
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2025 

  
1 

Enhanced Fault Detection and Diagnosis in Industrial Distillation 

Column Using Explainable Artificial Intelligence and Machine 

Learning 

Sumana Roy1, Somasish Saha2, Bitopama Modak3, Fahim Ahmed4, Aditi Mahto5, Sandip Kumar Lahiri6* 

1,2,5,6National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur – 713209, West Bengal, India  

sr.19ch1501@phd.nitdgp.ac.in 

ss.19ch1502@phd.nitdgp.ac.in 

am.22u10882@btech.nitdgp.ac.in 

*Corresponding author:sklahiri.che@nitdgp.ac.in 

 
3,4Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata – 700032, West Bengal, India 

mbitopama@gmail.com 

fahimahamed0576@gmail.com 
 

ABSTRACT 

This study presents a comprehensive methodology for 

developing a Fault Detection and Diagnosis (FDD) system 

for an industrial distillation column using advanced machine 

learning algorithms. Steady state and dynamic simulations in 

Aspen Plus® generate extensive datasets under normal and 

faulty conditions. Feature engineering, using the Minimum 

Redundancy Maximum Relevance (MRMR) algorithm, 

selects the most relevant features for fault detection. Various 

machine learning models, including Decision Trees, Support 

Vector Machines, k-nearest Neighbours, and Neural 

Networks, were trained and evaluated based on performance 

metrics such as accuracy, recall, precision, and F1 score. 

The top models were integrated into a stacked classifier 

system with a voting mechanism to enhance fault detection 

reliability. Explainable Artificial Intelligence (XAI) 

techniques, such as Local Interpretable Model-agnostic 

Explanations (LIME) and Shapley Additive Explanations 

(SHAP), were incorporated to improve model 

interpretability, allowing engineers to understand and 

validate the FDD system's decision-making process. 

Simulation results confirm that the proposed methodology 

accurately identifies and classifies faults. By integrating 

dynamic simulations, advanced machine learning, and XAI 

techniques, a robust and scalable solution is achieved for fault 

detection in distillation columns, improving operational 

reliability, safety, and reducing downtime.  

Future work could extend this approach to other industrial 

processes and explore additional machine learning 

algorithms to further enhance performance.  

1. INTRODUCTION 

The growing global competition has driven chemical process 

industries to minimize downtime, improve equipment 

availability, and enhance operational profitability. Fault 

Detection and Diagnosis (FDD) systems are essential in 

managing the complexity and dynamic nature of these 

processes, where manual fault detection is increasingly 

difficult due to numerous interacting variables.   

Effective FDD systems offer real-time monitoring, early fault 

detection, and accurate diagnosis, leading to enhanced 

process safety, operational reliability, reduced environmental 

impact, and improved product quality (Isermann, 2006). 

Faults are inevitable in complex process systems. Various 

faults in process plants can arise from changes in process 

parameters, actuator issues, sensor malfunctions, or external 

disturbances (Chiang et al., 2000; Kesavan & Lee, 1997). 

Fault detection involves identifying the process variables 

most relevant to a fault, whereas fault diagnosis determines 

the root cause and location of the fault. Ignored faults can 

lead to system failures, and minor faults can escalate into 

severe issues, disrupting overall processes (Chiang et al., 

2000; Chiang & Pell, 2004; Tidriri et al., 2016; Zhou et al., 

2014; Isermann & Balle, 1997).  

The vast amount of operational data collected every second 

in process industries offers an opportunity to develop 

advanced fault detection systems. Although large volumes of 

data are collected, their underutilization often leads to a gap 

between data availability and actionable insights. Leveraging 
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historical process data, it is possible to build data-driven fault 

detection systems that transform raw data into actionable 

insights. Given the nonlinearity and increasing complexity in 

modern process industries, there is a growing demand for 

data-driven approaches (Dash et al., 2003; Meng et al., 2019; 

Copertaro et al., 2019; Venkatasubramanian, Rengaswamy, 

& Kavuri, 2003; Venkatasubramanian, Rengaswamy, & Yin 

2003; Ge et al., 2013; Chetouani, 2011).  Although data-

driven methods require large amounts of historical data, this 

is less of an issue today due to the widespread use of 

distributed control systems (DCS) and soft computing 

technologies, which facilitate data collection (Ge et al., 

2017). Moreover, database and data mining technologies 

support the development of data-driven modelling methods 

in industrial processes. 

In literature, FDD have been applied to various chemical 

processes, including the Tennessee Eastman process (TEP) 

(Yu & Zhang, 2020; D. Liu et al., 2020), reactor systems (Zio 

et al., 2009 ; Nawaz et al., 2020), distillation columns 

(Chetouani, 2011; Chetouani, 2007; Manssouri et al., 2008; 

S. A. Taqvi et al., 2018b; S. A. Taqvi et al., 2018a; Mujtaba 

et al., 2020; Amiruddin et al., 2020; S. A. A. Taqvi, Zabiri, 

Tufa, Uddin, et al., 2020; S. A. A. Taqvi, Zabiri, Tufa, 

Fatima, et al., 2020), bearing faults (Rajakarunakaran et al., 

2008), crude and gas mixture pipelines (Amiruddin et al., 

2020; Mujtaba et al., 2020), industrial gas turbines (Nozari et 

al., 2012), heating furnaces (Schubert et al., 2011), water-

cooled centrifugal chillers (Zhao et al., 2013), biochemical 

wastewater treatment plants (X. Zhang & Hoo, 2011), 

controlled two-tank systems (Weber et al., 2006), and fluid 

catalytic cracking units (Vedam et al., 1999). 

Distillation is a key and widely used separation technique in 

process industries, known for its high-energy consumption. 

Industrial distillation columns, essential in chemical 

processes, are sensitive to faults like sensor failures, actuator 

malfunctions, and process disturbances, which can affect 

product purity and energy efficiency. Monitoring these 

columns is difficult due to their nonlinearity, disturbances, 

nonstationary behaviour, and multivariable coupling. The 

high dimensionality, multiple operational modes, and slow 

dynamics further complicate fault diagnosis. Therefore, 

developing a robust FDD system is critical to ensure optimal 

operation, prevent downtime, and avoid safety incidents 

(Rengaswamy & Venkatasubramanian, 2001). 

