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ABSTRACT 

This paper explores rolling element bearing data collection 

and hyperparameter tuning for machine learning-based fault 

diagnosis to aid in the development of modern condition 

monitoring systems. The integration of industrial internet of 

things (IIoT) products and cloud databases has led to an 

increased interest in utilizing artificial intelligence (AI) 

models, including artificial neural networks (ANNs) and 

convolutional neural networks (CNNs), to diagnose machine 

faults. However, the development of AI methodologies in 

smart monitoring is hindered by a lack of publicly available 

industry data, as well as limitations involved in the 

collection and storage of large high-dimensional datasets. 

Combining machine learning (ML) methods, such as 

traditional learning (TL), deep learning (DL), and bearing 

signature theory, will allow for a better understanding of 

data collection and hyperparameter tuning. Moreover, 

considering how high-dimensional datasets for rolling 

element bearing fault diagnosis affect ML algorithms has 

yet to be explored in the literature, providing little 

robustness for analysis. Concerns around the way data has 

been collected and used historically for both TL and DL are 

raised. Therefore, recommendations for data collection 

specifically suited to TL and DL methods for rolling 

element bearing fault diagnosis are proposed by analyzing 

existing lab-based datasets. The recommendations proposed 

combine knowledge of these methodologies to aid in 

selecting an appropriate sampling rate, as well as the ideal 

number of samples, stride, duration of each sample, and 

resolution for rolling element bearing fault diagnosis. The 

goal is to increase efficiency and reduce setup and collection 

time when selecting the design parameters for creating new 

rolling element bearing datasets. To achieve this, the study 

applied a structured approach with the use of multiple 

datasets to determine a threshold accuracy of 95% for fault 

diagnosis. Furthermore, the results of this study will help 

IIoT companies re-evaluate the constraints imposed by the 

limited data storage and transmission of their devices when 

used for ML. This paper will also help improve the 

efficiency and effectiveness of AI methodologies in smart 

monitoring systems by establishing data collection 

recommendations. This work will hopefully motivate the 

vast collection of open-access data that can be used by 

researchers to further develop ML-based methods for rolling 

element fault diagnosis. 

1. INTRODUCTION 

In the heavy machinery industry, IIoT devices, as well 

as TL and DL methods, collectively known as ML methods, 

have recently gained popularity for tracking machine health 

and performing condition monitoring. However, obtaining 

quality data to train these ML-based techniques presents a 

substantial challenge (Chandrvanshi et al., 2024; Rahman et 

al., 2023). So far, a few high-dimensional datasets have 

been collected by researchers in the lab without describing 

their reasoning for the data collection method they used, 

especially when related to their use with ML techniques for 

fault diagnosis. However, a methodological approach to data 

collection is crucial for the continued development of useful 

ML algorithms (Chandrvanshi et al., 2024; Soomro et al., 

2024). This study intends to clarify the important 

characteristics associated with data collection parameters, as 

well as the hyperparameters, that affect the training of ML 

algorithms to overcome existing constraints and enhance the 

accuracy and effectiveness of rolling element bearing 

analysis when using ML. The parameters selected are used 

to identify a threshold accuracy based on computational 

efficiency and storage requirements to allow IIoT 
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companies to integrate ML fault diagnosis in their devices 

and systems. 

The proposed approach recommends data collection 

parameters for rolling element bearings by combining ML 

approaches and bearing signature theory. ML algorithms, 

such as convolutional neural networks (CNNs), enable more 

rapid and accurate fault diagnosis when provided with an 

adequate input. The selection of parameters such as 

sampling rate, number of fault harmonics, number of 

samples, data collection duration, frequency resolution, 

window length, and stride is made easier with the help of 

existing research based on bearing dataset benchmarks. 

Bearing signature theory, which sheds light on the 

distinctive patterns of defects in roller element bearings, 

allows for identifying the number of fault harmonics 

contained within a signal. Researchers are encouraged to use 

the findings in this paper to collect data for rolling element 

bearings specifically intended for use with ML algorithms, 

which will encourage the collection of a greater number of 

datasets and will also help improve AI-based fault diagnosis 

techniques for IIoT applications. 

The proposed recommendations for collecting data used 

with ML approaches for rolling element bearings open a 

wide range of possibilities. Importantly, it encourages IIoT 

companies to develop devices that can be used with ML 

algorithms, as well as allowing researchers to collect data 

based on bearing signature theory, ensuring that the data 

gathered is in line with the specific requirements of the 

current problem. Storage space limitations can be overcome 

by optimizing the sample rate and quantity of data collected. 

The proposed recommendations establish a foundation for 

advancements in IIoT products and services and serve as a 

useful tool for further study in data-driven fault diagnosis. 

1.1. Motivation 

ML-based bearing fault diagnosis is a widely studied 

topic, particularly with the emergence of data driven 

methods such as neural networks (Sehri et al., 2023; Sehri, 

Varejão, et al., 2025). However, many existing studies omit 

critical details regarding the computational time, software 

frameworks, hyperparameters (Wu et al., 2019), and 

hardware configurations used to implement these methods, 

making reproducibility and fair comparison difficult 

(Vashishtha et al., 2025). This lack of transparency in the 

literature hinders the ability to evaluate algorithmic 

performance in real-world conditions (Sehri, Hua, et al., 

2025). This work acknowledges this gap and incorporates a 

brief explanation to justify experimental design choices. 

Additionally, a majority of publicly available rolling 

element bearing datasets were created before the emergence 

of DL algorithms, often making them non-ideal for training 

modern DL models. This work identifies and addresses 

these limitations by proposing optimized data usage 

strategies for these datasets. This paper also highlights the 

importance of understanding both the data and AI-based 

condition monitoring processes, aiming to bridge the gap 

between ML researchers and signal processing engineers. 

