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ABSTRACT

The increasing reliance on autonomous systems in aerospace
raises a dual challenge: ensuring that aircraft remain physi-
cally safe while also making decisions that are ethically re-
sponsible and auditable. Traditional Prognostics and Health
Management (PHM) has matured in predicting and prevent-

ing technical failures, yet it operates independently from emerg-

ing mechanisms for ethical oversight. This separation leaves
open questions about how to arbitrate when physical health
indicators and ethical obligations point to conflicting actions,
and how such decisions can be explained and trusted in high-
stakes environments.

This paper proposes a unified framework that integrates PHM
with a runtime ethics module, treating both health and ethical
risks as core aspects of system integrity. Central to the ap-
proach is an Event Manager that evaluates proposed actions
against prognostic forecasts and codified ethical rules, apply-
ing a priority scheme that ranks safety of life above regulatory
compliance, system preservation, and mission objectives. To
ensure transparency and accountability, the system generates
event-triggered explanations and records both outcomes and
justifications in a tamper-evident blockchain ledger.

We demonstrate the framework through three case studies:
an aircraft integrity trial facing an emergency landing where
passenger survival must be balanced with bystander safety,
a long-endurance surveillance UAV deciding whether to con-
tinue data collection or return before failure, and a UAV swarm
with integrity auditing in multi-agent environment. Across
Monte Carlo simulations, the integrated PHM-Ethics approach

this work provides a concrete pathway toward trustworthy au-
tonomy in aerospace.

The results highlight how transparency, auditable decision-
making, and equitable risk management can be engineered
into safety-critical systems, offering practical tools to sup-
port certification, regulatory trust, and public confidence in
the next generation of autonomous flight.

1. INTRODUCTION

The convergence of advanced Al with autonomous cars, drones,
and aerospace systems has enabled unprecedented levels of
autonomy, but also surfaced new safety and ethical concerns
(Habbal, Ali, & Abuzaraida, 2024; Khan & Yairi, 2018). Prog-
nostics and Health Management (PHM) systems have long
been deployed in aerospace to monitor the health of com-
ponents, predict failures, and mitigate risks. By detecting
early signs of degradation and enabling proactive interven-
tions, PHM has improved safety and reliability. Today, most
aircraft and unmanned aerial vehicles (UAVs) already host
real-time health monitoring that can adapt missions to current
system status.

However, technical reliability alone is no longer sufficient. As
Al increasingly drives mission-critical decisions, autonomy
raises new questions about whether those decisions are eq-
uitable, transparent, and aligned with societal values. High-
profile debates such as the “Trolley Problem” in autonomous
driving (Jenkins, Cerny, & Hribek, 2022) illustrate the moral
dilemmas that an Al pilot or driver may face in life-and-death
situations. Current safety assurance standards remain inade-

consistently reduced combined integrity losses, defined as missed quate for such contexts (Jobin, Ienca, & Vayena, 2019). Tra-

failures plus ethical violations, when compared with PHM-
only or Ethics-only baselines. Explanation payloads remained
lightweight and blockchain logging introduced only modest
latency, demonstrating feasibility for real-time aerospace op-
erations. By showing that PHM and ethics can be brought
into a single decision loop without sacrificing performance,
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ditional certification presumes human operators will remain
accountable for moral judgment (Braun, 2025), but as auton-
omy deepens, responsibility shifts to algorithms; demanding
novel mechanisms for monitoring and auditing Al behavior.

Concerns around algorithmic bias further complicate matters:
perception and decision-making models may underperform
for certain populations or contexts, systematically placing them
at higher risk. In aerospace, an autonomous aircraft might
learn or be programmed to prioritize passenger or mission
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objectives in ways that conflict with public safety or fair-
ness. Addressing these risks requires systems that can en-
force ethical rules alongside PHM. One promising enabler is
blockchain technology, which provides tamper-evident, dis-
tributed audit trails of sensor inputs, detected faults, and Al
decision rationales (Christidis & Devetsikiotis, 2016). Im-
mutable ledgers can support post-incident forensics and con-
tinuous oversight by engineers, regulators, and the public.

The motivation for this research is to advance autonomy that
is both physically safe and ethically trustworthy. We argue
that PHM (assessing system health) and Al ethics monitoring
(assessing decision “health”) must be integrated into a unified
framework. Such integration improves operational safety by
preventing both technical failures and unsafe actions, while
also enhancing social acceptance by demonstrating compli-
ance with ethical principles. The challenge is inherently inter-
disciplinary, requiring aerospace engineering, machine learn-
ing, distributed systems, and applied ethics.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews prior work on PHM in aerospace, ethical audit-
ing of Al, blockchain for accountability, and explainable Al
(Ribeiro, Singh, & Guestrin, 2016; Adadi & Berrada, 2018).
It also identifies key gaps and formulates our research ques-
tions. Section 3 presents the proposed framework, illustrated
through case studies in aerospace. Section 4 outlines three
case studies, and Section 5 discusses limitations, standardiza-
tion needs, and implications for both the PHM and Al ethics
communities.

1.1. Key contributions

This article makes several contributions toward developing
autonomous aerospace systems that are transparent, safety-
aware, and ethically trustworthy.

* A unified framework that integrates PHM, real-time ethics
monitoring, and tamper-evident event logging into a sin-
gle decision loop. Unlike prior approaches that treat these

components separately, our framework emphasizes decision-

level arbitration: PHM forecasts and ethical constraints
are evaluated together through an Event Manager that
prioritizes safety of life, legal compliance, system preser-
vation, and mission goals in a consistent hierarchy.

* A framework demonstrates how joint health and ethics

monitoring can be achieved in practice. Sensor data streams

(such as GPS, IMU, and engine state) are fused not only
to detect anomalies and incipient system degradation, but
also to scrutinize mission decisions against codified ethi-
cal guidelines. This enables the system to flag unsafe ac-
tions, disproportionate risk distribution, or potential vio-
lations of operational boundaries before they escalate.

* Shows how accountability can be strengthened through a
distributed ledger. A blockchain-based event log records
system anomalies, Al recommendations, human inter-

ventions, and ethical breaches in real time, creating a
transparent audit trail. This makes both the outcomes and
the justifications for decisions traceable to regulators, en-
gineers, and other stakeholders, thereby supporting post-
incident forensics and long-term governance.

e The framework is validated through three diverse and
safety-critical aerospace scenarios:
— an emergency landing of an aircraft facing conflict-
ing stakeholder risks,
— aUAV deciding whether to continue or abort a mis-
sion under emerging engine failure, and
— multi-agent coordination of a UAV swarm navigat-
ing under dynamic airspace constraints.
Each case demonstrates how PHM, ethics monitoring,
and blockchain auditability interact in practice, reducing
unsafe or non-compliant outcomes compared with base-
line approaches and highlighting the feasibility of em-
bedding ethical governance into real-time aerospace au-
tonomy.

2. LITERATURE REVIEW

PHM is an engineering discipline dedicated to assessing sys-
tem health, diagnosing faults, and predicting remaining use-
ful life to enable timely interventions. In aerospace, PHM is
needed for monitoring critical components such as engines,
avionics, and structures, where early fault detection can pre-
vent catastrophic failures. A typical PHM pipeline would in-
volve anomaly detection, fault diagnostics, and prognostics
that forecast future degradation trajectories (Khan & Yairi,
2018).

Literature broadly categorizes PHM strategies as model-based,
data-driven, or hybrid. Model-based methods rely on physics-
of-failure knowledge and system dynamics. For instance,
thermodynamic engine models, combined with Kalman or
particle filters, can track deviations that signal incipient faults
(Goebel et al., 2017; Jardine, Lin, & Banjevic, 2006). These
methods offer interpretability but require high-fidelity models
that may not capture unmodeled complexities. Data-driven
approaches, by contrast, leverage historical sensor data to
train machine learning models for anomaly detection and re-
maining useful life (RUL) prediction. Algorithms ranging
from random forests to deep neural networks have shown
promise in capturing subtle degradation signatures (Lei et al.,
2018). Their strength lies in scalability and adaptability to
complex systems, but they often demand large labeled datasets
and can struggle to generalize outside training conditions.

Hybrid PHM is emerging as a practical compromise, com-
bining the interpretability of physics-based models with the
adaptability of machine learning. For example, physics-based
simulations can generate features that improve the perfor-
mance of data-driven prognostic models, while learning algo-
rithms can refine estimates in real operational contexts. Such
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approaches have been shown to improve both the accuracy of
fault prediction and the timeliness of maintenance schedul-
ing, enhancing overall system reliability. Aerospace applica-
tions increasingly embed these methods into Integrated Vehi-
cle Health Management (IVHM) architectures that continu-
ously monitor subsystems and trigger reconfiguration or mis-
sion replanning when anomalies arise (Saxena, Celaya, Saha,
Saha, & Goebel, 2010). UAVs, for example, can autonomously
adapt flight plans or execute emergency landings in response
to detected health degradation.

PHM has already demonstrated its value by reducing main-
tenance costs and improving operational availability across
many commercial and defense aviation applications (Khan &
Yairi, 2018). Yet, traditional PHM is limited to the physical
state of machines. As autonomy shifts high-level decision-
making from human operators to Al algorithms, the notion
of “system health” must be expanded. Decisions themselves
may degrade in quality or breach ethical or regulatory bound-
aries, just as hardware may fail. This recognition motivates
the integration of PHM with ethics monitoring, where the
health of the “decision process” is evaluated alongside the
health of the hardware, ensuring that autonomous aerospace
systems are not only mechanically reliable but also ethically
trustworthy.

