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ABSTRACT 

Bearing failures cause machinery breakdowns, resulting in 

financial losses due to production downtimes. To address 

this, accurate bearing condition monitoring is essential. This 

paper introduces a cross-domain approach to fault diagnosis 

using a combination of convolutional neural networks 

(CNNs) and long short-term memory (LSTM) models, 

applied to the Case Western Reserve University (CWRU) 

dataset and the University of Ottawa Rolling-element 

Dataset- Vibration and Acoustic Faults under Constant Load 

and Speed conditions (UORED-VAFCLS), which contain 

both artificial and naturally developed bearing faults. The 

proposed experimental framework assesses the estimators, 

training and testing them with raw time-domain data from 

both acoustic and accelerometer signals, enhancing fault 

detection across various operating conditions. Results 

demonstrate that the CNN-LSTM model, when combined 

with statistical preprocessing, outperforms advanced models 

in both performance, computational time, and stability, 

particularly when fusing data from multiple sources. This 

approach shows promise for practical implementations in 

industrial predictive maintenance, offering a more reliable 

solution for reducing downtime and improving operational 

efficiency. Future work will focus on further optimization of 

the model and minimizing the data required for effective 

condition monitoring. 

1. INTRODUCTION 

In industrial applications, 50% to 60% of machinery 

failures are caused by bearings (Jha & Swami, 2021; Sehri, 

Dumond, & Bouchard, 2023a). These failures set companies 

back millions of dollars every year in production 

maintenance downtime, and in some cases lead to 

catastrophic failures (Sehri et al., 2023a). This creates a 

necessity to explore whether machine learning (ML) 

algorithms can be used to detect bearing faults, helping to 

minimize maintenance downtime. Bearing condition 

monitoring includes classification of signals obtained from 

healthy, ball, cage, inner-race, and outer-race fault states. 

With the evolution of artificial intelligence (AI), condition 

monitoring is made easier by decreasing the need for 

expertise. Specifically, with deep learning (DL) algorithms, 

ML researchers can now train and test models using signals 

obtained from sensors such as accelerometers and 

microphones to validate a machine’s health state against 

different signals with similar classifications (Bayoudh, 

2024). 

In ML, the domain refers to the raw sensor files chosen 

from a bearing dataset to create suitable testing conditions for 

fault diagnosis. Understanding the domain is crucial for 

effective feature extraction, model design, and interpreting 

the results of the ML architecture (Bayoudh, 2024). A domain 

refers to a combination of bearings operating under similar 

load or speed conditions. In other cases, a domain could 

represent bearings with similar fault sizes or types operating 

under different conditions. On the other hand, cross-domain 

analysis in ML refers to a ML algorithm trained on data from 

one domain that is adapted to work effectively in another 
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domain (Layeghy & Portmann, 2023). The purpose is to use 

the source domain knowledge to improve performance 

accuracy (bearing fault detection) in the target domain (Yu, 

Karimi, Shi, Peng, & Zhao, 2024).  

Many researchers have focused on training ML 

algorithms for bearing fault classification by using the Case 

Western Reserve University (CWRU) dataset as a benchmark 

(Hendriks, Dumond, & Knox, 2022). The CWRU dataset 

provides rolling element bearing data containing artificially 

created “seeded” faults. Moreover, this dataset has been 

criticized as having similar load conditions (motor speeds), 

making it easy to obtain high validation accuracy across 

different load condition domains. However, if domains are 

defined by fault severities instead, performance drops 

significantly (Hendriks et al., 2022). In fact, cross-domain 

accuracies are usually above 95% when using CWRU 

bearing data divided by load conditions (speeds) (Zixian Li 

et al., 2024), while splitting the data based on fault sizes gives 

50-60% accuracy (Hendriks et al., 2022; Rauber, da Silva 

Loca, Boldt, Rodrigues, & Varejão, 2021). This is because in 

the first case, the same bearing is used to both train and test 

the ML algorithm, whereas in the latter case, different 

bearings with unique fault signatures are used. Furthermore, 

when a natural fault dataset, such as the University of Ottawa 

Rolling-element Dataset – Vibration and Acoustic Faults 

under Constant Load and Speed conditions (UORED-

VAFCLS), is used with raw time domain data instead, even 

after preprocessing with statistical methods and applying an 

ML algorithm for cross-domain fault detection, accuracies 

are expected to be even worse because natural faults are more 

complex than controlled (seeded) faults. More advanced ML 

methods or more sophisticated methods of data processing 

must be applied to reach higher accuracy. 

DL has been increasingly adopted in cross-domain 

classification tasks for bearing fault detection due to its 

ability to automatically learn and generalize features from 

raw sensor data (Chen et al., 2020). In practical industrial 

applications, variations in operational conditions, such as 

changes in load, speed, or fault severity (amplitude changes), 

complicate fault diagnosis (Lundström & O’Nils, 2023). 

Cross-domain classification methods attempt to address this 

challenge by utilizing ML algorithms to adapt knowledge 

from a source domain (e.g., one set of operational conditions) 

to a target domain (e.g., different operational conditions) 

(Yin, Chen, Luo, & Deng, 2023). Specifically, DL networks 

like convolutional neural networks (CNNs) are able to 

capture spatial features from vibration signals (Wang, Liu, 

Peng, Yang, & Qin, 2022), while long short-term memory 

(LSTM) networks are effective in modeling temporal 

dependencies inherent in sensor data (Wan, Guo, Yin, Liang, 

& Lin, 2020). By combining these networks, cross-domain 

classification becomes more robust, allowing the algorithms 

to handle variations in input data more effectively (Xu, Yu, 

Chen, & Lin, 2024). Moreover, the preprocessing of raw 

signals using statistical techniques can reduce noise and 

highlight important patterns, further enhancing the 

adaptability and accuracy of these models in diverse domains 

(Meng, Zhan, Li, & Pan, 2018). This approach is particularly 

valuable for industries seeking scalable and reliable fault 

diagnosis solutions without the need for extensive domain-

specific expertise. By automating feature learning, industry 

can implement AI-driven solutions without requiring 

specialists to manually analyze sensor data. As such, the 

integration of DL methods into cross-domain classification 

represents a promising direction for advancing predictive 

maintenance in industrial settings. 

The literature base for prognostic health management 

(PHM) and industrial AI can also be broadened by 

considering recent works that provide both methodological 

and conceptual advancements in the field. For example, Su 

an Lee provide detailed insights into leveraging publicly 

available PHM datasets for diagnostic and prognostic 

modeling (Su & Lee, 2024), while Lee and Su present a 

unified conceptual framework for integrating industrial AI 

into manufacturing and maintenance systems (Lee & Su, 

2025). Including such perspectives strengthens the contextual 

foundation of this study, situating it more firmly within 

ongoing advancements in PHM and industrial AI research. 