To ensure clarity and accessibility for a broader audience, 

this work includes an overview of neural networks and their 

application to fault analysis in rolling element bearings. The 

remainder of this paper is organized as follows: Section 2 

describes the background for different methods and models 

used. Section 3 outlines the results for bearing fault 

diagnosis analysis using DL. Section 4 presents the 

discussion, and Section 5 concludes with key takeaways and 

future work. 

2. BACKGROUND 

A significant problem in developing ML models is 

identifying the dimension and size of the dataset required to 

properly train a particular model. The dimensionality of a 

dataset refers to the characteristics of each set of data, for 

instance, how many columns of data are present and how 

many samples are collected. The size refers to the number of 

distinct objects (e.g., rolling element bearings) that are used 

in collecting the data. The size of the dataset helps in 

assessing whether a dataset is large or robust. Some 

misunderstand the difference between large datasets and 

high-dimensional datasets. Large datasets are preferred over 

high-dimensional datasets because of their ability to obtain 

higher accuracy results when using ML algorithms (Muñoz-

Terol et al., 2020). However, due to a lack of guiding 

principles for data collection, data scientists tend to collect 

data without consideration for these differences (Mazhar, 

2021; Soomro et al., 2024). Moreover, most datasets that are 

publicly accessible have been collected in a lab 

environment, where typical data collected, consisting of 

load, temperature, vibration, and/or acoustic data, is 

obtained from sensors at the maximum sampling rate of the 

particular configuration used, rather than for any reasons 

related to ML algorithm training (Nasir & Sassani, 2021; 

Soomro et al., 2024). Due to limited resources, this often 

leads to the creation of high-dimensional datasets, but not 

large datasets with many distinct objects. This leads to the 

question of whether there exists a minimal set of parameters 

(e.g., sampling rate, number of samples, data collection 

duration, and stride) for the effective development and 

implementation of ML methodologies. To address this 

question, these parameters are considered in this study. A 

structured evaluation is carried out using multiple bearing 

datasets, where a 95% accuracy threshold is used as a 

benchmark to determine the minimum parameter values 

required for effective fault diagnosis. 

With the introduction of new machinery datasets, a 

need to assess data reliability is raised. t- distributed 

stochastic neighbor embedding (t-SNE) is the most useful 

method for determining whether high-dimensional data is 

reliable, as it helps to cluster data into two-dimensional 

visualizations (van der Maaten & Hinton, 2008). This 

method can be used to visualize either raw data or data that 
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has been processed using an ML algorithm. Numerous 

studies use the t-SNE method to determine the reliability of 

rolling element bearing datasets (Duo et al., 2021; Jiang et 

al., 2022; F. Xie et al., 2023). 

As a branch of ML, DL can be used for data analysis. 

Data classification accuracy for DL models are based on 

high-quality and large quantities of training data (Cho et al., 

2016). The question then becomes how much data is 

required to train adequate ML models? Cho et al. evaluate 

the quantity of data needed to train DL algorithms by using 

medical image (CT scans) recognition to identify medical 

concerns. They conclude that small window lengths lead to 

high misclassification, while dataset sizes consisting of 100 

to 200 images had similarly high accuracies, indicating that 

there is a minimum amount of data that must be collected 

for satisfactory results (Cho et al., 2016). Their findings 

indicate that it may be possible to define a particular set of 

data collection parameters for other ML tasks to achieve 

adequate results as well. On the other hand, Perez et al. 

concluded that for TL, more harmonics (968) outperformed 

the use of 8 fault signatures using k-nearest neighbours 

(KNN) and support vector machine (SVM) algorithms 

(Duque-Perez et al., 2019). Nonetheless, when artificial 

neural networks (ANNs) are compared to KNN and SVM 

algorithms, Ren concludes that ANNs outperform both 

(Ren, 2012). In this study, ANNs and CNNs are used as 

benchmarks for understanding the dataset requirements of 

TL and DL methods, respectively. Both TL and DL methods 

require significant training data to achieve high accuracy. 

Although most TL studies indicate that more fault signatures 

are needed for higher accuracy, they do not provide enough 

information to determine the minimum sampling rate, 

number of bearing fault harmonics, number of samples, data 

collection duration, signal resolution, window length, stride, 

and 2D CNN image resolution needed for “high enough” 

ML accuracies. 

2.1. Parameter Selection 

The selection of appropriate data collection parameters 

plays an essential role in creating a quality rolling element 

bearing dataset. Once bearing hardware has been selected, 

researchers must understand bearing fault frequencies to 

select accelerometers that will capture enough data to 

distinguish different fault types. 

2.1.1. Bearing Fault Frequencies 

A key component of data collection is understanding 

the signal of interest. Bearing test rigs often focus on the 

fundamental bearing fault frequencies since the controlled 

research lab environment allows for relatively clean data 

collection with minimal interference. In such cases, high-

frequency resonant bands, which are typically much higher 

than the fundamental fault frequencies, can sometimes be 

overlooked. Unfortunately, in industry, fundamental bearing 

fault frequencies are often buried in machine and 

environmental noise. Therefore, early detection often relies 

on more distinct high-frequency signal content. As 

highlighted by Randall and Antoni (Randall & Antoni, 

2011), bearing faults often excite high-frequency structural 

resonances, which depend more on the machine setup, such 

as the test rig, rather than the bearing type itself. However, 

in lab test rigs, the data is generally less noisy, allowing 

researchers to focus on the fundamental bearing frequencies 

with fewer concerns about high-frequency resonance 

interference. 

Nevertheless, moving to real world industrial 

environments introduces significant operational noise, 

making it crucial to consider these high-frequency resonant 

bands. In such cases, the high-frequency bursts caused by 

impacts due to faults excite resonant frequencies, and these 

signals are further modulated by the load and transmission 

path. Ignoring these high-frequency components can result 

in improper fault detection, as the fundamental fault 

frequencies and their harmonics can easily be masked by 

noise from other machinery (Randall & Antoni, 2011). 