2.1. Ethics and Al Auditing

As Al systems become more autonomous, ensuring that their
decisions are ethically sound, fair, and auditable has become a
critical requirement (IEEE Global Initiative on Ethics of Au-
tonomous and Intelligent Systems, 2019). Ethical Al audit-
ing refers to methods for evaluating Al systems against moral
principles, fairness criteria, and regulatory expectations. Con-
cerns in aerospace parallel those seen in self-driving cars: bi-
ases in perception or decision algorithms, opaque “black box”
outputs that defy justification, and the absence of mechanisms
to resolve moral dilemmas in real time.

One major concern is algorithmic bias, where system per-
formance systematically favors or disadvantages particular
groups. For example, pedestrian detection algorithms show
measurable disparities—up to 7.5% less accurate for darker-
skinned individuals under certain conditions—raising signifi-
cant justice and safety issues (Giudici, Centurelli, & Turchetta,
2024). In aerospace, similar risks arise if autonomous aircraft
prioritize passengers or mission goals at the expense of by-
stander safety, or if UAV swarms concentrate risk on a single
vehicle. Rather than implying UAVs themselves hold moral
claims, we interpret fairness in swarm operations as opera-
tional equity: ensuring that burdens such as mission loss or
hazard exposure are distributed across vehicles in a balanced
manner.

It is also important to distinguish ethics from legal compli-
ance. Regulatory standards enforce minimum safety require-

ments and accountability, but they do not address deeper nor-
mative questions. For instance, an emergency landing might
legally satisfy airworthiness standards while still making eth-
ically questionable choices, such as consistently prioritizing
passenger lives over those of people on the ground (Robert
E Joslin, 2020). Current regulations assume a human pilot is
present to exercise judgment, yet increasing autonomy creates
a governance gap where Al systems must themselves embody
ethical safeguards.

Recent guidelines, such as the EU High-Level Expert Group’s
recommendations, emphasize autonomy, harm minimization,
justice, and explainability as “ethical imperatives” for Al de-
velopers. In practice, companies and agencies are deploy-
ing algorithmic audits, bias tests, and fairness metrics, of-
ten offline and retrospective. Aerospace, however, demands
runtime ethical monitoring that can operate like a watchdog:
continuously checking decisions against codified ethical rules
and recording violations in real time. Such monitoring com-
plements PHM directly, while PHM ensures the physical sys-
tem remains healthy, ethics auditing evaluates the cognitive
health of decisions. Without this, even technically reliable
systems risk losing public trust and regulatory approval.

Finally, the PHM community itself has recognized the impor-
tance of ethics. As PHM systems become more autonomous
in recommending or executing actions, they too can inherit
fairness and bias concerns if training data or prognostic logic
are skewed (Goebel et al., 2017). This underscores that trans-
parency, impartiality, and public safety—longstanding values
in engineering ethics—must now be designed directly into the
Al algorithms that underpin autonomous aerospace systems.

2.2. Blockchain for Auditability: Ethereum vs. Hyper-
ledger Fabric

Blockchain technology offers a compelling solution for en-
suring transparency and auditability in autonomous systems
(Christidis & Devetsikiotis, 2016). A blockchain is a dis-
tributed ledger replicated across a network of nodes, valued
for its decentralization, immutability, and transparency. Once
data is stored on-chain, it cannot be retroactively altered, which
makes it ideal for maintaining a tamper-evident record of events
and decisions. Each transaction in the ledger is timestamped,
cryptographically secured, and visible to authorized parties,
thereby supporting traceability and accountability in Al-driven
aerospace systems.

Several studies have investigated combining Al decision-making
with blockchain in order to create immutable audit trails. In
principle, every major action taken by an autonomous agent
(e.g., a UAV rerouting to avoid restricted airspace, or an air-
craft executing an emergency descent) can be logged as a
blockchain transaction, along with its relevant inputs and ex-
planatory metadata. This enables investigators to reconstruct
the decision-making process post hoc, distinguishing between



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

sensor faults, biased reasoning, or valid but high-stakes trade-
offs. Such tamper-proof auditability discourages negligence
or data manipulation, fostering trust among regulators, oper-
ators, and the public.

There are, however, multiple blockchain architectures with
distinct trade-offs. Public blockchains such as Ethereum pro-
vide open participation, high transparency, and strong tamper-
resistance. Smart contracts can automate audit functions, for
example by committing a log entry whenever an anomaly
score exceeds a threshold. However, public blockchains suf-
fer from limited throughput (tens of transactions per second),
variable confirmation latency, and transaction fees, all of which
constrain real-time aerospace usage. In addition, sensitive op-
erational data may be unsuitable for fully public ledgers.

By contrast, permissioned blockchains such as Hyperledger
Fabric restrict participation to vetted organizations (e.g., man-
ufacturers, airlines, regulators). Fabric’s modular consensus
protocols are more computationally efficient than Ethereum’s
proof-of-work, yielding significantly lower logging latency
and higher throughput (Androulaki et al., 2018). It also pro-
vides granular access control, allowing some records (e.g.,
failure logs) to be shared with regulators while shielding sen-
sitive commercial data from competitors. Empirical compar-
isons of Ethereum and Hyperledger show that Fabric achieves
lower end-to-end latency (on the order of hundreds of mil-
liseconds rather than seconds) and avoids transaction fees,
making it more practical for safety-critical applications.

Despite these benefits, challenges remain. High-frequency
sensor data cannot feasibly be stored on-chain due to band-
width and storage constraints; instead, only cryptographic
hashes or anomaly summaries should be logged. Network
connectivity failures could delay or fragment event logging,

raising the need for robust buffering and synchronization schemes.

Smart contracts themselves must be verified to avoid intro-
ducing new vulnerabilities. Finally, data privacy must be
carefully managed, especially when logs contain sensitive op-
erational details or passenger information.

In aerospace, blockchain’s greatest promise lies in enabling
multi-stakeholder trust. Manufacturers, operators, and regu-
lators can all access the same immutable audit trail, reducing
reliance on proprietary operator logs and supporting indepen-
dent certification. Smart contracts can even encode gover-
nance policies, such as automatically flagging ethically non-
compliant actions to oversight authorities, or recording which
version of an Al model was deployed at a given time for reg-
ulatory traceability. In this way, blockchain becomes not only
a technical tool for transparency but also a bridge to certifi-
cation pathways, aligning PHM and ethical monitoring with
regulatory expectations for explainability and accountability.

Prior research comparing the two platforms suggests that both
are technically sound enough to act as an audit ledger but

with important trade-offs. For example, Ethereum empha-
sizes decentralization and public transparency, while Hyper-
ledger Fabric provides lower latency and more fine-grained
confidentiality controls. Other platforms such as Corda, widely
used in finance, also illustrate permissioned approaches with
efficient validation.

To make these trade-offs clearer for aerospace contexts, Ta-
ble 1 provides a side-by-side comparison of Ethereum, Hy-
perledger Fabric, and Corda across dimensions such as la-
tency, throughput, fees, privacy, and suitability for safety-
critical autonomy.

As the comparison shows, no single platform is ideal across
all dimensions. Public chains provide maximal transparency
but suffer from high latency and limited throughput, while
permissioned chains deliver low-latency, high-throughput per-
formance with stronger confidentiality controls at the expense
of decentralization.

For aerospace certification contexts, these trade-offs are highly
consequential. Regulators are more likely to favor permis-
sioned approaches (e.g., Hyperledger Fabric) where access
rights can be tightly controlled, latency guarantees can be for-
mally validated, and sensitive operational data is not exposed
publicly. At the same time, hybrid strategies—such as com-
mitting periodic hashed summaries from a Fabric ledger to a
public chain like Ethereum—can provide long-term, tamper-
proof public verifiability without sacrificing real-time perfor-
mance or confidentiality.

This alignment between blockchain performance character-
istics and regulatory expectations suggests that auditability
layers can be designed not only for technical transparency
but also as evidence directly usable in certification and com-
pliance reviews. In this way, blockchain auditability becomes
a dual enabler: ensuring trustworthy system operation during
runtime while also supporting regulatory approval by provid-
ing immutable, verifiable records of health and ethical decision-
making.

