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ABSTRACT

Spacecraft attitude control systems rely on reaction wheels
(RW) as the primary means of precise three-axis attitude con-
trol. Faults in these RWs might lead to system instability
and, in severe cases, mission failure. This paper presents
advanced machine learning-based techniques for the detec-
tion, isolation, and identification of RW faults in spacecraft.
The proposed approach leverages advanced data analytics and
machine learning algorithms to analyze sensor data from the
RWs, enabling early detection of faults and effective isola-
tion of the faulty component, and identifying the types of
faults detected, specifically, voltage, current, and temperature
faults. Three-axis controlled satellite high-fidelity models are
simulated to generate data for both nominal and faulty states
of RW. The simulated data is employed with the Fault De-
tection, Identification, and Isolation (FDII) approach. The
generated data is passed into five different machine learning
classifiers, and the isolation and identification results are ver-
ified via cross-validation. The proposed techniques are tested
on three defined datasets using the three-orthogonal RW con-
figuration to verify their robustness. The results show that the
system has higher isolation and identification accuracy when
compared to other studies that used various methodologies.

1. INTRODUCTION

Spacecraft is considered one of the most expensive control
systems created in recent decades. It consists of a group of in-
tegrated systems, such as the power supply system (PSS), the
attitude determination and control subsystem (ADCS) , ther-
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mal control system (TCS), and communication system(CS).
The attitude determination and control subsystem (ADCS),
which uses reaction wheels (RWs) as actuators, is one of the
most vital components of a spacecraft. By speeding up or
slowing down the flywheels attached to an electric motor,
RWs adjust the satellite’s orientation or perform maneuvers
under disturbances (Rahimi et al.|(2017)).

The complexity of a single RW results in a highly nonlinear
dynamic system. More RWs can be added to the assembly,
combined with the satellite’s attitude and dynamics in orbit.
The minimum number of RWs required for a spacecraft to
achieve three-axis attitude control is three (Ni et al.|(2021)).
Each RW is typically aligned along a different axis (X, Y, and
Z) to allow the spacecraft to rotate in any direction. However,
for redundancy and increased reliability, spacecraft often use
four RWs arranged in a tetrahedral configuration (Nomura et
al.[(2016)). Spacecraft rely heavily on RWs for attitude con-
trol. Reaction wheels store momentum and can be rotated to
counteract unwanted torques, keeping the spacecraft pointed
in the desired direction, as shown in Figure .

When a spacecraft changes the speed of one RW, such as by
increasing its spin rate, it affects the system’s overall angular
momentum. To conserve angular momentum, the other two
wheels must adjust to compensate for this change. This cross-
coupling effect means the operation of one wheel directly
influences the behavior of the others (Ismail & Varathara-
j0o[(2010)). Accordingly, RW faults can significantly impact
spacecraft performance and mission success. Therefore, en-
suring the reliability and mission success of these systems is
essential, leading to the advancement of fault detection, iso-
lation, and identification (FDII) techniques for ADCS. De-
tecting faults and isolating their root causes becomes difficult
if the parameters of interest are non-measurable to the FDII
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Figure 1. Reaction Wheels within Spacecraft.

scheme.

FDII approaches are mainly divided into model-based and
data-driven categories. Model-based approaches continuously
compare the actual system state with the nominal state to gen-
erate residuals using a mathematical model of ideal system
behavior. This method describes the system’s dynamic be-
havior and physical understanding. Data-driven approaches
analyze system outputs and rely on large amounts of data,
performing well with large-scale and complex systems while
reducing time and costs by eliminating the need for model de-
velopment. These approaches are beneficial when no mathe-
matical model or expert knowledge is available (Tidriri et al.
(2016)).

Model-based FDII techniques leveraging machine learning
(ML) offer significant advantages over traditional methods,
especially in complex systems like spacecraft RWs. ML-
based techniques learn directly from operational data, reduc-
ing complexity and computational demands. They excel at
recognizing patterns and subtle relationships in data, improv-
ing accuracy and robustness in fault detection under diverse
conditions. These techniques are highly scalable and flexible,
and easier to implement. They also facilitate predictive main-
tenance by identifying faults early, reducing downtime, and
extending component lifespan. Additionally, ML-based FDII
systems continuously improve with more data, enhancing op-
erational efficiency and adaptability. Overall, integrating ML
with model-based FDII techniques provides a powerful, effi-
cient, and adaptable solution for modern aerospace applica-
tions.

A robust FDII technique that can accurately detect when a
fault occurs, isolate which specific reaction wheel is affected,
and identify the type of fault, whether transient, abrupt, or
permanent. Figure is a primary objective. ML techniques
offer promising solutions by leveraging patterns in sensor data
to differentiate between normal operation and various fault
conditions.
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Figure 2. types of Faults.

Faults in ADCS RWs, can be categorized as abrupt and tran-
sient time-varying faults, along with a generalized fault case,
which are introduced into the RW components via bus volt-
age and torque gain variations. Abrupt faults lead to imme-
diate system shutdown, while transient faults are temporary
and may resolve over time. Consequently, multi-fault detec-
tion in spacecraft RW is critical for monitoring and identify-
ing potential faults within these ADCS components. Space-
craft RWs can experience various fault combinations, includ-
ing temperature and voltage variations, torque changes, and
current fluctuations in motor axis windings. Hybrid faults,
involving over-voltage, under-voltage, current loss, and tem-
perature elevation, may occur simultaneously, impacting RW
performance. Time-varying faults, evolving due to wear, com-
ponent degradation, or other factors, can also occur alongside
other fault types, creating intricate fault scenarios.

2. BACKGROUND

Several studies have explored the use of ML for RW FDII.
Some researchers implemented FDII with only one axis RW;
on the other hand, other researchers implemented it using
other configurations of multiple RW.

J. Vaz Carneiro’s study (Vaz Carneiro et al.|(2022)) provides a
comprehensive overview of various ML algorithms applied to
RW FDII, including Support Vector Machines (SVMs), Arti-
ficial Neural Networks (ANNSs), Decision Trees (DT), Ran-
dom Forests (RF), Kernel Methods (KM), and Deep Learn-
ing (DL) techniques. Both supervised and unsupervised al-
gorithms are shown to perform effectively, even when faults
produce subtle effects in telemetry data.

