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ABSTRACT

Bearing failures cause machinery breakdowns, resulting in
financial losses due to production downtimes. To address
this, accurate bearing condition monitoring is essential. This
paper introduces a cross-domain approach to fault diagnosis
using a combination of convolutional neural networks
(CNNs) and long short-term memory (LSTM) models,
applied to the Case Western Reserve University (CWRU)
dataset and the University of Ottawa Rolling-element
Dataset- Vibration and Acoustic Faults under Constant Load
and Speed conditions (UORED-VAFCLS), which contain
both artificial and naturally developed bearing faults. The
proposed experimental framework assesses the estimators,
training and testing them with raw time-domain data from
both acoustic and accelerometer signals, enhancing fault
detection across various operating conditions. Results
demonstrate that the CNN-LSTM model, when combined
with statistical preprocessing, outperforms advanced models
in both performance, computational time, and stability,
particularly when fusing data from multiple sources. This
approach shows promise for practical implementations in
industrial predictive maintenance, offering a more reliable
solution for reducing downtime and improving operational
efficiency. Future work will focus on further optimization of
the model and minimizing the data required for effective
condition monitoring.
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1. INTRODUCTION

In industrial applications, 50% to 60% of machinery
failures are caused by bearings (Jha & Swami, 2021; Sehri,
Dumond, & Bouchard, 2023a). These failures set companies
back millions of dollars every year in production
maintenance downtime, and in some cases lead to
catastrophic failures (Sehri et al., 2023a). This creates a
necessity to explore whether machine learning (ML)
algorithms can be used to detect bearing faults, helping to
minimize maintenance downtime. Bearing condition
monitoring includes classification of signals obtained from
healthy, ball, cage, inner-race, and outer-race fault states.
With the evolution of artificial intelligence (Al), condition
monitoring is made easier by decreasing the need for
expertise. Specifically, with deep learning (DL) algorithms,
ML researchers can now train and test models using signals
obtained from sensors such as accelerometers and
microphones to validate a machine’s health state against
different signals with similar classifications (Bayoudh,
2024).

In ML, the domain refers to the raw sensor files chosen
from a bearing dataset to create suitable testing conditions for
fault diagnosis. Understanding the domain is crucial for
effective feature extraction, model design, and interpreting
the results of the ML architecture (Bayoudh, 2024). A domain
refers to a combination of bearings operating under similar
load or speed conditions. In other cases, a domain could
represent bearings with similar fault sizes or types operating
under different conditions. On the other hand, cross-domain
analysis in ML refers to a ML algorithm trained on data from
one domain that is adapted to work effectively in another
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domain (Layeghy & Portmann, 2023). The purpose is to use
the source domain knowledge to improve performance
accuracy (bearing fault detection) in the target domain (Yu,
Karimi, Shi, Peng, & Zhao, 2024).

Many researchers have focused on training ML
algorithms for bearing fault classification by using the Case
Western Reserve University (CWRU) dataset as a benchmark
(Hendriks, Dumond, & Knox, 2022). The CWRU dataset
provides rolling element bearing data containing artificially
created “seeded” faults. Moreover, this dataset has been
criticized as having similar load conditions (motor speeds),
making it easy to obtain high validation accuracy across
different load condition domains. However, if domains are
defined by fault severities instead, performance drops
significantly (Hendriks et al., 2022). In fact, cross-domain
accuracies are usually above 95% when using CWRU
bearing data divided by load conditions (speeds) (Zixian Li
et al., 2024), while splitting the data based on fault sizes gives
50-60% accuracy (Hendriks et al., 2022; Rauber, da Silva
Loca, Boldt, Rodrigues, & Varejao, 2021). This is because in
the first case, the same bearing is used to both train and test
the ML algorithm, whereas in the latter case, different
bearings with unique fault signatures are used. Furthermore,
when a natural fault dataset, such as the University of Ottawa
Rolling-element Dataset — Vibration and Acoustic Faults
under Constant Load and Speed conditions (UORED-
VAFCLS), is used with raw time domain data instead, even
after preprocessing with statistical methods and applying an
ML algorithm for cross-domain fault detection, accuracies
are expected to be even worse because natural faults are more
complex than controlled (seeded) faults. More advanced ML
methods or more sophisticated methods of data processing
must be applied to reach higher accuracy.

DL has been increasingly adopted in cross-domain
classification tasks for bearing fault detection due to its
ability to automatically learn and generalize features from
raw sensor data (Chen et al., 2020). In practical industrial
applications, variations in operational conditions, such as
changes in load, speed, or fault severity (amplitude changes),
complicate fault diagnosis (Lundstrom & O’Nils, 2023).
Cross-domain classification methods attempt to address this
challenge by utilizing ML algorithms to adapt knowledge
from a source domain (e.g., one set of operational conditions)
to a target domain (e.g., different operational conditions)
(Yin, Chen, Luo, & Deng, 2023). Specifically, DL networks
like convolutional neural networks (CNNs) are able to
capture spatial features from vibration signals (Wang, Liu,
Peng, Yang, & Qin, 2022), while long short-term memory
(LSTM) networks are effective in modeling temporal
dependencies inherent in sensor data (Wan, Guo, Yin, Liang,
& Lin, 2020). By combining these networks, cross-domain
classification becomes more robust, allowing the algorithms
to handle variations in input data more effectively (Xu, Yu,
Chen, & Lin, 2024). Moreover, the preprocessing of raw
signals using statistical techniques can reduce noise and
highlight important patterns, further enhancing the

adaptability and accuracy of these models in diverse domains
(Meng, Zhan, Li, & Pan, 2018). This approach is particularly
valuable for industries seeking scalable and reliable fault
diagnosis solutions without the need for extensive domain-
specific expertise. By automating feature learning, industry
can implement Al-driven solutions without requiring
specialists to manually analyze sensor data. As such, the
integration of DL methods into cross-domain classification
represents a promising direction for advancing predictive
maintenance in industrial settings.

The literature base for prognostic health management
(PHM) and industrial Al can also be broadened by
considering recent works that provide both methodological
and conceptual advancements in the field. For example, Su
an Lee provide detailed insights into leveraging publicly
available PHM datasets for diagnostic and prognostic
modeling (Su & Lee, 2024), while Lee and Su present a
unified conceptual framework for integrating industrial Al
into manufacturing and maintenance systems (Lee & Su,
2025). Including such perspectives strengthens the contextual
foundation of this study, situating it more firmly within
ongoing advancements in PHM and industrial Al research.