This paper explores the effects of combining an LSTM 

network, a type of recurrent neural network (RNN), with a 

convolutional neural network (CNN) to see how cross-

domain performance can be improved for bearing fault 

detection, particularly in datasets with naturally occurring 

faults (e.g., the UORED-VAFCLS dataset). Additionally, the 

paper explores the benefits of using simple statistical 

methods for preprocessing data, showing that these 

techniques can enhance ML model accuracy. By applying 

this traditional approach to bearing fault detection, it is hoped 

that performance can remain similar to more advanced 

methods but at significantly lower computational costs. By 

leveraging the strengths of both spatial and temporal feature 

extraction, this hybrid approach allows for generalization 

across varying conditions, highlighting the effectiveness of 

traditional methods when paired with data-driven 

optimization. 

This paper is organized as follows: Section 2 presents the 

theoretical foundation of cross-domain fault diagnosis and 

the integration of CNN-LSTM models for bearing condition 

monitoring. Section 3 introduces the methodology, detailing 

the proposed model architecture and preprocessing 

techniques. Section 4 focuses on experimental verification, 

displaying the results of applying the model to both the 

CWRU and the UORED-VAFCLS datasets with an emphasis 

on cross-domain accuracy and robustness. Finally, Section 5 

concludes the paper by summarizing the contributions and 

discussing potential avenues for future work. 

1.1. Motivation 

The design choices in this study were guided by the need 

to balance model performance, generalization ability, and 

computational efficiency in cross-domain bearing fault 
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diagnosis. The CNN-LSTM architecture was selected over 

more recent architectures such as Transformers with 

temporal embedding and temporal convolutional networks 

because, while promising, these alternatives are 

computationally inefficient compared to the proposed 

method. They require greater training times, larger memory 

resources, and extensive hyperparameter tuning to achieve 

stable convergence (Sehri, Hua, Boldt, & Dumond, 2025). 

Given the already extensive experimental space explored in 

this work covering multiple preprocessing strategies, 

multimodal fusion, and strict domain separation, the priority 

was to validate a lightweight hybrid ML model before 

expanding to more resource-intensive approaches. 

A similar logic applies to the multimodal fusion strategy, 

where simple feature concatenation was used to combine 

acoustic and vibration data. This approach helps to establish 

a clear performance baseline and isolate the benefits of 

multimodal integration without the added complexity of 

advanced fusion mechanisms such as attention-based or 

correlation-aware methods, which will be explored in later 

studies. 

Furthermore, interpretability and explainability methods 

such as Shapley additive explanations (SHAP) and local 

interpretable model-agnostic explanations (LIME) were not 

implemented in this work to maintain focus on the primary 

cross-domain classification objective. These tools will be 

incorporated in future research to better understand the 

contribution of different input features in making predictions 

and to improve integration in industrial applications. 

2. THEORY 

To build on the concepts introduced herein, this section 

delves into the theoretical underpinnings of the proposed 

CNN-LSTM architecture, detailing its structural innovation, 

adaptation to cross-domain challenges, and the 

methodologies used to enhance its performance. This section 

provides an understanding of the technical design choices 

made in this study and provides a direction for experimental 

validation. 

The CNN-LSTM architecture integrates the strengths of 

CNNs and LSTM networks to effectively address cross-

domain fault diagnosis challenges. This section provides a 

detailed theoretical basis for the choice and functionality of 

these components, emphasizing their role in handling both 

spatial and temporal patterns in fault data. 

CNNs are widely recognized for their ability to extract 

spatial hierarchies of features through learnable filters and 

pooling operations. The mathematical foundation of CNNs 

relies on the convolution operation (Lecun, Bottou, Bengio, 

& Haffner, 1998; McCarter, 2023): 

 𝑓 ∙ 𝜔(𝑥) = ∫ 𝑓(𝑦)𝜔(𝑥 − 𝑦)𝑑𝑦 (1) 

where 𝑓 𝑎𝑛𝑑 𝜔 represent the input function and kernel 

function respectively, “∙” is the convolution operation, 𝑥 and 

𝑦 are real numbered variables. By utilizing CNNs at the input 

stage, high-dimensional vibration or sensor data can be 

transformed into low-level representations, capturing critical 

spatial patterns such as root mean square (RMS) features in 

vibration signals. This step is crucial for domain-invariant 

feature extraction, as it reduces sensitivity to noise and 

domain variations. 

To capture temporal dependencies inherent in fault 

diagnosis data (e.g., sequential vibration signals), LSTM 

networks are introduced. LSTMs are a type of RNN that are 

designed to overcome vanishing gradient problems through 

their specialized gating mechanism. Each LSTM cell 

operates as defined by the following equations (Hochreiter & 

Schmidhuber, 1997): 
 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖), 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (2) 

 
𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

= 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 
(3) 

where 𝑖𝑡, 𝑓𝑡 , 𝑎𝑛𝑑 𝑜𝑡  are the input, forget, and output gates, 

respectively; 𝑐𝑡  represents the cell state; and ⊙ is the 

element-wise product. The input gate controls how much of 

the new input and the previous hidden state should contribute 

to the memory update. The forget gate determines what 

portion of the previous cell state should be retained. The 

output gate decides how much of the updated cell state is 

exposed to influence the next hidden state. By processing the 

sequential feature maps generated by the CNN layers, LSTM 

cells capture temporal correlations between faults over time, 

addressing data with dynamic variations and long-range 

dependencies. 

The integration of CNN and LSTM components allows 

the architecture to adapt to both spatial and temporal 

variations present in cross-domain data. To further enhance 

domain generalization, domain-invariant feature learning is 

used where CNN layers are regularized using techniques such 

as adversarial training or domain adaptation losses to extract 

transferable features that generalize across domains (Xia, 

Huang, & Wang, 2020). Sequence alignment in LSTM-based 

temporal modeling ensures that the fault diagnosis sequence 

is robust to misalignments and variations in time-domain 

signal durations (Yang, Wan, Zhang, & Xiong, 2022). 

These adaptations are rooted in the theory of domain 

adaptation and representation learning, which aim to 

minimize the discrepancy between source and target domains 

by learning invariant features (H. Zhao, Combes, Zhang, & 

Gordon, 2019). 

Additionally, the proposed CNN-LSTM architecture 

distinguishes itself by integrating preprocessing techniques 

such as RMS and standardization, which are tailored to 

improve model stability and adaptability across diverse 

domains. Unlike traditional CNN-LSTM combinations, this 

approach leverages multimodal data fusion of vibration and 

acoustic signals to simultaneously extract spatial and 

temporal features, thereby addressing the cross-domain 

variability often encountered in industrial datasets. 