Building on such insights, Ehab A. Omran (Omran & Mur-

tada|(2019)) introduces an efficient anomaly classification method

specifically for 1-axis spacecraft RW, Figure@. This method
employs the Prony method for feature extraction and a feed-
forward neural network with backpropagation for anomaly
detection. Complementing this, J.R. Mansell (Mansell|(2020))
explores the application of DL to spacecraft Fault Detection,
Isolation, and Recovery (FDIR) through transfer learning. His

approach utilizes One-Class Support Vector Machines (OCSVMs)

and Long Short-Term Memory (LSTM) networks to diagnose
faults in RW, enabling the transfer of learning from simula-
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Figure 3. Prony Method FDII Confusion Matrix (Omran & Murtada
2019)).

tion data to real satellite data.

Further enhancing ML-based fault diagnosis, Z. Zhu et al.
(2022)) propose the Particle Swarm Optimization
Extreme Learning Machine (PSO-ELM) algorithm to over-
come the limitations of the Extreme Learning Machine (ELM)
in diagnosing faults in satellite RW. This approach improves
both the accuracy and generalization of fault classification.
Additionally, S. Voss ) investigates the applica-
tion of DL for fault detection and isolation within the ADCS,
focusing on generating useful telemetry through simulations.

To address time-varying faults, AER Abd-Elhay
let al.[(2022)) presents a DL method combining a 1D Convo-
lutional Neural Network (1D-CNN) with an LSTM network
for fast and accurate fault identification in spacecraft RWs.
Finally, T.S. Abdel Aziz (Abdel Aziz et al.|(2024)) introduces
advanced ML-based FDII techniques that enhance the Prony
method for both single and multiple fault management, lead-
ing to significant improvements in fault detection accuracy,
isolation time, and memory efficiency in critical spacecraft
subsystems like ADCS.

These studies collectively advance the field of spacecraft RW
FDII by utilizing various ML algorithms and techniques. This
results in more accurate fault detection, improved fault isola-
tion, and overall greater system reliability. However, previ-
ous studies often assumed that only one axis of the RW was
faulty while the other axes operated normally, which may po-
tentially lead to inaccurate fault detection. Consequently, re-
searchers have started to explore the possibility of faults oc-
curring in different 3-axis RW, as described below.

M.O. Folami ) explores an ML approach using
an enhanced RF classifier, which incorporates features from
multiple domains: temporal, statistical, and spectral for iso-
lating faults in 3-axis reaction wheels (RWs). The proposed
method improves the accuracy and reliability of fault isola-

tion, successfully detecting and isolating multiple fault sce-
narios with robust performance, even in the presence of noisy
data, missing sensors, and missing values.

B. Akbarinia (Akbarinia & Shahmohamadi Ousaloo|(2023))
advances this field by presenting an improved Extreme Learn-
ing Machine (ELM)-based approach for multi-sensor RW fault
diagnosis. ELMs, known for their rapid training speed, are
enhanced in this study through a novel feature selection method
that significantly boosts their effectiveness in detecting and
diagnosing faults in onboard 3-axis RWs.

Building on the robustness of ensemble methods, Afshin Rahimi
(Rahimi & Saadat|(2019)) investigates the application of RF
and DT algorithms for fault isolation in RWs onboard 3-axis
controlled satellites. Rahimi’s work proposes an ML-based
approach that leverages an enhanced RF classifier with fea-
tures extracted from multiple domains, such as temporal, sta-
tistical, and spectral data, to achieve effective RW fault iso-
lation, Three datasets, each representing permanent, abrupt,
and transient faults, were used in the process, the setup of the
technique as shown in Figure.
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Figure 4. Ensemble ML Proposed Setup (Rahimi & Saadat|(2019))

Most research involves generating residuals through analyti-
cal models, which do not effectively explain detected faults.
Mixed learning models are constrained by the performance of
the best classifier in the ensemble, and many methods focus
solely on a single RW, overlooking multiple faults or differ-
ent RW assemblies. Therefore, the objective of this study is
to design and develop an ML-based FDII technique capable
of autonomously detecting, isolating, and identifying faults
within a nonlinear system, specifically for an in-orbit closed-
loop controlled satellite with three-axis RWs as actuators.

For validation, two approaches will be discussed: one apply-
ing the proposed ML-based technique and Prony method on
three-axis RWs (as Prony is typically used only with single-
axis RW (Omran & Murtada|(2019|[2016)), and the other ap-
plying the proposed technique on a separate dataset of three
main fault types for three-axis RWs to compare performance

with an ensemble ML-based FDII technique (Rahimi & Saa-
(2019)).

Due to the unavailability of datasets published for previous
research, a simulation model of the "ITHACOT Type A" by




INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Goodrich (Bill|(1998)) 3-axis Orthogonal configuration RWs
was developed using MATLAB Simulink will be discussed
later used to generate three different datasets. This simula-
tion model encompasses accurate representations of RW be-
haviors under normal operation and diverse fault scenarios. It
includes mechanisms to inject simulated faults into the RWs,
generating sensor data that reflects realistic operational con-
ditions. This technique aims to apply to other systems but
is designed for this specific application, and this will be dis-
cussed further.

3. PROBLEM DEFINITION

The occurrence of faults in a spacecraft’s three-axis RWs poses
a critical challenge in aerospace engineering (Rahimi & Saa-
dat|(2020);|Folami|(2021);|Castaldi et al.|(2022));] Abbasi Nozari
et al.[{(2024)). RWs are fundamental to maintaining the space-
craft’s precise orientation, each aligned along different or-
thogonal axes. When faults arise, they can severely disrupt
mission objectives and compromise the stability of the space-
craft. The challenge lies in detecting and identifying these
faults with acceptable accuracy swiftly while contending with
the spacecraft’s constrained resources, minimal memory, and
time.