This paper explores the effects of combining an LSTM
network, a type of recurrent neural network (RNN), with a
convolutional neural network (CNN) to see how cross-
domain performance can be improved for bearing fault
detection, particularly in datasets with naturally occurring
faults (e.g., the UORED-VAFCLS dataset). Additionally, the
paper explores the benefits of using simple statistical
methods for preprocessing data, showing that these
techniques can enhance ML model accuracy. By applying
this traditional approach to bearing fault detection, it is hoped
that performance can remain similar to more advanced
methods but at significantly lower computational costs. By
leveraging the strengths of both spatial and temporal feature
extraction, this hybrid approach allows for generalization
across varying conditions, highlighting the effectiveness of
traditional methods when paired with data-driven
optimization.

This paper is organized as follows: Section 2 presents the
theoretical foundation of cross-domain fault diagnosis and
the integration of CNN-LSTM models for bearing condition
monitoring. Section 3 introduces the methodology, detailing
the proposed model architecture and preprocessing
techniques. Section 4 focuses on experimental verification,
displaying the results of applying the model to both the
CWRU and the UORED-VAFCLS datasets with an emphasis
on cross-domain accuracy and robustness. Finally, Section 5
concludes the paper by summarizing the contributions and
discussing potential avenues for future work.

1.1. Motivation

The design choices in this study were guided by the need
to balance model performance, generalization ability, and
computational efficiency in cross-domain bearing fault
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diagnosis. The CNN-LSTM architecture was selected over
more recent architectures such as Transformers with
temporal embedding and temporal convolutional networks
because, while promising, these alternatives are
computationally inefficient compared to the proposed
method. They require greater training times, larger memory
resources, and extensive hyperparameter tuning to achieve
stable convergence (Sehri, Hua, Boldt, & Dumond, 2025).
Given the already extensive experimental space explored in
this work covering multiple preprocessing strategies,
multimodal fusion, and strict domain separation, the priority
was to validate a lightweight hybrid ML model before
expanding to more resource-intensive approaches.

A similar logic applies to the multimodal fusion strategy,
where simple feature concatenation was used to combine
acoustic and vibration data. This approach helps to establish
a clear performance baseline and isolate the benefits of
multimodal integration without the added complexity of
advanced fusion mechanisms such as attention-based or
correlation-aware methods, which will be explored in later
studies.

Furthermore, interpretability and explainability methods
such as Shapley additive explanations (SHAP) and local
interpretable model-agnostic explanations (LIME) were not
implemented in this work to maintain focus on the primary
cross-domain classification objective. These tools will be
incorporated in future research to better understand the
contribution of different input features in making predictions
and to improve integration in industrial applications.

2. THEORY

To build on the concepts introduced herein, this section
delves into the theoretical underpinnings of the proposed
CNN-LSTM architecture, detailing its structural innovation,
adaptation to cross-domain challenges, and the
methodologies used to enhance its performance. This section
provides an understanding of the technical design choices
made in this study and provides a direction for experimental
validation.

The CNN-LSTM architecture integrates the strengths of
CNNs and LSTM networks to effectively address cross-
domain fault diagnosis challenges. This section provides a
detailed theoretical basis for the choice and functionality of
these components, emphasizing their role in handling both
spatial and temporal patterns in fault data.

CNNs are widely recognized for their ability to extract
spatial hierarchies of features through learnable filters and
pooling operations. The mathematical foundation of CNNs
relies on the convolution operation (Lecun, Bottou, Bengio,
& Haffner, 1998; McCarter, 2023):

from = [ fOt -y M
where f and w represent the input function and kernel

function respectively, “-” is the convolution operation, x and
y are real numbered variables. By utilizing CNNss at the input

stage, high-dimensional vibration or sensor data can be
transformed into low-level representations, capturing critical
spatial patterns such as root mean square (RMS) features in
vibration signals. This step is crucial for domain-invariant
feature extraction, as it reduces sensitivity to noise and
domain variations.

To capture temporal dependencies inherent in fault
diagnosis data (e.g., sequential vibration signals), LSTM
networks are introduced. LSTMs are a type of RNN that are
designed to overcome vanishing gradient problems through
their specialized gating mechanism. Each LSTM cell
operates as defined by the following equations (Hochreiter &
Schmidhuber, 1997):

it = o(Wixe + Uihe—y + by), f = o(Wyxy + Ugh;_y + by) 2
0y = O:(M/oxt + Upht—y + b,) 3)
= ft O ¢ty + iy O tanh (Wx, + Uche—y + b,)
where i;, f;, and o, are the input, forget, and output gates,
respectively; ¢, represents the cell state; and © is the
element-wise product. The input gate controls how much of
the new input and the previous hidden state should contribute
to the memory update. The forget gate determines what
portion of the previous cell state should be retained. The
output gate decides how much of the updated cell state is
exposed to influence the next hidden state. By processing the
sequential feature maps generated by the CNN layers, LSTM
cells capture temporal correlations between faults over time,
addressing data with dynamic variations and long-range
dependencies.

The integration of CNN and LSTM components allows
the architecture to adapt to both spatial and temporal
variations present in cross-domain data. To further enhance
domain generalization, domain-invariant feature learning is
used where CNN layers are regularized using techniques such
as adversarial training or domain adaptation losses to extract
transferable features that generalize across domains (Xia,
Huang, & Wang, 2020). Sequence alignment in LSTM-based
temporal modeling ensures that the fault diagnosis sequence
is robust to misalignments and variations in time-domain
signal durations (Yang, Wan, Zhang, & Xiong, 2022).

These adaptations are rooted in the theory of domain
adaptation and representation learning, which aim to
minimize the discrepancy between source and target domains
by learning invariant features (H. Zhao, Combes, Zhang, &
Gordon, 2019).

Additionally, the proposed CNN-LSTM architecture
distinguishes itself by integrating preprocessing techniques
such as RMS and standardization, which are tailored to
improve model stability and adaptability across diverse
domains. Unlike traditional CNN-LSTM combinations, this
approach leverages multimodal data fusion of vibration and
acoustic signals to simultaneously extract spatial and
temporal features, thereby addressing the cross-domain
variability often encountered in industrial datasets.