2.3. Explainable AI for Transparency and Accountability

A recurring theme across both PHM and Al ethics is the ques-
tion of explainability, why a model produced a specific pre-
diction or decision (Nor, Pedapait, & Muhammad, 2021). Ex-
plainable AI (XAI) methods aim to open the “black box” of
advanced Al models (e.g., deep neural networks) and ren-
der them understandable to humans. In safety-critical do-
mains such as aerospace, explanations are not optional but
a de facto requirement: engineers, operators, and regulators
must be able to verify that the Al is functioning correctly and
not behaving in unsafe or biased ways. The EU Trustworthy
Al guidance explicitly identifies explicability, alongside fair-
ness and accountability, as a core principle of responsible Al
(IEEE Global Initiative on Ethics of Autonomous and Intelli-



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 1. Comparison of Blockchain Platforms for Aerospace Auditability

Feature Ethereum (Public) Hyperledger Fabric (Per- Corda (Permissioned,
missioned) Finance-Oriented)
Consensus mechanism Proof-of-Stake  (formerly Modular consensus (Raft, Notary-based validation (no

(Androulaki et al., 2018)
Latency (Ucbas, Eleyan,
Hammoudeh, & Alohaly,
2023)

Throughput (Ucbas et al.,
2023; Thakkar, Nathan, &
Viswanathan, 2018)
Transaction fees (Geyer,
Jacobsen, Mayer, & Mandl,
2023)

Transparency (Ucbas et al.,
2023)

Privacy/  confidentiality
(Androulaki et al., 2018)

Scalability (Thakkar et al.,
2018; Gorenflo, Lee, Golab,
& Keshav, 2020)
Suitability for aerospace
(Ucbas et al., 2023)

Proof-of-Work)
High (seconds to minutes
per transaction)

~15-30 transactions/s

Gas fees (variable, can be
high in congestion)

Fully public,
validate
Weak (all data public,
though encryption/hashing
possible)

Limited (network conges-
tion, high cost under load)

anyone€ can

High transparency; public
accountability for services
(e.g., air taxis), but limited
real-time viability

Kafka, etc.)
Low (sub-second to hun-
dreds of ms)

103+ transactions/s
(enterprise-optimized)

No transaction fees

Restricted to consortium
members
Strong (granular access con-

trol, private channels)

High (scales with consor-
tium infrastructure)

Strong candidate for regu-
lated aerospace operations
with multiple stakeholders
(OEM, operator, regulator)

global broadcast)
Low (ms to seconds, de-
pending on deployment)

103+ transactions/s

No transaction fees

Restricted to bilat-
eral/consortium channels
Strong (transactions visible
only to relevant parties)

High (scales with business
networks)

Potentially useful for finan-
cial/contractual audit, less
tested in safety-critical au-
tonomy

gent Systems, 2019).

Among model-agnostic techniques, LIME (Local Interpretable
Model-agnostic Explanations) and SHAP (SHapley Additive
exPlanations) are widely used. LIME approximates the model’s
behavior locally by building simple interpretable surrogates
(e.g., sparse linear models) around a prediction, while SHAP
leverages cooperative game theory to assign contribution val-
ues (Shapley values) to each feature. These methods can
highlight, for example, why a prognostic model predicted an
engine failure within five hours rather than fifty, or why a
path-planning algorithm selected a particular route. Such in-
sights can be cross-checked against engineering intuition, im-
proving confidence that the model is capturing real physical
patterns rather than spurious correlations.

Within the PHM community, XAI has shown value both for
verifying prognostic models and for extracting new domain
knowledge from data. A recent systematic review of XAl in
PHM reported that interpretability techniques not only im-
proved user trust but also helped refine feature selection and
anomaly detection strategies (Nguyen, Nguyen, & Medjaher,
2024). Importantly, many studies demonstrated that inter-
pretability could be achieved without significantly sacrificing
predictive performance. Nonetheless, challenges remain in
defining quantitative metrics for the “goodness” of explana-
tions, and in leveraging human feedback derived from expla-
nations in a systematic way.

In the ethics domain, XAl serves as a critical audit tool. For

instance, if an autonomous UAV chooses to fly over a densely
populated area, triggering an ethics violation, XAI methods
could reveal which variables (e.g., wind conditions, map data,
or faulty sensor readings) most influenced the decision. Sim-
ilarly, bias in perception systems, such as reduced confidence
in detecting pedestrians with darker skin tones (Giudici et al.,
2024), can be diagnosed by showing how input features af-
fect prediction outcomes. These capabilities allow engineers
to pinpoint and mitigate the root causes of unfair or unsafe
decisions.

A practical concern, however, is computational cost. Methods
such as SHAP can be expensive to compute, especially for
deep models and real-time systems. For aerospace autonomy,
lightweight or approximate XAl methods may be required, or
explanations may need to be selectively generated for safety-
critical decisions rather than every prediction. Benchmarking
explanation latency is therefore essential for assessing feasi-
bility in onboard contexts.

Finally, XAI and blockchain can be combined to produce not
just an immutable decision log but also an immutable rea-
soning log. Instead of merely recording what decision was
made, the system can log the accompanying explanation—
e.g., “Decision: sudden braking; explanation: detected ob-
stacle at 30m, top features = shape, motion, confidence =
95%.” This “Glass Box AI” approach enhances traceability
and trust by ensuring that justifications, not just outcomes,
are preserved for audit and certification. In our framework,
integrating XAl into both the PHM module (“why the engine
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is failing”) and the ethics module (“why a decision was unsafe
or biased”) provides the bridge from raw technical monitor-
ing to meaningful human oversight. This strengthens regu-
latory acceptance by offering interpretable evidence that au-
tonomous systems act within both physical and ethical safety
bounds.

2.4. Research Gaps and Challenges

Despite rapid advances in PHM, Al ethics, and distributed
auditability, their integration for autonomous aerospace sys-
tems remains underdeveloped. Our review identifies several
critical research gaps and challenges:

* Fragmented monitoring paradigms: Health management

and ethics monitoring are treated independently, even though

failures in either can cause catastrophic outcomes. An in-
tegrated view of “system health” that includes both phys-
ical degradation and ethical non-compliance is rarely stud-
ied.

» Siloed toolchains and poor interoperability: PHM engi-
neers rely on diagnostic and prognostic models, while Al
ethicists employ bias audits and fairness metrics. These
toolchains seldom communicate. As a result, a PHM
module may detect sensor degradation without realizing
that the Al decision logic is compensating in a biased or
unsafe manner, or an ethics check may flag a decision
without understanding it was triggered by failing hard-
ware.

* Real-time ethical monitoring deficit: PHM algorithms

portantly, ethical compliance must not be conflated with
mere legal compliance: regulation sets minimum thresh-
olds, whereas ethical alignment concerns broader soci-
etal values.

e Data privacy and security: Integrating PHM and ethics
monitoring produces massive multi-layered datasets (sen-
sor telemetry, decision logs, explanation traces), some of
which may be stored on distributed ledgers. Ensuring
privacy while retaining auditability demands new data
aggregation, hashing, and access-control strategies, es-
pecially since aerospace logs often involve sensitive or
proprietary information.

* Lack of interdisciplinary metrics: Traditional metrics (ac-
curacy, recall) apply to PHM and bias detection sepa-
rately, but integrated monitoring requires composite mea-
sures of trustworthiness. For instance, a “mission in-
tegrity index” could capture both absence of critical fail-
ures and absence of ethical violations. No standardized
metrics currently exist for end-to-end evaluation of au-

tonomy that unifies engineering reliability and ethical sound-

ness.

¢ Quantitative validation gap: Few studies provide quan-
titative benchmarks comparing PHM-only, ethics-only,
and integrated approaches in mission-level performance,
compliance rates, or logging overhead. Without such
benchmarks, claims about the benefits of integration re-
main largely conceptual.

Figure 1 summarizes the current literature landscape and high-

are routinely embedded onboard for real-time safety, whereas lights the missing links between PHM, ethics monitoring, ex-

ethical monitoring is largely retrospective (offline audits,
dataset analysis). Designing real-time, context-sensitive
ethics monitors is challenging due to computational cost,
ambiguity in ethical norms, and the need for domain-
specific constraints (Jobin et al., 2019). Without this ca-
pability, safety-critical lapses may only be detected after-
the-fact.

* Decision arbitration under conflicts: Existing work does
not specify how PHM and ethics alerts should be recon-
ciled in real time. For example, if PHM predicts immi-
nent engine failure but the ethics module flags the current
diversion plan as unsafe, what arbitration logic should
prioritize between physical and moral risks? Without for-
mal schemes for arbitration and prioritization, integrated
monitoring cannot meaningfully support autonomy.

* Verification, certification and legal gaps: Current aerospace

certification emphasizes reliability, not ethical account-
ability (Kusnirakova & Buhnova, 2023). There is no for-
mal pathway to demonstrate that an autonomous system
makes “ethically compliant” decisions. Bridging this re-
quires novel verification techniques, potentially formal
methods, simulation testbeds, or scenario-based evalua-
tion, that address both physical safety and fairness. Im-

plainability, and blockchain audit layers. Solid arrows indi-
cate connections that are relatively well-developed in prior
research, such as PHM-to-XAI pipelines and the use of ex-
planations for logging. In contrast, dashed red arrows and
the shaded “missing block™ illustrate underexplored or ab-
sent mechanisms. For example, while PHM and ethics mon-
itoring each independently feed into XAl or blockchain audit
trails, there is little work on their direct integration or on ar-
bitration mechanisms that reconcile conflicts between them.
The red annotations further emphasize where the literature
falls short: ethics monitoring is typically retrospective rather
than real-time, PHM and ethics toolchains remain siloed with
poor interoperability, and certification pathways for ethically
aligned autonomy are still weak or undefined. Together, these
visual cues reinforcw the argument that co-location of PHM
and ethics modules is insufficient. A principled architecture
must instead treat ethical violations as a form of system health
degradation, enabling detection, arbitration, and recovery in
the same way as physical faults.