Techniques like envelope analysis and spectral kurtosis 

become essential for capturing these high-frequency signals, 

which carry significant diagnostic information in noisy 

industrial environments (Randall & Antoni, 2011). While 

lab test rigs might allow for a focus on fundamental 

frequencies, ensuring that the frequency range in industry 

data collection includes these high-frequency resonant 

bands is currently crucial for effective fault diagnosis. 

However, due to upper frequency limitations in existing 

IIoT devices, as well as the lack of publicly available 

industrial datasets, this paper seeks to understand how ML 

algorithms interact with bearing fundamental frequencies to 

provide fault diagnosis. It hypothesized that ML algorithms 

will provide additional capacity to filter through noisy 

industry data rather than require high-frequency resonant 

bands to provide adequate performance. 

Rolling element bearing fault frequencies play an 

important role in identifying bearing fault types. In most 

cases, researchers are interested in classifying bearing fault 

types. Sacerdoit et al. analyzed the signal obtained from 

their intelligent maintenance system (IMS) test rig using the 

bearing characteristic equations (1)-(4) (Sacerdoti et al., 

2023). They specified that each sample obtained from the 

IMS test rig had a sampling rate of 20,480 Hz collected over 

1 s at 2,000 RPM. 26,690 N of the load was applied radially 

to the bearing via a spring (Sacerdoti et al., 2023). Although 

the authors focused on bearing signals, they did not justify 

their reasons for using their sampling rate or collection time. 

To better understand bearing faults, Figure 1 a), b), and c) 

are provided to visualize the characteristic features of 

rolling element bearings. 

 Characteristic bearing fault frequency equations 

can be written as, where BPFO is the ball pass frequency of 

the outer race, BPFI is the ball pass frequency of the inner 
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race, FTF is the fundamental train frequency, and BSF is the 

ball spin frequency.:  
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where D represents the pitch diameter of the bearing, d is 

the rolling element (ball) diameter, n is the number of 

rolling elements and ∅ is the load contact angle.  

Characteristic bearing frequencies are also usually 

associated with a set of harmonic frequencies in integer 

intervals of the characteristic frequency. Bearing fault 

frequency harmonics are known to be useful for 

understanding the type and severity of the faults contained 

within a signal. Bearing faults come from the formation of 

cracks or pits in bearing surfaces that cause impacts, which 

are reflected in vibration signals as a spike (Smith & 

Randall, 2015). These faults can also generate harmonics 

that are primarily driven by non-linear loads or conditions. 

Since these harmonics play such a key role in identifying 

differences between similar characteristic bearing fault 

values, providing enough data to identify these bearing fault 

harmonics is important. The number of fault harmonics 

available in a signal depends on the value of the 

characteristic bearing fault frequency and the sampling rate. 

The total number of fault harmonics contained in a signal 

can be calculated as half the sampling rate divided by the 

highest identified bearing fault frequency, as shown in 

equation (5). 

 
# 𝑜𝑓 𝐹𝑎𝑢𝑙𝑡 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠 =

𝐹𝑠/2

𝐹𝐻𝑏𝑒𝑎𝑟𝑖𝑛𝑔
 (5) 

In the tutorial paper for “Rolling element bearing 

diagnostics” provided by Randall and Antoni, the use of 10 

or more harmonics in capturing bearing fault frequencies is 

essential for identifying bearing faults using traditional 

methods (Randall & Antoni, 2011). Thus, within this 

tutorial framework, 10 fault harmonics serve as a minimum 

requirement for fault diagnosis by an expert when collecting 

data without the intended use of ML. As such, there is a 

similar need to determine the minimum number of 

harmonics required for performing bearing fault diagnosis 

via simple ML algorithms. This helps define the frequency 

range of interest during data collection. 

 

Figure 1. a) Contact Angle (“BALL BEARING BASICS 

AND TYPES,” n.d.), b) Rolling Element Component 

Identification (Deep Groove Ball Bearings | SKF, n.d.), c) 

Important Dimensions of the Rolling Element (Skf Ball 

Bearing, n.d.) 

To examine the impact of bearing fault frequencies on 

data collection, a range of Svenska Kullagerfabriken (SKF) 

bearings with varying bore diameters were selected. This 

selection includes the entire spectrum of commonly 

available bearings, starting from the smallest bore size and 

extending to the largest bore diameter available. The goal 

was to observe how different bearing frequencies (i.e., 

BPFI, BPFO, BSF, and FTF) would affect the data 

collection process. 

The SKF 6000 bearing is selected to be the smallest 

diameter used frequently in the industry. This helps set the 

frequency range possible (6000 - Deep Groove Ball 

Bearings | SKF, n.d.). Although smaller bearings are 

manufactured by SKF and are used for special applications 

requiring high speeds, they are not often used in industry. 

The SKF 6000 dimensions include a 26 mm outer diameter, 

a 10 mm bore diameter, a pitch diameter of 18 mm, and a 

ball diameter of 6 mm. The bearing contains 9 balls and is 

rated for a maximum rotation speed of 40,000 RPM. Loads 

are assumed to be applied only in the radial direction at a 

maximum motor speed. In this case, characteristic bearing 

frequencies include a BPFO of 2,166.7 Hz, a BPFI of 

3,833.3 Hz, an FTF of 240.7 Hz, and a BSF of 1,107.4 Hz. 