To enhance this hybrid-model’s accuracy, it is important
to highlight preprocessing techniques and multimodal data
fusion separately. The preprocessing phase incorporates
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normalization, RMS calculations to condense vibration
signals into representative metrics, effectively reducing noise
and capturing the signal's overall energy. Preprocessing is
used to normalize the data across all input channels, ensuring
that features have a consistent scale and improving the
convergence behavior during training. These steps are
essential in mitigating domain-specific disparities, making
the model more robust to variations in data distributions
across different industrial setups.

The multimodal fusion aspect of the architecture
integrates standardized vibration and acoustic signals,
enabling the CNN component to focus on spatial patterns and
feature hierarchies within each modality. The LSTM layers
subsequently capture temporal dependencies, which are
crucial for understanding sequential dynamics inherent in
machine operations. By combining these, the architecture
addresses the cross-domain variability effectively, as it learns
to generalize feature representations that are invariant to
domain-specific characteristics.

The model explicitly tackles cross-domain challenges
through the novel combination of preprocessing methods and
architecture design. The domain splitting methodology
ensures complete separation of training and testing datasets,
enhancing the evaluation's robustness. By incorporating
preprocessing steps that normalize data and amplify relevant
features, the model improves its ability to generalize across
varying operational conditions.

The network architecture is tuned for a parameter
optimization process that considers domain-specific
variations, including input signal lengths and batch sizes
optimized for cross-domain scenarios. This ensures that the
model performs consistently, even when tested on datasets
with naturally occurring faults, a key differentiator from
existing approaches.

While validated on the UORED-VAFCLS dataset, the
methodology uses a unique domain-splitting framework that
simulates real-world cross-domain conditions. This setup,
combined with the fusion of multiple data modalities,
provides a practical evaluation of the model's performance,
addressing the critique regarding reliance on public datasets.

3. METHODOLOGY

3.1. Statistical Methods

Bearing data preprocessing is an important task in ML
for fault classification (Gupta, Wadhvani, & Rasool, 2023; B.
Li, Song, & Zhao, 2024). This is especially true when data
available for training algorithms has not been collected under
ideal conditions. Additionally, preprocessing is expected to
reduce the computational time required for detecting bearing
faults. Despite the availability of various techniques, there is
still a research gap in determining which statistical methods
can most effectively improve the quality of ML models for
sensor data, thereby ensuring the reliability and accuracy of
classification models. Existing methods do not use simple

statistical measures such as standardization (Muhammad Ali
& Faraj, 2014) and root mean square (RMS) (Lian et al.,
2024) for normalizing datasets. This paper explores the use
of basic statistical techniques to preprocess bearing data so
that data fed into a ML algorithm is normalized.

The first preprocessing technique used in this paper is
min-max normalization, as shown in equation (4) (Cabello-
Solorzano, Ortigosa de Araujo, Pefia, Correia, & J. Tallon-
Ballesteros, 2023). This technique preserves the original
distribution of the data while ensuring all features lie within
a comparable range, which is particularly useful for models
that are sensitive to input scales. However, it is important to
note that min-max normalization is sensitive to outliers, as
extreme values can disproportionately affect the scaling.
Min-max normalization scales the data to a fixed range,
between -1 and 1, as seen in equation (4).

= X Xmin “
Xnorm(X) = T — X,
where x are the individual data points that are being
standardized, Xx,,;, and X;4, are the minimum and
maximum values within the data.

The second preprocessing technique used in this paper is
normalization using standardization (Z-score normalization),
as shown in equation (5) (Han et al., 2022). Standardization
improves centrality in the dataset, where the data is
preprocessed to have a mean of 0 and a standard deviation of
1 (Muhammad Ali & Faraj, 2014). This provides a baseline
for the data, without which it is difficult to judge whether
there is deviation in the data that could represent healthy or
faulty states. Standardization ensures that different bearing
conditions within a dataset can be compared more effectively.
Standardization analysis uses sensor data and looks for a
common value at its center, hence reducing the effect of
outliers and noise. This normalization technique is especially
important for ML models, as it ensures that features used for
training will lie on the same scale, boosting the model's
performance.

X —U 5
Xoea(X) = —— ®)
where p is the mean of the dataset, and o is the dataset’s
standard deviation.

The third preprocessing method used in this paper is
RMS, as shown in equation (6) (Samanta & Al-balushi,
2003). RMS is a measure that considers both the magnitude
and variability of data. It is useful for detecting changes and
variations in vibration signals, as well as bearing failure
signatures. RMS is calculated by the square root of the mean
of the points squared. A method like this enhances bigger
deviations, making it easier to pick out significant changes in
the signal that may indicate more substantial issues. The use
of RMS in preprocessing underlines the general magnitude of
a signal features that are important for fault classification.
RMS reduces the noise in a time-domain dataset, thereby
offering more robustness against overfitting by ML models.
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Ix? ©)

n

Xpus(X) =

where n is the total number of data points in the dataset.
There are various reasons why preprocessing raw
bearing data using statistical methods like standardization
and RMS is important. These methods make the effects of
noise and outliers less impactful. Such normalization is
critical in ensuring that ML models are improved in their
ability to learn from the data. Preprocessing also helps to
identify and eliminate inconsistencies embedded within
sensor readings, often greatly impacting the performance of
a fault classification model. Finally, use of simple statistical
methods for preprocessing makes the process more
approachable and easier to implement, with a robust base that
can support the use of more complex techniques. In general,
an effective preprocessing framework for bearing data is
crucial for ML-based fault classification for predictive
maintenance and consequently reduces downtime in industry.

3.2. ML Algorithms

CNNs are a branch of DL models designed for
processing image-based data [11]. CNNs consist of multiple
layers that include convolutional layers, pooling layers, and
fully connected layers. Data is filtered through convolutional
layers allowing the capture of patterns like textures and edges
of spatial features (LeCun, Bengio, & Hinton, 2015). Pooling
layers are used to reduce the dimensionality of the data,
making the network more efficient for smaller inputs. This
allows CNNs to be efficient at learning features from raw
data (LeCun et al., 2015).

RNNS, on the other hand, use sequential data like time
series. RNNs have hidden states that store information from
previous time steps that allow for learning temporal
dependencies in the data (LeCun et al., 2015). This makes
RNNSs important when the order of data points is critical. The
RNN captures temporal dependencies and tracks changes
over time, making it well-suited for modeling the evolution
of machine states across sequential data. Nonetheless,
training RNNSs is challenging due to vanishing or exploding
gradients that can affect learning over long sequence datasets.
Therefore, more advanced variants such as LSTM networks
have been developed to address these issues, allowing RNN's
to capture long-term dependencies over long sequences
(LeCun et al., 2015).