2.5. Research Questions

To address the highlighted gaps, we formulate several guiding
research questions (RQs), hypotheses and case studies used in
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Figure 1. Current literature landscape at the PHM-AI Ethics intersection. Solid arrows indicate relatively well-studied connec-
tions, while dashed red arrows show underdeveloped or missing links. Research gaps include fragmented monitoring, lack of
real-time ethics checks, absent arbitration logic, weak interoperability, and no unified certification pathways. Section 3 builds
on this to propose a fully integrated framework.

this paper. This is to ensure that these questions are not only
conceptual but testable and how the proposed framework can
be validated in practice:

RQ1: How can physical health and ethical behavior
of an autonomous system be monitored jointly in real
time?

Hypothesis 1: By fusing PHM anomaly detectors with
an ethics monitoring module that observes Al decisions,
a unified monitoring system will capture critical inci-
dents missed by standalone approaches, such as unsafe
actions under degraded conditions.

Case study: The emergency landing case tests whether
simultaneous PHM (engine degradation signals) and ethics
monitoring (harm distribution across passengers vs. by-
standers) can provide earlier detection of safety-critical
dilemmas than either subsystem alone.

RQ2: What architectural approach can effectively com-
bine model-based diagnostics, data-driven anomaly
detection, and ethical rule-checking?

Hypothesis 2: A modular architecture where PHM and
Ethics modules operate in parallel but converge at a com-
mon evaluation and logging layer will provide compre-
hensive coverage. Model-based diagnostics will offer
precise early warnings, machine learning will detect novel
failure patterns, and the ethics layer will enforce norma-
tive constraints.

Case study: The UAV engine failure case evaluates the
modular architecture where model-based diagnostics pre-

dict imminent failure, machine learning anomaly detec-
tors recognize novel degradation patterns, and the ethics
module evaluates whether mission continuation or abor-
tion complies with ethical thresholds.

RQ3: Can blockchain-based logging meet the real-
time and confidentiality needs of aerospace auditing?
Hypothesis 3: A permissioned blockchain (e.g., Hyper-
ledger Fabric) can deliver low-latency logging with con-
fidentiality, while public blockchains (e.g., Ethereum) can
provide long-term verifiability. A hybrid strategy may
combine both, balancing operational efficiency with pub-
lic trust.

Case study: The swarm UAV mission case validates blockchain

logging under high-frequency, multi-agent conditions. Here,
Hyperledger Fabric is used for real-time intra-swarm log-
ging, while Ethereum checkpoints are tested for long-
term public verifiability of mission compliance with no-
fly zones.

RQ4: How can explainable AI techniques enhance
transparency of both PHM and ethics alerts for hu-
man stakeholders?

Hypothesis 4: Embedding XAl outputs (e.g., SHAP/LIME
explanations) with alerts will improve human interpretabil-
ity and trust. Logging explanations alongside events on
blockchain will further guarantee accountability.

Case study: Across all three cases, XAl methods (SHAP,
LIME) are used to generate explanations for alerts. For
example, in the emergency landing case, explanations
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Figure 2. High-level framework for trustworthy UAV autonomy. Data from sensors and Al decisions flow into PHM and Ethics
monitoring, converge through arbitration, and are logged with blockchain support. An explainability layer provides reasoning
for decisions, while a governance interface enables human oversight and regulatory auditing.

clarify why a specific landing zone was prioritized; in end-to-end system reliability than traditional PHM or bias-
the UAV case, they reveal which sensor anomalies drove only metrics. User studies with engineers and regulators
the failure prediction. can validate the perceived utility of these measures.

Case study: All three case studies will be assessed using
composite mission-level metrics such as “mission suc-
cess with integrity.” For example, in the swarm UAV
case, integrity is defined not only by mission completion
but also by avoidance of no-fly zone violations.

* RQS5: How should conflicting PHM and ethics alerts
be arbitrated in mission-critical contexts?
Hypothesis 5: Coupled arbitration schemes that weigh
both physical safety and ethical compliance can mitigate
risks more effectively. For example, if a UAV faces both

engine failure and an ethics violation in its flight path,  Answering these research questions will establish whether
integrated arbitration can propose safer alternatives than integration of PHM and Al ethics monitoring can yield au-
either subsystem alone. tonomous aerospace systems that are not only technically re-

Case study: The UAV engine failure case explicitly tests  liable but also ethically transparent and certifiable for real-
conflict resolution: the PHM module may recommend world deployment.

immediate diversion, while the ethics module flags that
the planned landing route crosses restricted civilian zones. 3. A FRAMEWORK FOR INTEGRATED PHM AND ETHICS
Arbitration logic will be evaluated for its ability to bal- MONITORING

ance safety and fairness. . . .
To address the identified gaps, we propose a unified frame-

* RQ6: What metrics can evaluate the overall trust- work that integrates PHM and Al ethics monitoring, sup-
worthiness of an integrated framework? ported by a blockchain-based audit layer and a governance
Hypothesis 6: Composite performance metrics—such  interface (Arkin, Ulam, & Duncan, 2009). Figure 2 shows the
as “mission success with integrity”—will better capture main modules and data flows. Solid lines represent real-time
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signals, decisions, or logs; dotted lines represent transparency
and oversight interactions. The modular design ensures scal-
ability across aerospace platforms (e.g., UAV swarms, UAVs)
and can accommodate future extensions such as cybersecurity
checks or fairness audits.

Integration here refers to the co-existence of PHM and ethics
modules within a single governance and logging framework,
enabling shared data, coordinated alerts, and unified audit
trails, while retaining their domain-specific algorithms. This
avoids the ambiguity of simple co-location and emphasizes a
common event management and oversight layer that couples
physical health and ethical monitoring.

3.1. Core Components

1. Sensing and data acquisition: Standard sensors (alti-
tude, vibration, fuel level, temperature, etc.) and Al-
internal telemetry (e.g., decision confidence, path-planning
costs) provide the raw data stream. We formalize the in-
put as a feature vector:

Ty = [htvvt’fthtW"thvpt]a

where h; denotes altitude, v; vibration, f; fuel level, T;

temperature, ¢, Al decision confidence, and p; path-planning

cost at time ¢. We partition the data stream into

2y = (aPIM] gBies),
with 2PH™ used by health monitoring (physical signals)

and zFMies derived from Al decision-making states. Sen-
sor measurements are corrupted by noise ¢; ~ N'(0, 02),
and potential drifts A, are tracked to support anomaly
detection downstream. This unified view ensures that
both modules share a consistent telemetry backbone.

2. PHM module (health monitoring): The PHM block
combines residual-based diagnostics, state-estimation fil-
ters, and machine-learning anomaly detectors.

(a) Residual analysis. Given amodel y; = g(u¢, 0)+es,
we compute the residual

measured __, model

Tt =Y Yi

A fault is flagged if ||r¢|| > 0, with ¢ a detection
threshold.

Kalman filter prognostics: We propagate hidden states
S¢ using:

(b)

Si41 = Asy + Buy + wy, ys = Csy + vy,

where w;, v; are Gaussian process/measurement noise
terms. The predicted time-to-threshold gives the es-
timated Remaining Useful Life (RUL).

Data-driven anomaly detection: Autoencoders or clas-
sifiers can provide complementary fault detection.

(©)

For an autoencoder:
AnomalyScore(z;) = ||x; — 243,

where 2, is the reconstructed input. Scores above a
learned threshold indicate abnormal behavior.

(d) Decision output: At each time step, the PHM mod-

ule outputs:

PHM(z;) = {status € {OK, Degraded, Critical}, RUL, r;},

providing both categorical health states and quanti-
tative predictions. This feed then directly informs
event arbitration with the ethics module.

Ethics monitoring module (decision monitoring): This
module evaluates Al actions using:

(@) Rule-based ethical governor: Encodes hard con-
straints (e.g., no-fly zones, safety rules). Similar to
Arkin’s governor, it inhibits or flags rule-violating
actions.

(b) Fairness and anomaly detection: Identifies bias or

unsafe deviations in decision-making patterns. For
instance, detecting if a UAV swarm consistently fa-
vors some mission agents over others in ways not
aligned with fairness guidelines.

It outputs alerts such as decision OK, rule violation, or
bias anomaly. We treat the decision process as a con-
strained Markov decision process (CMDP). Actions a;
are admissible only if they satisfy all hard constraints C;
(e.g., G(ninside(NFZ)) for no-fly zones, Rpyypric <
R4 for bystander protection). The ethics module im-
plements a shield S such that:

ag,
g,

if Vi C;(a¢) holds,
otherwise.

ai € S(ay) = {

Algorithm 1 Ethics Shield for UAV Decision Filtering

R DN R

Input: Proposed action a;, state s;

if a; violates no-fly constraint or safety-of-life rule then
Reject a,, trigger Ethics Override

else if P(failure|s;) > 0 and TTB > RUL then
Enforce Return-to-Base (RTB)

else
Accept a;

end if

To operationalize the ethics module, we implement a two—tier
approach: (1) hard constraint checking via a runtime shield,
and (2) soft-priority arbitration across stakeholders once
feasible actions remain.

Ethical and legal rules are encoded as formal constraints
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C;, which the governor enforces strictly:

Cy : G(—inside(NFZ)),
Cy: Rpublic < Rpax,
C3 : P(failure | t) < 6.

Here, G(-) denotes temporal logic “always” (e.g., never
inside a no-fly zone), Rpupiic is the bystander risk index,
and P(failure | t) is the predicted failure probability
given PHM diagnostics. Any action violating C; is ve-
toed by the shield.