SKF’s largest single-row ball bearing in common use, the 

708/1250AMB (708/1250 AMB - Angular Contact Ball 

Bearings | SKF, n.d.), has an outer diameter of 1500 mm, a 

bore diameter of 1250 mm, a pitch diameter of 1375 mm, 

and a ball diameter of 55 mm. It contains 14 balls and is 

rated for a maximum speed of 280 RPM. Loads are assumed 

to be applied only in the radial direction at 280 RPM. Based 

on this information, the largest bearing will have a BPFO of 

31.4 Hz, a BPFI of 34.0 Hz, an FTF of 2.2 Hz, and a BSF of 

58.2 Hz. From equations (1)-(4), rotational speed can be 

seen to have the most significant effect on bearing 

frequencies for data collection, especially since the number 

of balls cannot be adjusted due to each manufacturer’s 

specifications. 

The fault frequency range of SKF bearings is obtained 

by calculating the characteristic bearing frequencies in the 

bore range of 10 to 1250 mm. Tests were only conducted at 

typical industry speeds to determine the bearing fault with 

the highest frequency. Figure 2 provides a sub-set of results 
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for the highest fault characteristic frequencies obtained at 

common AC and DC motor speeds (Nagel, 2018) used in 

industry. Since the largest common bearings operate well 

below 900 RPM and have lower fault frequencies, they are 

not included in this figure. The inner race is specifically 

chosen due to it having the highest frequency among the 

four fault signatures. Figure 2 exhibits the highest frequency 

of 490 Hz at 5000 RPM, representing a single fault 

harmonic. This frequency aligns reasonably well with 

industry expectations and can be considered as the typical 

maximum fault signature frequency. It is important not to 

forget, though, that fault harmonics play an important role in 

the diagnosis of bearing faults when using ML algorithms. 

A few factors must be considered: differentiating between 

different fault types and noise, reliability, and redundancy. 

Differentiating between different fault types and noise in 

bearing data is important so that enough fault harmonics are 

available to classify differences between each class type 

when trying to obtain high ML algorithm accuracies. 

Reliability and redundancy refer to gathering enough fault 

harmonics to have a clear, distinguished signal. This is 

crucial for effectively differentiating between potential 

noise in data and bearing fault signatures. The goal is to 

ensure that there are enough fault harmonics included in the 

signal to enable the network to recognize and accurately 

respond to various fault conditions. Reliability involves the 

consistent and accurate performance of the system in 

identifying and distinguishing between healthy and faulty 

conditions. Redundancy, on the other hand, consists of 

additional components and measures beyond the essential 

requirements, providing backup functionality to strengthen 

overall system reliability. In this way, the combination of 

reliability and redundancy contributes to a robust fault 

detection mechanism. 

 
Figure 2. Frequency vs. Bore Diameter for SKF Bearing 

Inner Race Frequencies with Various Motor Speeds, 10 mm 

to 200 mm 

2.1.2. Sampling Rate 

The sampling rate (sampling rate) indicates the rate at 

which a continuous analog signal is converted to a discrete 

digital signal. Continuous, discrete signals are signals 

obtained from sensors and measured in differences of 

voltages. The sampling rate is an important parameter for 

sensor selection (e.g., accelerometers and microphones) 

(Delaunay et al., 1994). For bearing data collection 

applications at lower speeds, a low pass filter (LPF) is 

required before converting the analog signal to remove 

higher frequency components from the signal that do not aid 

in understanding the health state of the bearing (X. Zhang et 

al., 2012). This helps to avoid aliasing by removing high 

frequency artifacts. If an LPF is not applied, noise 

(including electrical interference) or other signal 

disturbances can occur, as well as artifacts introduced by 

aliasing of the signal. Aliasing occurs when the sampling 

rate is less than the minimum sampling rate required to 

represent the analog (original) signal obtained from the 

sensor. 

To prevent aliasing and to select an appropriate 

sampling rate, the Nyquist-Shannon sampling theorem must 

be applied to the signal (Nyquist, 1924; Shannon, 1948). 

According to the theorem, the sampling rate must be greater 

than two times the analog input’s highest frequency of 

interest to prevent aliasing (Nyquist criterion) (Kester, 

2023). If samples are collected below this frequency, as seen 

in Figure 3, aliasing will corrupt the digitized signal. For 

instance, if a sensor (e.g., accelerometer) has a maximum 

frequency capacity of 15 kHz, and all information is 

intended to be captured, then according to the Nyquist 

criterion, the sampling rate should be greater than 30 kHz. 

This paper investigates the effect of sampling rate on the 

fault diagnosis accuracy by analyzing different existing 

bearing datasets that have different sampling frequencies 

using ML algorithms. Setting a threshold accuracy is 

required to ensure a reduction in the requirement for high-

dimensional datasets to avoid prolonged algorithm running 

times and lower hardware requirements (Dini et al., 2024; 

Rahman et al., 2023; X. Zhang et al., 2021). There are only 

a few ML applications of IIoT-bearing diagnosis that can 

train or update ML models within less than 5 minutes with 

high accuracy, as most articles refrain from publishing 

computational times (Z. Chen et al., 2024; Shao et al., 2018; 

Y. Wang et al., 2020). 

According to Xie et al., DL CNN models should 

achieve a minimum accuracy of 95% or higher in both 

training and validation datasets (W. Xie et al., 2022). 

