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ABSTRACT

This study presents a comprehensive methodology for
developing a Fault Detection and Diagnosis (FDD) system
for an industrial distillation column using advanced machine
learning algorithms. Steady state and dynamic simulations in
Aspen Plus® generate extensive datasets under normal and
faulty conditions. Feature engineering, using the Minimum
Redundancy Maximum Relevance (MRMR) algorithm,
selects the most relevant features for fault detection. Various
machine learning models, including Decision Trees, Support
Vector Machines, k-nearest Neighbours, and Neural
Networks, were trained and evaluated based on performance
metrics such as accuracy, recall, precision, and F1 score.

The top models were integrated into a stacked classifier
system with a voting mechanism to enhance fault detection
reliability. Explainable Artificial Intelligence (XAI)
techniques, such as Local Interpretable Model-agnostic
Explanations (LIME) and Shapley Additive Explanations
(SHAP), were incorporated to improve model
interpretability, allowing engineers to understand and
validate the FDD system's decision-making process.

Simulation results confirm that the proposed methodology
accurately identifies and classifies faults. By integrating
dynamic simulations, advanced machine learning, and XAl
techniques, a robust and scalable solution is achieved for fault
detection in distillation columns, improving operational
reliability, safety, and reducing downtime.
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Future work could extend this approach to other industrial
processes and explore additional machine learning
algorithms to further enhance performance.

1. INTRODUCTION

The growing global competition has driven chemical process
industries to minimize downtime, improve equipment
availability, and enhance operational profitability. Fault
Detection and Diagnosis (FDD) systems are essential in
managing the complexity and dynamic nature of these
processes, where manual fault detection is increasingly
difficult due to numerous interacting variables.

Effective FDD systems offer real-time monitoring, early fault
detection, and accurate diagnosis, leading to enhanced
process safety, operational reliability, reduced environmental
impact, and improved product quality (Isermann, 2006).
Faults are inevitable in complex process systems. Various
faults in process plants can arise from changes in process
parameters, actuator issues, sensor malfunctions, or external
disturbances (Chiang et al., 2000; Kesavan & Lee, 1997).
Fault detection involves identifying the process variables
most relevant to a fault, whereas fault diagnosis determines
the root cause and location of the fault. Ignored faults can
lead to system failures, and minor faults can escalate into
severe issues, disrupting overall processes (Chiang et al.,
2000; Chiang & Pell, 2004; Tidriri et al., 2016; Zhou et al.,
2014; Isermann & Balle, 1997).

The vast amount of operational data collected every second
in process industries offers an opportunity to develop
advanced fault detection systems. Although large volumes of
data are collected, their underutilization often leads to a gap
between data availability and actionable insights. Leveraging
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historical process data, it is possible to build data-driven fault
detection systems that transform raw data into actionable
insights. Given the nonlinearity and increasing complexity in
modern process industries, there is a growing demand for
data-driven approaches (Dash et al., 2003; Meng et al., 2019;
Copertaro et al., 2019; Venkatasubramanian, Rengaswamy,
& Kavuri, 2003; Venkatasubramanian, Rengaswamy, & Yin
2003; Ge et al., 2013; Chetouani, 2011). Although data-
driven methods require large amounts of historical data, this
is less of an issue today due to the widespread use of
distributed control systems (DCS) and soft computing
technologies, which facilitate data collection (Ge et al.,
2017). Moreover, database and data mining technologies
support the development of data-driven modelling methods
in industrial processes.

In literature, FDD have been applied to various chemical
processes, including the Tennessee Eastman process (TEP)
(Yu & Zhang, 2020; D. Liu et al., 2020), reactor systems (Zio
et al., 2009 ; Nawaz et al., 2020), distillation columns
(Chetouani, 2011; Chetouani, 2007; Manssouri et al., 2008;
S. A. Taqvi et al., 2018b; S. A. Taqvi et al., 2018a; Mujtaba
et al., 2020; Amiruddin et al., 2020; S. A. A. Taqvi, Zabiri,
Tufa, Uddin, et al., 2020; S. A. A. Taqvi, Zabiri, Tufa,
Fatima, et al., 2020), bearing faults (Rajakarunakaran et al.,
2008), crude and gas mixture pipelines (Amiruddin et al.,
2020; Mujtaba et al., 2020), industrial gas turbines (Nozari et
al., 2012), heating furnaces (Schubert et al., 2011), water-
cooled centrifugal chillers (Zhao et al., 2013), biochemical
wastewater treatment plants (X. Zhang & Hoo, 2011),
controlled two-tank systems (Weber et al., 2006), and fluid
catalytic cracking units (Vedam et al., 1999).

Distillation is a key and widely used separation technique in
process industries, known for its high-energy consumption.
Industrial distillation columns, essential in chemical
processes, are sensitive to faults like sensor failures, actuator
malfunctions, and process disturbances, which can affect
product purity and energy efficiency. Monitoring these
columns is difficult due to their nonlinearity, disturbances,
nonstationary behaviour, and multivariable coupling. The
high dimensionality, multiple operational modes, and slow
dynamics further complicate fault diagnosis. Therefore,
developing a robust FDD system is critical to ensure optimal
operation, prevent downtime, and avoid safety incidents
(Rengaswamy & Venkatasubramanian, 2001).

Traditional approaches for FDD systems in distillation
columns include Principal Component Analysis (PCA),
Partial Least Squares (PLS), and Independent Component
Analysis (ICA), widely used for fault detection in
multivariate data. PCA detects sensor faults by analysing
principal components in process data (W. Li et al., 2000).
PLS monitors processes by modelling input-output
relationships (MacGregor & Kourti, 1995) , while ICA
separates mixed signals into independent components for
fault detection (J. M. Lee et al., 2004). However, these

methods assume linearity, limiting their effectiveness with
complex, non-linear data. Consequently, data-driven
machine learning methods, treating fault diagnosis as a
classification task, are now preferred.