To enhance this hybrid-model’s accuracy, it is important 

to highlight preprocessing techniques and multimodal data 

fusion separately. The preprocessing phase incorporates 
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normalization, RMS calculations to condense vibration 

signals into representative metrics, effectively reducing noise 

and capturing the signal's overall energy. Preprocessing is 

used to normalize the data across all input channels, ensuring 

that features have a consistent scale and improving the 

convergence behavior during training. These steps are 

essential in mitigating domain-specific disparities, making 

the model more robust to variations in data distributions 

across different industrial setups. 

The multimodal fusion aspect of the architecture 

integrates standardized vibration and acoustic signals, 

enabling the CNN component to focus on spatial patterns and 

feature hierarchies within each modality. The LSTM layers 

subsequently capture temporal dependencies, which are 

crucial for understanding sequential dynamics inherent in 

machine operations. By combining these, the architecture 

addresses the cross-domain variability effectively, as it learns 

to generalize feature representations that are invariant to 

domain-specific characteristics. 

The model explicitly tackles cross-domain challenges 

through the novel combination of preprocessing methods and 

architecture design. The domain splitting methodology 

ensures complete separation of training and testing datasets, 

enhancing the evaluation's robustness. By incorporating 

preprocessing steps that normalize data and amplify relevant 

features, the model improves its ability to generalize across 

varying operational conditions. 

The network architecture is tuned for a parameter 

optimization process that considers domain-specific 

variations, including input signal lengths and batch sizes 

optimized for cross-domain scenarios. This ensures that the 

model performs consistently, even when tested on datasets 

with naturally occurring faults, a key differentiator from 

existing approaches. 

While validated on the UORED-VAFCLS dataset, the 

methodology uses a unique domain-splitting framework that 

simulates real-world cross-domain conditions. This setup, 

combined with the fusion of multiple data modalities, 

provides a practical evaluation of the model's performance, 

addressing the critique regarding reliance on public datasets. 

3. METHODOLOGY 

3.1. Statistical Methods 

Bearing data preprocessing is an important task in ML 

for fault classification (Gupta, Wadhvani, & Rasool, 2023; B. 

Li, Song, & Zhao, 2024). This is especially true when data 

available for training algorithms has not been collected under 

ideal conditions. Additionally, preprocessing is expected to 

reduce the computational time required for detecting bearing 

faults. Despite the availability of various techniques, there is 

still a research gap in determining which statistical methods 

can most effectively improve the quality of ML models for 

sensor data, thereby ensuring the reliability and accuracy of 

classification models. Existing methods do not use simple 

statistical measures such as standardization (Muhammad Ali 

& Faraj, 2014) and root mean square (RMS) (Lian et al., 

2024) for normalizing datasets. This paper explores the use 

of basic statistical techniques to preprocess bearing data so 

that data fed into a ML algorithm is normalized.  

The first preprocessing technique used in this paper is 

min-max normalization, as shown in equation (4) (Cabello-

Solorzano, Ortigosa de Araujo, Peña, Correia, & J. Tallón-

Ballesteros, 2023). This technique preserves the original 

distribution of the data while ensuring all features lie within 

a comparable range, which is particularly useful for models 

that are sensitive to input scales. However, it is important to 

note that min-max normalization is sensitive to outliers, as 

extreme values can disproportionately affect the scaling. 

Min-max normalization scales the data to a fixed range, 

between -1 and 1, as seen in equation (4).  

 𝑥𝑛𝑜𝑟𝑚(𝑥) =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (4) 

where 𝑥  are the individual data points that are being 

standardized, 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are the minimum and 

maximum values within the data. 

The second preprocessing technique used in this paper is 

normalization using standardization (Z-score normalization), 

as shown in equation (5) (Han et al., 2022). Standardization 

improves centrality in the dataset, where the data is 

preprocessed to have a mean of 0 and a standard deviation of 

1 (Muhammad Ali & Faraj, 2014). This provides a baseline 

for the data, without which it is difficult to judge whether 

there is deviation in the data that could represent healthy or 

faulty states. Standardization ensures that different bearing 

conditions within a dataset can be compared more effectively. 

Standardization analysis uses sensor data and looks for a 

common value at its center, hence reducing the effect of 

outliers and noise. This normalization technique is especially 

important for ML models, as it ensures that features used for 

training will lie on the same scale, boosting the model's 

performance. 

 𝑥𝑠𝑡𝑑(𝑥) =
𝑥 − 𝜇

𝜎
 (5) 

where 𝜇  is the mean of the dataset, and 𝜎 is the dataset’s 

standard deviation. 

The third preprocessing method used in this paper is 

RMS, as shown in equation (6) (Samanta & Al-balushi, 

2003). RMS is a measure that considers both the magnitude 

and variability of data. It is useful for detecting changes and 

variations in vibration signals, as well as bearing failure 

signatures. RMS is calculated by the square root of the mean 

of the points squared. A method like this enhances bigger 

deviations, making it easier to pick out significant changes in 

the signal that may indicate more substantial issues. The use 

of RMS in preprocessing underlines the general magnitude of 

a signal features that are important for fault classification. 

RMS reduces the noise in a time-domain dataset, thereby 

offering more robustness against overfitting by ML models. 
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(6) 

where 𝑛 is the total number of data points in the dataset. 

There are various reasons why preprocessing raw 

bearing data using statistical methods like standardization 

and RMS is important. These methods make the effects of 

noise and outliers less impactful. Such normalization is 

critical in ensuring that ML models are improved in their 

ability to learn from the data. Preprocessing also helps to 

identify and eliminate inconsistencies embedded within 

sensor readings, often greatly impacting the performance of 

a fault classification model. Finally, use of simple statistical 

methods for preprocessing makes the process more 

approachable and easier to implement, with a robust base that 

can support the use of more complex techniques. In general, 

an effective preprocessing framework for bearing data is 

crucial for ML-based fault classification for predictive 

maintenance and consequently reduces downtime in industry. 

3.2. ML Algorithms 

CNNs are a branch of DL models designed for 

processing image-based data [11]. CNNs consist of multiple 

layers that include convolutional layers, pooling layers, and 

fully connected layers. Data is filtered through convolutional 

layers allowing the capture of patterns like textures and edges 

of spatial features (LeCun, Bengio, & Hinton, 2015). Pooling 

layers are used to reduce the dimensionality of the data, 

making the network more efficient for smaller inputs. This 

allows CNNs to be efficient at learning features from raw 

data (LeCun et al., 2015). 

RNNs, on the other hand, use sequential data like time 

series. RNNs have hidden states that store information from 

previous time steps that allow for learning temporal 

dependencies in the data (LeCun et al., 2015). This makes 

RNNs important when the order of data points is critical. The 

RNN captures temporal dependencies and tracks changes 

over time, making it well-suited for modeling the evolution 

of machine states across sequential data. Nonetheless, 

training RNNs is challenging due to vanishing or exploding 

gradients that can affect learning over long sequence datasets. 