Furthermore, the problem is compounded by the need to man-
age voltage and current faults, but also includes those related
to temperature, across all three axes. Addressing these faults
comprehensively is essential for ensuring the stability and
success of spacecraft missions, highlighting the complexity
and significance of this engineering challenge.

4. PROPOSED ML-BASED FDII TECHNIQUE
4.1. Methodology

The proposed FDII technique employs five distinct ML al-
gorithms, each applied to a custom orthogonal RW configu-
ration model to address the complexity of fault diagnosis in
spacecraft. The selected ML algorithms are SVM, Atrtificial
Neural Networks (ANN), Ensemble Subspace Discriminant
(ESD), DT, and RF. DT and RF fall within ensemble ML
techniques and are included here for comparison with pre-
vious work (Rahimi & Saadat| (2019)). Due to the lack of
readily available datasets specific to ensemble ML for RWs,
a simulated dataset was developed for this study, ensuring
comprehensive coverage of various fault conditions. Each
model was specifically tuned to detect, isolate, and classify
three main types of faults: transient, abrupt, and permanent,
leveraging the orthogonal RW configuration model to achieve
precise fault location and type identification.

The study’s three datasets are tailored to represent each fault
type and capture the unique characteristics of each failure
mode. SVMs are effective for distinguishing between nor-
mal and fault conditions in complex, high-dimensional fea-

ture spaces, making them suitable for nuanced fault separa-
tion. ANNs excel in detecting subtle fault patterns within
large datasets, while ESD methods, though less effective alone,
become robust when integrated with other models, enhancing
resilience to complex, high-dimensional fault data. DTs and
RFs perform well in feature selection and segmentation, con-
tributing to reliable fault classification. Given the dynamic
space environment, robustness to noise is essential, and these
models provide inherent resilience critical for practical fault
detection.
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Figure 5. ITHACOT Type A Reaction Wheel Mathematical Model
(Wang et al.|(2015))

The FDII process starts with generating and pre-processing
simulated data. Using a detailed mathematical model based
on the "ITHACOT Type A" three-axis orthogonal configura-
tion by Goodrich (Bill| (1998)), As shown in Figure (5). The
model captures accurate RW behaviors under both nominal
and faulty conditions. The simulation includes mechanisms
for injecting specific voltage, current, and temperature faults,
generating sensor data that reflects realistic operational envi-
ronments for each fault type.

This simulation process is essential for creating a robust train-
ing dataset that enables ML models to learn and classify fault
patterns accurately. The simulation framework illustrates the
3-axis RW structure and the mathematical model for fault in-
jection, designed with flexibility to adapt to other systems but
optimized for this specific application. By utilizing realistic
fault data, it ensures that the ML algorithms are well-suited
for real-world spacecraft operations, enhancing the reliability
and performance of attitude control systems.
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Once deployed, the trained models continuously monitor sen-
sor data, detecting any deviations that indicate a fault. They
isolate the faulty RW and classify the fault type in real time
based on known fault signatures. A rigorous validation phase
ensures that the models generalize well to new fault scenar-
ios, providing consistent reliability in operational conditions.
The block diagram for the proposed technique is shown in

Figure @)
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Figure 6. Proposed technique Block Diagram

For validation, two primary approaches are presented. First,
the proposed ML-based FDII technique is compared against

the Prony method, adapted here for three-axis RWs even though

it has traditionally been applied only to single-axis RW con-
figurations (Omran & Murtadal (2019} [2016)). Second, per-
formance is evaluated by applying the technique to a sep-
arate dataset that includes the three main fault types, with
results benchmarked against state-of-the-art ensemble ML-
based FDII techniques (Rahimi & Saadat|(2019)). This com-
parative analysis assesses accuracy, isolation time, and model
robustness, providing a comprehensive evaluation of the pro-
posed technique’s efficacy relative to established methods.
The integrated approach of ML models combined with a com-
prehensive simulation model aims to significantly improve
spacecraft reliability by enabling proactive fault management.

4.2. Mathematical Simulator

A detailed simulation model of the "ITHACOT Type A" by
Goodrich (1998) for 3-axis orthogonal RWs was devel-
oped using MATLAB Simulink, as shown in Figures .

This simulation model is designed to accurately replicate both
normal and faulty operation scenarios, serving as a critical
tool for generating datasets essential for training and evaluat-
ing ML algorithms within MATLAB’s Classification Learner.

The simulation model captures the dynamics and behaviors of
the RWs under varying operational conditions, including both
normal operation and fault scenarios. The system simulates
spacecraft maneuvers in nominal conditions and integrates
fault injections to simulate real-world challenges that might
impact spacecraft stability. We incorporated environmental
uncertainties by adding spacecraft dynamics and space envi-
ronment blocks into our simulator, guided by the MATLAB
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Figure 7. ITHACOT Type A RW Simulink Simulation Model.

Aerospace Blockset. This allowed us to model effects such
as radiation and thermal fluctuations on sensor readings, en-
suring realistic fault patterns in the simulated data. These
faults are categorized into three primary types: - Transient
Faults: These are short-lived disturbances, such as momen-
tary power fluctuations or brief mechanical anomalies, which
can cause temporary degradation in performance. - Abrupt
faults: These faults occur intermittently and can be due to
components that periodically malfunction, such as electrical
shorts or sensor misreadings that resolve after a period. - Per-
manent Faults: These represent long-lasting or irreversible
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failures, such as a complete loss of functionality in a reaction
wheel due to physical damage or system wear.

By replicating these fault types, the simulation model intro-
duces realistic fault scenarios, which are critical for training
ML models to detect, isolate, and identify faults in real-time
spacecraft operations. The fault injection process is imple-
mented through carefully controlled blocks within Simulink
that modify parameters like voltage, current, and temperature
to simulate each fault type. This approach ensures that the
generated datasets closely resemble operational conditions,
reflecting the dynamic response of RWs under fault condi-
tions.