Machine learning (ML) algorithms for fault diagnosis have
been extensively explored, particularly supervised learning
techniques trained on historical data to detect faults. In
literature, techniques such as Artificial Neural Networks
(ANN), Support Vector Machines (SVM), Bayesian
Networks (BN), Random Forests (RF), Decision Trees (DT),
and k-nearest Neighbours (KNN) are commonly used.
Decision Trees (DT) are popular for process monitoring and
fault detection in industries (Quinlan, 1979; Quinlan, 2014),
with hybrid models like Artificial Neural Networks Decision
Trees (ANN-DT) and Support Vector Machines Decision
Trees (SVM-DT) improving fault -classification and
reliability. (Ma & Wang, 2009; He et al., 2013; Kuo & Lin,
2010; Demetgul, 2013; Aydin et al., 2014; Karabadji et al.,
2014).

KNN is a non-parametric method applied to various fault
detection scenarios (Altman, 1992; Andre et al.,, 2013;
Nguyen & Lee, 2010; Tudén-Martinez & Morales-
Menendez, 2015; Hasan & Kim, 2019; Y. Li & Zhang, 2014;
S. Zhang et al., 2017). Fisher Discriminant Analysis (FDA)
is used for data classification and dimensionality reduction
(Nor et al., 2020). FDA has been extensively applied in
process monitoring and fault classification (Jiang et al., 2006;
Z. Xu et al., 2006). Advanced methods combining FDA with
statistical analysis, genetic algorithms, and kernel techniques
have shown improved fault detection and classification
performance (Nor et al., 2020; Chiang & Pell, 2004; Zhu &
Song, 2010; X. Zhang et al., 2007; Ge et al., 2016).

Artificial Neural Networks (ANN) map complex input-
output relationships and have been widely used in chemical
engineering for fault detection and diagnosis (Amiruddin et
al., 2020). Various ANNSs, including Multilayer Perceptron (
MLP), Radial Basis Function (RBF), and dynamic fuzzy
neural networks, have been applied in process monitoring,
emission monitoring, fault location estimation, and tool
condition monitoring (Sharma et al., 2004; M. W. Lee et al.,
2005; Iliyas et al., 2013; Gonzaga et al., 2009; Jamil et al.,
2014; Lu & Xue, 2014; S. Xu & Liu, 2014; Pani & Mohanta,
2015). Comparative studies have highlighted ANN's
effectiveness in fault classification tasks (Hwang et al., 1993;
Nagpal & Brar, 2014; Venkatasubramanian & Chan, 1989;
Watanabe et al., 1989; Ungar et al., 1990; Hoskins et al.,
1991).

SVM is another popular tool for process monitoring and has
shown superior performance in fault diagnosis, often
enhanced by hybrid models (S. A. Taqvi et al., 2017).

The literature review highlights the versatility of machine
learning algorithms such as Decision Trees, KNN, FDA,
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ANNs, and SVMs in addressing complex fault diagnosis
challenges in chemical processes.

There are two key gaps in the literature regarding the
application of Machine Learning techniques in FDD for
chemical process industries. While ML techniques offer a
promising approach for FDD systems by effectively
modelling non-linear relationships, traditional ML models
are often perceived as black boxes, lacking transparency,
which is crucial in safety-sensitive environments like
chemical process industries (J. Zhang et al., 2019). Another
challenge is the limited availability of fault data in well-
maintained plants, which can be addressed through dynamic
simulations using tools like Aspen Dynamics to create
diverse fault scenarios (Maurya et al., 2007).

Dynamic simulation enables the creation of extensive fault
datasets, aiding in the training and validation of ML models
for FDD systems. In this paper, we simulate normal and fault
data for an industrial distillation column and apply various
ML algorithms to develop an FDD system. The best
algorithms are selected based on accuracy and robustness. To
improve model interpretability, we use Explainable Artificial
Intelligence (XAI) techniques like Local Interpretable
Model-agnostic Explanations (LIME) and Shapley Additive
Explanations (SHAP), which allow plant engineers to
understand and validate the decisions made by the FDD
system (Molnar, 2019).

LIME provides insights into how specific features impact
predictions by approximating black-box models locally
(Molnar, 2019). SHAP, based on cooperative game theory,
consistently measures feature importance by evaluating all
possible feature combinations (Lundberg et al., 2017). Both
LIME and SHAP help engineers interpret ML model
decisions for fault detection. By combining first-principle
methods with data-driven approaches, we aim to create robust
fault diagnosis systems that improve safety, efficiency, and
cost savings by reducing downtime and preventing failures.

The following sections cover the methodology, results, and
application of advanced techniques for distillation column
fault detection. Section 2 details the process of generating
simulation data, using the Minimum-Redundancy-
Maximum-Relevance (MRMR) algorithm for feature
selection, and applying Machine Learning models, with
Explainable AI techniques enhancing interpretability.
Section 3 presents the results from dynamic simulations and
fault classification, showing improved accuracy and
efficiency through feature selection and LIME/SHAP
analysis. Section 4 concludes by highlighting the integration
of machine learning, simulations, and Explainable Al for
effective fault detection and offers recommendations for
future research in real-time FDD systems.

Data generation
for normal and
faulty operation

Data for normal
run by simulation

Distillation
column
problem

statement

Data for faulty

Equipment -
operation by simulation

Dimensions
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Process 1
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Aspen dynamic Execution of Preprocess the
simulation different fault data for
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Figure 1. An overview of the methodology used to develop
the FDD system for a distillation column using machine
learning algorithms

2. METHODOLOGY ADOPTED TO BUILD THE FAULT
DETECTION AND DIAGNOSIS SYSTEM

2.1. Overview

Figure 1 provides an overview of the methodology used to
develop the FDD system for a distillation column using
machine learning algorithms. The process starts with steady-
state and dynamic simulations in Aspen Plus® to generate
datasets from various fault scenarios. Afterward, data pre-
processing and feature selection are performed using the
MRMR algorithm to identify key features. Several machine
learning models, including Decision Trees, Discriminant
Analysis, Logistic Regression, SVMs, k-NN, Ensemble
Methods, Naive Bayes, and Neural Networks, are trained and
evaluated. The top five models are combined into a stacked
classifier with a voting mechanism to enhance reliability and
robustness. Explainable Al techniques like LIME and SHAP
are also applied to improve model interpretability, helping
plant engineers quickly diagnose and address faults. Table 1
summarizes the step-by-step methodology adopted for FDD
system development.