Therefore, more advanced variants such as LSTM networks 

have been developed to address these issues, allowing RNNs 

to capture long-term dependencies over long sequences 

(LeCun et al., 2015). 

A combined CNN-LSTM architecture is proposed in 

Table 1 for classifying five classes of machine conditions: 

healthy, as well as ball, inner, outer, and cage faults for 

bearing cross domain validation using time domain 

accelerometer data. The algorithm is inspired by a previous 

condition monitoring algorithm for bearing detection 

proposed by Sehri et. al. (Sehri, Ertarğın, Orhan, Yildirim, & 

Dumond, 2024). This algorithm consists of a series of 

Conv2D layers with max-pooling layers that help extract 

hierarchical features from the input signal. The convolutional 

layers all have distinct filter sizes and depths and use ReLu 

activation functions. These features are then passed through 

an LSTM layer to capture temporal dependencies in the 

sequential data before being flattened and fed into two linear 

layers to produce a probability distribution over the five 

bearing classes. The output is then flattened and fed into two 

fully connected layers, using ReLu activation to produce a 

probability distribution over the five bearing states. This 

model tries to pick out patterns from input data using 

convolutional operations and gets trained on categorical 

cross-entropy as the loss function validates different bearings 

of the same size with different machine states across 

domains. 

Table 1. CNN-LSTM ARCHITECTURE 

 
The selection of convolutional kernel sizes, number of 

layers, and feature depths in the CNN-LSTM architecture 

was determined through iterative empirical testing via an 

ablation study, balancing accuracy and computational 

efficiency for cross-domain bearing fault diagnosis. Larger 

kernel sizes were avoided to reduce the risk of overfitting on 

smaller receptive fields, while varying kernel dimensions 

across layers was found to enhance feature diversity for fault 

patterns. The depth of the architecture, including the single 

LSTM layer for accelerometer and acoustic data, was chosen 

to capture sufficient temporal dependencies without incurring 

excessive training time or memory requirements. This 

configuration offered the best trade-off between performance 

and resource usage in preliminary experiments, making it 

well-suited for the industrial fault detection scenarios 

considered in this study. 

The same architecture is utilized for time domain 

acoustic data to classify healthy, ball, inner, outer, and cage 

faults in bearing cross domains based on a combination of 

CNN-LSTM layers. The architecture uses Conv2D layers 

with varying filter sizes and depths, followed by max-pooling 

layers to extract features of the data. Then, 3 LSTM layers of 

256 kernels are included, which lead to a flattened layer. This 

is followed by two dense layers both with 256 kernels, giving 

the probability distribution over five classes. This model 

merges the advantages of both CNNs and RNNs in 

effectively capturing features from the accelerometer and 

acoustic data individually. 

Vibration and acoustic data are then fused together in 

parallel. Because of the robustness of the CNN and LSTM 

layers in this multimodal deep model, as shown in Figure 1, 

healthy, ball, inner, outer, and cage classes are extracted 

using cross domain learning. Here, CNN-LSTM layers are 

developed for acoustic data so that computation time is 

reduced while maintaining high performance. This neural 

network architecture allows one to train both acoustic and 

Layers Structures 

1 Conv2d(18, 32, (1, 7)), BN, ReLU 

2 Conv2d(32, 64, (1, 5)), BN, ReLU, MaxPool(1, 2) 

3 Conv2d(64, 128, (1, 3)), BN, ReLU 

4 Conv2d(128, 256, (1, 3)), BN, ReLU, AdaptiveMaxPool(1) 

5 LSTM(256, 256, 3) 

6 Linear(256, 256) 

7 Linear(256, Nc) 

 

https://www.zotero.org/google-docs/?p35Sok
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accelerometer data inputs at the same time with the 

aggregated algorithms from each individual model. By 

merging input signals in parallel, data should strengthen 

categorization results using the distinct features captured by 

each model for higher testing accuracy. 

The framework proposed by Zhao et al. is used to create 

a ML model that improves time domain data to compare cross 

domain accuracies of bearing conditions (Z. Zhao et al., 

2021). Dataset splitting in this paper uses training, validation, 

and test sets that do not overlap to avoid data leakage. 

Specifically, training and validation sets are drawn entirely 

from individual domains (source and target), while the test 

set comes from an entirely separate domain that is not used 

during training or validation, ensuring a robust evaluation. 

 
Figure 1. Proposed CNN-LSTM Model. 

3.3. Datasets 

For this study, the CWRU (“Download a Data File | Case 

School of Engineering | Case Western Reserve University,” 

2021) and UORED-VAFCLS datasets are used (Sehri & 

Dumond, 2023; Sehri, Dumond, & Bouchard, 2023b). The 

UORED-VAFCLS dataset is particularly valuable due to its 

naturally occurring faults that develop over time, making it 

ideal for simulating real-world deterioration conditions and 

enhancing the robustness of the models. Statistical 

preprocessing methods, such as min-max normalization, 

standardization, and RMS, are applied to the sensor data to 

improve the detection of bearing health states. For these 

techniques to be effective, datasets must include diverse load 

conditions, speeds, or fault types. Domain splitting within the 

dataset further enhances the accuracy and reliability of fault 

classification by focusing on naturally developed fault 

conditions. The use of the UORED-VAFCLS dataset 

provides practical insights for industrial predictive 

maintenance. However, the dataset is limited by the fact that 

the sensor data is clean compared to noisy industrial 

environments. This study represents an initial step toward 

integrating ML research into industrial applications for 

bearing condition monitoring, with the goal of improving 

fault detection and predictive maintenance practices. 

Table 2 and 3 show domain splitting of the CWRU and 

UORED-VAFCLS datasets, respectively. For the CWRU 

dataset, each domain consists of an inner race, outer race, and 

ball fault files. The UORED-VAFCLS dataset contains 

similar files, with the addition of healthy and cage fault files. 

Data sample naming conventions consist of a letter 

representing the type of fault, a number representing different 

6203 (UORED-VAFCLS) and 6205 (CWRU drive end) ball 

bearings being tested and a second number representing the 

bearing state (i.e., for UORED-VAFCLS: 0- healthy, 1- fault 

developing, and 2- faulty and for CWRU: 0, 1, 2, 3 represent 

different speeds at 1797, 1722, 1750, and 1730 RPM 

respectively). An example domain consists of files such as H-

1-0, I-1-1, O-6-1, B-11-1, C-16-1 in a single domain called 

domain 1 (Domain Name). The proposed cross domain 

testing framework is conducted by combining 4 domains 

together and testing on another domain to see if the trained 

data transfers across domains for different bearings of the 

same size. CWRU dataset splitting is provided in Figure 2, 

and the dataset is organized based on load conditions 

represented by motor horsepower (HP): 1 HP, 2 HP, and 3 

HP. Each load condition corresponds to different operating 

domains (Domains 1–12) and includes vibration data 

captured from bearings (Drive End) with varying levels of 

fault sizes: 0.007", 0.014", and 0.021". The figure highlights 

two approaches for dataset splitting: the load splitting 

approach, which mixes data across motor speeds, leads to 

data leakage while training and testing on the same bearing, 

and the proposed splitting approach, where the test domain 

mixes data across fault severity conditions and unique 

bearing entities, which makes this splitting strategy more 

akin to industrial situations where unseen bearing fault sizes 

and unique bearing entities are introduced (Hendriks et al., 

2022). Since the data is split by fault sizes rather than loads, 

accuracies for this difficult task are expected to be very low 

according to Hendrik’s et al. (Hendriks et al., 2022). 

