𝐶𝑡 =

{
  
 

  
 max (𝑍𝑡−1,

𝑥𝑡 − μmode,𝑡
σmode,𝑡

) ⋅ 1.2,  𝑥𝑡 > μmode,𝑡 + 3σmode,𝑡

𝑍𝑡−1 ⋅ 0.5 +
𝑥𝑡 − 𝜇mode,𝑡
𝜎mode,𝑡

,  𝑥𝑡 < 𝜇mode,𝑡 + 2𝜎mode,𝑡 

𝑚𝑎𝑥 (𝑍𝑡−1,
𝑥𝑡 − 𝜇mode,𝑡
𝜎mode,𝑡

) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• Case 1: The correction factor is scaled up by 1,2, mean-
ing a higher weight is assigned to large deviations. 

• Case 2: The correction factor is reduced using 0,5 
smoothing and adjusted based on the fixed historical 
reference mean and standard deviation. 

• Case 3: The correction factor is simply the maximum 
between the previous Z-score and the current computed 
Z-score. 

With adaptive (real-time) or non-adaptive (historic) mode: 

𝜇mode,𝑡 , 𝜎mode,𝑡 = { (μdyn,t, σdyn,t), adaptive
(𝜇fixed, 𝜎fixed), non-adaptive 
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To prevent sudden jumps in the Z-factor due to anomalies, 
smoothing is applied: 

𝑍𝑡 = 0.2 ∙  Z𝑡 + 0.8 ∙  Z𝑡−1 

with 

𝑍𝑡, 𝑍𝑡−1 Current, previous Z-factor  
𝑥𝑡, 𝑥𝑡−1 Current, previous indicator 
μmode,t, σmode,t Mean and standard deviation 
μ𝑓𝑖𝑥𝑒𝑑, σ𝑓𝑖𝑥𝑒𝑑  Mean and std of fixed dataset (historic) 
μ𝑑𝑦𝑛,t, σ𝑑𝑦𝑛,t Mean and std of dynamic dataset (adaptive) 
Ct Intermediate outlier adjustment term 
𝜖 Small constant to prevent division by zero 
mode adaptive (dynamic) or non-adaptive (fixed) 
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NOMENCLATURE 

AAS  Asset Administration Shell 
BoP  Bill of Process 
BPMN  Business Process Model and Notation 
CfP  Call for Proposals 
COAP  Constrained Application Protocol 
CPS  Cyber-Physical System 
CPSS  Cyber-Physical-Social Systems 
DPP  Digital Product Passport 
EC  Event Code 
IIoT  Industrial Internet of Things 
IoT  Internet of Things 
KCI  Key Condition Indicator 
MCDA  Multi-Criteria Decision Analysis 
MQTT  Message Queuing Telemetry Transport 
MRO  Maintenance, Repair, and Overhaul 
OPC UA Open Platform Communications Unified 
  Architecture  
PHM  Prognostics and Health Management 
PPI  Prognostic Performance Indicator 
PPR  Product-Process-Resource Model 
REST  Representational State Transfer 
RUL  Remaining Useful Life 
FSM  Finite State Machine 
SP  Service Provider 
SR  Service Requester 
UAS  Unmanned Aircraft System 
Z-Factor  Statistical Anomaly Detection Factor 
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