2.2. Step 1: Aspen steady state simulation

The first step involves creating a steady-state simulation of
the distillation column using Aspen Plus®. This process uses
a mixture of propane and isobutene with a (60-40) mole %
composition as the feed. The Rigorous Distillation
Simulation Module (RADFRAC model) in Aspen Plus which
includes a column, condenser, and Reboiler, is employed.
The column has an overall height of 5.5 meters, an internal
diameter of 0.15 meters, and a tray spacing of 0.35 meters as
calculated from Aspen hydraulic calculations.

The reflux ratio and reboiler heat duty are varied to ensure
the top and bottom compositions contain 99 mole% propane



and 99 mole% isobutanes, respectively. The steady-state
simulation results are validated against plant operating
conditions, reporting top and bottom temperatures of 37.9 °C
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(absolute). The specifications and sizing data for the
industrial-scale distillation column (located in Saudi Arabia)
are detailed in Table 2.

and 78.9 °C, respectively, and a column pressure of 13 bar

Step

Description

1. Generate Dataset

Use Aspen Plus dynamic simulation to create datasets for normal and faulty operations.

2. Prepare Dataset

Organize data into predictors (X) and class labels (Y). "X" contains observed and derived variables, while
"Y" holds class labels (e.g., normal, fault type 1, fault type 2).

3. Feature Selection

Apply the MRMR algorithm to identify and select the top-ranked features.

4. Define Cross-Validation
Method

Use k-fold cross-validation: partition data into k sets, train on out-of-fold data, evaluate on in-fold data, and
average the error across all folds.

5. Choose Classification | Select algorithms like Decision Trees, Ensemble Methods, Neural Networks, etc., as listed in Table 4.

Algorithm

6. Train Classifier

Train the classifier using the simulation data with selected features.

7. Test Classifier

Test the classifier on the prepared dataset to assess its performance.

8. Evaluate Performance

Evaluate performance using metrics like accuracy, precision, recall, and F1 score (see Table 7).

9. Implement a Stack | Choose the top 5 classifiers and implement a voting logic system to classify faults based on the collective

Classifier System output, improving reliability.

10. Enhance Model | Use LIME and SHAP to explain the top classifier's decisions, helping engineers diagnose faults and improve

Interpretability with | system trust.
Explainable Al (XAI)

Table 1. Fault Diagnosis Algorithm Using Machine Learning Techniques

2.3. Step 2: Aspen dynamic simulation

After the steady-state simulation is run without errors, it is
exported to Aspen Plus® Dynamics for further control
studies and data generation. Various controllers for feed
flow, top and bottom compositions, pressure, and level are
installed in the distillation column. Six controllers are
installed in a dynamic simulation environment,
summarized in Table 3 and shown in Figure 2. The feed
flow controller ensures a consistent feed rate, the pressure
and level controllers maintain the appropriate pressure and
liquid levels within the column and the composition
controllers adjust the reflux and reboiler heat duty to
achieve the target purities for propane and isobutene.

The RADFRAC model in Aspen Plus® Dynamics
accounts for the pressure drop across each stage due to
liquid and vapour flow resistances and allows for stage
hydraulics modelling (refer Table 2). The column pressure
is slightly increased to 13.24 bar for the dynamic
simulation to accommodate additional inlet/outlet valves
and associated pressure drops across each tray. Different

control functions in the distillation column are presented in
Table 3.

2.4. Step 3: Execution of different fault scenarios

In this step, the dynamic simulation of the distillation
column is used to generate both normal and faulty datasets.
Regular operation is simulated for 20 hours, followed by
introducing faults after every 5 hours of stable operation.
Eight types of faults are introduced to represent various
operational issues. In industrial distillation columns, the
occurrence of these faults is not uncommon, as they stem
from both mechanical issues and operational inefficiencies.
Faults like tray efficiency loss (F1, F5, F6, F7) can result
from wear, corrosion, or fouling, leading to poor separation
and product quality.



Specifications Value

Feed specifications
Feed flow rate
Feed composition

100 kilo mole/hour
Propane (40 mole%), Isobutane (60

Feed temperature mole%)
Feed pressure 40 °C
18 bar
Column specifications
Column height 5.5 meter
Colum diameter 0.15 meter
Type of tray Sieve
No. of trays 31
Distillate flow rate 40 kilo mole/hour
Bottom flow rate 60 kilo mole/hour
Steady-state operating
condition
Top temperature 37.96
Bottom temperature 78.92
Reboiler duty 0.647 Million kilocalorie/hour
Condenser duty -0.556 Million kilocalorie/hour
Column pressure 13 bar

Distillate composition 99% propane, 1% isobutene (molecule)
99 % isobutene, 1% propane(molecule)

Bottom Composition

Table 2. Specifications and Sizing Data for the
Distillation Column Dynamics Simulation

Feed flow and composition variations (F2, F4) may arise
due to equipment malfunctions or inconsistent raw material
supply, while temperature fluctuations (F3) could be
caused by heat exchanger issues. Valve stiction (F8, F9), a
prevalent problem, often occurs due to aging control
valves, causing oscillatory behaviour that disrupts the
column’s stability. Addressing these faults is critical for
maintaining process efficiency, product quality, and safety
in industrial distillation operations. While this study
primarily considers step-type failures due to their well-
defined impact and ease of simulation, it is acknowledged
that real-world faults may also manifest as gradual or
incipient failures. Step faults allow for clear benchmarking
and classification in early development of FDD systems.
However, future work will incorporate gradual degradation
patterns to better represent real-life industrial conditions.
This is especially important in soft-fault scenarios like
sensor drift, valve wear, or slow fouling, where early
detection remains a challenge. Inclusion of such patterns
will further improve robustness and practical deployment
of FDD systems. These fault scenarios provide a
comprehensive dataset to evaluate the fault detection and
diagnosis methods. Details of the introduced faults are
summarized in Table 4.