The model records a wide range of operational parameters,
such as sensor readings (e.g., voltage, current, and tempera-
ture), RW speeds, and other relevant spacecraft performance
metrics. These datasets are then preprocessed to fit the re-
quired input format for MATLAB’s Classification Learner,
where various ML algorithms are used. The generated datasets
were divided into fault categories for each model. The per-
formance of each model is rigorously evaluated using cross-
validation techniques to ensure that the trained algorithms can
generalize well across unseen data.

4.3. Features Extractions

To effectively detect and classify reaction wheel faults, we
extracted features from the time, frequency, and shape do-
mains of the measured signals. These features provide com-
plementary insights into the dynamic behavior of the system
and capture fault-related patterns across electrical and ther-
mal domains.

Time-domain features such as Peak-to-Peak Amplitude, Root
Mean Square (RMS), and Zero-Crossing Rate quantify am-
plitude variations, signal energy, and oscillation frequency.
RMS and Peak-to-Peak are particularly sensitive to excessive
current draw, which may arise from bearing degradation or
mechanical imbalance. Similarly, Zero-Crossing Rate can re-
veal abnormal oscillations induced by voltage instability in
the power electronics driving the reaction wheel motor.

Frequency-domain features such as Fourier Transform, Spec-
tral Centroid, Power Spectral Density (PSD), and Short-Time
Fourier Transform (STFT) capture spectral energy distribu-
tions and transient frequency variations. These features are
critical for identifying voltage ripple effects, where periodic
disturbances in the supply voltage manifest as distinct spec-
tral peaks. Likewise, harmonic distortions in the frequency
spectrum often correspond to current fluctuations caused by
winding degradation, torque ripple, or partial short-circuits in
the motor drive.

Shape-based features, such as Slope and Curvature, describe
the local geometric properties of the signal waveform. The
slope can reveal abrupt transients in voltage or current, while

curvature highlights nonlinearities and sudden waveform de-
viations that often accompany torque disturbances or rapid
dynamic responses. These shape-based indicators are also
correlated with temperature-related faults, as thermal fluctua-
tions modify the resistive and inductive characteristics of mo-
tor windings, leading to nonlinear current—voltage relation-
ships that appear as changes in curvature.

By combining these domains, the extracted features provide
a physically grounded diagnostic representation of reaction
wheel behavior. Time-domain features are effective for cap-
turing amplitude-driven current faults, frequency-domain fea-
tures are suited for detecting spectral patterns of voltage in-
stabilities, and shape-based features are sensitive to nonlinear
behaviors linked to temperature-induced degradations. This
multimodal approach ensures that both gradual degradations
and abrupt disturbances are captured, enabling the robust de-
tection and isolation of reaction wheel faults, as shown in Ta-

ble (1).

Table 1. List of equations for feature extraction

Feature Equation

Peak-to-Peak Amplitude

Ay = max(a(7)) — min((f)) Karlof et al. | 2005)
ZCR = x5 YN 1(a(n) - 2(n — 1) < 0)|Barnett}{2001)

Zero-Crossing Rate

Root Mean Square (RMS)

Fourier Transform
Spectral Centroid

Power Spectral Density (PSD)

Wavelet Transform Coefficients

Short-Time Fourier Transform (STFT)

_ alty)—a(t) 3
Slope Slope = £2)=2(1) | Ramanathapuram Anand {2021}

"0l pouc et al. [2014]

Curvature K(t) = [CTok

where: x(t) is the time-series signal, N is the total number of
samples in the time-series signal, x(n) is the signal value at
the n-th sample, N is the total number of samples in the time-
series signal, x(n) is the signal value at the n-th sample, f is the
frequency variable, x(t) is the time-domain signal, e =727/t is
the complex exponential function, j is the imaginary unit, N
is the total number of frequency bins, k is the frequency in-
dex, X[k] is the Discrete Fourier Transform of the signal x[n],
X [k]? represents the power spectrum, f is the frequency, v(t)
is the mother wavelet, a is the scaling parameter (dilation or
compression), b is the translation (shift in time), ¢*() is the
complex conjugate of the mother wavelet, t is the time index
(center of the window), w(t — 7) is the window function cen-
tered at, exp(—j27 f7) is the complex exponential function,
x(tl) is the signal value at time t1, x(t2) is the signal value at
time t2, (t2 — t1) is the time interval, d?xz(t)/dt? is the sec-
ond derivative of x(t) (the acceleration), dxz(t)/dt is the first
derivative of x(t) (the velocity).

4.4. Dataset

Using the simulation model, three distinct separated datasets
were generated to represent three fault categories: perma-
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nent, abrupt, and transient. Each dataset is formatted as a 101
by 9000 array, capturing detailed sensor readings and opera-
tional states for each fault type. These datasets are combined
for comprehensive fault analysis, resulting in a total array size
of 808 by 9000 for each RW to cover different combinations
scenarios of faulty RWs as shown in table , There are eight
possible scenarios: three where only one RW is faulty and
the others are functioning normally, three where two RWs are
faulty and one is functioning, one where all RWs are faulty,
and one where all RWs are functioning normally, ensuring
that the ML models have sufficient information to accurately
detect and isolate which RW or combination of RWs is faulty.

Table 2. Combinations Of Faulty RWs

Scenario 1 2 3 4 5 6 7 8
RW1 X X X X
RW2 X X X X
RW3 X X X X

For identifying the types of faults detected in any RW, ini-

tially, we assumed that each of the three fault types—permanent,

abrupt, or transient—could have three states: over-voltage,
under-voltage, and current loss. For a spacecraft with three
RWs, each capable of being in one of these states or being
fault-free, the total number of fault combinations was calcu-
lated as n x n x n = n® where n is the number of fault
combinations which results in this case 10 x 10 x 10 = 1000
faulty combinations.

However, a more detailed analysis introduced the importance
of adding temperature errors to the fault types. This revised
assumption included five specific states for each fault type:
over-voltage, under-voltage, current-loss, over-temperature,
and under-temperature. Each RW could now be in one of six-
teen states: one of the fifteen fault states or fault-free, leading
to a more complex scenario. The total number of possible
fault combinations was recalculated as 16 x 16 x 16 = 4096
faulty combinations.