Although the threshold accuracy is case-dependent for 

selected machinery components, when it comes to bearing 

diagnosis, numerous IIoT research articles indicate that a 

validation accuracy above 95% is satisfactory based on 

results achieved (Asutkar & Tallur, 2023; Djaballah et al., 

2024; Kumar et al., 2022; Sun & Gao, 2024; J. Xu et al., 

2022). Bearing’s operate in industry under high-stake 

environments in terms of machine failure, leading to costly 

downtimes and potential equipment damage when they fail 

(Bloch & Geitner, 2012; Karabay & Uzman, 2009; Theissler 

et al., 2021). Therefore, fault diagnosis models should be 

performed with high accuracy to minimize incorrect 

detection (Z. Gao et al., 2015; Isermann, 2006). This paper 

will seek to justify the threshold accuracy that can be 

reasonably attained for bearing fault diagnosis using 

standard ML algorithms based on test accuracies of bearing 

conditions and computational times. This will be obtained 
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by comparing TL and DL algorithms with different existing 

bearing datasets as benchmarks. For instance, if a specific 

architecture cannot reach a targeted threshold accuracy on 

noisy bearing data but can on clean bearing data, it shows 

the limitation of the model in handling real world data, 

which is a step towards understanding noisy industrial 

scenarios. It is expected that more complex algorithms 

should provide better fault diagnosis results, but these often 

come at the cost of hardware requirements and additional 

computational time. Therefore, for the remainder of this 

study, ML algorithm performance will be considered 

satisfactory based on the results obtained from the 

algorithms described herein. 

2.1.3. Number of Samples and Data Collection Duration 

The number of samples depends on the accelerometer 

selected, the number of harmonics, machine component 

frequencies, and data from the scientist’s expertise. The 

maximum frequency capacity of a sensor can be determined 

from the manufacturer’s specifications or the required 

maximum frequency of interest, and by applying the 

Nyquist criterion, the minimum sampling rate is determined. 

Using the resolution formula, different numbers of samples 

are selected and tested for existing datasets. The number of 

samples and the duration of data collection are related to 

each other via the sampling rate. To know the duration of 

data collection required (in seconds) to collect the 

appropriate number of samples, the number of samples 

required must simply be divided by the sampling rate. Data 

quantities and durations are investigated by performing 

bearing fault diagnosis using different network types to 

attain a minimum threshold accuracy. 

2.1.4. Frequency Resolution 

In machine condition monitoring, converting time-

domain signals into the frequency domain is crucial for 

gaining additional insight from a mechanical system. This 

transformation is frequently done using techniques such as 

the fast Fourier transform (FFT) or other spectral analysis. 

These methods transform time-domain signals (which show 

a signal’s amplitude over time) into frequency components. 

This conversion allows for a more extensive evaluation of 

the signals’ spectral content, providing a better 

understanding of the root cause of a machinery’s dynamics. 

Frequency resolution plays an essential role in 

identifying intricate details within the gathered bearing data 

that has been converted to the frequency domain. For 

bearing diagnosis, frequency resolution holds significant 

importance, impacting the precision of bearing fault analysis 

directly. Notably, increasing resolution helps differentiate 

between fault types such as inner race, outer race, ball, and 

cage faults. In the context of data collection for ML 

purposes, one must acknowledge that data resolution stands 

as a critical parameter, inherently dependent upon the 

sampling rate and the number of samples collected. The 

sampling rate is the number of points required to convert an 

analog signal to a digital signal, while the quantity of 

samples defines the dimensionality of the dataset, both of 

which have a large effect on the total dataset size. 

According to Duan et al., increasing the number of samples 

results in a finer frequency resolution, as indicated by 

equation (6) (Duan et al., 2019). 

∆𝜔 =
𝐹𝑠

𝑁
 

(6) 

where ∆𝜔  is the frequency resolution, 𝐹𝑠  is the sampling 

rate, and 𝑁 is the total number of samples. Consequently, 

different window lengths will be tested to account for this 

relationship. To have an enhanced resolution in the 

frequency domain, the number of samples collected in the 

time domain should be increased while maintaining a 

sampling rate that satisfies the Nyquist criterion. Having an 

enhanced resolution means a finer detailed signal, which can 

help distinguish between different bearing fault frequencies. 

However, the goal is to identify if there is a minimum 

resolution required to reduce the number of samples 

collected while ensuring high accuracy. Different bearing 

datasets are analyzed using ML algorithms to observe if a 

causal relation exists between the effects of frequency 

resolution and the network’s accuracy. To understand how 

frequency resolution affects fault identification accuracy, 

ANN and 1D-CNN algorithms are utilized. 

2.2. ML Algorithms 

2.2.1. Neural Network Specifications 

Basic TL and DL algorithms used for this study are 

summarized in Table 1, including references to the 

algorithms used for each implementation. The table also 

provides information on the number of hidden layers and 

network classifier type. Based on referenced ML research, 

obtaining high training and validation accuracies relies on 

the quality of the data itself. Therefore, sensor placement 

must be carefully considered to minimize noise and to 

obtain reliable signals. 

Additionally, for algorithm selection in Table 1, an 

ANN is categorized as a TL algorithm, while methodologies 

employing a 1D-CNN or 2D-CNN are classified as DL 

algorithms. They are chosen to explore algorithm 

hyperparameter tuning by employing the simplest 

configuration with minimal hidden layers. 

Batch size refers to the number of training samples 

processed together in one iteration during ML algorithm 

training. It helps in balancing computational efficiency with 

training stability and convergence speed. Larger batch sizes 

can expedite training but may require more memory, while 

smaller batch sizes may lead to faster convergence but could 

increase training time. Selecting a batch size involves 

finding a balance between these factors to ensure efficient 

and effective model training. Based on ML researcher 

findings, the following hyperparameters are selected; the 
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batch size set to 64 (C.-C. Chen et al., 2021; T. Kim & Chai, 

2021; Neupane & Seok, 2020; Wu et al., 2020; R. Zhang & 

Gu, 2022), classifier as Softmax (Hoang & Kang, 2019; C. 

Lu et al., 2017; Neupane & Seok, 2020; Shao et al., 2018; J. 