Beyond hard rules, we track deviations from normative
behavior profiles:

D(at) = ||f(at) - fnorm“Qa

where f(a;) are features of the chosen action (e.g., tra-
jectory, proximity to risk zones), and fom i8S the refer-
ence distribution of expected ethical behavior. If D(a;)
exceeds a threshold, a bias anomaly is flagged.

For remaining feasible actions, we compute a weighted
score:

DecisionScore = Ws* Spassengers +wp . Spublic - Rviolations 3

where Spassengers and Spuplic are normalized survival/safety
indices, Ryiolations 1S the number of soft-rule breaches,
and (ws,wp, A) are stakeholder-priority weights. This
ensures quantifiable trade-offs.
Conlflict resolution follows a lexicographic ordering typ-
ical in safety-critical domains:

Priority:  Safety-of-life > Legal compliance >
System preservation > Mission goals >

Efficiency.
The runtime governor implements these steps:

function EthicalShield(action a_t):

if violates(Cl...Cn):
return OVERRIDE

else if D(a_t) > anomaly_threshold:
flag("Bias anomaly")

score = wsx*Spassengers + wp*Spublic
- *Rviolations

return argmax (score over feasible
actions)

Such formulation grounds the ethics module in imple-
mentable algorithms: constraints as hard filters, anomaly
scores for bias detection, and weighted arbitration for re-
maining feasible choices. It also clarifies that “integra-
tion” means unified arbitration and logging (Fig. 2), not
merging algorithms into a single block.

Event fusion and arbitration: Outputs from PHM and
Ethics modules feed into an event manager. This layer

synchronizes alerts, resolves conflicts, and ensures co-
herent system responses. Its role is critical because con-
flicting signals (e.g., “engine failure imminent” vs. “planned
diversion violates no-fly zone”) can arise in safety-critical
missions. We define the arbitration problem as select-
ing an admissible system action a; given alerts AHM
and APhics Let each alert be associated with a sever-
ity score o € [0, 1] and stakeholder risk weights w. The
arbitration utility is:

U(at) = - Sphys (at) + B Se[h(at) - Rconﬂict(at)v

where «, 3,7 are tunable weights prioritizing physical
safety, ethical compliance, and avoidance of simultane-
ous violations, respectively. To ensure interpretability,
arbitration also follows a deterministic fallback policy
(Table 2). This guarantees predictable outcomes under
common conflict scenarios.

The runtime event manager fuses alerts, evaluates U (a+)
for admissible actions, and applies the rule table as a
safety net:

function EventManager (L_phm, L_eth, A):
if L_phm == Critical and
L_eth == Critical:
# Safety->Compliance->Preservation
return PriorityStackDecision()
else if L_phm == Critical:
# RTB / safe-mode / contingency
return SafeReturn ()
else if L_eth == Critical:
# Replan, hold, or abort
return EthicsOverride ()
else:
for a in A:
# weighted utility (alpha, beta, gamma)
compute U (a)
return argmax_a U(a)
log_to_ledger(t, L_phm, L_eth,
action, U(action))

For each arbitration, we record (i) raw alerts and severi-
ties, (ii) the selected action a*, (iii) the utility U (a*) and
the weight vector (a, 3,7), (iv) any rule from Table 2
that was triggered, and (v) linked XAI explanations for
Sphys and Se. These fields are committed to the audit
ledger to enable reproducible post-hoc review by opera-
tors and regulators.

Blockchain logging: A smart-contract-enabled ledger
stores significant events, decisions, and alerts. We adopt
a hybrid approach: high-frequency logs to Hyperledger
Fabric (low latency, permissioned), with periodic hash
anchors or summaries committed to Ethereum (tamper-
proof public record). This ensures both operational effi-
ciency and long-term verifiability.

10
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Table 2. Decision Arbitration Table for PHM-Ethics Event Fusion

PHM Alert Ethics Alert Resulting Action
None None Continue mission under normal autonomy.
Critical None Initiate safe return-to-base (RTB) or controlled emergency landing.
None Critical Override decision; enforce ethics shield (e.g., divert to avoid no-fly zone).
Critical Critical Prioritize safety-of-life. Abort mission, enforce RTB, and escalate to human oversight.
Moderate Moderate Degrade mission goals (reduced payload, limited range), but continue with heightened

monitoring.

Formally, each log entry is defined as:
E, = {m, Type,, Source;, Severity,, h.;},

where 7 is the timestamp, Type, the event class (e.g.,
PHM alert, ethics violation), Source; the originating mod-
ule, Severity, a normalized score, and h; the cryptographic
hash pointer.

Immutability is enforced through hash chaining:

hy = H(Eq || hi—1),

where H (-) is a secure cryptographic hash function and
|| denotes concatenation. Any modification of past records
invalidates all subsequent hashes, ensuring tamper evi-
dence.

For hybrid anchoring, a digest of multiple local entries

. 7Etk+m)

is periodically committed from Fabric to Ethereum, cre-
ating a public proof of integrity for all logs recorded in
the interval.

Blockchain performance is quantified by:

Ak - H(Etk7Etk+17 .

Ny
At’
where Tiommit 1 the expected transaction latency and I'
the achieved throughput (transactions per second). These

Teommit = E[confirmation delay], T =

measures are evaluated in case studies to benchmark Ethereum

vs. Hyperledger Fabric for aerospace use cases.

As shown in Figure 3, logged entries thus contain both
outcomes and explanation hashes (from the XAI layer),
enabling not only forensic traceability but also interpretabil-
ity of each decision. This combination can provide regu-
lators and auditors with cryptographically verifiable, human-
readable accountability trails.

Explainability layer: Before logging, all alerts are an-
notated with structured explanations. For PHM events,
causal features are extracted from diagnostic models (e.g.,
top-k residuals or sensor anomalies). For ethics events,
post-hoc explanation methods such as SHAP (SHapley
Additive exPlanations) or LIME (Local Interpretable Model-
agnostic Explanations) can be used to highlight decision
drivers. This enables a “glass box” effect: every log en-
try records not only the decision but the rationale behind

it. E.g., for a decision function f : R? — R, the SHAP
attribution ¢; for feature ¢ satisfies:

¢i = Escr\(iy [fSU{i}(mSU{i}) — [s(zs)

where ' is the baseline input and S is a subset of fea-
tures. The ¢; values quantify each feature’s marginal
contribution to the decision.

In practice, this would mean that when the ethics mod-
ule overrides an action (like a path planning action), the
logged record is not just:

time=t, decision="“override”, reason="“no-fly zone”
but extended with an explanation vector:

“top features = {wind speed: +0.31, GPS confidence:
-0.22, map data: +0.18]

Governance and oversight interface: Human stakehold-
ers interact via dashboards connected to the blockchain
backend.

* Engineers and operators access prognostic health
metrics (RU L, anomaly counts) and corrective ac-
tions, allowing real-time maintenance decisions.

» Ethics boards and regulators view compliance re-
ports, fairness indices, and audit trails of ethical over-
rides. Because all data is cryptographically signed
and immutable, regulators and operators share a com-
mon, tamper-proof record.

To complement NFZ violation queries, we also define a
fairness metric that evaluates how risk and compliance
burdens are distributed across swarm members. For each
UAV u;, we can compute the cumulative time spent within
a high-risk buffer zone around the no-fly region using
queries such as: @Q = filter: “no-fly-zone violations”,
time range: last year} will return a verified subset of
the blockchain logs like:

T; = Z 1{e;.uav = u; A e;.type = “Near-NFZ”}-At,
e, €L

where 1{-} is the indicator function that equals 1 when
event e; corresponds to UAV u; being in the “Near-NFZ”
state, and At is the logging resolution. To measure fair-
ness across the swarm, we normalize these exposures:

11
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Figure 3. Hybrid blockchain logging for aerospace events. PHM and ethics events are recorded in a permissioned Hyperledger
Fabric ledger for low-latency, high-frequency logging. Periodically, cryptographic digests are anchored to the public Ethereum
blockchain, ensuring tamper-proof and independently verifiable records.

T;

J
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where N is the total number of UAVs. Ideally, F; ~ 1/N
for all 7, indicating that risk exposure is shared equitably.
Large deviations highlight imbalances, such as one UAV
disproportionately skirting the restricted airspace due to
faulty sensors or biased task allocation. These metrics
can then be queried from blockchain logs during post-
flight audits, ensuring that fairness is treated as a mea-
surable property of swarm autonomy rather than a quali-
tative aspiration.

F.

J

Each retrieved log entry will be accompanied by both
event metadata (timestamp, UAV 1D, severity, module
source) and an explanation hash, linking to the SHAP/
LIME rationale in the explainability layer. This ensures
that oversight bodies not only see what decision was taken
but also why. To maintain privacy, sensitive data (e.g.,
raw images or passenger identifiers) are not stored on-
chain; instead, only cryptographic commitments (hashes)
are logged. Authorized stakeholders can reconstruct the
full explanation from off-chain stores if necessary. Fi-
nally, the governance dashboard supports multi-level ac-
cess control: operators may view granular PHM states,
while regulators are provided with summarized compli-
ance reports, both anchored to the same immutable ledger.
This dual-level design ensures transparency without in-
formation overload, aligning with certification pathways
where regulators require high-level evidence of compli-
ance rather than raw sensor data.