In this work, each dataset is analyzed in a cross-domain 

manner within itself, meaning that some domains are 

allocated exclusively for training, others for validation, and 

the remaining for testing. This ensures that the model is 

evaluated on entirely unseen domains, simulating industrial 

generalization scenarios where fault conditions differ from 

those in the training set. This approach should not be 

confused with transfer learning, where training occurs on one 

dataset (e.g., CWRU) and testing is performed on a different 

dataset (e.g., UORED-VAFCLS) (Sehri, Varejão, et al., 

2025). The use of the term “cross-domain” strictly refers to 

evaluating model generalization across distinct operating 

domains within the same dataset, not across fundamentally 

different datasets. 

UORED-VAFCLS dataset splitting is provided in Figure 

3 and Figure 4. This dataset consists of 20 different 6203 

healthy bearings that are submitted to accelerated life testing 

so that faults are developed naturally, providing 5 separate 

bearings of each fault condition. Figure 3 presents vibration 

data from 6203 ball bearings across healthy, developing, and 

fully developed fault conditions, categorized into five bearing 

states: healthy, inner race fault, outer race fault, ball fault, and 

cage fault. The dataset is split into distinct domains, with no 

overlap between training, validation, and testing sets, 

simulating real-world industrial scenarios where models 

encounter entirely new conditions during testing. This 
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domain-based splitting ensures robust evaluation of 

generalization capabilities, reflecting industrial requirements 

for diagnosing faults under varying operating conditions. 

Features were extracted from the time domain, and statistical 

analyses were conducted to extract information for model 

training and evaluation. The splitting approach used herein 

allows for comparing ML models while emphasizing their 

applicability in scenarios where fault conditions differ 

significantly from the training data, thereby highlighting the 

industrial relevance of the proposed method. 

Table 2. DOMAIN SPLITTING FOR THE CWRU DATASET 48 

DRIVE END (“Download a Data File | Case School of 

Engineering | Case Western Reserve University,” 2021) 
Domain Name Inner Race Outer-Race Ball 

1 I-5-0 [IR007_0] O-8-0 [OR007@6_0] B-11-0 [B007_0] 

2 I-5-1 [IR007_1] O-8-1 [OR007@6_1] B-11-1 [B007_1] 

3 I-5-2 [IR007_2] O-8-2 [OR007@6_2] B-11-2 [B007_2] 

4 I-5-3 [IR007_3] O-8-3 [OR014@6_3] B-11-3 [B007_3] 

5 I-6-0 [IR014_0] O-9-0 [OR014@6_0] B-12-0 [B014_0] 

6 I-6-1 [IR014_1] O-9-1 [OR014@6_1] B-12-1 [B014_1] 

7 I-6-2 [IR014_2] O-9-2 [OR014@6_2] B-12-2 [B014_2] 

8 I-6-3 [IR014_3] O-9-3 [OR014@6_3] B-12-3 [B014_3] 

9 I-7-0 [IR021_0] O-10-0 [OR021@6_0] B-13-0 [B021_0] 

10 I-7-1 [IR021_1] O-10-1 [OR021@6_1] B-13-1 [B021_1] 

11 I-7-2 [IR021_2] O-10-2 [OR021@6_2] B-13-2 [B021_2] 

12 I-7-3 [IR021_3] O-10-3 [OR021@6_3] B-13-3 [B021_3] 

 
Figure 2. Proposed CWRU Dataset Splitting (Hendriks et 

al., 2022). 

Table 3. DOMAIN SPLITTING FOR THE UORED-VAFCLS 

DATASET 
Domain Name Healthy Inner-Race Outer-Race Ball Cage 

1 H-1-0 I-1-1 O-6-1 B-11-1 C-16-1 

2 H-2-0 I-1-2 O-6-2 B-11-2 C-16-2 

3 H-3-0 I-2-1 O-7-1 B-12-1 C-17-1 

4 H-4-0 I-2-2 O-7-2 B-12-2 C-17-2 

5 H-5-0 I-3-1 O-8-1 B-13-1 C-18-1 

6 H-6-0 I-3-2 O-8-2 B-13-2 C-18-2 

7 H-7-0 I-4-1 O-9-1 B-14-1 C-19-1 

8 H-8-0 I-4-2 O-9-2 B-14-2 C-19-2 

9 H-9-0 I-5-1 O-10-1 B-15-1 C-20-1 

10 H-10-0 I-5-2 O-10-2 B-15-2 C-20-2 

 
Figure 3. Proposed UORED-VAFCLS Dataset Splitting for 

Healthy and Developing Fault Bearings 

 
Figure 4. Proposed UORED-VAFCLS Dataset Splitting for 

Healthy and Faulty Bearings 

4. EXPERIMENTAL VERIFICATION 

The results consist of testing different domains using 

cross domain learning, with both the CWRU and UORED-

VAFCLS datasets. Each test is run 10 times and the average 

accuracy of the best epoch for each test is taken. A total of 

100 epochs are evaluated, and the learning rate is set to 0.001 

for each case. Additionally, the experiments were conducted 

using Python 3.10.9 and PyTorch 1.12.0 installed via conda. 

All ML architectures were trained on an NVIDIA GeForce 

RTX 3070 GPU with CUDA version 11.3 and CUDNN 8.1. 

The machine used for experiments ran on Windows 11 with 

an Intel Core i9-12900H CPU, 1TB SSD, and 32 GB of 

RAM. Key Python libraries used include numpy 1.23.4, 

matplotlib 3.6.3, pandas 1.5.0, scikit-learn 1.1.2, torch 

2.3.1+cu118, tqdm 4.64.1, torchvision 0.18.1+cu118, 

torchaudio 2.3.1+cu118, datasets 2.19.1. 

In this setup, the PC served as the primary workstation 

for orchestrating and cycling through different model 

designs, with each design being trained on the NVIDIA GPU. 

4.1. Accelerometer Data Results 

Table 4 demonstrates the performance of different ML 

architectures and hyperparameters when used with the 

CWRU dataset’s accelerometer data. Domains 1 to 8 are used 

for training and validation while domain 9 is used for testing. 