Zhang et al., 2020; W. Zhang et al., 2017; Zilong & Wei, 

2018), 100 epochs (Althobiani, 2024; Che et al., 2021; Wei 

et al., 2021; Wu et al., 2020), and a learning rate of 0.01 (Gu 

et al., 2022; Wen et al., 2021; R. Zhang & Gu, 2022; 

Zhiwei, 2022) which are determined based on high 

accuracies achieved with the CWRU bearing dataset. A 

batch size of 64 balances memory efficiency and training 

stability, allowing for faster convergence without 

overloading system memory. A Softmax classifier is better 

for multi-class problems because it provides normalized 

probabilities for each class, making sure that the model 

predicts each class with the highest confidence. 100 epochs 

provides a sufficient number of iterations for the model to 

learn complex patterns while avoiding overfitting of data. 

Lastly, a learning rate of 0.01 controls the speed at which 

the model updates its weights, providing a balance between 

fast convergence and avoiding overshooting. This learning 

rate is preferred over 0.001 or 0.0001 since it allows for 

faster convergence while maintaining pattern identification 

for bearing classes. Therefore, different batch sizes, 

classifiers, learning rates, and number of epochs are not 

explored in this study. 

In all networks, the ReLU activation function was used 

in the hidden layers to introduce non-linearity and prevent 

vanishing gradients, given the two shallow hidden layers of 

the networks studied. The Softmax activation function was 

used only at the output layer to handle multi-class 

classification by providing class probabilities. Although 

deeper networks may require more careful handling of 

gradient flow, the shallow configurations used in this study 

did not exhibit vanishing gradient issues. 

Table 1. ML Algorithms Used for TL and DL 
Ref Algo. # of 

Hidden 

Layers 

Batch 

Size 

Classifier Epoch Learning 

Rate 

(Samanta 

& Al-

balushi, 

2003) 

ANN 

2 64 Softmax 100 0.01 

(X. 

Wang et 

al., 

2021) 

1D-CNN 

(S. Yang 

et al., 

2022) 

2D-CNN, 

grayscale 

images 

* Ref- references, Algo- algorithms 

2.2.2. Window Length 

The window length is a time series hyperparameter 

used in ML algorithms that represents the input size for 

training neural networks. The window length is what 

enables the capture of patterns created by bearing faults 

when training neural networks. In ANNs and 1D-CNNs for 

time domain analysis, window length refers to the number 

of data point segments that are fed into the network at any 

given time for training purposes. For 2D-CNNs using 

grayscale images, window length is the filter or kernel’s 

dimensions that are used to define the image characteristics. 

Matrix dimensions are a common way of defining a kernel’s 

size. For instance, a kernel can measure 20x20, meaning the 

image created has 20 pixels along each axis. The created 

images are then fed into the convolutional layer for 

processing. The window length is used to define how many 

samples are pushed into the neural network for training and 

testing of the data. A window length can impact the 

validation accuracy results of a network due to insufficient 

features captured if not selected correctly. 

2.2.3. Stride 

Stride is a hyperparameter used in ML algorithms that 

reduces the spatial dimensions of processed data by 

allowing overlapping of the window to occur on the existing 

signal during ANN and CNN operations (Hendriks et al., 

2022). Stride is useful when handling datasets with limited 

quantities of specific samples (small-sized datasets), such as 

those obtained from bearings tested in a lab. Stride is 

measured as the number of time domain segment points that 

overlap the window length for ANNs and 1D-CNNs, as well 

as the number of pixels that the kernel shifts over the image 

during each convolution for 2D CNN grayscale images. A 

smaller stride allows the usage of smaller datasets. A 

smaller stride value means a higher overlap in the data that 

is used as input during network training. As the stride is 

reduced, it is assumed that the network accuracy will 

increase so that the network should be able to identify more 

similarities between images at the expense of computation 

time. However, an ideal stride should be determined based 

on different bearing datasets to reach a certain network 

threshold accuracy. Stride will be investigated by selecting 

different stride values and applying them to different 

bearing datasets used for training different types of neural 

networks. Suggested values for stride will be determined 

based on the minimum threshold accuracy. 

2.2.4. Image Resolution for 2D CNNs 

When raw bearing data is converted to grayscale 

images in the frequency domain, the resolution is then 

dependent on the quality of the created image and can 

change as the data is passed through the network from one 

convolutional layer to the other, as the data works through 

operations such as pooling and stride. These operations 

reduce the dimensions of the feature maps. Therefore, the 

resulting resolution of the output images is directly 

dependent on the network architecture used by the algorithm 

and cannot be determined explicitly without knowledge of 

the specific structure used. The number of grayscale images 

per class for testing is justified based on existing research on 

the CWRU dataset by identifying research results that have 
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the highest obtained fault diagnosis accuracies. The number 

of grayscale images used for training and testing that have 

the highest accuracies per class ranges from 100 to 500 

images (Han & Jeong, 2020; He et al., 2023; She et al., 

2024; Wei et al., 2021). Additionally, 10 to 100 images are 

also tested for comparison in an attempt to further reduce 

computational requirements. Evidently, as the number of 

images created increases, so does computational time. 

2.2.5. Training and Testing Split of the Data 

For each bearing dataset used in an algorithm, the data 

is split using Hendriks et al.’s framework for training and 

testing (Hendriks et al., 2022; Unal et al., 2014). This 

framework is designed to prevent data leakage by using test 

samples that come from different operational conditions or 

machines than those used for training, thereby providing a 

more realistic evaluation of model generalization. Unlike 

traditional k-fold cross-validation, which may not respect 

distribution shifts, this approach enforces domain separation 

to mimic real-world scenarios. 