Traditional approaches for FDD systems in distillation 

columns include Principal Component Analysis (PCA), 

Partial Least Squares (PLS), and Independent Component 

Analysis (ICA), widely used for fault detection in 

multivariate data. PCA detects sensor faults by analysing 

principal components in process data (W. Li et al., 2000). 

PLS monitors processes by modelling input-output 

relationships (MacGregor & Kourti, 1995) , while ICA 

separates mixed signals into independent components for 

fault detection (J. M. Lee et al., 2004). However, these 

methods assume linearity, limiting their effectiveness with 

complex, non-linear data. Consequently, data-driven 

machine learning methods, treating fault diagnosis as a 

classification task, are now preferred.  

Machine learning (ML) algorithms for fault diagnosis have 

been extensively explored, particularly supervised learning 

techniques trained on historical data to detect faults. In 

literature, techniques such as Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Bayesian 

Networks (BN), Random Forests (RF), Decision Trees (DT), 

and k-nearest Neighbours (KNN) are commonly used. 

Decision Trees (DT) are popular for process monitoring and 

fault detection in industries (Quinlan, 1979; Quinlan, 2014), 

with hybrid models like Artificial Neural Networks Decision 

Trees (ANN-DT) and Support Vector Machines Decision 

Trees (SVM-DT) improving fault classification and 

reliability. (Ma & Wang, 2009; He et al., 2013; Kuo & Lin, 

2010; Demetgul, 2013; Aydin et al., 2014; Karabadji et al., 

2014). 

KNN is a non-parametric method applied to various fault 

detection scenarios (Altman, 1992; Andre et al., 2013; 

Nguyen & Lee, 2010; Tudón-Martínez & Morales-

Menendez, 2015; Hasan & Kim, 2019; Y. Li & Zhang, 2014; 

S. Zhang et al., 2017). Fisher Discriminant Analysis (FDA) 

is used for data classification and dimensionality reduction 

(Nor et al., 2020). FDA has been extensively applied in 

process monitoring and fault classification (Jiang et al., 2006; 

Z. Xu et al., 2006). Advanced methods combining FDA with 

statistical analysis, genetic algorithms, and kernel techniques 

have shown improved fault detection and classification 

performance (Nor et al., 2020; Chiang & Pell, 2004; Zhu & 

Song, 2010; X. Zhang et al., 2007; Ge et al., 2016).   

Artificial Neural Networks (ANN) map complex input-

output relationships and have been widely used in chemical 

engineering for fault detection and diagnosis (Amiruddin et 

al., 2020). Various ANNs, including Multilayer Perceptron ( 

MLP), Radial Basis Function (RBF), and dynamic fuzzy 

neural networks, have been applied in process monitoring, 

emission monitoring, fault location estimation, and tool 

condition monitoring (Sharma et al., 2004; M. W. Lee et al., 

2005; Iliyas et al., 2013; Gonzaga et al., 2009; Jamil et al., 

2014; Lu & Xue, 2014; S. Xu & Liu, 2014; Pani & Mohanta, 

2015). Comparative studies have highlighted ANN's 

effectiveness in fault classification tasks (Hwang et al., 1993; 

Nagpal & Brar, 2014; Venkatasubramanian & Chan, 1989; 

Watanabe et al., 1989; Ungar et al., 1990; Hoskins et al., 

1991). 

SVM is another popular tool for process monitoring and has 

shown superior performance in fault diagnosis, often 

enhanced by hybrid models (S. A. Taqvi et al., 2017). 

The literature review highlights the versatility of machine 

learning algorithms such as Decision Trees, KNN, FDA, 
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ANNs, and SVMs in addressing complex fault diagnosis 

challenges in chemical processes. 

There are two key gaps in the literature regarding the 

application of Machine Learning techniques in FDD for 

chemical process industries. While ML techniques offer a 

promising approach for FDD systems by effectively 

modelling non-linear relationships, traditional ML models 

are often perceived as black boxes, lacking transparency, 

which is crucial in safety-sensitive environments like 

chemical process industries (J. Zhang et al., 2019). Another 

challenge is the limited availability of fault data in well-

maintained plants, which can be addressed through dynamic 

simulations using tools like Aspen Dynamics to create 

diverse fault scenarios (Maurya et al., 2007).  

Dynamic simulation enables the creation of extensive fault 

datasets, aiding in the training and validation of ML models 

for FDD systems. In this paper, we simulate normal and fault 

data for an industrial distillation column and apply various 

ML algorithms to develop an FDD system. The best 

algorithms are selected based on accuracy and robustness. To 

improve model interpretability, we use Explainable Artificial 

Intelligence (XAI) techniques like Local Interpretable 

Model-agnostic Explanations (LIME) and Shapley Additive 

Explanations (SHAP), which allow plant engineers to 

understand and validate the decisions made by the FDD 

system (Molnar, 2019). 

LIME provides insights into how specific features impact 

predictions by approximating black-box models locally 

(Molnar, 2019). SHAP, based on cooperative game theory, 

consistently measures feature importance by evaluating all 

possible feature combinations (Lundberg et al., 2017). Both 

LIME and SHAP help engineers interpret ML model 

decisions for fault detection. By combining first-principle 

methods with data-driven approaches, we aim to create robust 

fault diagnosis systems that improve safety, efficiency, and 

cost savings by reducing downtime and preventing failures. 

The following sections cover the methodology, results, and 

application of advanced techniques for distillation column 

fault detection. Section 2 details the process of generating 

simulation data, using the Minimum-Redundancy-

Maximum-Relevance (MRMR) algorithm for feature 

selection, and applying Machine Learning models, with 

Explainable AI techniques enhancing interpretability. 

Section 3 presents the results from dynamic simulations and 

fault classification, showing improved accuracy and 

efficiency through feature selection and LIME/SHAP 

analysis. Section 4 concludes by highlighting the integration 

of machine learning, simulations, and Explainable AI for 

effective fault detection and offers recommendations for 

future research in real-time FDD systems.  

 

 

Figure 1. An overview of the methodology used to develop 

the FDD system for a distillation column using machine 

learning algorithms 

2. METHODOLOGY ADOPTED TO  BUILD THE FAULT 

DETECTION AND DIAGNOSIS SYSTEM 

2.1. Overview 

Figure 1 provides an overview of the methodology used to 

develop the FDD system for a distillation column using 

machine learning algorithms. The process starts with steady-

state and dynamic simulations in Aspen Plus® to generate 

datasets from various fault scenarios. Afterward, data pre-

processing and feature selection are performed using the 

MRMR algorithm to identify key features. Several machine 

learning models, including Decision Trees, Discriminant 

Analysis, Logistic Regression, SVMs, k-NN, Ensemble 

Methods, Naive Bayes, and Neural Networks, are trained and 

evaluated. The top five models are combined into a stacked 

classifier with a voting mechanism to enhance reliability and 

robustness. Explainable AI techniques like LIME and SHAP 

are also applied to improve model interpretability, helping 

plant engineers quickly diagnose and address faults. Table 1 

summarizes the step-by-step methodology adopted for FDD 

system development. 