This comprehensive analysis, considering both the initial and
the revised assumptions, ensures that ML models for FDII can
handle all potential fault scenarios in spacecraft RWs, thereby
enhancing reliability and supporting mission success in com-
plex space environments.

5. RESULTS AND DISCUSSION

The classifiers used, including SVM, ANN, and ESD, with
RF, and DT from the ensemble ML technique|Rahimi & Saa-
dat|(2019), were implemented via MATLAB’s Classification
Learner to detect and identify faults within the dataset, with
performance evaluated based on accuracy and computational
complexity(time and memory).

Two distinct approaches are compared: the first involves ap-

plying the Prony-based FDII technique, traditionally used for
single-axis RW, to three-axis RWs and comparing its perfor-
mance with the proposed ML-based FDII technique. The
second approach involves applying ensemble ML-based tech-
niques (Rahimi & Saadat|(2019)) to the three-axis RWs and
comparing their performance with the proposed technique.

5.1. First Case study

The proposed ML-based FDII technique integrates advanced
ML classifiers to detect, isolate, and identify faults in a three-
axis RW system, focusing on improving real-time applica-
bility and computational efficiency. Unlike traditional ap-
proaches like the Prony-based method, which relies on fea-
ture extraction and the identification of fault-specific signa-
tures, the proposed technique directly applies machine learn-
ing classifiers to sensor data, ensuring high accuracy with
lower computational cost.

In this case study, five fault types over-voltage, under-voltage,
over-temperature, under-temperature, and current loss—were
identified in a three-axis RW configuration using the pro-
posed ML models. Samples of the models’ configuration pa-
rameters and confusion matrix are shown in Figure and

Table

Table 3. ANN Model Configuration Parameters

Preset Artificial Neural Network
Accuracy (Validation) 98.5%
Total cost (Validation) Not applicable
Prediction speed 67 obs/sec
Training time 57.978 sec
Number connected layers 1

First layer size 25
Activation ReLU
Iteration limit 1000
Lambda 0
Standardize data Yes

The proposed technique demonstrated significant improve-
ments in fault detection accuracy compared to the Prony-based
method, which, despite achieving 100% accuracy in a single-
axis RW configuration, dropped to an accuracy of 87.8% when
applied to the more complex three-axis system.

In contrast, the proposed ML-based methods maintained an
accuracy range of 97% to 99%, as shown in Table .

Table (4) provides a comparison of the classification perfor-
mance between the Prony-based and ML-based techniques.
While the Prony method showed a moderate F1-score of 80.5
% with an accuracy of 87.8%, the ML models, especially the
ANN, achieved significantly higher performance with an ac-
curacy of 98.5% and an Fl-score of 98.8%, outperforming
the traditional technique.

The proposed ML-based FDII technique outperforms the Prony
method, providing higher accuracy and better handling of
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Figure 8. ESD Model Confusion Matrix

Table 4. Accuracy of Prony-based technique versus proposed ML-
based technique

Classification Method ~ Accuracy precision Recall  FI-scores(%)
Prony Method 87.8 67.3 50.5 80.5
DT 97.52 98.47 98.47 98.47
RF 98 96.2 96 98
SVM 95 93.34 93.34 93.34
ANN 98.5 98.8 98.5 98.8
ESD 98 98.2 97.3 97.3

complex fault scenarios in three-axis RW systems. The new
approach offers superior fault detection, making it a more
efficient and reliable solution for spacecraft ADCS applica-
tions. Although the results are sufficient for FDII in an ADCS,
the Prony method was only applied to permanent faults. Other
fault types, such as abrupt and transient faults, were not tested,
leading us to discuss the second case.

5.2. Second Case study

In this case study, the proposed ML-based techniques are
compared with the ensemble ML technique
), which aims to explore data-driven ML Models
for isolating nonlinear systems of an in-orbit closed-loop con-
trolled satellite with RWs, utilizing high-fidelity models and
ensemble techniques like RF, DT. The output results for the
ensemble ML technique were sufficient for three types of

faults as shown in Table (3)(Rahimi & Saadat](2019)).

Table 5. Ensemble ML-based FDII accuracy ( Rah1m1 & Saadat

(2019

. . abrupt Transient Permanent

Classification Method Score (%) Score (%) Score (%)
Ensemble (RF) 97.65 88.5 35.64
Ensemble (DT) 94.18 83.20 29.77

Both ensemble ML techniques and the proposed ML tech-
nique were applied to the same dataset to compare their ef-
fectiveness in isolating faulty RWs. These techniques were

tested on three different separated datasets, each represent-
ing a distinct type of fault: transient, permanent, and abrupt.
This comprehensive comparison aimed to evaluate the perfor-
mance of each method across various faulty RW scenarios.

5.2.1. Permanent Fault Case

A permanent fault in a spacecraft’s RW is a malfunction that
makes the wheel non-operational and irreparable. This type
of fault prevents the RW from controlling the spacecraft’s ori-
entation. Using the RW model simulator, the permanent fault
is simulated and introduced into the model. The inception
time for the faults is set to a random value ¢ € (0, 10) sec-
onds, and the duration of these faults is defined as the time
from inception to the end of the simulation. Ensemble ML-
based techniques, DT, and RF with the proposed ML-based
techniques SVM, ESD, and ANN, were applied on the re-
sulting faulty datasets. Samples of the models’ configuration
parameters and confusion matrix are shown in Figure @
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(a) SVM Model Confusion Matrix
Preset ESD
Accuracy (Validation) 98.0
Total cost (Validation) 0
Prediction speed 23 obs/sec
Ensemble method Subspacec
Learner type Discriminant
Training time 162.05 sec
Covariance structure Full

Table 6. ESD model configuration and results

Figure 9. Permanent Fault Case confusion Matrix and Model Con-
figuration Parameters

The proposed ML-based techniques show enhanced results
in detection accuracy over the ensemble ML technique, as
shown in Table .