2.3. Existing Datasets 

Table 2 reveals that most rolling element bearing 

datasets that are currently openly accessible and typically 

used in the literature were created before the publication of 

LeCun et al.’s seminal DL paper in 2015 (LeCun et al., 

2015). This suggests that DL was not considered when 

determining the number of samples and sampling 

frequencies used in the creation of these datasets. In all 

cases, the emphasis was on collecting a substantial number 

of samples without undergoing a justification process 

related to ML. For instance, in the case of bearing data 

under constant load and speed conditions (1400-1948 

RPMs), CWRU and UORED-VAFCLS data collection was 

conducted for 10s without providing a justification for this 

timing. This extended duration was likely chosen to ensure 

that a wide range of features were captured within the 

signals, resulting in high-dimensional datasets rather than 

large and robust datasets.  

The three datasets were chosen for analysis based on 

specific criteria: data available for performing diagnosis, 

constant speeds, and data collection duration of at least 10s 

to ensure a wide range of available test configurations. The 

CWRU and UORED-VAFCLS datasets were selected 

because they exhibit similar speeds and bearing 

characteristics, making them suitable for comparison. 

Additionally, the HUST dataset was included due to its 

diverse range of bearing dimensions while also providing a 

different constant speed variation for testing purposes. Due 

to the overall similarity among the three selected bearing 

datasets in terms of signal characteristics and fault types, the 

assignment of each dataset to a specific parameter 

optimization task was made arbitrarily. The UORED-

VAFCLS dataset was used to determine the optimal stride 

and window length parameters, the CWRU dataset was used 

to determine the optimal number of fault harmonics, and the 

HUST dataset was used to identify the optimal duration and 

frequency resolution parameters. While each dataset could 

theoretically serve any of these roles, this distribution was 

chosen to balance the experimental workload and ensure 

diversity in validation sources. 

Table 2 displays a range of sampling frequencies, 

spanning 12 to 51.2 kHz, and data collection times, 

depending on the dataset. To further optimize bearing fault 

diagnosis, a more in-depth analysis is conducted on the 

UORED-VAFCLS, CWRU, and HUST datasets to 

determine the number of data samples that should be 

collected to attain the threshold accuracy. The values for 

data collection duration are chosen based on those most 

used in the literature by ML  researchers, including values 

between 1 (Sacerdoti et al., 2023), 4 (Konstruktions- und 

Antriebstechnik (KAt) - Data Sets and Download 

(Universität Paderborn), n.d.), and 10s (Gousseau et al., 

2016) (Table 2). 2, 3, and 5 s collection times are also 

included for completeness. Three stride values are selected 

(3% (Hendriks et al., 2022), 10% (De la Fuente et al., 2021), 

and 50% (De la Fuente et al., 2021)) to assess whether 

comparable accuracies can be achieved using less data. 

Specifically, smaller stride values indicate a larger overlap 

that should lead to higher accuracy, which leads to more 

data usage when training networks. In this case, 10% and 

50% are selected in trying to use the least amount of data to 

train the networks, while 3% is chosen to see the effect of 

using more data on the network’s accuracy. However, it is 

worth noting that when converting data into grayscale 

images, the resolution changes significantly based on image 

size, making it more challenging for neural networks to 

detect faults accurately. 

3. METHODOLOGY 

The background section provided a concise overview of 

established concepts and datasets necessary for 

understanding this study, such as neural networks, fault 

analysis of rolling element bearings, and data collection 

parameters. This section now turns to the original 

contributions of the work. It begins with the research 

procedure, outlining the approach used to evaluate dataset 

requirements and algorithm performance. This is followed 

by the selection and justification of hyperparameters for 

ANN and CNN models, which are tailored to the goals of 

this study. Together, these elements define the experimental 

Table 2. Comparison of Bearing Fault Signature Datasets. 

Dataset Date Signal type 
SFa 

(kHz) 
# of samples 

Collection 
time (s) 

Motor Speed 
Range (RPM) 

Analysis type 

Fault 

type 
(Ab, Nc) 

Bearing ID 

CWRU 2012 Vd 12.0 121,265 10 1720- 1797 Diagnosis A 6205, 6203 

CWRU  2012 Vd 48.0 487,384 10 1720- 1797 Diagnosis A 6205, 6203 

HUST  2023 Vd 51.2 512,000 10 1400-1500 Diagnosis A 6204, 6205, 6206, 6207, 
6208 

UORED-VAFCLS 2023 Vd, Ae, Tf 42.0 420,000 10 1700- 1948 Diagnosis N Nippon Seiko Kabushiki-
gaisha (NSK) & 

FAFNIR 6203 

Legend: SF- Sampling frequency, b A- artificial, c N- natural, d V- vibration, e A-acoustic, f T- temperature 
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framework that links the theoretical considerations 

introduced earlier with the results and discussion that 

follow. 

3.1. Research Procedure 

The first step is to define the hyperparameters for 

evaluating model performance. Subsequently, a diverse 

range of stride and window lengths are chosen, covering a 

spectrum from small to large, to comprehend how model 

performance scales with data volume. The procedure 

utilized during this study is developed to determine the 

minimal parameter values required to train ANNs and 

CNNs for attaining a threshold accuracy when performing 

rolling element bearing fault diagnosis, while also 

considering the balance between data efficiency and the risk 

of overfitting. These values are intended as lower bounds 

for effective training rather than optimal values. To 

determine the optimal stride and window length for ML 

algorithms, including both ANNs and CNNs, the UORED-

VAFCLS dataset is used to achieve the threshold accuracy 

needed to refine these parameters. The CWRU dataset is 

then used to establish the number of fault harmonics 

required to attain this same threshold accuracy. Finally, the 

HUST dataset is used to fine-tune the data collection 

duration and frequency resolution, employing the same 

ANN and CNN algorithms. The study also considers 

specific sampling rates, the number of samples, and image 

resolution requirements for 2D CNNs. The robustness of 

these findings is assessed for generalizability to other 

datasets and similar problems. The iterative nature of the 

methodology allows for refinement and adjustment as 

needed. 