3.2. Workflow and Interventions

During operation, PHM and Ethics modules produce contin-
uous scores. If thresholds are exceeded, the event manager
generates alerts, attaches explanations, and triggers blockchain
logging. Arbitration rules determine immediate responses:
e.g., override unsafe actions, command safe-mode, or notify
a remote pilot. Interventions themselves are logged, ensur-

ing accountability and preventing silent overrides. A hybrid
blockchain strategy ensures scalability: Fabric enables real-
time auditability and granular access control (operators, reg-
ulators, manufacturers), while Ethereum provides public trust
anchors.

This framework establishes a holistic notion of “system in-
tegrity” that encompasses both mechanical reliability and eth-
ical decision compliance. By combining PHM, ethics moni-
toring, blockchain, and XAI in a unified architecture, it pro-
vides the missing link between technical assurance and moral
accountability. Importantly, it lays the groundwork for future
certification pathways where ethical compliance logs may be
assessed alongside safety compliance, advancing regulatory
acceptance of autonomous aerospace systems.

4. CASE STUDIES IN AEROSPACE APPLICATIONS

To validate the proposed framework, we present three repre-
sentative aerospace scenarios. Each illustrates how simulta-
neous PHM and ethics monitoring, together with blockchain
auditability and explainability, enables safer and more ac-
countable decision-making than traditional methods:

1. Arbitration between conflicting PHM and ethics alerts

2. Fairness in multi-agent UAV operations

3. Transparency for regulators

4.1. Case Study 1: Urban Air Mobility Integrity Trial—
Ethics-Aware Emergency Diversion

We consider an electric aircraft that experiences a mid-flight
rotor fault and rapid battery degradation. The PHM module
detects anomalies at ¢ = 10 s, triggering emergency mode
and logging: “Rotor anomaly + battery fault — emergency
mode initiated”.

Two candidate landing sites are available:

e Option A: Nearby suburban field, high passenger sur-
vival probability (Spassengers = 0.90) but significant by-
stander risk (Spupiic ~ 0.50).

12
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Figure 4. Emergency landing scenario. PHM detects a rotor+battery anomaly (star). The Al initially routes to the nearer
field (A), raising bystander risk; the Ethics module overrides to the lake (B), reducing public risk at a small passenger survival

tradeoff.
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Figure 5. Tradeoff between passenger survival and public risk
for two emergency landing options.

» Option B: Distant lake,clower passenger survival (Spassengers =

0.80) but minimal public risk (Spupiic = 0.95).

The Al decision engine evaluates only passenger survival.
Formally:

*
;= arg max S assengers \
Al oSGy Spusensen (1)

which yields a}; = A. This is logged as: “Chosen Option A:
higher survival probability for onboard passengers”.

The Ethics module applies the weighted utility scoring func-
tion:

U(a) = Ws Spassengers(a) + prpublic(a) - Rviolations(a)7

with weights ws = w, = 0.5 and Ryiolations (@) encoding fair-
ness penalties if bystanders are exposed to risk. Evaluating
both options:

U(A) = 0.5 % 0.90 + 0.5 x 0.50 — 0.3 = 0.55,
U(B) = 0.5 x 0.80 + 0.5 x 0.95 — 0 = 0.875.

Since U(B) > U(A), the Ethics module overrides the Al de-
cision, re-routing to the lake. The event is logged as: “Ethics
override: re-routing to Lake — minimizing public risk”.

The Event Manager reconciles the PHM alert (critical) with
the Ethics alert (critical) using the arbitration policy:

a* = PRIORITYSTACKDECISION(Lppm, LEn ),

where safety >~ compliance > mission. The override to Op-
tion B is confirmed.

Events are immutably hashed using:
he = H(Ey||hi-1),

where E, is the ¢-th logged event. An excerpt of the log is
shown in Table 3. This guarantees tamper-proof traceability

13
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Table 3. Excerpt from immutable event log (hashes abbrevi-
ated).

Time Event Hash

10.0s PHM Alert: rotor + battery fault ~ 3F5A...
10.1 s Al Decision: Option A (field) 7C109...
12.0 s  Ethics Override: Option B (lake) A452...

for regulators and manufacturers.

This case demonstrates the full workflow of the proposed
framework. The aircraft diverts to the lake, reducing passen-
ger survival slightly (90% — 80%) but eliminating bystander
harm. Importantly, this example shows how a modest pas-
senger risk tradeoff is justified by reduced public harm, and
how this reasoning is transparently logged for oversight. This
quantitatively demonstrates how:

PHM anomalies trigger emergency response
2. Al reasoning is transparent but initially biased
3. Ethics scoring corrects for public fairness
4. Arbitration confirms override under joint critical alerts
5

Blockchain ensures immutable accountability

Figure 4 illustrates the spatial decision dynamics. The yellow
star marks the anomaly point, the dashed line shows the AI’s
initial plan to the suburban field (Option A), while the solid
red line shows the Ethics override to the lake (Option B). The
shaded red area represents the bystander risk zone surround-
ing Option A.

Complementing this, Figure 5 provides a quantitative com-
parison of the two options. Passenger survival probability is
higher for Option A (~ 90% vs. ~ 80%), but this comes
with a substantial risk to the public (~ 30% harm probability
vs. near zero for Option B). The Ethics module evaluates this
trade-off formally through its decision score function, priori-
tizing fairness by minimizing unconsented risk to bystanders.
This dual perspective, i.e., spatial (where risk is located) and
quantitative (how risk is distributed), underscores how the in-
tegrated framework makes transparent, auditable decisions in
safety-critical emergencies.

4.2, Case Study 2: Engine Degradation in a Critical UAV
Mission, Balancing Mission Value and Safety

We simulate a long-endurance UAV tasked with wildfire surveil-

lance, flying ~70 km from its base to monitor fire spread and
returning afterward. The UAV must trade off between com-
pleting its mission and responding to engine degradation risks
detected by the PHM module.

The UAV follows a four-waypoint trajectory (Table 4). A
critical engine component (fuel pump) degrades with a time-
dependent probability of failure Py(t), modeled as:

Pr(t)=1—e M,

where ) is a degradation rate parameter. For this mission, Py
crosses the warning threshold 0.5 at t = T5( and the critical
threshold 0.8 at ¢ = Tgg. These thresholds generate PHM
alerts.

Table 4. Planned waypoints for wildfire surveillance mission.

Waypoint Description Distance from Base (km)
WP1 Departure point 0
WP2 Fire zone entry 35
WP3 Surveillance orbit 70
WP4 Return to base 0

At runtime, the PHM module estimates the RUL and evalu-
ates Py (t). Alerts are generated using:

None,  Py(t) < 0.5,
Lpum = Warn, 0.5 < Pf(t) < 0.8,
Critical, Py(t) > 0.8.

Att = Tsp, a PHM_WARN_50 is logged; at ¢t = Ty, a critical
alert is issued.

The UAV’s Al optimizes mission value using:
*
ax; = arg max Vpission (@
Al g ac A n‘usslon( )7

where Viission grows with wildfire data collected. However,
the Ethics module imposes a safety constraint here:

If RUL(t) < Dyem(t) = a* = RTB.

At t = Tgo, when Py > 0.8 and distance to base exceeds
safe RUL margin, the Ethics module overrides the mission
and enforces the Return-to-Base command.

The Event Manager fuses these alerts and applies the arbitra-
tion rule:

a* = PRIORITYSTACKDECISION(Lppm, LEn ),

with ordering: safety > compliance > mission. Blockchain-
style logging ensures immutable traceability:

he = H(Ey||h¢-1),
where F; is each logged event. Table 5 shows the excerpt.

Table 5. Excerpt from immutable event log for Case 2 (hashes
abbreviated).

Time Event Hash

T=60 PHM_WARN: risk > 50% 0172...
T=80 OVERRIDE_RTB: risk > 80% 0180...
T=102 LAND_SAFE: RTB completed 0197...

Figure 7 shows mission risk vs. mission value. Initially, the
UAV collects wildfire data while risk grows. Once the 80%

14
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Figure 6. UAV wildfire surveillance mission. After outbound
to the fire zone, PHM triggers a 50% warning (dashed), then
an 80% critical alert (dotted), upon which the ethics policy
enforces return-to-base (RTB).

critical threshold is crossed, Ethics override enforces RTB.
The UAV lands safely, aborting mission completion but pre-
venting catastrophic loss. This demonstrates:

1. Quantitative PHM alerts tied to failure probabilities

2. Ethics-based constraints preventing unsafe persistence
3. Arbitration prioritizing safety over mission yield

4. Blockchain logs providing verifiable accountability

Such integration ensures regulators can verify not only sys-
tem reliability but also ethical compliance in mission-critical
trade-offs.

Figure 6 illustrates the wildfire surveillance mission profile,
overlaying both the spatial and risk dimensions. The UAV
departs from base, traverses toward the wildfire zone, and
accumulates mission value (surveillance data yield) as time
progresses. The PHM module continuously estimates failure
probability of the fuel pump, shown here as a risk curve along
the trajectory. At the midpoint of the mission, the probability
of failure crosses the 50% threshold, producing a PHM_WARN
alert (dashed marker). Although the Al continues the mission
at this stage, the alert is immutably logged for accountabil-
ity. As the UAV reaches its farthest waypoint, risk exceeds
80% (critical threshold), at which point the Ethics Monitor-
ing module enforces a shield on admissible actions: con-
tinuing to collect data is vetoed, and the Event Manager is-
sues a mandatory Return-to-Base (RTB) command. The red
curved return trajectory in the figure highlights this override.