2.5. Step 4: Data pre-processing for machine learning

The time series data generated from normal and faulty
operations in dynamic simulations is pre-processed to
make it suitable for machine learning applications. This
process involves data cleaning, normalization of input and

output variables to the range [0, 1], and splitting the data
into training, validation, and testing sets in a (60-20-20)
percentage ratio.

Additionally, pseudo-random binary sequences (PRBS)
excite the plant under normal conditions in dynamic
simulations, and zero mean normal distributed noise is
added to all measured variables to simulate sensor noise.
The variables shortlisted for fault diagnosis are listed in
Table 5.

2.6. Step 4: Data pre-processing for machine learning

Feature engineering is applied to extract the most relevant
variables using the Minimum Redundancy Maximum
Relevance (MRMR) algorithm. MRMR optimizes feature
selection by balancing relevance to the target variable and
minimizing redundancy between features, based on mutual
information. This ensures that each feature contributes
unique and valuable information, enhancing model
performance.

The algorithm employs a forward selection method to
incrementally add features, significantly reducing
computational complexity. Features are ranked based on
their Mutual Information Quotient (MIQ), with high scores
indicating strong predictors. This process improves
classification accuracy by focusing only on the most
critical features, reducing model overfitting, and
simplifying data analysis.

MRMR is particularly effective for handling high-
dimensional datasets, making it an essential tool for
improving the accuracy and robustness of machine
learning models in fault diagnosis. Its scalability ensures
efficient processing of large datasets, enabling precise and
reliable fault detection in complex systems.

2.7. Step 6: Build ML model by different algorithms

Several machine learning algorithms were explored to
develop an optimal fault diagnosis system, each with
unique strengths suited for different aspects of fault
classification.

Extensive literature survey is done to shortlist strong
algorithms which are successfully used in fault diagnosis.
Decision Trees (DT) were used for their interpretability
and ability to handle non-linear relationships with minimal
pre-processing. Discriminant Analysis (DA) was selected
for its robustness in classifying linearly or quadratically
separable classes. Logistic Regression (LR) offered
simplicity and efficiency in binary classification, providing
probabilistic interpretations. Support Vector Machines
(SVM) handled high-dimensional data and were effective
in complex fault scenarios. K-Nearest Neighbours (k-NN)
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excelled in cases with undefined decision boundaries and
large datasets.

Ensemble Methods improved accuracy by combining
classifiers, while Naive Bayes (NB) provided fast
probabilistic fault detection. Neural Networks (NN)
captured complex data patterns, ideal for diagnosing
dynamic, non-linear faults. Applying different machine
learning algorithms in FDD allows leveraging the unique
strengths of each model, improving overall system
performance. Algorithms like Decision Trees and SVMs
offer interpretability and handling of complex
relationships, while Ensemble Methods and Neural
Networks enhance accuracy by combining models or
capturing intricate patterns in dynamic systems. The top
five models were shortlisted by evaluating the performance
of these diverse algorithms and their variants based on their
accuracy, precision, recall, and F1 score. This

comprehensive evaluation ensures the selection of the most
effective and reliable models for fault diagnosis in the
distillation column, leveraging the unique strengths of each
algorithm to enhance system performance.

The different machine learning algorithms and their
advantages and limitations in fault diagnosis are
summarized in Table 6.

.
—&

Figure 2. Controllers Implemented in Aspen

SL Controller Controller function | Operation

No name

1 Feed Flow | Regulates the feed flow | It ensures a consistent and controlled feed rate, crucial for stable column operation
Controller rate into the distillation | and accurate separation of components.
(FC1) column.

2 Pressure Maintains the pressure | Adjusts the condenser heat duty for maintaining column pressure to ensure the
Controller within the column. correct boiling points are maintained for separating propane and isobutene, which is
(PC1) critical for achieving the desired product purity.

3 Level Controls the liquid level | Regulates the flow of the distillate to maintain the liquid level within the column,
Controller in the reflux drum. preventing overflows or dry trays, which can affect separation efficiency.
(LCD)

4 Composition Maintains the purity of | Manipulates the reflux flow rate to ensure the top product achieves 99-mole%
Controller the propane in the top | propane purity. This controller adjusts the amount of liquid returned to the column
(CC1 product. versus taken off as the product.

5 Level Manages the liquid level | Regulates the bottom product flow rate to maintain the liquid level, ensuring stable
Controller at the bottom of the | operation and effective separation of components.
(LC2) distillation column.

6 Composition Maintains the purity of | Manipulates the reboiler heat duty by adjusting the steam flow to ensure the bottom
Controller the isobutene in the | product achieves 99 mole% isobutene purity. This controller ensures that the correct
(CC2) bottom product. amount of heat is supplied to the reboiler for optimal separation.

Table 3. Functions of Controllers in the Distillation Column



Fault | Fault Fault Type Magnitude Impacts

ID Description

F1 Feed tray Step Fault Efficiency reduced from Significant reduction in tray efficiency, causing
efficiency loss normal to 1 Percent weeping and decreased liquid levels on the feed

tray.

F2 Significant Step Fault Feed control valve opening Severe reduction in feed flow, leading to
feed loss reduced from 50 Percent to 8 operational instability, potentially from valve

Percent malfunction.