2.2. Step 1: Aspen steady state simulation 

The first step involves creating a steady-state simulation of 

the distillation column using Aspen Plus®. This process uses 

a mixture of propane and isobutene with a (60-40) mole % 

composition as the feed. The Rigorous Distillation 

Simulation Module (RADFRAC model) in Aspen Plus which 

includes a column, condenser, and Reboiler, is employed. 

The column has an overall height of 5.5 meters, an internal 

diameter of 0.15 meters, and a tray spacing of 0.35 meters as 

calculated from Aspen hydraulic calculations. 

The reflux ratio and reboiler heat duty are varied to ensure 

the top and bottom compositions contain 99 mole% propane 
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and 99 mole% isobutanes, respectively. The steady-state 

simulation results are validated against plant operating 

conditions, reporting top and bottom temperatures of 37.9 °C 

and 78.9 °C, respectively, and a column pressure of 13 bar 

(absolute). The specifications and sizing data for the 

industrial-scale distillation column (located in Saudi Arabia) 

are detailed in Table 2.  

 

Table 1. Fault Diagnosis Algorithm Using Machine Learning Techniques 

2.3. Step 2: Aspen dynamic simulation 

After the steady-state simulation is run without errors, it is 

exported to Aspen Plus® Dynamics for further control 

studies and data generation. Various controllers for feed 

flow, top and bottom compositions, pressure, and level are 

installed in the distillation column. Six controllers are 

installed in a dynamic simulation environment, 

summarized in Table 3 and shown in Figure 2. The feed 

flow controller ensures a consistent feed rate, the pressure 

and level controllers maintain the appropriate pressure and 

liquid levels within the column and the composition 

controllers adjust the reflux and reboiler heat duty to 

achieve the target purities for propane and isobutene. 

The RADFRAC model in Aspen Plus® Dynamics 

accounts for the pressure drop across each stage due to 

liquid and vapour flow resistances and allows for stage 

hydraulics modelling (refer Table 2). The column pressure 

is slightly increased to 13.24 bar for the dynamic 

simulation to accommodate additional inlet/outlet valves 

and associated pressure drops across each tray. Different  

 

 

control functions in the distillation column are presented in 

Table 3. 

2.4. Step 3: Execution of different fault scenarios 

In this step, the dynamic simulation of the distillation 

column is used to generate both normal and faulty datasets. 

Regular operation is simulated for 20 hours, followed by 

introducing faults after every 5 hours of stable operation. 

Eight types of faults are introduced to represent various 

operational issues. In industrial distillation columns, the 

occurrence of these faults is not uncommon, as they stem 

from both mechanical issues and operational inefficiencies. 

Faults like tray efficiency loss (F1, F5, F6, F7) can result 

from wear, corrosion, or fouling, leading to poor separation 

and product quality.  

 

 

 

Step Description 

1. Generate Dataset Use Aspen Plus dynamic simulation to create datasets for normal and faulty operations. 

2. Prepare Dataset Organize data into predictors (X) and class labels (Y). "X" contains observed and derived    variables, while 

"Y" holds class labels (e.g., normal, fault type 1, fault type 2). 

3. Feature Selection Apply the MRMR algorithm to identify and select the top-ranked features. 

4. Define Cross-Validation 

Method 

Use k-fold cross-validation: partition data into k sets, train on out-of-fold data, evaluate on in-fold data, and 

average the error across all folds. 

5. Choose Classification 

Algorithm 

Select algorithms like Decision Trees, Ensemble Methods, Neural Networks, etc., as listed in Table 4. 

6. Train Classifier Train the classifier using the simulation data with selected features. 

7. Test Classifier Test the classifier on the prepared dataset to assess its performance. 

8. Evaluate Performance Evaluate performance using metrics like accuracy, precision, recall, and F1 score (see Table 7). 

9. Implement a Stack 

Classifier System 

Choose the top 5 classifiers and implement a voting logic system to classify faults based on the collective 

output, improving reliability. 

10. Enhance Model 

Interpretability with 

Explainable AI (XAI) 

Use LIME and SHAP to explain the top classifier's decisions, helping engineers diagnose faults and improve 

system trust. 



   5 

Specifications Value 

Feed specifications 

 Feed flow rate 

 Feed composition 

 Feed temperature 

 Feed pressure 

 

100 kilo mole/hour 

Propane (40 mole%), Isobutane (60 

mole%) 

40 °C 

18 bar 

Column specifications 

 Column height 

  Colum diameter 

 Type of tray 

 No. of trays 

Distillate flow rate 

 Bottom flow rate 

 

5.5 meter 

0.15 meter 

Sieve 

31 

40 kilo mole/hour 

60 kilo mole/hour 

Steady-state operating 

condition 

 Top temperature 

 Bottom temperature 

 Reboiler duty 

 Condenser duty 

 Column pressure 

 Distillate composition 

Bottom Composition 

 

 

37.96  

78.92  

0.647 Million kilocalorie/hour 

-0.556 Million kilocalorie/hour  

13 bar 

99% propane, 1% isobutene (molecule) 

99 % isobutene, 1% propane(molecule) 

Table 2. Specifications and Sizing Data for the 

Distillation Column Dynamics Simulation 

Feed flow and composition variations (F2, F4) may arise 

due to equipment malfunctions or inconsistent raw material 

supply, while temperature fluctuations (F3) could be 

caused by heat exchanger issues. Valve stiction (F8, F9), a 

prevalent problem, often occurs due to aging control 

valves, causing oscillatory behaviour that disrupts the 

column’s stability. Addressing these faults is critical for 

maintaining process efficiency, product quality, and safety 

in industrial distillation operations. While this study 

primarily considers step-type failures due to their well-

defined impact and ease of simulation, it is acknowledged 

that real-world faults may also manifest as gradual or 

incipient failures. Step faults allow for clear benchmarking 

and classification in early development of FDD systems. 