Case Study 2: Mission Value vs. Risk with PHM + Ethics Override
T T T T

Mission Value
1 |-|= = Failure Risk 1

Mission Value (normalized)
Engine Failure Risk (probability)

1 1 0
0 20 40 60 80 100 120
Mission Time (minutes)

Figure 7. Mission value increases with time as more wildfire
data is collected, while risk rises due to PHM-estimated en-
gine degradation. At 80% risk, the Ethics module overrides
and triggers RTB, truncating the mission before catastrophic
failure.

By truncating the mission before failure, the framework pre-
serves vehicle safety and prevents potential secondary haz-
ards (e.g., crash-induced ignition). Equally important, each
event—PHM warnings, ethics override, and safe landing—is
cryptographically chained in the blockchain ledger, ensuring
that auditors and regulators can reconstruct not only the se-
quence of decisions but also the rationale behind them.

Figure 7 provides a complementary quantitative view of the
UAV wildfire mission. The blue curve represents mission
value, which grows monotonically as more wildfire surveil-
lance data is collected. The red curve represents PHM-estimated
risk of engine failure, which increases nonlinearly over time
as degradation accumulates. At the critical 80% threshold,
marked by the dashed vertical line, the Ethics module applies
its veto logic and enforces a Return-to-Base (RTB), truncat-
ing the mission despite additional potential value. This fig-
ure highlights the explicit trade-off between mission yield
and operational safety: while value continues to grow, risk
grows faster, and the framework enforces a cut-off before
catastrophic failure occurs. The blockchain log secures this
decision, ensuring that auditors can later verify that the RTB
trigger was not arbitrary but grounded in predefined thresh-
olds and arbitration rules. Along with Fig. 6, this illustrates
both the spatial and temporal dynamics and two key benefits
of the integrated framework:

1. Quantitative thresholds for PHM-ethics arbitration pro-
vide transparent, auditable justification for overrides

2. The hybrid blockchain logging ensures that these justi-
fications are tamper-proof and reviewable, directly sup-
porting pathways to certification in high-stakes aerospace
operations
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4.3. Case Study 3: Swarm UAV Coordination in No-Fly
Zones — Fairness and Compliance

We simulate a swarm of N=10 UAVs operating near a dy-
namic no-fly zone (NFZ), such as a temporary restricted re-
gion around an emergency site. This case study extends the
framework from single-vehicle to multi-agent systems, re-
quiring not only mechanical health and compliance monitor-
ing but also fairness in distributed risk exposure.

Each UAV j € {1,..., N} runs a PHM module to detect sen-
sor drift. For example, GPS drift is flagged when the position
error exceeds a threshold 4:

195(t)

where p; () is the reported position and p; (¢) is ground truth.
This prevents faulty UAVs from endangering the swarm by
misjudging their distance to NFZ boundaries.

—p;i(t)]| > = PHM_ANOMALY(j,t),

The Ethics Monitor enforces compliance by checking UAV
positions against the NFZ region Z(t):

p;(t) € Z(t) = ETHICS_VETO(j,1?).

Even when p;(t) ¢ Z(t) but dist(p;(t),0Z(t)) < e, the
system issues a NEAR_ZONE warning to track risk exposure.
Corrective actions (trajectory re-routing) are automatically ap-
plied.

All events are immutably logged. Each UAV maintains its
own hash chain:

hjt = H(Eji|hji-1),

where F; ; is the event at time ¢. Table ?? shows excerpts
from multiple UAV logs, demonstrating anomaly detection,
vetoes, and corrective actions. Cross-UAV aggregation forms
a distributed audit trail visible to operators and regulators.

To assess fairness, we define for each UAV j:

o Exposure;;
ITYN g )
=1 Exposure,,

T
where  Exposure; :/ 1{dist(p;(t), Z(t)) < e}dt.
0

Ideally, F; ~ 1/N for all j, indicating equitable exposure.
Large deviations indicate imbalance, e.g., UAV 6 showing re-
peated NFZ skirting due to PHM-detected GPS drift.

Figure 8 illustrates swarm trajectories around a central NFZ.
The yellow anomaly marker highlights a UAV suffering from
GPS drift, detected by the PHM module. Without correc-
tion, this drift would have caused a restricted airspace vi-
olation. The Ethics Monitoring module vetoes the unsafe
action and enforces a corrective maneuver, redirecting the
UAV outward. Each event—anomaly detection, veto, and
correction—is hash-chained in the blockchain log, ensuring

O UAV
———p nominal path
.................. p~  drift (PHM anomaly)
— P cthics correction

- =~

N\~
Y

/ A

PHM: GPS drift ! \
e ethics:'veto No-fly Zone :'

1

i

'

i

Figure 8. Swarm UAV trajectories near a dynamic no-fly
zone. One UAV drifts toward restricted airspace (PHM
anomaly); the ethics shield vetoes entry and applies a cor-
rective trajectory. Red markers show anomalies and vetoed
incursions.

regulator-grade auditability and preventing tampering.

Complementing this spatial perspective, Figure 9 quantifies
per-UAV fairness metrics. Bars represent the number of ethics
violations and normalized near-zone exposure time F;. While
most UAVs operate within acceptable bounds, UAV 6 shows
disproportionate exposure due to its PHM anomaly. This im-
balance is flagged by the fairness layer, enabling post-mission
diagnosis (e.g., controller retuning or task redistribution).

Together, these figures demonstrate that swarm autonomy can-
not be reduced to rule compliance alone. It must also in-
clude fairness monitoring to ensure that risks and ethical bur-
dens are equitably distributed across all agents. This case
study shows how our framework scales beyond single-vehicle
safety to multi-agent coordination, combining PHM anomaly
detection, ethics enforcement, explainable logging, and trans-
parent audit trails. Such layered accountability strengthens
the case for future certification of UAV swarms, since regu-
lators can verify not only legal compliance but also equitable
and ethical operation.

5. DISCUSSION

The three case studies demonstrate how an integrated PHM—ethics

framework provides a level of assurance that traditional ap-
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Table 6. Per-UAV immutable log excerpt (hashes abbreviated).

UAV Time Event Hash

[8[) t=210 PHM_ANOMALY: GPS drift § 9cf2...
U6 t=214 ETHICS_VETO: NFZ incursion prevented 1b77...
U6 t=215 TRAJ_CORR: heading adjusted outward 3a5Sl1...
U2 t=198 NEAR_ZONE: proximity alert (no incursion) a8dl...
Us t=203 ETHICS_WARN: boundary skirting logged c2e9...

Table 7. Operational Context and PHM Alerts in Case Studies

Case System PHM Alert Type Ethics Dilemma

Study

1 Aircraft Rotor + Battery Degradation ~ Passenger safety vs. Bystander safety

2 Fixed-wing UAV  Fuel Pump Degradation Mission completion vs. System integrity

3 UAV swarm Node-level failure alerts Formation maintenance vs. Airspace regulation

Case Study 3: Fairness Metrics Across Swarm o5

W Violations
18| l—0— Exposure

o
Near-zone Exposure (scaled)

Ethics Violations (count)
©

05

u1 u2 us U4 us us u7 us u9 u10

Figure 9. Fairness metric F; across UAVs. Each UAV’s ethics
violations and near-zone exposure (time near the NFZ bound-
ary) are shown. UAV 6, affected by GPS drift, flagging it for
corrective retuning or reassignment.

proaches—focused only on mechanical health or only on rule
compliance—cannot deliver. In the emergency landing (Case
Study 1), the framework showed how ethical overrides can
balance passenger safety against bystander risk, while still
producing an auditable record of the decision. In the wild-
fire UAV mission (Case Study 2), PHM-based risk thresholds
combined with ethical policies ensured that mission-critical
objectives did not compromise survivability, producing a jus-
tifiable return-to-base decision when risk levels became un-
acceptable. Finally, in the swarm UAV no-fly zone scenario
(Case Study 3), the framework scaled to multi-agent systems
by enforcing legal compliance (geofencing), logging anoma-
lies and violations transparently, and addressing fairness con-
cerns so that risk and corrective burdens were not unevenly
distributed across the swarm.

Across these scenarios, three recurring themes emerge:

* Synergy of health and ethics monitoring — mechanical
anomalies often drive ethical dilemmas, and only a com-

bined view allows rational trade-offs.

* Auditability and trust — blockchain-style logging ensures
that decisions can be verified after the fact, fostering ac-
countability to operators, regulators, and the public.

¢ Beyond compliance to fairness — especially in swarms,
legal adherence to no-fly rules is necessary but not suffi-
cient; fairness metrics help ensure responsible and unbi-
ased system behavior.

These reflections highlight that trustworthy autonomy will
depend not on isolated technical fixes, but on integrated frame-
works that can simultaneously sense, diagnose, explain, con-
strain, and justify the behavior of complex Al-enabled sys-
tems. The proposed integrated framework and its validation
across multiple case studies open up several important discus-
sions related to system limitations, standardisation require-
ments, and broader operational and ethical implications. To
support this reflection, Tables 7 and 8 present a consolidated
comparison of the outcomes and decision pathways across the
three aerospace scenarios—highlighting the interaction be-
tween PHM alerts, ethical evaluation, and blockchain-based

logging.