The proposed 1D CNN-LSTM model exhibits fair stability 

with test accuracies exceeding 60% in majority of the cases 

and a low standard deviation, particularly when using RMS 

preprocessing. Optimal performance was achieved with a 

batch size of 128 and an input signal length of 1024, reaching 

a test accuracy of 64.04 ± 2.45. These findings suggest that 

the model configuration with RMS preprocessing, a batch 

size of 128, and an input signal length of 1024 should be 

utilized for further accelerometer data testing, as it offers the 

best combination of accuracy and stability. These results 

demonstrate an improvement over traditional methods when 

used with the more difficult data splitting framework 

proposed by Hendriks et al. (Hendriks et al., 2022), justifying 

the use of the combined CNN-LSTM architecture. This 

highlights the potential benefits of integrating CNNs with 
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RNNs with statistical preprocessing for improved fault 

detection performance with the CWRU dataset. Other 

benefits include reduced computational times while 

maintaining high fault detection accuracies for potential 

future implementation in industry. 

Table 4. ACCELEROMETER RESULTS FOR DIFFERENT ML 

MODELS AND HYPERPARAMETERS FOR THE CWRU 

DATASET(“Download a Data File | Case School of 

Engineering | Case Western Reserve University,” 2021) 

Model 

Type 
Preprocessing 

Train 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Batch 

Size 
Input 

Signal 

1D 
CNN 

Min-Max 

Scaling 

99.65 98.54 53.11±2.52  64 512 
99.08 99.62 52.88±3.44 64 1024 
99.24 98.57 55.41±3.96 64 2048 
99.82 99.03 52.91±3.07  128 512 
99.77 99.13 53.57±2.34 128 1024 

Standardization 

99.33 99.37 56.78±2.91 128 2048 
99.23 99.42 54.34±3.52  64 512 
99.14 99.01 54.88±2.30 64 1024 
99.65 99.82 59.04±3.96 64 2048 
99.33 99.31 55.70±3.93  128 512 

RMS 

99.53 99.55 54.66±3.40 128 1024 
99.86 99.94 57.40±3.45 128 2048 
99.55 99.81 53.85±1.67 64 512 
99.31 99.01 54.31±3.34 64 1024 
99.92 99.98 61.43±3.88 64 2048 
99.56 97.09 55.86±2.91 128 512 
99.97 99.59 58.04±2.36 128 1024 
99.65 99.48 57.84±3.92 128 2048 

1D 

CNN-
LSTM 

Min-Max 
Scaling 

99.05 99.83 54.23±1.96 64 512 
99.82 99.01 55.27±2.34 64 1024 
99.37 99.61 56.94±3.78 64 2048 
99.61 99.33 54.33±2.67 128 512 
99.32 99.64 57.19±2.89  128 1024 
99.89 99.06 55.72±2.11 128 2048 

Standardization 

99.88 99.94 56.10±1.70 64 512 
99.54 99.77 57.34±1.73 64 1024 
99.75 99.88 58.12±4.58 64 2048 
98.75 99.46 56.05±1.59 128 512 
99.66 99.72 58.06±3.07  128 1024 
99.89 99.35 58.73±3.81 128 2048 

RMS 

99.33 99.35 55.77±1.33 64 512 
99.51 99.47 62.63±2.33 64 1024 
99.62 99.77 63.66±4.24 64 2048 
99.53 99.09 61.00±2.78  128 512 
99.58 99.32 64.04±2.45 128 1024 
99.66 99.47 63.25±3.67 128 2048 

Table 5 shows the results when using the UORED-

VAFCLS dataset for validation domains 2, 4, 6, and 8 being 

tested on domain 10 using cross domain analysis of the 

bearing accelerometer dataset to identify the best 

hyperparameters. Odd numbered domains include 

developing fault data, whereas even numbered domains 

include fully developed fault data. The reason even-

numbered domains alone are selected for testing 

hyperparameters is that developing fault and faulty bearing 

data is found to be too similar, which biases the results. This 

approach serves as a first step in addressing the detection 

challenge. Once high accuracy is achieved with these even-

numbered domains, the next step will be to combine all 

domains for more comprehensive testing and improved fault 

detection performance. Table 5 demonstrates that the 

proposed 1D CNN-LSTM model has a test accuracy above 

90% and a standard deviation of less than 1 when using RMS 

preprocessing, indicating that the proposed model is stable. 

Additionally, the best accuracy is obtained using a batch size 

of 128 and an input signal length of 1024. Therefore, the 

remainder of accelerometer data testing will be done using 

this model (i.e., RMS preprocessing, batch size of 128, and 

input signal of 1024). 

Table 5. ACCELEROMETER RESULTS FOR DIFFERENT ML 

MODELS AND HYPERPARAMETERS FOR THE UORED-

VAFCLS DATASETS 

Model 

Type 
Preprocessing 

Train 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Batch 

Size 
Input 

Signal 

1D 

CNN 

Min-Max 
Scaling 

99.20 99.67 76.69±2.67 64 512 
99.58 99.37 75.97±1.91 64 1024 
99.32 99.61 76.83±1.82 64 2048 
99.68 99.31 78.41±3.56 128 512 
99.02 99.39 77.35±3.08 128 1024 

Standardization 

99.91 98.37 74.70±1.55 128 2048 
99.76 99.94 79.39±1.91 64 512 
99.54 99.88 79.50±1.80 64 1024 
99.98 99.82 79.27±2.16 64 2048 
99.92 99.82 80.95±1.96 128 512 

RMS 

99.98 99.13 80.56±2.71 128 1024 
99.74 99.94 79.27±2.01 128 2048 
99.42 99.94 78.42±3.18 64 512 
99.83 99.76 78.70±2.86 64 1024 
99.95 99.94 79.55±3.96 64 2048 
99.98 99.94 79.69±3.47 128 512 
99.65 99.94 78.93±3.02 128 1024 
99.91 99.82 79.79±3.58 128 2048 

1D 
CNN-

LSTM 

Min-Max 

Scaling 

99.86 99.07 85.18±2.32 64 512 
98.34 99.61 87.55±1.09 64 1024 
99.30 99.05 83.15±1.67 64 2048 
99.73 99.88 85.97±2.15 128 512 
99.11 98.84 87.17±1.63 128 1024 
99.17 99.35 84.31±2.97 128 2048 

Standardization 

99.89 99.76 87.49±1.23 64 512 
99.76 99.82 88.61±1.29 64 1024 
99.22 99.88 86.44±0.94 64 2048 
99.38 99.21 89.46±1.64 128 512 
99.81 99.82 90.50±0.88 128 1024 
99.08 99.88 89.76±1.04 128 2048 