However, future work will incorporate gradual degradation 

patterns to better represent real-life industrial conditions. 

This is especially important in soft-fault scenarios like 

sensor drift, valve wear, or slow fouling, where early 

detection remains a challenge. Inclusion of such patterns 

will further improve robustness and practical deployment 

of FDD systems. These fault scenarios provide a 

comprehensive dataset to evaluate the fault detection and 

diagnosis methods. Details of the introduced faults are 

summarized in Table 4. 

2.5. Step 4: Data pre-processing for machine learning 

The time series data generated from normal and faulty 

operations in dynamic simulations is pre-processed to 

make it suitable for machine learning applications. This 

process involves data cleaning, normalization of input and 

output variables to the range [0, 1], and splitting the data 

into training, validation, and testing sets in a (60-20-20) 

percentage ratio. 

 

Additionally, pseudo-random binary sequences (PRBS) 

excite the plant under normal conditions in dynamic 

simulations, and zero mean normal distributed noise is 

added to all measured variables to simulate sensor noise. 

The variables shortlisted for fault diagnosis are listed in 

Table 5. 

2.6. Step 4: Data pre-processing for machine learning 

Feature engineering is applied to extract the most relevant 

variables using the Minimum Redundancy Maximum 

Relevance (MRMR) algorithm. MRMR optimizes feature 

selection by balancing relevance to the target variable and 

minimizing redundancy between features, based on mutual 

information. This ensures that each feature contributes 

unique and valuable information, enhancing model 

performance. 

The algorithm employs a forward selection method to 

incrementally add features, significantly reducing 

computational complexity. Features are ranked based on 

their Mutual Information Quotient (MIQ), with high scores 

indicating strong predictors. This process improves 

classification accuracy by focusing only on the most 

critical features, reducing model overfitting, and 

simplifying data analysis. 

MRMR is particularly effective for handling high-

dimensional datasets, making it an essential tool for 

improving the accuracy and robustness of machine 

learning models in fault diagnosis. Its scalability ensures 

efficient processing of large datasets, enabling precise and 

reliable fault detection in complex systems. 

2.7. Step 6: Build ML model by different algorithms 

Several machine learning algorithms were explored to 

develop an optimal fault diagnosis system, each with 

unique strengths suited for different aspects of fault 

classification. 

Extensive literature survey is done to shortlist strong 

algorithms which are successfully used in fault diagnosis. 

Decision Trees (DT) were used for their interpretability 

and ability to handle non-linear relationships with minimal 

pre-processing. Discriminant Analysis (DA) was selected 

for its robustness in classifying linearly or quadratically 

separable classes. Logistic Regression (LR) offered 

simplicity and efficiency in binary classification, providing 

probabilistic interpretations. Support Vector Machines 

(SVM) handled high-dimensional data and were effective 

in complex fault scenarios. K-Nearest Neighbours (k-NN) 
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excelled in cases with undefined decision boundaries and 

large datasets.  

Ensemble Methods improved accuracy by combining 

classifiers, while Naive Bayes (NB) provided fast 

probabilistic fault detection. Neural Networks (NN) 

captured complex data patterns, ideal for diagnosing 

dynamic, non-linear faults. Applying different machine 

learning algorithms in FDD allows leveraging the unique 

strengths of each model, improving overall system 

performance. Algorithms like Decision Trees and SVMs 

offer interpretability and handling of complex 

relationships, while Ensemble Methods and Neural 

Networks enhance accuracy by combining models or 

capturing intricate patterns in dynamic systems. The top 

five models were shortlisted by evaluating the performance 

of these diverse algorithms and their variants based on their 

accuracy, precision, recall, and F1 score. This 

comprehensive evaluation ensures the selection of the most 

effective and reliable models for fault diagnosis in the 

distillation column, leveraging the unique strengths of each 

algorithm to enhance system performance. 

The different machine learning algorithms and their 

advantages and limitations in fault diagnosis are 

summarized in Table 6.  

 

 

 

 

 

 

Figure 2. Controllers Implemented in Aspen 

 

Table 3. Functions of Controllers in the Distillation Column 

SL 

No 

Controller 

name  

Controller function Operation 

1 Feed Flow 

Controller 

(FC1) 

Regulates the feed flow 

rate into the distillation 

column. 

It ensures a consistent and controlled feed rate, crucial for stable column operation 

and accurate separation of components. 

2 Pressure 

Controller 

(PC1) 

Maintains the pressure 

within the column. 

Adjusts the condenser heat duty for maintaining column pressure to ensure the 

correct boiling points are maintained for separating propane and isobutene, which is 

critical for achieving the desired product purity. 

3 Level 

Controller 

(LC1) 

Controls the liquid level 

in the reflux drum. 

Regulates the flow of the distillate to maintain the liquid level within the column, 

preventing overflows or dry trays, which can affect separation efficiency. 

4 Composition 

Controller 

(CC1) 

Maintains the purity of 

the propane in the top 

product. 

Manipulates the reflux flow rate to ensure the top product achieves 99-mole%  

propane purity. This controller adjusts the amount of liquid returned to the column 

versus taken off as the product. 

5 Level 

Controller 

(LC2) 

Manages the liquid level 

at the bottom of the 

distillation column. 

Regulates the bottom product flow rate to maintain the liquid level, ensuring stable 

operation and effective separation of components. 

6 Composition 

Controller 

(CC2) 

Maintains the purity of 

the isobutene in the 

bottom product. 

Manipulates the reboiler heat duty by adjusting the steam flow to ensure the bottom 

product achieves 99 mole% isobutene purity. This controller ensures that the correct 

amount of heat is supplied to the reboiler for optimal separation. 
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Table 4. Fault Scenarios and Their Descriptions 

The top five models were shortlisted by evaluating the 

performance of these diverse algorithms and their variants 

based on their accuracy, precision, recall, and F1 score. This 

comprehensive evaluation ensures the selection of the most 

effective and reliable models for fault diagnosis in the 

distillation column, leveraging the unique strengths of each 

algorithm to enhance system performance. The different 

machine learning algorithms and their advantages and 

limitations in fault diagnosis are summarized in Table 6. 