F3 Feed Step Fault Feed temperature drop Drastic temperature reduction impacting top and
temperature from(68-30)°C bottom product compositions and flow rates.
drop

F4 Feed Random Variation | Isobutane mole% fluctuates Variability in feed composition affects reflux rate,
composition between 3.33% to +16.67 % reboiler duty, and overall product consistency.
fluctuations from its normal value

F5 Top tray Step Fault Efficiency reduced to 1 Similar to F1 but impacts the top (2nd) tray,
efficiency loss Percent from normal resulting in poor separation and product quality.

Fé6 Bottom tray Step Fault Efficiency reduced to 1 Affects the bottom (30th) tray, reducing vapor-
efficiency loss Percent from normal liquid separation efficiency and impacting product

purity.

F7 Refining Step Fault Efficiency for all trays above Impairs the refining section’s efficiency,
section the feed tray reduced to 1 compromising overall column performance.
efficiency loss Percent

F8 Reflux valve Random Variation | Oscillation amplitude +35 Valve stiction causes large fluctuations in reflux
stiction Percent of the nominal valve flow, affecting product quality and energy

position efficiency.

F9 Reboiler steam | Random Variation | Oscillation amplitude +45 Steam flow irregularities caused by stiction affect

valve stiction

Percent of the nominal valve
position

the bottom product composition and energy usage.

Table 4. Fault Scenarios and Their Descriptions

The top five models were shortlisted by evaluating the
performance of these diverse algorithms and their variants
based on their accuracy, precision, recall, and F1 score. This
comprehensive evaluation ensures the selection of the most
effective and reliable models for fault diagnosis in the
distillation column, leveraging the unique strengths of each
algorithm to enhance system performance. The different
machine learning algorithms and their advantages and
limitations in fault diagnosis are summarized in Table 6.

2.8. Step 6: Build ML model by different algorithms

The performance of various machine learning models for
fault diagnosis is evaluated using statistical measures like
true positive (TP), true negative (TN), false negative (FN),
and false positive (FP). Key metrics include accuracy, recall,
precision, and F1 score, which assess each model's
effectiveness. Accuracy indicates the overall correct
predictions, recall measures the ability to identify faults,
precision evaluates the correctness of detected faults, and F1

score balances recall and precision. A detailed breakdown of
these metrics is provided in Table 7.

2.9. Step 8: Build and deploy fault detection and diagnosis
system by best performing models

The top five best-performing machine learning models are
selected to build and deploy the Fault Detection and
Diagnosis (FDD) system. This system is integrated into the
distillation column's control framework to monitor
operations and continuously diagnose faults in real-time.
Fresh data from the distillation column is input into each of
the five classifiers, which classify the fault independently. A
voting logic is then applied to aggregate the outputs of all
classifiers, making the final fault classification based on the
majority vote. This stacked classifier approach enhances the
reliability and robustness of the FDD system, ensuring
prompt and accurate fault detection and diagnosis. The
deployment of this advanced FDD system significantly
improves operational reliability and safety.
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Selected variables for FDD
SI  (global level) without
no feature engineering

Shortlisted top
five variables
after feature
engineering

1 Feed Composition (Isobutane Feed Flow, kilo
mole fraction) mole/hour

2 Feed Flow, kilo mole/hour Feed temperature,

°C

3 Feed temperature, °C Feed Composition
(Isobutane mole

fraction)

4 Top Composition, Propane mole Reflux Flow, kilo
fraction mole/hour

5 Bottom Composition, isobutene
mole fraction

Reflux drum level, meter

Bottom sump level, meter

Top Temperature, °C

O 0| 3| &

Bottom Temperature, °C

10 Top distillate Flow, kilo
mole/hour

11  Bottom flow, kilo mole/hour

12 Column Pressure, bar

13 Reflux Flow, kilo mole/hour

14 Reboiler Duty, million
kilocalories /hour

15  Condenser Duty, million
kilocalories /hour

Table 5. Selected Variables for Fault Diagnosis

2.10. Step 9: enhance model interpretability with
explainable artificial intelligence

To enhance the interpretability of the fault diagnosis
models, we incorporate Explainable Al (XAI) techniques,
such as Local Interpretable Model-agnostic Explanations
(LIME) and Shapley Additive Explanations (SHAP). XAl
is crucial for building trust and understanding in machine
learning models, allowing plant engineers to interpret and
validate the decisions made by the FDD system. By
applying LIME to the most accurate model among the top-
performing models, we can provide detailed insights into
which process parameters are responsible when a fault
occurs. SHAP values further explain the contribution of
each feature to the model's predictions. These techniques
guide plant engineers in quickly diagnosing the root cause

of faults, facilitating timely preventive and corrective
actions to maintain operational safety and efficiency.

3. RESULTS AND DISCUSSION
3.1. Results of dynamic simulations

This section presents the results of various fault scenarios
simulated using Aspen Plus Dynamics for a distillation
column, revealing the system's response and control
strategy effectiveness under different conditions. All the
controllers are put in auto mode during dynamic simulation
to allow them to take corrective actions when a fault
occurs. Blue colour dotted line in figure 3-11 represents the
parameters in operation and solid orange colour line
represents in faulty operation in closed loop.

Figure 3 illustrates the impact of feed temperature change
on various distillation column variables. A step decrease in
feed temperature leads to reduced top product purity and
increased reboiler heat duty, indicating higher energy
demand. The control system adjusts the reflux flow to
stabilize the process, emphasizing the need for robust
temperature control to maintain product quality and
stability.

Figure 4 shows the effect of feed loss on process variables.
A significant reduction in feed flow causes sharp declines
in product purity and reduced reboiler heat duty. The
control system exhibits limited ability to compensate,
emphasizing the importance of reliable feed flow to
prevent process disruptions.

Figure 5 presents the impact of feed tray efficiency
reduction on distillation column performance. Reduced
tray efficiency results in lower product purities and
increased variability in reboiler heat duty and reflux flow,
underscoring the need to maintain optimal tray efficiency
for consistent operation.