A combined CNN-LSTM architecture is proposed in
Table 1 for classifying five classes of machine conditions:
healthy, as well as ball, inner, outer, and cage faults for
bearing cross domain validation using time domain
accelerometer data. The algorithm is inspired by a previous
condition monitoring algorithm for bearing detection
proposed by Sehri et. al. (Sehri, Ertargin, Orhan, Yildirim, &
Dumond, 2024). This algorithm consists of a series of
Conv2D layers with max-pooling layers that help extract
hierarchical features from the input signal. The convolutional

layers all have distinct filter sizes and depths and use ReLu
activation functions. These features are then passed through
an LSTM layer to capture temporal dependencies in the
sequential data before being flattened and fed into two linear
layers to produce a probability distribution over the five
bearing classes. The output is then flattened and fed into two
fully connected layers, using ReLu activation to produce a
probability distribution over the five bearing states. This
model tries to pick out patterns from input data using
convolutional operations and gets trained on categorical
cross-entropy as the loss function validates different bearings
of the same size with different machine states across
domains.
Table 1. CNN-LSTM ARCHITECTURE

Layers Structures
1 Conv2d(18, 32, (1, 7)), BN, ReLU
Conv2d(32, 64, (1, 5)), BN, ReLU, MaxPool(1, 2)
Conv2d(64, 128, (1, 3)), BN, ReLU
Conv2d(128, 256, (1, 3)), BN, ReLU, AdaptiveMaxPool(1)
LSTM(256, 256, 3)
Linear(256, 256)
Linear(256, N.)

BS] 1N [V Ny (983 1)

The selection of convolutional kernel sizes, number of
layers, and feature depths in the CNN-LSTM architecture
was determined through iterative empirical testing via an
ablation study, balancing accuracy and computational
efficiency for cross-domain bearing fault diagnosis. Larger
kernel sizes were avoided to reduce the risk of overfitting on
smaller receptive fields, while varying kernel dimensions
across layers was found to enhance feature diversity for fault
patterns. The depth of the architecture, including the single
LSTM layer for accelerometer and acoustic data, was chosen
to capture sufficient temporal dependencies without incurring
excessive training time or memory requirements. This
configuration offered the best trade-off between performance
and resource usage in preliminary experiments, making it
well-suited for the industrial fault detection scenarios
considered in this study.

The same architecture is utilized for time domain
acoustic data to classify healthy, ball, inner, outer, and cage
faults in bearing cross domains based on a combination of
CNN-LSTM layers. The architecture uses Conv2D layers
with varying filter sizes and depths, followed by max-pooling
layers to extract features of the data. Then, 3 LSTM layers of
256 kernels are included, which lead to a flattened layer. This
is followed by two dense layers both with 256 kernels, giving
the probability distribution over five classes. This model
merges the advantages of both CNNs and RNNs in
effectively capturing features from the accelerometer and
acoustic data individually.

Vibration and acoustic data are then fused together in
parallel. Because of the robustness of the CNN and LSTM
layers in this multimodal deep model, as shown in Figure 1,
healthy, ball, inner, outer, and cage classes are extracted
using cross domain learning. Here, CNN-LSTM layers are
developed for acoustic data so that computation time is
reduced while maintaining high performance. This neural
network architecture allows one to train both acoustic and
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accelerometer data inputs at the same time with the
aggregated algorithms from each individual model. By
merging input signals in parallel, data should strengthen
categorization results using the distinct features captured by
each model for higher testing accuracy.

The framework proposed by Zhao et al. is used to create
a ML model that improves time domain data to compare cross
domain accuracies of bearing conditions (Z. Zhao et al.,
2021). Dataset splitting in this paper uses training, validation,
and test sets that do not overlap to avoid data leakage.
Specifically, training and validation sets are drawn entirely
from individual domains (source and target), while the test
set comes from an entirely separate domain that is not used
during training or validation, ensuring a robust evaluation.

CNN-LSTM Model for

Accelerometer Data

1 =1
Classes
Healthy
Inner-Race
Outer-Race
Ball

|

Vibration Signal |
Preprocessing Method 0SS | |

I I Cage

CNN-LSTM Model for =
Acoustic Data | =N
Acoustic Signal I
Preprocessing Method L

Concatenated

Flatten

Figure 1. Proposed CNN-LSTM Model.

3.3. Datasets

For this study, the CWRU (“Download a Data File | Case
School of Engineering | Case Western Reserve University,”
2021) and UORED-VAFCLS datasets are used (Sehri &
Dumond, 2023; Sehri, Dumond, & Bouchard, 2023b). The
UORED-VAFCLS dataset is particularly valuable due to its
naturally occurring faults that develop over time, making it
ideal for simulating real-world deterioration conditions and
enhancing the robustness of the models. Statistical
preprocessing methods, such as min-max normalization,
standardization, and RMS, are applied to the sensor data to
improve the detection of bearing health states. For these
techniques to be effective, datasets must include diverse load
conditions, speeds, or fault types. Domain splitting within the
dataset further enhances the accuracy and reliability of fault
classification by focusing on naturally developed fault
conditions. The use of the UORED-VAFCLS dataset
provides practical insights for industrial predictive
maintenance. However, the dataset is limited by the fact that
the sensor data is clean compared to noisy industrial
environments. This study represents an initial step toward
integrating ML research into industrial applications for
bearing condition monitoring, with the goal of improving
fault detection and predictive maintenance practices.

Table 2 and 3 show domain splitting of the CWRU and
UORED-VAFCLS datasets, respectively. For the CWRU
dataset, each domain consists of an inner race, outer race, and
ball fault files. The UORED-VAFCLS dataset contains
similar files, with the addition of healthy and cage fault files.
Data sample naming conventions consist of a letter

representing the type of fault, a number representing different
6203 (UORED-VAFCLS) and 6205 (CWRU drive end) ball
bearings being tested and a second number representing the
bearing state (i.e., for UORED-VAFCLS: 0- healthy, 1- fault
developing, and 2- faulty and for CWRU: 0, 1, 2, 3 represent
different speeds at 1797, 1722, 1750, and 1730 RPM
respectively). An example domain consists of files such as H-
1-0, I-1-1, O-6-1, B-11-1, C-16-1 in a single domain called
domain 1 (Domain Name). The proposed cross domain
testing framework is conducted by combining 4 domains
together and testing on another domain to see if the trained
data transfers across domains for different bearings of the
same size. CWRU dataset splitting is provided in Figure 2,
and the dataset is organized based on load conditions
represented by motor horsepower (HP): 1 HP, 2 HP, and 3
HP. Each load condition corresponds to different operating
domains (Domains 1-12) and includes vibration data
captured from bearings (Drive End) with varying levels of
fault sizes: 0.007", 0.014", and 0.021". The figure highlights
two approaches for dataset splitting: the load splitting
approach, which mixes data across motor speeds, leads to
data leakage while training and testing on the same bearing,
and the proposed splitting approach, where the test domain
mixes data across fault severity conditions and unique
bearing entities, which makes this splitting strategy more
akin to industrial situations where unseen bearing fault sizes
and unique bearing entities are introduced (Hendriks et al.,
2022). Since the data is split by fault sizes rather than loads,
accuracies for this difficult task are expected to be very low
according to Hendrik’s et al. (Hendriks et al., 2022).