2.8. Step 6: Build ML model by different algorithms 

The performance of various machine learning models for 

fault diagnosis is evaluated using statistical measures like 

true positive (TP), true negative (TN), false negative (FN), 

and false positive (FP). Key metrics include accuracy, recall, 

precision, and F1 score, which assess each model's 

effectiveness. Accuracy indicates the overall correct 

predictions, recall measures the ability to identify faults, 

precision evaluates the correctness of detected faults, and F1 

score balances recall and precision. A detailed breakdown of 

these metrics is provided in Table 7.    

2.9. Step 8: Build and deploy fault detection and diagnosis 

system by best performing models 

The top five best-performing machine learning models are 

selected to build and deploy the Fault Detection and 

Diagnosis (FDD) system. This system is integrated into the 

distillation column's control framework to monitor 

operations and continuously diagnose faults in real-time. 

Fresh data from the distillation column is input into each of 

the five classifiers, which classify the fault independently. A 

voting logic is then applied to aggregate the outputs of all 

classifiers, making the final fault classification based on the 

majority vote. This stacked classifier approach enhances the 

reliability and robustness of the FDD system, ensuring 

prompt and accurate fault detection and diagnosis. The 

deployment of this advanced FDD system significantly 

improves operational reliability and safety. 

 

 

 

 

 

 

Fault 

ID 

Fault 

Description 

Fault Type Magnitude Impacts 

F1 Feed tray 

efficiency loss 

Step Fault Efficiency reduced from 

normal to 1 Percent  

Significant reduction in tray efficiency, causing 

weeping and decreased liquid levels on the feed 

tray. 

F2 Significant 

feed loss 

Step Fault Feed control valve opening 

reduced from 50 Percent to 8 

Percent 

Severe reduction in feed flow, leading to 

operational instability, potentially from valve 

malfunction. 

F3 Feed 

temperature 

drop 

Step Fault Feed temperature drop 

from(68-30)°C  

Drastic temperature reduction impacting top and 

bottom product compositions and flow rates. 

F4 Feed 

composition 

fluctuations 

Random Variation Isobutane mole% fluctuates 

between 3.33% to +16.67 % 

from its normal value 

Variability in feed composition affects reflux rate, 

reboiler duty, and overall product consistency. 

F5 Top tray 

efficiency loss 

Step Fault Efficiency reduced to 1 

Percent from normal  

Similar to F1 but impacts the top (2nd) tray, 

resulting in poor separation and product quality. 

F6 Bottom tray 

efficiency loss 

Step Fault Efficiency reduced to 1 

Percent from normal  

Affects the bottom (30th) tray, reducing vapor-

liquid separation efficiency and impacting product 

purity. 

F7 Refining 

section 

efficiency loss 

Step Fault Efficiency for all trays above 

the feed tray reduced to 1 

Percent  

Impairs the refining section’s efficiency, 

compromising overall column performance. 

F8 Reflux valve 

stiction 

Random Variation Oscillation amplitude ±35 

Percent of the nominal valve 

position 

Valve stiction causes large fluctuations in reflux 

flow, affecting product quality and energy 

efficiency. 

F9 Reboiler steam 

valve stiction 

Random Variation Oscillation amplitude ±45 

Percent of the nominal valve 

position 

Steam flow irregularities caused by stiction affect 

the bottom product composition and energy usage. 
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Sl 

no  

Selected variables for FDD 

(global level) without 

feature engineering 

Shortlisted top 

five variables 

after feature 

engineering 

1 Feed Composition (Isobutane 

mole fraction) 

Feed Flow, kilo 

mole/hour 

2 Feed Flow, kilo mole/hour Feed temperature, 

°C 

3 Feed temperature, °C Feed Composition 

(Isobutane mole 

fraction) 

4 Top Composition, Propane mole 

fraction 

Reflux Flow, kilo 

mole/hour 

5 Bottom Composition, isobutene 

mole fraction 

 

6 Reflux drum level, meter  

7 Bottom sump level, meter  

8 Top Temperature, °C  

9 Bottom Temperature, °C  

10 Top distillate Flow, kilo 

mole/hour 

 

11 Bottom flow, kilo mole/hour   

12 Column Pressure, bar  

13 Reflux Flow, kilo mole/hour  

14 Reboiler Duty, million 

kilocalories /hour 

 

15 Condenser Duty, million 

kilocalories /hour 

 

 

Table 5. Selected Variables for Fault Diagnosis 

2.10. Step 9: enhance model interpretability with 

explainable artificial intelligence 

To enhance the interpretability of the fault diagnosis 

models, we incorporate Explainable AI (XAI) techniques, 

such as Local Interpretable Model-agnostic Explanations 

(LIME) and Shapley Additive Explanations (SHAP). XAI 

is crucial for building trust and understanding in machine 

learning models, allowing plant engineers to interpret and 

validate the decisions made by the FDD system. By 

applying LIME to the most accurate model among the top-

performing models, we can provide detailed insights into 

which process parameters are responsible when a fault 

occurs. SHAP values further explain the contribution of 

each feature to the model's predictions. These techniques 

guide plant engineers in quickly diagnosing the root cause 

of faults, facilitating timely preventive and corrective 

actions to maintain operational safety and efficiency. 

3. RESULTS AND DISCUSSION 

3.1. Results of dynamic simulations 

This section presents the results of various fault scenarios 

simulated using Aspen Plus Dynamics for a distillation 

column, revealing the system's response and control 

strategy effectiveness under different conditions. All the 

controllers are put in auto mode during dynamic simulation 

to allow them to take corrective actions when a fault 

occurs. Blue colour dotted line in figure 3-11 represents the 

parameters in operation and solid orange colour line 

represents in faulty operation in closed loop. 

Figure 3 illustrates the impact of feed temperature change 

on various distillation column variables. A step decrease in 

feed temperature leads to reduced top product purity and 

increased reboiler heat duty, indicating higher energy 

demand. The control system adjusts the reflux flow to 

stabilize the process, emphasizing the need for robust 

temperature control to maintain product quality and 

stability. 

Figure 4 shows the effect of feed loss on process variables. 

A significant reduction in feed flow causes sharp declines 

in product purity and reduced reboiler heat duty. The 

control system exhibits limited ability to compensate, 

emphasizing the importance of reliable feed flow to 

prevent process disruptions. 

Figure 5 presents the impact of feed tray efficiency 

reduction on distillation column performance. Reduced 

tray efficiency results in lower product purities and 

increased variability in reboiler heat duty and reflux flow, 

underscoring the need to maintain optimal tray efficiency 

for consistent operation. 