Figure 6 demonstrates the effect of feed composition
changes on process variables. Variations in feed
composition cause significant fluctuations in product
purity, reboiler duty, and reflux flow. Monitoring and
adjusting feed composition are crucial for maintaining
process efficiency.

Figure 7 depicts the impact of top tray efficiency reduction
on the distillation column. A decrease in top tray efficiency
leads to lower product purity and increased variability in
process variables, emphasizing the importance of regular
maintenance and monitoring to prevent major disruptions.

Figure 8 shows the effect of bottom tray efficiency
reduction on process performance.
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Serial | Key Calculation Significance
No performance
indices
1 Accuracy Accuracy This metric represents the ratio of correctly
_ true positive (TP) + true negative (TN) predicted observations to the total number of
[true positive (TP) + false positive (FP) observations.
+true negative (TN) + false negative (FN)]
2 Specificity Specificity = true negative (TN) It measures the proportion of actual negatives
p Y= true negative (TN), +false positive (FP) | that are correctly identified as such by the
classifier.
3 Recall Also known as, sensitivity, recall is the
Recall true positive (TP) conditional probability of correctly identifying
ecall = . .
true positive (TP) + false negative (FN) a fault, given that the sample is faulty.
4 Precision . true positive (TP) Precision indicates the conditional probability
Precision = — — i
true positive (TP) + false positive (FP) of a detected fault being correct.
5 F1 Score Fl=2 Precision X Recall The F1 score is a measure that balances recall
=aXx Precision + recall and precision, providing a single metric for
evaluating the overall performance of the fault
diagnosis system. It is the harmonic mean of
recall and precision
6 G-mean G mean = \/ Sensitivity x Specificity It provides a balance between the sensitivity
Where Specificity is already defined above and (recall for the positive class) and the specificity
(recall for the negative class), aiming to
true positive (TP) maximize both while ensuring that one does not
Sensitivity = igni
ity true positive (TP) + false negative (FN) significantly overshadow the other.

Table 7. Key Performance Indices for Machine Learning Algorithm

Bottom tray inefficiency causes a decline in bottom
product purity and variability in reboiler duty, highlighting
the need for efficient operation across all trays for
maintaining overall performance.

Figure 9 illustrates the impact of reduced refining section
tray efficiency. A decrease in efficiency leads to lower
product purities and variability in reboiler duty and reflux
flow, stressing the importance of effective monitoring and
maintenance of the refining section.

Figure 10 presents the effect of reflux valve stiction on
process variables. Valve stiction causes oscillations in
product purity, reboiler duty, reflux flow, and product flow
rate, demonstrating the challenges posed by valve issues
and the need for regular valve maintenance.

Figure 11 shows the effect of reboiler steam valve stiction
on the distillation column. Like reflux valve stiction, steam
valve stiction causes fluctuations in product purity and

energy balance, reinforcing the importance of control
strategies and valve maintenance.

These dynamic simulation results provide valuable insights
into how various fault conditions impact distillation
column performance. The findings emphasize the need for
robust control strategies and regular maintenance to ensure
process stability and product quality, informing the
development of advanced fault detection and diagnosis
methods for greater reliability in chemical processes.

3.2. Results of feature engineering

After collecting time series data for 15 parameters (see
Table 5), fault numbers were assigned as the output in the
last column. The data was then processed using the MRMR
algorithm for feature selection, reducing redundancy and
enhancing feature relevance. This improved computational
efficiency and often boosted classification accuracy.
Figure 12 and table 5 highlights the top five dominant
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features, which were selected for model training. The
reduced feature set enabled faster training and inference,
making the fault detection system more suitable for real-
time use. MRMR proved valuable in maintaining high
accuracy while reducing computational load.

3.3. Fault classification accuracy

This section evaluates the fault classification accuracy of
various machine learning algorithms using both the full set
of 15 parameters and a reduced set of five key parameters
selected via MRMR feature engineering. The focus is on
the performance of models with the reduced parameters
and identifying the top-performing models.

3.3.1. Accuracy with reduced parameters:

Table 8 summarizes Fault Classification Accuracy of
different machine learning algorithm. After feature
reduction, the Fine Tree model in the Decision Trees
category achieved an outstanding accuracy of 99.80

Eom

Percent, surpassing the Medium Tree (98.20 Percent) and
Coarse Tree (40.10 Percent) models. Discriminant
Analysis models, LDA and QDA, performed well, both
achieving around 87 Percent accuracy. However, Logistic
Regression saw a notable

accuracy drop from 95.34 Percent to 79.30 Percent,
indicating sensitivity to feature reduction.

Naive Bayes models, especially Gaussian and Kernel,
improved to 97.40 Percent. SVM models remained strong,
with Quadratic SVM reaching 99.80% and other variants
maintaining accuracies above 96 Percent. KNN classifiers
performed exceptionally well, with Fine and Weighted
KNN models both achieving 99.80 Percent accuracy, while
Medium and Cosine KNN models were slightly lower at
99.60 Percent and 99.50 Percent.

Among Ensemble classifiers, the Bagged Trees model
achieved the highest accuracy of 99.90 Percent, with
Boosted Trees and Subspace k-NN following closely at
99.70 Percent and 98.70 Percent. Neural Networks also
showed excellent results, with Medium NN and Wide NN
achieving 99.70 Percent and 99.80 Percent, while Narrow
and Bilayered NN models exceeded 99 Percent.

Figure 3. Impact of Feed Temperature Change on Distillation Column Variables (A decrease in feed temperature results in
reduced product purity and increased reboiler duty. The control system compensates by increasing reflux flow)

3.3.2. Identification of top models and building a
robust stack FDD system

When comparing the average accuracy between the full
and reduced parameter sets, performance remained stable
or improved for most models. The reduction from 15 to five
parameters did not significantly affect accuracy,
demonstrating the effectiveness of the MRMR feature
selection method.Using the reduced parameter set, the top
five models identified are Bagged Trees (99.90 Percent
accuracy), Quadratic SVM (99.80 Percent), Fine KNN
(99.80 Percent), Wide Neural Network (99.80 Percent),
and Fine Tree (99.80 Percent). Figure 13 shows the

confusion matrix of Ensemble bagged tree model with 99.9
Percent accuracy. Table 9 shows the Comparison of
Classification Metrics for top 5 models.