In this work, each dataset is analyzed in a cross-domain
manner within itself, meaning that some domains are
allocated exclusively for training, others for validation, and
the remaining for testing. This ensures that the model is
evaluated on entirely unseen domains, simulating industrial
generalization scenarios where fault conditions differ from
those in the training set. This approach should not be
confused with transfer learning, where training occurs on one
dataset (e.g., CWRU) and testing is performed on a different
dataset (e.g., UORED-VAFCLS) (Sehri, Varejdo, et al.,
2025). The use of the term “cross-domain” strictly refers to
evaluating model generalization across distinct operating
domains within the same dataset, not across fundamentally
different datasets.

UORED-VAFCLS dataset splitting is provided in Figure
3 and Figure 4. This dataset consists of 20 different 6203
healthy bearings that are submitted to accelerated life testing
so that faults are developed naturally, providing 5 separate
bearings of each fault condition. Figure 3 presents vibration
data from 6203 ball bearings across healthy, developing, and
fully developed fault conditions, categorized into five bearing
states: healthy, inner race fault, outer race fault, ball fault, and
cage fault. The dataset is split into distinct domains, with no
overlap between training, validation, and testing sets,
simulating real-world industrial scenarios where models
encounter entirely new conditions during testing. This
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domain-based splitting ensures robust evaluation of
generalization capabilities, reflecting industrial requirements
for diagnosing faults under varying operating conditions.
Features were extracted from the time domain, and statistical

analyses were conducted to extract information for model
training and evaluation. The splitting approach used herein
allows for comparing ML models while emphasizing their
applicability in scenarios where fault conditions differ
significantly from the training data, thereby highlighting the

industrial relevance of the proposed method.
Table 2. DOMAIN SPLITTING FOR THE CWRU DATASET 48
DRIVE END (“Download a Data File | Case School of
Engineering | Case Western Reserve University,” 2021)

Domain Name

Inner Race

Outer-Race

Ball

1-5-0 [IR007 0]

0-8-0 [OR007@6 0]

B-11-0 [B007 0]

1-5-1 [IR007 1]

O-8-1 [OR007@6 1]

B-11-1 [B007 1]

1-5-2 [IR007 2]

0-8-2 [OR007@6 2]

B-11-2 [B007 2]

1-5-3 [IR007 3]

0-8-3 [OR014@6 3]

B-11-3 [B007 3]
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Figure 2. Proposed CWRU Dataset Splitting (Hendriks et

al., 2022).
Table 3. DOMAIN SPLITTING FOR THE UORED-VAFCLS
DATASET
Domain Name Healthy Inner-Race Outer-Race Ball Cage
1 H-1-0 I-1-1 0-6-1 B-11-1 C-16-1
2 H-2-0 1-1-2 0-6-2 B-11-2 C-16-2
3 H-3-0 1-2-1 0-7-1 B-12-1 C-17-1
4 H-4-0 1-2-2 0-7-2 B-12-2 C-17-2
5 H-5-0 1-3-1 0-8-1 B-13-1 C-18-1
6 H-6-0 1-3-2 0-8-2 B-13-2 C-18-2
7 H-7-0 1-4-1 0-9-1 B-14-1 C-19-1
8 H-8-0 1-4-2 0-9-2 B-14-2 C-19-2
9 H-9-0 1-5-1 0-10-1 B-15-1 C-20-1
10 H-10-0 1-5-2 0-10-2 B-15-2 C-20-2
InnerRace  Outer Race Ball Cage
Healhy  Developing  Developing  Developing  Developing
Fault Fault Fault Fault
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Figure 3. Proposed UORED-VAFCLS Dataset Splitting for
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Figure 4. Proposed UORED-VAFCLS Dataset Splitting for
Healthy and Faulty Bearings

4. EXPERIMENTAL VERIFICATION

The results consist of testing different domains using
cross domain learning, with both the CWRU and UORED-
VAFCLS datasets. Each test is run 10 times and the average
accuracy of the best epoch for each test is taken. A total of
100 epochs are evaluated, and the learning rate is set to 0.001
for each case. Additionally, the experiments were conducted
using Python 3.10.9 and PyTorch 1.12.0 installed via conda.
All ML architectures were trained on an NVIDIA GeForce
RTX 3070 GPU with CUDA version 11.3 and CUDNN 8&.1.
The machine used for experiments ran on Windows 11 with
an Intel Core i19-12900H CPU, 1TB SSD, and 32 GB of
RAM. Key Python libraries used include numpy 1.23.4,
matplotlib 3.6.3, pandas 1.5.0, scikit-learn 1.1.2, torch
2.3.1+cull8, tqdm 4.64.1, torchvision 0.18.1+culls8,
torchaudio 2.3.1+cul 18, datasets 2.19.1.

In this setup, the PC served as the primary workstation
for orchestrating and cycling through different model
designs, with each design being trained on the NVIDIA GPU.

4.1. Accelerometer Data Results

Table 4 demonstrates the performance of different ML
architectures and hyperparameters when used with the
CWRU dataset’s accelerometer data. Domains 1 to 8 are used
for training and validation while domain 9 is used for testing.
The proposed 1D CNN-LSTM model exhibits fair stability
with test accuracies exceeding 60% in majority of the cases
and a low standard deviation, particularly when using RMS
preprocessing. Optimal performance was achieved with a
batch size of 128 and an input signal length of 1024, reaching
a test accuracy of 64.04 £ 2.45. These findings suggest that
the model configuration with RMS preprocessing, a batch
size of 128, and an input signal length of 1024 should be
utilized for further accelerometer data testing, as it offers the
best combination of accuracy and stability. These results
demonstrate an improvement over traditional methods when
used with the more difficult data splitting framework
proposed by Hendriks et al. (Hendriks et al., 2022), justifying
the use of the combined CNN-LSTM architecture. This
highlights the potential benefits of integrating CNNs with
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RNNs with statistical preprocessing for improved fault
detection performance with the CWRU dataset. Other
benefits include reduced computational times while
maintaining high fault detection accuracies for potential
future implementation in industry.