Figure 6 demonstrates the effect of feed composition 

changes on process variables. Variations in feed 

composition cause significant fluctuations in product 

purity, reboiler duty, and reflux flow. Monitoring and 

adjusting feed composition are crucial for maintaining 

process efficiency. 

Figure 7 depicts the impact of top tray efficiency reduction 

on the distillation column. A decrease in top tray efficiency 

leads to lower product purity and increased variability in 

process variables, emphasizing the importance of regular 

maintenance and monitoring to prevent major disruptions. 

Figure 8 shows the effect of bottom tray efficiency 

reduction on process performance. 

 

 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

9 

 

Serial 

No 

Key 

performance 

indices  

Calculation Significance 

1 Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

[𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)

+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁) + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)]

 

 

 

This metric represents the ratio of correctly 

predicted observations to the total number of 

observations. 

2 Specificity  
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

true negative (TN) 

true negative (TN), +false positive (FP)
 

It measures the proportion of actual negatives 

that are correctly identified as such by the 

classifier. 

3 Recall   

𝑅𝑒𝑐𝑎𝑙𝑙 =
true positive (TP)

true positive (TP) + false negative (FN) 
 

Also known as, sensitivity, recall is the 

conditional probability of correctly identifying 

a fault, given that the sample is faulty. 

4 Precision 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

true positive (TP)

true positive (TP) + false positive (FP) 
 

Precision indicates the conditional probability 

of a detected fault being correct.  

5 F1 Score 
𝐹1 = 2 ×  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The F1 score is a measure that balances recall 

and precision, providing a single metric for 

evaluating the overall performance of the fault 

diagnosis system. It is the harmonic mean of 

recall and precision 

6 G-mean 𝐺 𝑚𝑒𝑎𝑛 =  √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

Where Specificity is already defined above and  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
true positive (TP)

true positive (TP) + false negative (FN) 
 

 

It provides a balance between the sensitivity 

(recall for the positive class) and the specificity 

(recall for the negative class), aiming to 

maximize both while ensuring that one does not 

significantly overshadow the other. 

 

Table 7. Key Performance Indices for Machine Learning Algorithm 

 

Bottom tray inefficiency causes a decline in bottom 

product purity and variability in reboiler duty, highlighting 

the need for efficient operation across all trays for 

maintaining overall performance. 

Figure 9 illustrates the impact of reduced refining section 

tray efficiency. A decrease in efficiency leads to lower 

product purities and variability in reboiler duty and reflux 

flow, stressing the importance of effective monitoring and 

maintenance of the refining section. 

Figure 10 presents the effect of reflux valve stiction on 

process variables. Valve stiction causes oscillations in 

product purity, reboiler duty, reflux flow, and product flow 

rate, demonstrating the challenges posed by valve issues 

and the need for regular valve maintenance. 

Figure 11 shows the effect of reboiler steam valve stiction 

on the distillation column. Like reflux valve stiction, steam 

valve stiction causes fluctuations in product purity and 

energy balance, reinforcing the importance of control 

strategies and valve maintenance. 

These dynamic simulation results provide valuable insights 

into how various fault conditions impact distillation 

column performance. The findings emphasize the need for 

robust control strategies and regular maintenance to ensure 

process stability and product quality, informing the 

development of advanced fault detection and diagnosis 

methods for greater reliability in chemical processes. 

3.2. Results of feature engineering 

After collecting time series data for 15 parameters (see 

Table 5), fault numbers were assigned as the output in the 

last column. The data was then processed using the MRMR 

algorithm for feature selection, reducing redundancy and 

enhancing feature relevance. This improved computational 

efficiency and often boosted classification accuracy. 

Figure 12 and table 5 highlights the top five dominant 
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features, which were selected for model training. The 

reduced feature set enabled faster training and inference, 

making the fault detection system more suitable for real-

time use. MRMR proved valuable in maintaining high 

accuracy while reducing computational load. 

3.3. Fault classification accuracy 

This section evaluates the fault classification accuracy of 

various machine learning algorithms using both the full set 

of 15 parameters and a reduced set of five key parameters 

selected via MRMR feature engineering. The focus is on 

the performance of models with the reduced parameters 

and identifying the top-performing models. 

 

3.3.1. Accuracy with reduced parameters: 

 

Table 8 summarizes Fault Classification Accuracy of 

different machine learning algorithm. After feature 

reduction, the Fine Tree model in the Decision Trees 

category achieved an outstanding accuracy of 99.80 

Percent, surpassing the Medium Tree (98.20 Percent) and 

Coarse Tree (40.10 Percent) models. Discriminant 

Analysis models, LDA and QDA, performed well, both 

achieving around 87 Percent accuracy. However, Logistic 

Regression saw a notable  

accuracy drop from 95.34 Percent to 79.30 Percent, 

indicating sensitivity to feature reduction. 

Naive Bayes models, especially Gaussian and Kernel, 

improved to 97.40 Percent. SVM models remained strong, 

with Quadratic SVM reaching 99.80% and other variants 

maintaining accuracies above 96 Percent. KNN classifiers 

performed exceptionally well, with Fine and Weighted 

KNN models both achieving 99.80 Percent accuracy, while 

Medium and Cosine KNN models were slightly lower at 

99.60 Percent and 99.50 Percent. 

Among Ensemble classifiers, the Bagged Trees model 

achieved the highest accuracy of 99.90 Percent, with 

Boosted Trees and Subspace k-NN following closely at 

99.70 Percent and 98.70 Percent. Neural Networks also 

showed excellent results, with Medium NN and Wide NN 

achieving 99.70 Percent and 99.80 Percent, while Narrow 

and Bilayered NN models exceeded 99 Percent. 

 

 
 

Figure 3. Impact of Feed Temperature Change on Distillation Column Variables (A decrease in feed temperature results in 

reduced product purity and increased reboiler duty. The control system compensates by increasing reflux flow) 

 

3.3.2. Identification of top models and building a 

robust stack FDD system 

 

When comparing the average accuracy between the full 

and reduced parameter sets, performance remained stable 

or improved for most models. The reduction from 15 to five 

parameters did not significantly affect accuracy, 

demonstrating the effectiveness of the MRMR feature 

selection method.Using the reduced parameter set, the top 

five models identified are Bagged Trees (99.90 Percent 

accuracy), Quadratic SVM (99.80 Percent), Fine KNN 

(99.80 Percent), Wide Neural Network (99.80 Percent), 

and Fine Tree (99.80 Percent). Figure 13 shows the 

confusion matrix of Ensemble bagged tree model with 99.9 

Percent accuracy. Table 9 shows the Comparison of 

Classification Metrics for top 5 models. 