The table clearly illustrates the superior performance of the
proposed ML-based techniques, SVM, ANN, and ESD, com-
pared to ensemble ML-based techniques, DT and RF, partic-
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Table 7. Proposed technique with ensemble ML technique Perma-
nent Fault case

Classification Method ~Accuracy precision Recall FI-scores(%)
Ensemble (DT) 88.5 N/A N/A N/A
Ensemble (RF) 83.2 N/A N/A N/A

DT 98 98.1 96.2 97.1
RF 97.52 98.1 97.9 97.9
SVM 98.5 98.4 99.2 98.75
ANN 98.5 99.6 98 98.4
ESD 98 98.1 95.6 95.4

ularly in the context of Permanent fault. SVM and ANN both
achieve an impressive accuracy of 98.5%, highlighting their
effectiveness. SVM is particularly strong in recall (99.2%),
making it ideal for situations where minimizing false nega-
tives is essential.

Its balanced precision (98.4%) and F1-score (98.75%) fur-
ther emphasize its robustness in fault detection. While ANN
matches SVM in accuracy, it stands out with the highest pre-
cision (99.6%), making it highly reliable for minimizing false
positives, although its recall (98%) and F1-score (98.4%) are
slightly lower than SVM’s, indicating a subtle trade-off be-
tween the two models.

The results suggest that SVM and ANN are particularly well-
suited for permanent fault cases due to their high accuracy
and well-balanced trade-offs between precision and recall.
While ensemble methods like ESD are effective, their com-
plexity should be carefully considered against simpler models
like DT, especially when computational efficiency, model in-
terpretability, and minimizing false negatives are crucial.

5.2.2. Abrupt Fault case

Abrupt faults can be viewed as instantaneous faults within the
system that can lead to a complete shutdown and failure of
the system. Using RW model simulator the permanent fault
is simulated and introduced into the model, the fault inception
time is set at a random value Vi, € (5, 55) seconds, and the
duration of each fault is randomly determined to not exceed
the total simulation time of 100 seconds.

Ensemble ML-based techniques with the proposed techniques
were applied to the resulting faulty datasets. Samples of the
models’ configuration parameters and confusion matrix are

shown in Figure (10).

The proposed techniques show enhanced results in detection
accuracy over the ensemble ML technique, as shown in Ta-
ble @ ESD, SVM, and ANN, which achieved accuracies
of 96%, 95%, and 95.5%, respectively. While RF demon-
strates the highest overall accuracy, SVM and ANN offer ro-
bust and balanced performance across precision, recall, and
F1-score, making them viable alternatives in scenarios where
slight trade-offs in accuracy are acceptable. The ESD tech-
nique excels with a remarkable precision of 98.6%, indicating
its effectiveness in minimizing false positives—a crucial fac-
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(a) RF Model Confusion Matrix

Preset SVM
Accuracy (Validation) 95.0%
Total cost (Validation) 11
Prediction speed 5.1 obs/sec
Training time 177.99 sec
Kernel scale Automatic
Multiclass method One-vs-One
Standardize data Yes

Table 8. SVM model configuration and results

Figure 10. Abrupt Fault Case confusion Matrix and Model Config-
uration Parameters

Table 9. Proposed technique Vs ensemble ML abrupt Fault case

Classification Method Accuracy precision Recall FI-scores(%)
Ensemble (DT) 35.64 N/A N/A N/A
Ensemble (RF) 29.77 N/A N/A N/A

DT 92 92.1 89.4 89.7
RF 96.89 96.38 95.14 95.75
SVM 95 96.3 93.6 94.9
ANN 95.5 95.7 92.2 93.9
ESD 96 98.6 94.1 96.3

tor in fault detection scenarios where incorrect identification
could lead to unnecessary interventions. ESD’s highest F1-
score of 96.3% highlights its balanced performance, making
it particularly suitable for applications where both precision
and recall are vital.

In contrast, the Ensemble ML-based techniques DT and RF
significantly underperform, with accuracies of 35.64% and
29.77%, respectively.

These results suggest that these techniques, particularly when
applied to abrupt fault cases, may not be as effective as the
proposed methods. ESD offers exceptional precision and a
balanced F1-score, suggesting it is better suited for situations
where minimizing false positives is a priority. SVM and ANN
remain strong contenders, especially when computational ef-
ficiency and fault tolerance are essential considerations.
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5.2.3. Transient Fault case

Transient faults are more temporary and may return to nor-
mal parameter conditions given enough time. Inception time
for faults is set at a random value € (0, 10) seconds, and the
duration of these faults is set randomly. Using the RW model
simulator, the transient fault is simulated and introduced into
the model, and ensemble ML-based techniques with the pro-
posed techniques were applied to the resulting faulty datasets.
Samples of the models’ confusion matrix are shown in Figure
. The proposed techniques show enhanced results in de-
tection accuracy over the ensemble ML technique, as shown

in Table (10).

Table 10. Proposed technique Vs ensemble ML transient Fault case

Classification Method Accuracy precision Recall FI-scores(%)
Ensemble (DT) 94.18 N/A N/A N/A
Ensemble (RF) 97.65 N/A N/A N/A

DT 97.97 98.4 96.4 974
RF 97.1 98.2 97.1 97.6
SVM 95 98.1 95.2 96.6
ANN 98.5 99.3 97.5 98.4
ESD 99.5 99.8 99.2 99.6

Results indicate that the ESD technique leads with an im-
pressive accuracy of 99.5%, surpassing all other techniques
in the detection and management of transient faults. ESD
also excels in precision (99.8%), recall (99.2%), and F1-score
(99.6%), demonstrating its superior ability to balance both
false positives and false negatives. This makes ESD the most
reliable technique for scenarios where high accuracy and a
balanced precision-recall trade-off are critical. ANN also per-
forms exceptionally well, achieving 98.5% accuracy, just 1%
lower than ESD but still higher than the other models. ANN’s
precision (99.3%), recall (97.5%), and Fl1-score (98.4%) re-
flect its strong performance, particularly in situations where
slightly lower computational complexity is desirable without
significantly compromising detection quality.SVM achieves
95% accuracy, which, while lower than the other techniques,
still reflects solid performance. SVM’s precision (98.1%) and
Fl-score (96.6%) highlight its effectiveness, though its lower
recall (95.2%) suggests it may miss some faults compared to
the top-performing models.