Table 4. ACCELEROMETER RESULTS FOR DIFFERENT ML
MODELS AND HYPERPARAMETERS FOR THE CWRU
DATASET(“Download a Data File | Case School of

Engineering | Case Western Reserve University,” 2021)

Train Validation Test

%3:21 Preprocessing Accuracy Accuracy Accuracy B;;Zh ;:lgl::l
’ (%) (%) (%)
99.65 98.54 53.11£2.52 64 512
Min-Max 99.08 99.62 52.88+3.44 64 1024
Scaling 99.24 98.57 55.41+3.96 64 2048
99.82 99.03 52.91+3.07 128 512
99.77 99.13 53.57+2.34 128 1024
99.33 99.37 56.78+2.91 128 2048
99.23 99.42 54.34+3.52 64 512
Standardization 99.14 99.01 54.88+2.30 64 1024
1D 99.65 99.82 59.04+3.96 64 2048
CNN 99.33 99.31 55.70+3.93 128 512
99.53 99.55 54.66+3.40 128 1024
99.86 99.94 57.40+3.45 128 2048
99.55 99.81 53.85+1.67 64 512
RMS 99.31 99.01 54.31+3.34 64 1024
99.92 99.98 61.43+3.88 64 2048
99.56 97.09 55.86+2.91 128 512
99.97 99.59 58.04+2.36 128 1024
99.65 99.48 57.84+3.92 128 2048
99.05 99.83 54.23+1.96 64 512
99.82 99.01 55.27+2.34 64 1024
Min-Max 99.37 99.61 56.94+3.78 64 2048
Scaling 99.61 99.33 54.33+2.67 128 512
99.32 99.64 57.1942.89 128 1024
99.89 99.06 55.72+2.11 128 2048
99.88 99.94 56.10+1.70 64 512
D 99.54 99.77 57.34+1.73 64 1024
. 99.75 99.88 58.12+4.58 64 2048
N, Standardization: 575 99.46 56055159 128 5D
99.66 99.72 58.06+3.07 128 1024
99.89 99.35 58.73+3.81 128 2048
99.33 99.35 55.77+1.33 64 512
99.51 99.47 62.63+2.33 64 1024
RMS 99.62 99.77 63.66+4.24 64 2048
99.53 99.09 61.00+2.78 128 512
99.58 99.32 64.04+2.45 128 1024
99.66 99.47 63.25+3.67 128 2048

Table 5 shows the results when using the UORED-
VAFCLS dataset for validation domains 2, 4, 6, and 8 being
tested on domain 10 using cross domain analysis of the
bearing accelerometer dataset to identify the best
hyperparameters. Odd numbered domains include
developing fault data, whereas even numbered domains
include fully developed fault data. The reason even-
numbered domains alone are selected for testing
hyperparameters is that developing fault and faulty bearing
data is found to be too similar, which biases the results. This
approach serves as a first step in addressing the detection
challenge. Once high accuracy is achieved with these even-
numbered domains, the next step will be to combine all
domains for more comprehensive testing and improved fault
detection performance. Table 5 demonstrates that the
proposed 1D CNN-LSTM model has a test accuracy above
90% and a standard deviation of less than 1 when using RMS
preprocessing, indicating that the proposed model is stable.
Additionally, the best accuracy is obtained using a batch size
of 128 and an input signal length of 1024. Therefore, the
remainder of accelerometer data testing will be done using

this model (i.e., RMS preprocessing, batch size of 128, and
input signal of 1024).
Table 5. ACCELEROMETER RESULTS FOR DIFFERENT ML
MODELS AND HYPERPARAMETERS FOR THE UORED-

VAFCLS DATASETS
Model . Train Validation Test Batch Input
Type Preprocessing Accuracy Accuracy Accuracy Size Signal
(%) (%) (%)
99.20 99.67 76.69+2.67 64 512
Min-Max 99.58 99.37 75.97+1.91 64 1024
Scaling 99.32 99.61 76.83+1.82 64 2048
99.68 99.31 78.41+3.56 128 512
99.02 99.39 77.35+3.08 128 1024
99.91 98.37 74.70+1.55 128 2048
99.76 99.94 79.39+1.91 64 512
Standardization 99.54 99.88 79.50+1.80 64 1024
1D 99.98 99.82 79.27+2.16 64 2048
CNN 99.92 99.82 80.95+1.96 128 512
99.98 99.13 80.56+2.71 128 1024
99.74 99.94 79.27+2.01 128 2048
99.42 99.94 78.42+3.18 64 512
RMS 99.83 99.76 78.70+2.86 64 1024
99.95 99.94 79.55+3.96 64 2048
99.98 99.94 79.69+3.47 128 512
99.65 99.94 78.93+3.02 128 1024
99.91 99.82 79.79+3.58 128 2048
99.86 99.07 85.18+2.32 64 512
98.34 99.61 87.55+1.09 64 1024
Min-Max 99.30 99.05 83.15+1.67 64 2048
Scaling 99.73 99.88 85.97+2.15 128 512
99.11 98.84 87.17+1.63 128 1024
99.17 99.35 84.31+2.97 128 2048
99.89 99.76 87.49+1.23 64 512
D 99.76 99.82 88.61+1.29 64 1024
- 99.22 99.88 86.44+0.94 64 2048
EQITT\A Standardization 5, 3¢ 99.21 89.46:1.64 128 512
99.81 99.82 90.50+0.88 128 1024
99.08 99.88 89.76+1.04 128 2048
99.82 99.97 92.93+0.94 64 512
99.12 99.94 92.83+0.89 64 1024
RMS 99.92 99.94 92.74+0.97 64 2048
99.98 99.94 92.19+0.86 128 512
99.86 99.15 93.20+0.73 128 1024
99.47 99.94 92.03+0.87 128 2048