RMS 

99.82 99.97 92.93±0.94 64 512 
99.12 99.94 92.83±0.89 64 1024 
99.92 99.94 92.74±0.97 64 2048 
99.98 99.94 92.19±0.86 128 512 
99.86 99.15 93.20±0.73 128 1024 
99.47 99.94 92.03±0.87 128 2048 

The results in Table 6 highlight the challenges of cross-

domain fault diagnosis, particularly when handling data with 

different fault severities. The table compares existing results 

of traditional cross domain methods, such as the atrous 

convolutional deep inception network (ACDIN), the wide 

first-layer kernel deep convolutional neural networks 

(WDCNN), AlexNet, k-nearest neighbour (KNN), and 

support vector machine (SVM), all of which employ different 

preprocessing techniques like the fast Fourier transform 

(FFT) and spectrograms. Additionally, advanced cross 

domain methods, such as multi-kernel maximum mean 

discrepancy (MK-MMD) (J. Li et al., 2024), the domain 

adversarial network (DANN) (Zhuorui Li, Ma, Wu, Li, & 

Wang, 2024), and transformer networks 

(Mirzaeibonehkhater, Labbaf-Khaniki, & Manthouri, 2024) 

are tested for comparison. Despite the variety of approaches, 

these models consistently achieve test accuracies below 60% 

for the more difficult task of domain splitting across fault 

severities, as shown in the literature (Hendriks et al., 2022; 

Rauber et al., 2021). This more difficult data splitting task, 

based on different fault sizes across domains, is closer to what 

would be observed in industry. In contrast, the CNN-LSTM 

model achieves an average test accuracy of 61.38 ± 2.42, 
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demonstrating its relative improvement over both traditional 

and recent advanced methods. 

Unlike existing approaches, the proposed model 

integrates preprocessing using RMS, which contributes to 

stabilizing performance across domains. This preprocessing 

step enhances the model's ability to generalize features, 

reducing the impact of domain-specific noise and 

inconsistencies. For example, while network models in prior 

studies achieve average accuracies below 55% on the same 

dataset across fault severities, the proposed model exceeds 

this, achieving accuracies above 60% in most domains. This 

improvement underscores the benefits of integrating spatial 

and temporal feature extraction with preprocessing. 

*  (Hendriks et al., 2022), **(Rauber et al., 2021) 

Figure 5 visually represents the comparative 

performance of these models, as summarized in Table 6. The 

bar chart demonstrates that traditional approaches such as 

ACDIN, WDCNN, and AlexNet using spectrograms as an 

input alone exhibit a wide range of average test accuracies, 

with standard deviation bars indicating the variability in their 

performance while advanced methods perform slightly better 

than most traditional methods in terms of test accuracy. 

Additionally, when computational times in Table 6 for the 

CNN-LSTM method are compared to the advanced methods, 

the CNN-LSTM combined with statistical preprocessing 

outperforms all three. The figure highlights that while certain 

 

Table 6. ACCELEROMETER RESULTS FOR EXISTING AND SELECTED HYPERPARAMETERS ON DIFFERENT FAULT SEVERITY 

DOMAINS OF THE CWRU 
Cross Domain 

Methods 
Model Type Preprocessing Domain Train Validation Domain Tested 

Test Accuracy 

(%) 

Batch 

Size 

Input 

Signal 

Computational Time 

(seconds) 

Traditional 

ACDIN* Raw 

D, E, F D, E, F 

37.13 ± 12.70 N/A 5118 N/A 

ACDIN* FFT 40.57 ± 11.01 N/A 10,236 N/A 
WDCNN* Raw 36.20 ± 9.49 N/A 2048 N/A 
WDCNN* FFT 50.02 ± 6.39 N/A 4096 N/A 
AlexNet* Spectrogram 47.37 ± 11.03 N/A 11,500 N/A 
ResNet* Spectrogram 53.10 ± 6.57 N/A 11,500 N/A 
KNN** Raw 

Average of 0.007, 0.014, 
0.021 

0.007, 0.014, 
0.021 

50.72 ± 1.28 N/A N/A N/A 
SVM** Raw 49.76 ± 2.54 N/A N/A N/A 
RF** Raw 52.56 ± 1.13 N/A N/A N/A 

1D CNN** Raw 53.26 ± 1.90 N/A N/A N/A 
CNN-LSTM RMS 61.38 ± 2.42 128 1024 55 

Advanced 
MK-MMD RAW 57.34 ± 2.89 128 1024 80 

DANN RAW 56.65 ± 3.73 128 1024 75 
Transformer RAW 57.02 ± 3.31 128 1024 90 

 

 

 
Figure 5. Average Test Accuracy When Splitting Data by Fault Severities with the CWRU Dataset 
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methods like ResNet with spectrogram inputs reach a test 

accuracy of 53.10 ± 6.57, none surpass the 55% accuracy 

consistently across domains. On the other hand, the proposed 

CNN-LSTM model, in the figure, clearly stands out with a 

significantly higher accuracy of 61.38 ± 2.42, validating the 

effectiveness of its RMS preprocessing approach and the 

integration of convolutional and sequential layers for spatial 

and temporal feature extraction. The figure shows the 

improvement in test accuracy by the proposed model and 

aligns with the numerical findings, visually reinforcing the 

advantages of the CNN-LSTM methodology. 

The domain-splitting methodology and multimodal data 

fusion further contribute to experimental data innovation by 

addressing challenges that other methods in Table 6 fail to 

overcome. The strict separation of training and testing 

domains ensures that the evaluation simulates realistic cross-

domain conditions, validating the model's effectiveness. This 

approach sets a foundation for future research to refine 

feature extraction techniques and address residual challenges, 

as seen in domains with lower performance. The results 

indicate that the proposed method effectively leverages 

preprocessing steps alongside algorithmic integration to 

handle fault severities, which has not been explored 

extensively in prior studies. 

The results in Table 6 and the average accuracies 

provided in the existing literature further emphasize the 

strengths and limitations of the proposed approach. The 

CNN-LSTM model achieves improvements, with average 

test accuracies exceeding 60%, showing that traditional 

methods when combined with statistical preprocessing can 

surpass advanced cross domain methods. This disparity 

underlines how traditional cross domain methods can 

enhance generalization and consistency across different 

testing conditions and result in lower computational time. 

4.2. Acoustic Data Results 

Table 7 shows the results for the UORED-VAFCLS 

acoustic bearing dataset. Domains 2, 4, 6, and 8 are used for 

training and validation while domain 10 is used for testing. 

The results are similar to the accelerometer data, so for the 

remainder of the testing on acoustic data, a 1D CNN-LSTM 

model with RMS preprocessing, a batch size of 128, and an 

input signal length of 1024 are used. 