ESD stands out as the most effective technique under tran-
sient fault conditions, offering the highest accuracy and the
best balance of precision and recall. ANN also provides strong
performance, making it a viable alternative when a slightly
simpler model is preferred.

5.2.4. Results Analysis

The analysis of ML-based FDII techniques for ADCS RWs
across different fault types reveals distinct strengths among
the techniques, as shown in Table .

For permanent faults, SVM and ANN stand out with a high
accuracy of 98.5%, with SVM slightly ahead in precision,

RW123Normal [ERGIIEA

RW123TransientFault

RW12TransientF ault

RW13TransientF ault

RW23TransientF ault

True Class

RW2TransientFault

RW3TransientFault

100.0% 100.0%

N \\ » N N
W & o R @ &
2> o @ e Ca
aw G o R o <
WP v\«\’L “\ﬂ@ 9\“13 a

Predicted Class

(a) ANN Model Confusion Matrix

RW123Normal [ERGINEA

RW123TransientFault

RW12TransientF ault

RW13TransientF ault

RW23TransientF ault

RW2TransientFault

True Class

RW3TransientFault

100.0% 100.0% 100.0%

B
£ i <& <@ <@ a
A a a®

Predicted Class

(b) ESD Model Confusion Matrix

Figure 11. Transient Fault Case confusion Matrix

Table 11. Proposed ML-based FDII Techniques

. . abrupt Transient Permanent
Classification Method Score (%) Score (%) Score (%)
RF 96.89 97.1 97.52
DT 92 97.97 98
SVM 95 95 98.5
ESD 96 99.5 98
ANN 95.5 98.5 98.5

recall, and F1-score, making it particularly effective in mini-
mizing false positives. DT also performs well with 98% accu-
racy, surpassing RF at 97.52%. ESD matches DT’s accuracy
but doesn’t significantly improve upon these simpler models.

In the case of abrupt faults, RF leads with an accuracy of
96.89%, outperforming DT by 5.32% and slightly surpass-
ing SVM and ANN, which achieve 95% and 95.5% accuracy,
respectively. While RF is ideal for comprehensive fault de-
tection, ESD, though slightly less accurate (94%), excels in
precision (98.6%) and Fl-score (96.3%), making it the best
choice where minimizing false positives is crucial.

10
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For transient faults, ESD is the top performer, achieving 99.5$
accuracy with excellent precision (99.8%), recall (99.2%),
and Fl-score (99.6%). ANN follows closely with 98.5% ac-
curacy, while RF and DT also deliver strong results, with DT
having a slight edge in precision and RF in recall. SVM,
though slightly behind with 95% accuracy, still demonstrates
solid performance.

Results from the previous three cases demonstrated that the
proposed ML-based technique outperforms the ensemble ML
technique in enhancing fault detection accuracy. However,
while both the proposed and ensemble ML techniques are suf-
ficiently accurate in detecting faulty RWs, they are unable to
identify the specific type of fault. Additionally, they do not
account for temperature faults, which are a critical cause of
RW malfunctions. The next section will explore using the
proposed technique not only to detect the faulty RW but also
to identify the type of fault and detect temperature faults.

5.3. ML-based FDII Techniques without temperature faults

For each of the three types of faults—permanent, abrupt, and
transient—various combinations of over-voltage, under-voltage,
and current loss faults were generated. This process resulted
in about 1,000 labeled combination faults for each fault type,
creating a diverse and comprehensive dataset. These datasets
underwent extensive preprocessing to ensure high data qual-
ity and consistency with the MATLAB classification learner
format. Also, steps for feature extraction are applied to pre-
pare the data for machine learning applications.

The ML-based FDII technique was then applied to the three
separated preprocessed datasets. This approach was designed
to cover all possible fault combinations, providing a robust
mechanism for detecting, isolating, and identifying each spe-
cific fault scenario. The FDII technique aimed to enhance
the reliability and accuracy of fault management in reaction
wheels, effectively addressing all potential fault combinations.
Samples of the models’ confusion matrix are shown in Figure

]

The results showed that the FDII technique achieved accuracy
rates between 97% and 98% in detecting faults in RWs. The
lowest accuracy observed for certain fault combinations are
shown in table(12).

The results from table@) indicate that, Without Temperature
Faults, SVM and ANN are the top performers for permanent
faults, each achieving 98.5% accuracy, with SVM showing a
slight edge. ESD also performs strongly, especially in tran-
sient faults with 98.5% accuracy. This robust performance
highlights the effectiveness of the FDII technique in manag-
ing complex fault scenarios in RWs.

95.8%

95.5% | 80.6% 100.0% 95.7% 100.0% 100.0% 100.0% 92.3% 100.0% 95.8%

4.5% | 19.4% 4.3% 7.7% 4.2%

(b) ANN Model Confusion Matrix

100.0%

100.0%

100.0%

100.0% 100.0% 100.0% 86.2% % 88.9% 100.0% 100.0% 96.2%

3 13.8% | 4.3% | 11.1% 3.8% 7.4%

(b) SVM Model Confusion Matrix

Figure 12. ML-Based FDII Without temperature Faults Case con-
fusion Matrix

5.4. ML-based FDII Techniques with temperature faults

Injecting over-temperature and under-temperature conditions
into the RW model simulator for the three main categories of
faults, permanent, abrupt, and transient, resulted in approxi-
mately 4,000 combined faults. Each of these faults was metic-
ulously labeled, and the datasets underwent comprehensive
preprocessing. This preprocessing included formatting and
feature extraction to ensure high-quality and consistent data
suitable for machine learning applications. The ML-based
FDII technique was then applied to these processed datasets.
The FDII technique aimed to detect and identify the various
combinations of faults accurately. Samples of the models’

11
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confusion matrix are shown in Figure (T3).
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Figure 13. ML-Based FDII With temperature Faults Case confusion
Matrix

The results demonstrated a high accuracy in identifying and
detecting the combined faults, with detailed analysis show-
ing the minimum accuracy achieved for the most challenging
fault combinations shown in Table .