These models proved to be the most reliable for fault
detection in the distillation column. Fresh data from the
distillation column is fed into each of the five classifiers,
which independently classify the fault. The final fault
classification is then determined using a voting mechanism
that aggregates the outputs, with the majority vote deciding
the result.

10
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Figure 8. Impact of Bottom Tray Efficiency Reduction on Distillation Column Variables (Bottom tray inefficiency causes
variation in bottom product quality and reboiler duty, demonstrating poor stripping performance)
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Figure 9. Impact of Refining Section Tray Efficiency Reduction on Distillation Column Variables (Global reduction in
refining section efficiency impacts overall separation, leading to broad product quality degradation)

12



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Top purity change due to reflux valve stick Reboiler duty change due to reflux valve stick Reflux flow change due to reflux valve stick

= = =Toppurity —— Top purity change = = ~Reailer duty normal ——— Reboiles heat duty change = = = Reflux flow rorma ——— Reflux flow change

Reboller heat duty In Mmbcalfhr

2 o 2 6 5 1 L . 3 5 0
Time in hours Time in hours
Top flow change due to reflux valve stick Bottom flow change due to reflux valve stick Bottom purity change due to reflux valve stick
R Topfowchengs | memes Bottom flow Bettom Bow change - = = Bottom purity Bortom purity change
) 7
=™ Al = e —
£ \ - ——
[ 3 [ S I =2 ‘ .
< ) cw - £
| - £ o b
< En Z
L _] £ } E.
e e A - \ -~ § oses
| - 2
0 ° = o8
o 1 5 5 o E o 2 4 s 5 » 12 2 5 8 1

Time in haurs Time in haurs

Figure 10. Impact of Reflux Valve Stiction on Distillation Column Variables (Reflux flow oscillations caused by stiction lead
to fluctuating purities and energy usage, indicating control loop performance degradation)
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Figure 11. Impact of Reboiler Steam Valve Stiction on Distillation Column Variables (Steam valve stiction induces irregular
heat input, seen as product purity swings and reboiler duty instability)
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Figure 12. Relative Importance of Process Variables in Distillation Column Operation as per MRMR scores (Reboiler duty,
feed flow, reflux flow, and feed composition rank highest in fault detection relevance)
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Figure 13. Confusion matrix of ensemble bagged tree model (99.9% accuracy) (Perfect or near-perfect classification accuracy
achieved for all fault categories using ensemble-based classifier)
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Sr No Classification Algorithms Accuracy Accuracy
(%) with all 15 parameters (%) with five parameters
1 Decision Trees
1.1 Fine Tree 99.73 99.80
1.2 Medium Tree 98.69 98.20
1.3 Coarse Tree 47.52 40.10
2 Discriminant Analysis
2.1 Linear Discriminant Analysis (LDA) 84.09 87.00
2.2 Quadratic Discriminant Analysis (QDA) 84.10 87.10
3 Logistic Regression
3.1 Efficient logistic regression 95.34 79.30
4 Naive Bayes
4.1 Gaussian Naive Bayes 95.16 97.40
4.2 Kernel Naive Bayes 95.16 97.40
5 Support Vector Machine (SVM)
5.1 linear 98.86 94.50
5.2 Quadratic 99.95 99.80
53 Cubic 99.93 99.80
5.4 Fine Gaussian 99.67 99.80
5.5 Medium Gaussian 99.84 99.60
5.6 Coarse Gaussian 99.62 96.60
6 k-Nearest Neighbour (KNN)
6.1 Fine KNN 99.76 99.80
6.2 Medium KNN 99.54 99.60
6.3 Coarse KNN 98.89 98.20
6.4 Cosine KNN 9955 99.50
6.5 Cubic KNN 99.53 99.60
6.6 Weighted KNN 99.67 99.80
7 Ensemble Classifier
7.1 Boosted trees 99.79 99.70
7.2 Bagged trees 99.89 99.90
7.3 Subspace discriminant 85.88 87.90
7.4 Subspace can 99.65 98.70
7.5 RUS Boosted Tree 98.10 98.20
8 Neural Network Classification Models
8.1 Narrow NN 99 85 99.30
8.2 Medium NN 99.90 99.70
8.3 Wide NN 99.90 99.80
8.4 Bilayered NN 99.83 99.80
8.5 Trilayered NN 9981 99.70

Table 8. Fault Classification Accuracy of different machine learning algorithm

3.4. Fault classification accuracy

The use of Explainable Al (XAI) methods, specifically
LIME and SHAP, provides valuable insights into how
machine learning models make predictions. LIME offers
faster, localized explanations by simplifying complex
models into interpretable components. It is ideal for
gaining quick insights into how specific features affect

individual predictions. On the other hand, SHAP provides
a more theoretically grounded, consistent measure of
feature importance across both local and global models.
Although SHAP is more computationally intensive, its
consistency and reliability across model instances make it
crucial for broader insights.

Both LIME and SHAP were implemented in Matrix
Laboratory MATLAB to enhance model transparency. As
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seen from the bar plots (Figures 14 and 15), these methods
enabled a detailed understanding of the fault prediction
process by highlighting which variables had the greatest
influence on the model's decisions. Table 9 summarizes all
the insights getting from LIME and SHAP values in figure
14 and 15. This clarity allowed for improved model
validation, debugging, and optimization. By providing this
level of interpretability, engineers can better trust the
decisions made by the machine learning models.