 

These models proved to be the most reliable for fault 

detection in the distillation column. Fresh data from the 

distillation column is fed into each of the five classifiers, 

which independently classify the fault. The final fault 

classification is then determined using a voting mechanism 

that aggregates the outputs, with the majority vote deciding 

the result. 
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Figure 4. Impact of Feed Loss on Distillation Column Variables (Sudden feed reduction leads to instability in product flow 

and purity. The system struggles to maintain setpoints, highlighting vulnerability to feed disruptions) 

 

 
 

Figure 5. Impact of Feed Tray Efficiency Reduction on Distillation Column Variables (Decreased tray efficiency causes 

deteriorated separation, visible in reduced product purities and unstable energy demand) 

 
 

Figure 6. Impact of Feed Composition Change on Distillation Column Variables (Variations in feed composition lead to 

oscillations in reflux and reboiler duty, showing the sensitivity of the process to raw material changes) 
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Figure 7. Impact of Top Tray Efficiency Reduction on Distillation Column Variables (Loss of top tray efficiency results in 

impaired light-end separation, impacting top product purity and increasing energy consumption) 

 

 

 
 

Figure 8. Impact of Bottom Tray Efficiency Reduction on Distillation Column Variables (Bottom tray inefficiency causes 

variation in bottom product quality and reboiler duty, demonstrating poor stripping performance) 

 
 

Figure 9. Impact of Refining Section Tray Efficiency Reduction on Distillation Column Variables (Global reduction in 

refining section efficiency impacts overall separation, leading to broad product quality degradation) 
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Figure 10. Impact of Reflux Valve Stiction on Distillation Column Variables (Reflux flow oscillations caused by stiction lead 

to fluctuating purities and energy usage, indicating control loop performance degradation) 

 

 

 
 

Figure 11. Impact of Reboiler Steam Valve Stiction on Distillation Column Variables (Steam valve stiction induces irregular 

heat input, seen as product purity swings and reboiler duty instability) 
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Figure 12. Relative Importance of Process Variables in Distillation Column Operation as per MRMR scores (Reboiler duty, 

feed flow, reflux flow, and feed composition rank highest in fault detection relevance) 

 

 

 

 
 

 

Figure 13. Confusion matrix of ensemble bagged tree model (99.9% accuracy) (Perfect or near-perfect classification accuracy 

achieved for all fault categories using ensemble-based classifier) 
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Table 8. Fault Classification Accuracy of different machine learning algorithm 

 

3.4. Fault classification accuracy 

The use of Explainable AI (XAI) methods, specifically 

LIME and SHAP, provides valuable insights into how 

machine learning models make predictions. LIME offers 

faster, localized explanations by simplifying complex 

models into interpretable components. It is ideal for 

gaining quick insights into how specific features affect 

individual predictions. On the other hand, SHAP provides 

a more theoretically grounded, consistent measure of 

feature importance across both local and global models. 

Although SHAP is more computationally intensive, its 

consistency and reliability across model instances make it 

crucial for broader insights.  

Both LIME and SHAP were implemented in Matrix 

Laboratory MATLAB to enhance model transparency. As 

Sr No Classification Algorithms Accuracy  

(%) with all 15 parameters 

Accuracy  

(%) with five parameters 

1 Decision Trees   
 

1.1 Fine Tree 99.73 99.80 

1.2 Medium Tree 98.69 98.20 

1.3 Coarse Tree 47.52 40.10 

2 Discriminant Analysis   
 

2.1 Linear Discriminant Analysis (LDA)  84.09 87.00 

2.2 Quadratic Discriminant Analysis (QDA) 84.10 87.10 

3 Logistic Regression   
 

3.1 Efficient logistic regression 95.34 79.30 

4 Naive Bayes   
 

4.1 Gaussian Naïve Bayes 95.16 97.40 

4.2 Kernel Naïve Bayes 95.16 97.40 

5 Support Vector Machine (SVM)  
 

5.1 linear 98.86 94.50 

5.2 Quadratic 99.95 99.80 

5.3 Cubic 99.93 99.80 

5.4 Fine Gaussian 99.67 99.80 

5.5 Medium Gaussian 99.84 99.60 

5.6 Coarse Gaussian 99.62 96.60 

6 k-Nearest Neighbour (KNN)   
 

6.1 Fine KNN 99.76 99.80 

6.2 Medium KNN 99.54 99.60 

6.3 Coarse KNN 98.89 98.20 

6.4 Cosine KNN 99.55 99.50 

6.5 Cubic KNN 99.53 99.60 

6.6 Weighted KNN 99.67 99.80 

7 Ensemble Classifier   
 

7.1 Boosted trees 99.79 99.70 

7.2 Bagged trees 99.89 99.90 

7.3 Subspace discriminant 85.88 87.90 

7.4 Subspace can 99.65 98.70 

7.5 RUS Boosted Tree 98.10 98.20 

8 Neural Network Classification Models  
 

8.1 Narrow NN 99.85 99.30 

8.2 Medium NN 99.90 99.70 

8.3 Wide NN 99.90 99.80 

8.4 Bilayered NN 99.83 99.80 

8.5 Trilayered NN 99.81 99.70 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

16 

seen from the bar plots (Figures 14 and 15), these methods 

enabled a detailed understanding of the fault prediction 

process by highlighting which variables had the greatest 

influence on the model's decisions. Table 9 summarizes all 

the insights getting from LIME and SHAP values in figure 

14 and 15. This clarity allowed for improved model 

validation, debugging, and optimization. By providing this 

level of interpretability, engineers can better trust the 

decisions made by the machine learning models.  

Shapley plots (Figure 14) illustrate the contribution of 

features to model predictions. Key variables such as 

reboiler duty, feed flow, and reflux flow consistently appear 

as the most influential factors in fault scenarios. For 

instance, in Fault 1 and Fault 2, reboiler duty and feed flow 

dominate, highlighting the need for close monitoring of 

these parameters to prevent faults. Shapley values provide 

detailed root cause insights, helping engineers take targeted 

actions to improve reliability and efficiency. The frequent 

appearance of reboiler duty and feed flow as dominant 

predictors across faults shows their critical role in 

maintaining distillation column performance. Shapley 

values (Table 9) help identify these key predictors, 

allowing for focused control and improved fault 

management. 