The results in Table 6 highlight the challenges of cross-
domain fault diagnosis, particularly when handling data with
different fault severities. The table compares existing results
of traditional cross domain methods, such as the atrous
convolutional deep inception network (ACDIN), the wide
first-layer kernel deep convolutional neural networks
(WDCNN), AlexNet, k-nearest neighbour (KNN), and
support vector machine (SVM), all of which employ different
preprocessing techniques like the fast Fourier transform
(FFT) and spectrograms. Additionally, advanced cross
domain methods, such as multi-kernel maximum mean
discrepancy (MK-MMD) (J. Li et al., 2024), the domain
adversarial network (DANN) (Zhuorui Li, Ma, Wu, Li, &
Wang, 2024), and transformer networks
(Mirzaeibonehkhater, Labbaf-Khaniki, & Manthouri, 2024)
are tested for comparison. Despite the variety of approaches,
these models consistently achieve test accuracies below 60%
for the more difficult task of domain splitting across fault
severities, as shown in the literature (Hendriks et al., 2022;
Rauber et al., 2021). This more difficult data splitting task,
based on different fault sizes across domains, is closer to what
would be observed in industry. In contrast, the CNN-LSTM
model achieves an average test accuracy of 61.38 + 2.42,
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Table 6. ACCELEROMETER RESULTS FOR EXISTING AND SELECTED HYPERPARAMETERS ON DIFFERENT FAULT SEVERITY

DoMAINS OF THE CWRU
Cr;/sls; t]l)lool:sam Model Type Preprocessing Domain Train Validation Domain Tested Test ?,5:)“ racy Bsai;ceh ;:lgl::‘tl Comp(u tatwl:a)l Time
ACDIN* Raw 37.13 +12.70 N/A 5118 N/A
ACDIN* FFT 40.57+11.01 N/A 10,236 N/A
WDCNN* Raw D.EF D.EF 36.20 + 9.49 N/A 2048 N/A
WDCNN* FFT * T 50.02 + 6.39 N/A 4096 N/A
AlexNet* Spectrogram 47.37+11.03 N/A 11,500 N/A
Traditional ResNet* Spectrogram 53.10+ 6.57 N/A 11,500 N/A
KNN** Raw 50.72 +1.28 N/A N/A N/A
SVM** Raw 49.76 + 2.54 N/A N/A N/A
RF** Raw 52.56 % 1.13 N/A N/A N/A
1D CNN** Raw Average of 0.007, 0.014, 0.007, 0.014, 53.26 + 1.90 N/A N/A N/A
CNN-LSTM RMS 0.021 0.021 61.38 +2.42 128 1024 55
MK-MMD RAW 57.34 +2.89 128 1024 80
Advanced DANN RAW 56.65 +3.73 128 1024 75
Transformer RAW 57.02 4+ 3.31 128 1024 90

demonstrating its relative improvement over both traditional
and recent advanced methods.

Unlike existing approaches, the proposed model
integrates preprocessing using RMS, which contributes to
stabilizing performance across domains. This preprocessing
step enhances the model's ability to generalize features,
reducing the impact of domain-specific noise and
inconsistencies. For example, while network models in prior
studies achieve average accuracies below 55% on the same
dataset across fault severities, the proposed model exceeds
this, achieving accuracies above 60% in most domains. This
improvement underscores the benefits of integrating spatial
and temporal feature extraction with preprocessing.

* (Hendriks et al., 2022), **(Rauber et al., 2021)

Figure 5 visually represents the comparative
performance of these models, as summarized in Table 6. The
bar chart demonstrates that traditional approaches such as
ACDIN, WDCNN, and AlexNet using spectrograms as an
input alone exhibit a wide range of average test accuracies,
with standard deviation bars indicating the variability in their
performance while advanced methods perform slightly better
than most traditional methods in terms of test accuracy.
Additionally, when computational times in Table 6 for the
CNN-LSTM method are compared to the advanced methods,
the CNN-LSTM combined with statistical preprocessing
outperforms all three. The figure highlights that while certain

Transformer (RAW) l—*—|
DANN (RAW) —t
MK-MMD (RAW) ——
CNN-LSTM (RMS) [
1D CNN (Raw) —t—
RF (Raw) —_—
:;’ SVM (Raw) ——
E KNN (Raw) e
ResNet (Spectrogram) k } {
AlexNet (Spectrogram) F I {
WDCNN (FFT) + - i
WDCNN (Raw) . |
ACDIN (FFT) F | |
ACDIN (Raw) k { !
0 10 20 30 40 50 60

Average Test Accuracy (%)

Cross Domain Methods
Traditional Advanced

Figure 5. Average Test Accuracy When Splitting Data by Fault Severities with the CWRU Dataset



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

methods like ResNet with spectrogram inputs reach a test
accuracy of 53.10 + 6.57, none surpass the 55% accuracy
consistently across domains. On the other hand, the proposed
CNN-LSTM model, in the figure, clearly stands out with a
significantly higher accuracy of 61.38 + 2.42, validating the
effectiveness of its RMS preprocessing approach and the
integration of convolutional and sequential layers for spatial
and temporal feature extraction. The figure shows the
improvement in test accuracy by the proposed model and
aligns with the numerical findings, visually reinforcing the
advantages of the CNN-LSTM methodology.

The domain-splitting methodology and multimodal data
fusion further contribute to experimental data innovation by
addressing challenges that other methods in Table 6 fail to
overcome. The strict separation of training and testing
domains ensures that the evaluation simulates realistic cross-
domain conditions, validating the model's effectiveness. This
approach sets a foundation for future research to refine
feature extraction techniques and address residual challenges,
as seen in domains with lower performance. The results
indicate that the proposed method effectively leverages
preprocessing steps alongside algorithmic integration to
handle fault severities, which has not been explored
extensively in prior studies.

The results in Table 6 and the average accuracies
provided in the existing literature further emphasize the
strengths and limitations of the proposed approach. The
CNN-LSTM model achieves improvements, with average
test accuracies exceeding 60%, showing that traditional
methods when combined with statistical preprocessing can
surpass advanced cross domain methods. This disparity
underlines how traditional cross domain methods can
enhance generalization and consistency across different
testing conditions and result in lower computational time.

4.2. Acoustic Data Results

Table 7 shows the results for the UORED-VAFCLS
acoustic bearing dataset. Domains 2, 4, 6, and 8 are used for
training and validation while domain 10 is used for testing.
The results are similar to the accelerometer data, so for the
remainder of the testing on acoustic data, a 1D CNN-LSTM
model with RMS preprocessing, a batch size of 128, and an
input signal length of 1024 are used.