Shapley plots (Figure 14) illustrate the contribution of
features to model predictions. Key variables such as
reboiler duty, feed flow, and reflux flow consistently appear
as the most influential factors in fault scenarios. For
instance, in Fault 1 and Fault 2, reboiler duty and feed flow
dominate, highlighting the need for close monitoring of
these parameters to prevent faults. Shapley values provide
detailed root cause insights, helping engineers take targeted
actions to improve reliability and efficiency. The frequent
appearance of reboiler duty and feed flow as dominant
predictors across faults shows their critical role in
maintaining distillation column performance. Shapley
values (Table 9) help identify these key predictors,
allowing for focused control and improved fault
management.

LIME plots (Figure 15) provide local explanations for fault
predictions, with reboiler duty consistently emerging as the

top predictor across all faults. This reinforces its
significance for column stability. While LIME offers quick
insights into individual faults, it complements the broader
view provided by SHAP. By combining LIME and SHAP,
both local and global insights are obtained. LIME offers
fast, specific insights, while SHAP ensures consistency
across the model. Together, they identify reboiler duty as
the most critical factor for fault detection, improving
process monitoring and optimizing performance.

Metric Ensemble | Quadratic Fine Wide Fine
Bagged SVM KNN Neural Tree

Trees Network
Accuracy 1.000 0.999 0.999 0.999 0.999
Specificity 1.000 1.000 1.000 1.000 1.000
Recall 0.998 0.997 0.997 0.997 0.997
Precision 0.998 0.997 0.997 0.997 0.997
F1 Score 0.998 0.997 0.997 0.997 0.997
G-mean 0.999 0.998 0.998 0.998 0.998

Table 9. Comparison of Classification Metrics for top 5
models
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Figure 14. Shapley Value Explanations for Key Predictors across nine (Fault Scenarios: Reboiler duty emerges as the
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Fault Key Predictors Key Predictors Summary
(LIME - in order of | (SHAP - in order
influence) of influence)
Fault 1 1. Reboiler Duty (Q) 1. Reboiler Duty(Q) Reboiler Heat Duty (Q) is the dominant factor, with Isobutane Mole
2. 1B MF in Feed Fraction (IB MF) and Feed Flow contributing less. Both LIME and
3. Feed Flow SHAP confirm the importance of Reboiler Heat Duty (Q).
Fault 2 1. Feed Flow 1. Feed Flow Feed Flow plays the primary role in this fault, with Reboiler Heat Duty
2. Reboiler Duty (Q) as a secondary factor. SHAP aligns with LIME’s findings.
2. Reboiler Duty
Fault 3 1. Reboiler Duty 1. Reboiler Duty Both methods highlight Reboiler Heat Duty (Q) and IB MF in feed as
2. 1B MF in Feed critical to the fault.
2. 1B MF in Feed
Fault 4 1. Reboiler Duty 1. Reboiler Duty Reboiler heat duty consistently emerges as the most influential
2. Feed Temperature predictor with minimal contribution from Feed Temp and Flow.
3. Feed Flow SHAP confirms this.
Fault 5 1. Reboiler Duty 1. Reboiler Duty Reboiler Heat Duty (Q) plays the most significant role, while Feed
2. Feed Flow Flow and Temp have lesser impacts.
3. Feed Temperature
Fault 6 1. Reboiler Duty 1. Reboiler Duty Reboiler Heat Duty (Q) remains the top predictor, with IB MF and
2. 1B MF in Feed Feed Flow playing lesser roles.
3. Feed Flow
Fault 7 1. Reboiler Duty 1. Reboiler Duty Reboiler Heat Duty (Q) is the primary predictor, with a smaller
2. Feed Flow contribution from Feed Flow.
2. Feed Flow
Fault 8 1. Reboiler Duty 1. Reboiler Duty Reboiler Heat Duty (Q) and Reflux Flow are the most important
2. Reflux Flow factors for this fault, as shown by both methods.
2. Reflux Flow
Fault 9 1. Reboiler Duty 1. Reboiler Duty Reboiler Heat Duty (Q) is the leading factor, with smaller
2. Feed Flow contributions from Feed Flow and Reflux Flow. SHAP supports this.
3. Reflux Flow

Table 10. Key Predictors for Fault Scenarios identified by LIME and SHAP in Order of Influence

4. CONCLUSION

This study outlines a comprehensive approach to
developing a Fault Detection and Diagnosis (FDD) system
for a distillation column using machine learning. By
creating dynamic simulations and applying data pre-
processing, feature engineering with the MRMR algorithm,
and multiple machine learning models, accurate fault
detection and diagnosis were achieved.

The results show that combining algorithms like Decision
Trees, Discriminant Analysis, Logistic Regression, SVM,
k-nearest Neighbours, Ensemble Methods, Naive Bayes,
and Neural Networks significantly enhances system

reliability. Implementing a stacked classifier system
further improved fault detection accuracy and stability.

Incorporating Explainable Al (XAI) techniques, such as
LIME and SHAP, enhanced the interpretability of the
models, enabling plant engineers to understand and trust
the system’s decisions, facilitating timely corrective
actions. This study underscores the value of combining
simulation-based data with advanced machine learning and
XAI techniques to build robust FDD systems, improving
safety, efficiency, and reducing downtime. The novelty of
this paper lies in integrating dynamic simulations for fault
data generation, applying advanced ML algorithms for
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FDD, and using XAI techniques to enhance model
interpretability. This approach offers an effective solution
for fault diagnosis in distillation columns, with future work
focused on integrating ML models, historical data, and
XALI for even better fault detection.

Although the simulated faults are primarily step-type, they
reflect several common real-world operational disruptions
such as sudden valve malfunction, tray damage, or feed
composition jumps. Expanding the dataset to include
gradual degradation profiles observed in actual plant
history would further enhance system generalization and
industrial relevance.

Future work could explore additional algorithms and refine
the stacked classifier system. Expanding this approach to
other real industrial processes would increase its
applicability and advance fault detection technologies
across sectors.
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