With Temperature Faults, ANN and ESD achieved the highest
accuracy for permanent faults at 98%. For transient faults at
96% and ANN at 97%. abrupt faults but remains competitive
with 95.5% and 96% accuracy.

5.5. Complexity Analysis

A comprehensive evaluation will compare newly proposed
ML-based FDII techniques with existing state-of-the-art tech-
niques, focusing on time and memory complexity. The ob-
jective is to demonstrate the superior performance of the pro-
posed techniques in accurately and efficiently detecting and
identifying faults in RW, compared to established techniques
such as the Prony-based technique and ensemble ML-Based
technique (Rahimi & Saadat|(2019)).

Abrupt Transient Permanent
Type Method Score (%) Score (%) Score (%)
RF 972 983 98.52
) DT 97 96 97.5
Yithout . SVM 95 08 98’5
emp rau ESD 96 98.5 98
ANN 95 98 98.5
RF 96 973 97
) DT 92 98 08
With  Temp gy 943 95 9.5
Fault ESD 9 97 98
ANN 95.5 96 93

Table 12. Proposed ML-based FDII with and Without temperature
faults

The comparison, detailed in Table , examines time and
memory complexities, revealing that while all techniques achieve
acceptable accuracy in fault detection, computational burden
disparities underscore each FDII technique’s efficiency and
practicality.

Model Accuracy | Time Complexity | Memory Complexity | Remarks
. o O(n?) (Prony) + O(N) (Prony) + (n):Length of signal segment
Prony technique | 87.8% | 50N (FENN) 0(1) (FENN) (N):Number of data points
(n) :number of training sample
Ensemble ML RF | 97.65% O(n?pigrees) O(n?pigrees) (p):number of features
Nirees: NUMber of trees
Ensemble ML DT | 94.18% O(n’p) O(n?p) 5 )) nl:;:x‘:i‘vléiro?ffg;:?:sg sample
DT 98% | O(n +log(n) = d) o(n) 5 AR Dimber of sef poins
(M):Number of features
Yy (m):Number of samples
ESD 98% O(M) O(mn + mt + nt) (n):Number of features
(r) = min(m,n)
N 2 5 (n):Number of
SVM 98.5% O(n?) O(n?) trainning samples
ANN 98.5% o) o) (N):Number of

network connections

Table 13. Comparlson of leferent Models (Rahimi & Saadat

The results depicted in Table evaluating the techniques
based on the comparison table, SVM and ANN demonstrate
the highest accuracy at 98.5%, making them ideal for tasks
where precision is critical. However, ANN stands out due to
its superior computational efficiency with a time and mem-
ory complexity of (O(N)) (Lee & CHEN|(2020)), where N
is the number of network connections. This makes it highly
scalable, particularly in large datasets, while SVM, despite its
accuracy, suffers from high computational costs with O(n?)
time and memory complexity (Nalepa & Kawulok|(2019)),
limiting its practicality for larger data. DT and ESD also of-
fer strong accuracy at 98%, but DT excels with efficient time
complexity (O(n + log(n) * d) (Rahimi & Saadat| (2020))
and moderate memory usage (O(n)) (Podgorelec & Zorman|
), making it a balanced choice for many applications.
ESD is similarly efficient in time complexity but may require
more memory depending on the dataset’s dimensions
let al.| (2007||2008)). The Ensemble ML techniques (Ran-
dom Forest and Decision Tree ensembles) deliver high ac-
curacy (up to 97.65% for RF), but their quadratic complexity
(O(n?pnyrees) makes them computationally expensive, espe-
cially in large-scale scenarios. For applications constrained
by memory, the Prony technique is the most efficient with
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O(N) (Abdel Aziz et al.|(2024)) memory complexity for the
core algorithm and O(1) (Abdel Aziz et al. (2024)) for the
feedforward neural network. However, its lower accuracy of
87.8% might be a drawback in tasks requiring higher preci-
sion.

In contrast, the comparison in Table highlights that while
all FDII techniques achieve strong detection accuracy, their
computational demands vary significantly, directly affecting
suitability for on-orbit spacecraft deployment. In resource-
constrained environments, several factors are critical. On-
board processing power is limited to radiation-hardened CPUs
(e.g., RAD750, LEON3) operating at a few hundred MHz
to low GHz (Berger et al.|(2001); Kraja & Acher|(2011))),
making lightweight ML models such as ANN, DT, and SVM
each with polynomial or near-linear complexity more feasi-
ble than deep learning or ensemble methods requiring high-
performance GPUs or TPUs. Memory availability is similarly
restricted, often to a few hundred MB, where models with
quadratic memory requirements (e.g., SVM: O(n?) may en-
counter scalability issues, while ANN and DT remain more
efficient O(n), respectively). Real-time responsiveness is es-
sential, with fault detection required within seconds to protect
spacecraft actuators. In this context, ANN offers a great bal-
ance of high accuracy (98.5%) and computational efficiency,
making it the optimal choice for most practical FDII applica-
tions, especially where time, memory, and accuracy require-
ments must be simultaneously addressed, while DT provides
a slightly less accurate but computationally efficient alterna-
tive.

6. CONCLUSION

The study presents a machine learning-based Fault Detec-
tion, Isolation, and Identification (FDII) system for spacecraft
reaction wheels (RWs), addressing critical issues in space-
craft attitude control. By simulating high-fidelity models of
a three-axis controlled satellite, the research explores var-
ious faults (voltage, current, temperature) using classifiers
such as SVM, ANN, RF, DT, and ESD. Results show that
machine learning techniques outperform traditional methods
like Prony’s technique in both detection accuracy and com-
putational efficiency. Among the classifiers, SVM and ANN
achieve the highest accuracy for permanent faults (98.5%),
while ESD excels in transient fault detection (99.5%). The
analysis emphasizes the balance between fault detection ac-
curacy and computational complexity, recommending ANN
for most practical applications due to its scalability and effi-
ciency. The study concludes that the proposed machine learn-
ing techniques are robust and significantly improve fault de-
tection, though further refinement is needed for identifying
specific fault types and temperature faults.
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