Table 7. ACOUSTIC RESULTS FOR DIFFERENT ML MODELS
AND HYPERPARAMETERS FOR THE UORED-VAFCLS

DATASETS
Model . Train Validation Test Batch Input
Type Preprocessing Acc;nracy Accuracy Accuracy Size Signal
(%) (%) (%)
99.17 99.33 77.62+1.84 64 512
Min-Max 98.29 99.08 76.94+3.21 64 1024
Scaling 99.57 99.63 78.31+2.34 64 2048
99.93 99.37 79.13+2.74 128 512
99.74 99.76 77.67+1.87 128 1024
99.07 99.91 76.09+1.99 128 2048
99.66 99.08 80.80+2.93 64 512
Standardization 99.79 99.83 79.83+2.73 64 1024
1D 99.90 99.42 79.49+1.91 64 2048
CNN 99.12 99.02 80.50+1.70 128 512
99.67 98.90 79.10+0.96 128 1024
99.21 99.88 79.27+2.18 128 2048
99.20 99.53 79.70+2.50 64 512
RMS 98.32 99.11 78.43+1.00 64 1024
99.31 98.65 80.88+3.22 64 2048
99.01 99.37 80.01+1.62 128 512
99.84 99.71 78.49+2.02 128 1024
99.82 99.23 79.98+3.92 128 2048
99.71 99.18 86.35+2.06 64 512
99.36 99.74 87.64+1.87 64 1024
Min-Max 99.87 99.46 88.37+1.97 64 2048
Scaling 99.37 99.10 85.19+2.33 128 512
99.03 99.74 87.67+2.09 128 1024
99.97 99.06 85.94+1.98 128 2048
99.10 99.32 89.29+1.79 64 512
D 99.73 99.19 90.24+1.57 64 1024
- 99.23 99.51 90.36+1.49 64 2048
LCET]\;/[ Standardization 55 &7 99.14 88.38+199 128 512
99.56 99.70 90.35+2.41 128 1024
99.66 99.92 87.95+1.65 128 2048
99.96 99.31 94.11+1.72 64 512
99.57 99.81 94.52+1.20 64 1024
RMS 99.20 99.11 94.53+0.78 64 2048
99.84 99.45 94.29+0.70 128 512
99.46 99.73 94.58+0.65 128 1024
99.70 99.88 94.39+0.79 128 2048

4.3. Ablation Study for the UORED-VAFCLS Dataset

Ablation experiments are performed to verify the
effectiveness of the proposed method. Table 8 summarizes
the experiments conducted, where model components and
configurations are analyzed for the UORED-VAFCLS
dataset. By removing specific network layers, preprocessing
steps, and selecting a sensor, certain features are excluded.
Figure 6 provides domain test accuracy results for seven
methods (A1-A8) across 10 test domains. It can be observed
that the proposed method (M9) achieves the highest average
accuracy of 79.13 + 0.92%, outperforming other methods.
For instance, A2 and A6 show the lowest accuracies (63.13 +
2.00 and 61.76 + 1.67, respectively), indicating that removing
key components negatively affects the model's performance.

Figure 6 presents a box plot summarizing the accuracy

Table 8. ABLATION EXPERIMENTS FOR MODEL COMPONENTS AND CONFIGURATION OF THE UORED-VAFCLS DATASET

Method CNN Layers LSTM Layers RMS Preprocessing Accelerometer Data Acoustic Data Note

Al v v v w single data

A2 v v v w single data

A3 v v v w single data

A4 v v M w single data

A5 v v v w/0 preprocess
A6 v v v w/0 preprocess
A7 v v v v w single data

A8 v v v v w single data

M9 v v v v v Proposed

10
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distributions of each method with standard deviations. The
proposed method (M9) stands out, achieving both high
median accuracy and a narrower variance compared to other
methods. This highlights the robustness and effectiveness of
the proposed configuration. It should be noted that M9
corresponds to the fusion model, as shown in Table 8, where
both the accelerometer and acoustic data columns are
checked to indicate the inclusion of fusion. Conversely,
methods such as A2, A3, and A6 exhibit broader variance and
lower median values, emphasizing their lack of consistency
and reduced generalization. The results clearly demonstrate
that excluding certain components significantly degrades
performance, while the inclusion of all features in the
proposed method enhances generalization and accuracy.

100 M9 (Proposed Method)
Other Methods
90

Accuracy (%)
(=]
o

All A2 A‘3 Ah A‘S A‘S AT A‘E M“B
Methods

Figure 6. Box Plot of Ablation Study Results with Standard

Deviations by Method with the UORED-VAFCLS Dataset

5. CONCLUSION

This study demonstrates that, if applied correctly,
traditional cross domain strategies such as CNN-LSTM
networks combined with simple statistical preprocessing
techniques can outperform advanced cross domain
algorithms for fault severity-based bearing fault diagnosis on
the CWRU dataset. Additionally, by combining preprocessed
time-domain data from both acoustic and accelerometer
signals, the proposed methodology demonstrates
improvements in fault detection accuracy and model stability
on the UORED-VAFCLS dataset when compared to 1D-
CNNs alone, especially for more difficult cross-domain
analysis tasks. The fusion of multi-source data further
enhances the reliability and robustness of the fault diagnosis
process. Further refinement of this methodology could
provide improvements for these tasks.

The proposed method has been compared with the
available literature for the CWRU dataset. Nonetheless,
future work will focus on optimizing the model to achieve
even higher accuracy and stability while minimizing the
amount of data required for effective condition monitoring.
Future work will extend the comparative analysis to include
advanced architectures such as Transformers with temporal
embedding and temporal convolutional networks, as well as
more sophisticated fusion techniques to better exploit
interdependencies between acoustic and vibration data.

Interpretability frameworks like SHAP and LIME will also
be integrated to enhance model transparency and industrial
applicability. As such, the development of these methods has
the potential to reduce machinery downtime and improve
operational efficiency in industrial settings.

NOMENCLATURE

ACDIN atrous convolutional deep inception network

Al artificial intelligence

CNN  convolutional neural network

CWRU case western reserve university

DANN domain adversarial network

DL deep learning

KNN  k-nearest neighbor

LSTM  long short term memory

ML machine learning

MK-MMD multi-kernel maximum mean discrepancy

PHM  prognostic health management

RNN  recurrent neural network

SVM  support vector machine

UORED-VAFCLS wuniversity of ottawa rolling-element
dataset- vibration and acoustic faults under constant load
and speed conditions

WDCNN wide first-layer kernel deep convolutional neural
networks
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