Table 7. ACOUSTIC RESULTS FOR DIFFERENT ML MODELS 

AND HYPERPARAMETERS FOR THE UORED-VAFCLS 

DATASETS 

Model 

Type 
Preprocessing 

Train 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Batch 

Size 
Input 

Signal 

1D 

CNN 

Min-Max 
Scaling 

99.17 99.33 77.62±1.84 64 512 
98.29 99.08 76.94±3.21 64 1024 
99.57 99.63 78.31±2.34 64 2048 
99.93 99.37 79.13±2.74 128 512 
99.74 99.76 77.67±1.87 128 1024 

Standardization 

99.07 99.91 76.09±1.99 128 2048 
99.66 99.08 80.80±2.93 64 512 
99.79 99.83 79.83±2.73 64 1024 
99.90 99.42 79.49±1.91 64 2048 
99.12 99.02 80.50±1.70 128 512 

RMS 

99.67 98.90 79.10±0.96 128 1024 
99.21 99.88 79.27±2.18 128 2048 
99.20 99.53 79.70±2.50 64 512 
98.32 99.11 78.43±1.00 64 1024 
99.31 98.65 80.88±3.22 64 2048 
99.01 99.37 80.01±1.62 128 512 
99.84 99.71 78.49±2.02 128 1024 
99.82 99.23 79.98±3.92 128 2048 

1D 
CNN-

LSTM 

Min-Max 

Scaling 

99.71 99.18 86.35±2.06 64 512 
99.36 99.74 87.64±1.87 64 1024 
99.87 99.46 88.37±1.97 64 2048 
99.37 99.10 85.19±2.33 128 512 
99.03 99.74 87.67±2.09 128 1024 
99.97 99.06 85.94±1.98 128 2048 

Standardization 

99.10 99.32 89.29±1.79 64 512 
99.73 99.19 90.24±1.57 64 1024 
99.23 99.51 90.36±1.49 64 2048 
99.82 99.14 88.38±1.99 128 512 
99.56 99.70 90.35±2.41 128 1024 
99.66 99.92 87.95±1.65 128 2048 

RMS 

99.96 99.31 94.11±1.72 64 512 
99.57 99.81 94.52±1.20 64 1024 
99.20 99.11 94.53±0.78 64 2048 
99.84 99.45 94.29±0.70 128 512 
99.46 99.73 94.58±0.65 128 1024 
99.70 99.88 94.39±0.79 128 2048 

4.3. Ablation Study for the UORED-VAFCLS Dataset 

Ablation experiments are performed to verify the 

effectiveness of the proposed method. Table 8 summarizes 

the experiments conducted, where model components and 

configurations are analyzed for the UORED-VAFCLS 

dataset. By removing specific network layers, preprocessing 

steps, and selecting a sensor, certain features are excluded. 

Figure 6 provides domain test accuracy results for seven 

methods (A1–A8) across 10 test domains. It can be observed 

that the proposed method (M9) achieves the highest average 

accuracy of 79.13 ± 0.92%, outperforming other methods. 

For instance, A2 and A6 show the lowest accuracies (63.13 ± 

2.00 and 61.76 ± 1.67, respectively), indicating that removing 

key components negatively affects the model's performance. 

Figure 6 presents a box plot summarizing the accuracy 

Table 8. ABLATION EXPERIMENTS FOR MODEL COMPONENTS AND CONFIGURATION OF THE UORED-VAFCLS DATASET 
Method CNN Layers LSTM Layers RMS Preprocessing Accelerometer Data Acoustic Data Note 

A1 ✓  ✓ ✓  w single data 

A2 ✓  ✓  ✓ w single data 

A3  ✓ ✓ ✓  w single data 

A4  ✓ ✓  ✓ w single data 

A5 ✓ ✓   ✓ w/o preprocess 

A6 ✓ ✓  ✓  w/o preprocess 

A7 ✓ ✓ ✓ ✓  w single data 

A8 ✓ ✓ ✓  ✓ w single data 

M9 ✓ ✓ ✓ ✓ ✓ Proposed 

 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 
 

11 

distributions of each method with standard deviations. The 

proposed method (M9) stands out, achieving both high 

median accuracy and a narrower variance compared to other 

methods. This highlights the robustness and effectiveness of 

the proposed configuration. It should be noted that M9 

corresponds to the fusion model, as shown in Table 8, where 

both the accelerometer and acoustic data columns are 

checked to indicate the inclusion of fusion. Conversely, 

methods such as A2, A3, and A6 exhibit broader variance and 

lower median values, emphasizing their lack of consistency 

and reduced generalization. The results clearly demonstrate 

that excluding certain components significantly degrades 

performance, while the inclusion of all features in the 

proposed method enhances generalization and accuracy. 

 
Figure 6. Box Plot of Ablation Study Results with Standard 

Deviations by Method with the UORED-VAFCLS Dataset 

5. CONCLUSION 

This study demonstrates that, if applied correctly, 

traditional cross domain strategies such as CNN-LSTM 

networks combined with simple statistical preprocessing 

techniques can outperform advanced cross domain 

algorithms for fault severity-based bearing fault diagnosis on 

the CWRU dataset. Additionally, by combining preprocessed 

time-domain data from both acoustic and accelerometer 

signals, the proposed methodology demonstrates 

improvements in fault detection accuracy and model stability 

on the UORED-VAFCLS dataset when compared to 1D-

CNNs alone, especially for more difficult cross-domain 

analysis tasks. The fusion of multi-source data further 

enhances the reliability and robustness of the fault diagnosis 

process. Further refinement of this methodology could 

provide improvements for these tasks. 

The proposed method has been compared with the 

available literature for the CWRU dataset. Nonetheless, 

future work will focus on optimizing the model to achieve 

even higher accuracy and stability while minimizing the 

amount of data required for effective condition monitoring. 

Future work will extend the comparative analysis to include 

advanced architectures such as Transformers with temporal 

embedding and temporal convolutional networks, as well as 

more sophisticated fusion techniques to better exploit 

interdependencies between acoustic and vibration data. 

Interpretability frameworks like SHAP and LIME will also 

be integrated to enhance model transparency and industrial 

applicability. As such, the development of these methods has 

the potential to reduce machinery downtime and improve 

operational efficiency in industrial settings. 

NOMENCLATURE 

ACDIN atrous convolutional deep inception network 

AI artificial intelligence 

CNN convolutional neural network 

CWRU case western reserve university 

DANN domain adversarial network 

DL deep learning 

KNN k-nearest neighbor 

LSTM long short term memory 

ML machine learning 

MK-MMD multi-kernel maximum mean discrepancy 

PHM prognostic health management 

RNN recurrent neural network 

SVM support vector machine 

UORED-VAFCLS university of ottawa rolling-element 

dataset- vibration and acoustic faults under constant load 

and speed conditions 

WDCNN   wide first-layer kernel deep convolutional neural 

networks 
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