5.1. Key Insights

Each case study underscores how PHM modules function as
primary triggers for re-evaluating mission objectives in the
presence of anomalies. In the first and second scenarios,
faults such as rotor degradation and fuel pump deterioration
activated emergency response logic. In the third case, decen-
tralized alerts from individual agents guided collective adap-
tation. These findings reinforce PHM’s role as the focus of
safety assurance in autonomous aerospace systems. While
PHM mechanisms initiate fault awareness, the ethics mod-
ule brings a higher-order layer of evaluation, examining the
broader implications of Al decisions on stakeholders. For ex-
ample, in the urban air mobility case study, the preference to
land near a populated area that prioritizes passenger survival
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Table 8. Al Decisions, Ethics Overrides, and Logged Events

Case Al Decision (before override) Ethics Override Outcome Logged Events

Study

1 Land in suburban field Divert to lake PHM alert, Al decision, ethics over-
ride

2 Continue mission despite high risk ~ Ethics module triggers RTB PHM warnings, override logged

3 Maintain swarm through restricted Route diverted to comply with Faults, ethics flags, mitigation logs

zone airspace

was ethically overridden to minimize risk to bystanders. Sim-
ilarly, the UAV’s data collection mission was curtailed in re-
sponse to escalating system degradation, prioritizing system
preservation over operational goals. These corrections exem-
plify how the ethics module complements PHM by address-
ing non-technical risks and enforcing fairness in real time.

A key pattern observable across all cases is that autonomous
systems, when left unchecked, tend to favor self-optimizing
objectives such as shortest path or mission completion. The
ethics module intervenes when such choices breach moral
or regulatory boundaries. This behavior validates our ear-
lier hypothesis (RQS5) that fusing physical and ethical health
assessments enhances system-level trustworthiness. Further-
more, all critical transitions, including PHM warnings, Al
decisions, and ethical overrides, were immutably recorded
using blockchain. This provides a robust audit trail, ensur-
ing that mission-critical events are traceable and interpretable
through explainable Al techniques such as SHAP or LIME.
In doing so, the framework fosters transparency and account-
ability—crucial for post-incident investigations and regula-
tory scrutiny.

Finally, the comparison in Table 7 highlights the framework’s
adaptive response capability. The use of different PHM thresh-
olds (e.g., 50% vs. 80% failure probabilities) illustrates how
decision-making can be fine-tuned to match system-specific
risk appetites. For instance, the UAV scenario permitted con-
tinued operation under moderate risk, but the ethics module
escalated intervention only when compounded by distance
from base, reflecting a context-aware escalation strategy that
blends technical and ethical priorities. The case studies col-
lectively support the need for a unified monitoring approach
in autonomous aerospace systems. They reveal that:

* Ethical breaches can emerge because of system degra-
dation (e.g., forced ethical trade-offs under fault condi-
tions).

e PHM alone cannot resolve fairness dilemmas; Also, eth-
ical reasoning without health context may misjudge risk.

» Integration enables risk-aware, stakeholder-sensitive, and
explainable autonomy, supported by traceable logs.

These results underline the feasibility and necessity of dual-
domain monitoring for future aerospace certification standards
and trustworthy autonomous operations.

5.2. Limitations

While promising, the framework is not without limitations.
Computational complexity is a concern: running PHM ana-
lytics, ethics checks, and blockchain clients all in real-time
on an autonomous platform could tax on-board processors.
Advanced PHM algorithms (e.g., particle filters for prognos-
tics) and explainability techniques (like SHAP for deep net-
works) can be computationally expensive. Careful optimi-
sation or the use of dedicated hardware (FPGAs, edge Al
chips) might be required to ensure our monitoring does not
slow down mission-critical control loops. There is also the
risk of false alarms. An oversensitive ethics module might
flag too many decisions, potentially causing unnecessary in-
terventions or log clutter. Tuning sensitivity thresholds will
be non-trivial and might require adaptive logic to minimise
false positives. In the PHM realm, false positives could lead
to aborting missions that actually would have been fine, so
the system must balance caution with operational efficiency.

Another limitation is reliance on predefined ethical rules or
training data. Ethics is context-dependent and sometimes sub-
jective. Our case studies used straightforward rules (avoid
populated areas, do not exceed crash risk X, etc.), but real-
world ethics can be more nuanced. There is a risk that the
ethics module might not cover a scenario and thus “miss” an
unethical behavior simply because it was not encoded. This
raises the need for continuously updating ethical constraints
and possibly involving ethicists in the design loop. It also
ties to value alignment: whose ethics are encoded? For a
global framework, cultural and legal differences exist (e.g.,
approaches to risk trade-offs differ by country). Blockchain
integration, while providing security, introduces its own is-
sues. Immutable data is excellent for integrity but problem-
atic if logs contain sensitive or misinterpreted information.
For example, logging that an Al considered an “unethical”
option may create liability or reputational risks if taken out
of context. Data volume is another challenge: PHM pro-
duces vast sensor streams, which cannot be logged directly
on-chain. Event-triggered logging and off-chain storage with
on-chain hashes mitigate this, but scaling to swarms or fleets
will still be non-trivial.
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5.3. Standardisation and Certification Pathways

For such integrated monitoring to become common, standards
will be crucial. On the PHM side, standards like ISO 13374
or OSA-CBM structure how health data is collected and com-
municated. Similarly, emerging Al ethics standards (IEEE
P7001 for transparency, P7009 for fail-safe design) provide
guidelines for ethical controls. However, no unified stan-
dard exists for combining the two domains. We foresee the
need for a Standard for Ethical PHM in Autonomous Sys-
tems—potentially extending DO-178C (software certification)
or ARP4761 (safety assessment) to include Al decision mon-
itoring. Regulators such as FAA and EASA may mandate an
“ethical black box” similar to the flight data recorder, where

critical decision and health data are securely stored (our blockchain

approach could inspire this). For blockchain, interoperabil-
ity standards will be needed if multiple stakeholders are in-
volved (e.g., manufacturers, operators, regulators). Without
common schemas for autonomous incident logs, collabora-
tive oversight will be hindered. Establishing such standards
could accelerate regulatory acceptance and provide clearer
certification pathways.

5.4. Broader Implications

If adopted, this framework expands the scope of PHM profes-
sionals. Traditionally, PHM has focused on physical subsys-
tems; introducing ethical monitoring requires collaboration
with Al ethicists to define what constitutes a “decision fault”.
This could give rise to a new discipline, Ethical Health Man-
agement (EHM), where Al decision integrity is monitored
alongside mechanical reliability. Conversely, Al ethics com-
munities would need to integrate system reliability aware-
ness, since many “unethical” decisions may stem from sensor
or subsystem faults rather than algorithmic bias. By merg-
ing these perspectives and embedding blockchain-based au-
ditability, the framework operationalizes the principles of trans-
parency and accountability that are often discussed abstractly
in Al ethics. For aerospace, this provides a concrete techni-
cal pathway to meet upcoming certification and governance
challenges.

6. CONCLUSION

This paper presented a framework for monitoring autonomous
systems through an integrated lens of physical health and eth-
ical behavior, using blockchain to ensure transparency and
trust. We motivated the need for such an approach by high-
lighting parallel challenges in aerospace PHM and Al ethics,
and identified a gap in existing research: the lack of unified
solutions bridging these domains. Through an extensive lit-
erature review, we gathered principles and tools (from hybrid
PHM techniques to algorithmic fairness and explainability)
that informed our design. We proposed a setup incorporat-
ing PHM modules, ethics monitoring, and blockchain-backed

logging, validated through three aerospace case studies.

The framework’s novelty lies in treating ethical rule viola-
tions as incidents to be detected and managed just like system
faults, and ensuring neither aspect is considered in isolation.
Early results indicate improved safety outcomes, fairness, and
enhanced auditability. For engineers, it extends PHM into the
“health” of AI decisions. For ethicists and regulators, it of-
fers a concrete design for operationalizing fairness, account-
ability, and transparency. By leveraging blockchain, we con-
tribute to discussions on how to implement trustworthy Al via
technical means, not just policy.

Challenges remain: computational load, defining ethical cri-
teria, ensuring blockchain scalability and privacy—but none
appear insurmountable. Moving forward, collaborations be-
tween aerospace engineers, Al ethicists, and regulators will
be critical. Pilots with aviation authorities or self-driving
vehicle developers could refine the approach and accelerate
adoption. Future directions the authors are currently explor-
ing include adaptive ethics modules using reinforcement learn-
ing, integrating cybersecurity monitoring as a third pillar, and
scalable distributed ledgers for large fleets.

In conclusion, as autonomous systems proliferate, frameworks
that jointly safeguard their physical and moral integrity will
be crucial to earning and maintaining public trust. The in-
tegrated PHM + Ethics + Blockchain framework presented
here is a step toward that vision—ensuring autonomous ma-
chines remain safe, fair, and transparent, even as they operate
with minimal human supervision. We hope this work stim-
ulates further interdisciplinary research, ultimately contribut-
ing to the development of autonomous technologies that are
not only intelligent and efficient but also responsible and cer-
tifiable by design.
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