LIME plots (Figure 15) provide local explanations for fault 

predictions, with reboiler duty consistently emerging as the 

top predictor across all faults. This reinforces its 

significance for column stability. While LIME offers quick 

insights into individual faults, it complements the broader 

view provided by SHAP. By combining LIME and SHAP, 

both local and global insights are obtained. LIME offers 

fast, specific insights, while SHAP ensures consistency 

across the model. Together, they identify reboiler duty as 

the most critical factor for fault detection, improving 

process monitoring and optimizing performance. 

Metric Ensemble 

Bagged 

Trees 

Quadratic 

SVM 

Fine 

KNN 

Wide 

Neural 

Network 

Fine 

Tree 

Accuracy 1.000 0.999 0.999 0.999 0.999 

Specificity 1.000 1.000 1.000 1.000 1.000 

Recall  0.998 0.997 0.997 0.997 0.997 

Precision 0.998 0.997 0.997 0.997 0.997 

F1 Score 0.998 0.997 0.997 0.997 0.997 

G-mean 0.999 0.998 0.998 0.998 0.998 

Table 9. Comparison of Classification Metrics for top 5 

models 
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Figure 14. Shapley Value Explanations for Key Predictors across nine (Fault Scenarios: Reboiler duty emerges as the 

dominant feature across multiple faults, followed by feed flow and reflux flow.) Fault 1 (Orange), Fault 2 (Yellow), Fault 3 

(Green), Fault 4 (Light Green), Fault 5 (Cyan), Fault 6 (Blue), Fault 7 (Dark Blue), Fault 8 (Magenta), Fault 9 (Pink) 
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Figure 15. LIME Explanations for Key Predictors across nine Fault Scenarios in Distillation Column Process (LIME 

confirms reboiler duty as the most influential predictor, providing localized insights aligned with SHAP findings) 
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Table 10. Key Predictors for Fault Scenarios identified by LIME and SHAP in Order of Influence 

 

  

4. CONCLUSION 

This study outlines a comprehensive approach to 

developing a Fault Detection and Diagnosis (FDD) system 

for a distillation column using machine learning. By 

creating dynamic simulations and applying data pre-

processing, feature engineering with the MRMR algorithm, 

and multiple machine learning models, accurate fault 

detection and diagnosis were achieved. 

The results show that combining algorithms like Decision 

Trees, Discriminant Analysis, Logistic Regression, SVM, 

k-nearest Neighbours, Ensemble Methods, Naive Bayes, 

and Neural Networks significantly enhances system 

reliability. Implementing a stacked classifier system 

further improved fault detection accuracy and stability. 

Incorporating Explainable AI (XAI) techniques, such as 

LIME and SHAP, enhanced the interpretability of the 

models, enabling plant engineers to understand and trust 

the system’s decisions, facilitating timely corrective 

actions. This study underscores the value of combining 

simulation-based data with advanced machine learning and 

XAI techniques to build robust FDD systems, improving 

safety, efficiency, and reducing downtime. The novelty of 

this paper lies in integrating dynamic simulations for fault 

data generation, applying advanced ML algorithms for 

Fault Key Predictors 

(LIME - in order of 

influence) 

Key Predictors 

(SHAP - in order 

of influence) 

Summary 

Fault 1 1. Reboiler Duty (Q) 

2. IB MF in Feed 

3. Feed Flow 

1. Reboiler Duty(Q) Reboiler Heat Duty (Q) is the dominant factor, with Isobutane Mole 

Fraction (IB MF) and Feed Flow contributing less. Both LIME and 

SHAP confirm the importance of Reboiler Heat Duty (Q). 

Fault 2 1. Feed Flow 

2. Reboiler Duty  

1. Feed Flow 

 

 

2. Reboiler Duty  

Feed Flow plays the primary role in this fault, with Reboiler Heat Duty 

(Q) as a secondary factor. SHAP aligns with LIME’s findings. 

Fault 3 1. Reboiler Duty  

2. IB MF in Feed 

1. Reboiler Duty  

 

 

2. IB MF in Feed 

Both methods highlight Reboiler Heat Duty (Q) and IB MF in feed as 

critical to the fault. 

Fault 4 1. Reboiler Duty  

2. Feed Temperature 

3. Feed Flow 

1. Reboiler Duty  Reboiler heat duty consistently emerges as the most influential 

predictor with minimal contribution from Feed Temp and Flow. 

SHAP confirms this. 

Fault 5 1. Reboiler Duty  

2. Feed Flow 

3. Feed Temperature 

1. Reboiler Duty  Reboiler Heat Duty (Q) plays the most significant role, while Feed 

Flow and Temp have lesser impacts. 

Fault 6 1. Reboiler Duty  

2. IB MF in Feed 

3. Feed Flow 

1. Reboiler Duty  Reboiler Heat Duty (Q) remains the top predictor, with IB MF and 

Feed Flow playing lesser roles. 

Fault 7 1. Reboiler Duty  

2. Feed Flow 

1. Reboiler Duty  

 

 

2. Feed Flow 

Reboiler Heat Duty (Q) is the primary predictor, with a smaller 

contribution from Feed Flow. 

Fault 8 1. Reboiler Duty  

2. Reflux Flow 

1. Reboiler Duty  

 

 

2. Reflux Flow 

Reboiler Heat Duty (Q) and Reflux Flow are the most important 

factors for this fault, as shown by both methods. 

Fault 9 1. Reboiler Duty  

2. Feed Flow 

3. Reflux Flow 

1. Reboiler Duty  Reboiler Heat Duty (Q) is the leading factor, with smaller 

contributions from Feed Flow and Reflux Flow. SHAP supports this. 
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FDD, and using XAI techniques to enhance model 

interpretability. This approach offers an effective solution 

for fault diagnosis in distillation columns, with future work 

focused on integrating ML models, historical data, and 

XAI for even better fault detection. 

Although the simulated faults are primarily step-type, they 

reflect several common real-world operational disruptions 

such as sudden valve malfunction, tray damage, or feed 

composition jumps. Expanding the dataset to include 

gradual degradation profiles observed in actual plant 

history would further enhance system generalization and 

industrial relevance. 

Future work could explore additional algorithms and refine 

the stacked classifier system. Expanding this approach to 

other real industrial processes would increase its 

applicability and advance fault detection technologies 

across sectors. 
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