3.2. Hyperparameters for Bearing Fault Frequency 

Analysis Using TL and DL Algorithms 

In section 2.3, Table 2 tabulates openly accessible 

datasets that can be used to analyze bearing fault 

frequencies. Among these datasets, inner race faults are 

consistently responsible for the highest characteristic 

bearing fault frequency at 150 Hz, as determined by the 

bearing frequency equations (1)-(4). The largest common 

fault harmonic is identified by determining the fault 

frequencies of all bearings using the methodology described 

in section 2.1.1. This is achieved by examining the datasets 

provided below and considering the bearings and speeds 

they correspond to. The sampling rate is divided by the 

characteristic bearing fault frequency, and after applying the 

Nyquist criterion in equation (5), the resulting number of 

fault harmonics that are likely captured in each dataset are 

shown in Table 3. 

The sampling rate of the setup is a crucial factor, which 

varies depending on the researcher’s choice and the 

manufacturer’s specifications. Different sampling rates are 

used for the datasets considered in this study, and these are 

detailed in Table 3 as well. This study seeks to determine 

whether the lowest sampling rate used for these datasets is 

sufficient for fault identification using ML algorithms. 

Data sample collection durations, which are another 

essential parameter, were selected based on commonly used 

durations in the literature by ML researchers. These 

intervals include 1 (Sacerdoti et al., 2023), 4 

(Konstruktions- und Antriebstechnik (KAt) - Data Sets and 

Download (Universität Paderborn), n.d.), and 10s 

(Konstruktions- und Antriebstechnik (KAt) - Data Sets and 

Download (Universität Paderborn), n.d.)  as primary 

choices. For a comprehensive analysis, we have also 

included intervals of 2, 3, and 5 s. The number of samples in 

each dataset is directly proportional to the data sample 

collection duration and is calculated as the product of the 

sampling rate and the data collection duration. The 

resolution of each dataset is dependent on the sampling rate 

and number of samples, as described in Table 3. 

In section 2.2.1, three configurations of traditional and 

DL algorithms were identified to evaluate performance in 

analyzing bearing fault frequencies using the datasets in 

Table 3. Among these configurations, the window length 

and stride were highlighted by researchers for their distinct 

effects on each model’s ability to detect fault 

Table 3. Characteristics of the Rolling Element Fault 

Frequencies for a Subset of Openly Accessible Datasets. 
Dataset Number 

of 

Samples 

Sampling 

rate 

Resolution Duration 

of Data 

Intervals 

(s) 

Number of 

Fault 

Harmonics 

UORED-
VAFCLS 

(Sehri et 
al., 2023; 
Sehri & 

Dumond, 
2023) 

42,000 

42,000 

1.00 1 

140 

84,000 0.50 2 

126,000 0.33 3 

168,000 0.25 4 

210,000 0.20 5 

420,000 0.10 10 

CWRU 
(Apparatus 

& 
Procedures | 

Case School 
of 

Engineering | 
Case Western 

Reserve 
University, 

2021) 

12,000 

12,000 

1.00 1 

40 

24,000 0.50 2 

36,000 0.33 3 

48,000 0.25 4 

60,000 0.20 5 

120,000 0.10 10 

CWRU 
(Apparatus & 

Procedures | 
Case School 

of 
Engineering | 

Case Western 
Reserve 

University, 
2021) 

48,000 

48,000 

1.00 1 

160 

96,000 0.50 2 

144,000 0.33 3 

192,000 0.25 4 

236,000 0.20 5 

480,000 0.10 10 

HUST 
(Thuan & 

Hong, 
2023a) 

51,200 

51,200 

1.00 1 

170 

102,400 0.50 2 

153,600 0.33 3 

204,800 0.25 4 

256,000 0.20 5 

harmonics, as determined by the input sizes and data 

training/testing splits described in Table 4. 

Window length is an important parameter for 2D 

grayscale image-based CNNs. Therefore, different window 

lengths are selected for analysis (Table 4). These include 

window lengths of 512, 1024, 2048, and 4096 samples, 
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which are based on the most used parameters by scientists to 

contain sufficient information regarding bearing signals 

(Ruan et al., 2023; Y. Yang et al., 2018; S. Zhang et al., 

2021). Additionally, stride percentages of 3%, 10%, and 

50% were chosen for the evaluation mentioned in section 

2.3. 

The input size for each model was directly influenced 

by window length and stride combinations, resulting in four 

distinct configurations, as presented in Table 4. Training 

and testing data splits were chosen to be 80% and 20%, 

respectively, to ensure a balance between model training 

and evaluation (Chuya et al., 2022; Pham et al., 2020). 

The number of images generated for training each 

model varied based on window length and stride 

configurations, with values ranging from 10 to 500 images, 

providing a wide range of values for exploring their effect 

on performance. Furthermore, the number of epochs, 

representing the number of training iterations over the entire 

dataset, was fixed at 100 for all configurations to ensure 

consistent convergence of the models (Althobiani, 2024). 

The parameters listed in Table 4 correspond to the ML 

models defined in Table 1. For TL, the raw vibration signals 

were flattened and used directly as inputs to the ANN 

model. For DL, the 1D-CNN used windowed raw time-

series inputs, while the 2D-CNN was trained using 

grayscale spectrogram images derived from the same 

signals. The input sizes listed here reflect the dimensions 

fed into each model, depending on the type of preprocessing 

used. 

Table 4. Parameters of the TL and DL Algorithms Used in 

This Study 
Window Length Stride (%) # of Images Input Size 

512 

3, 10, 50 

10, 20, 30, 40, 
50. 60, 70, 80, 
90, 100, 150, 

200, 250, 500 

25 x 20 

1024 20 x 50 

2048 40 x 50 

4096 50 x 80 

4. RESULTS 

In this section, the aim is to narrow down the values 

selected in Table 3 to attain a threshold accuracy when 

using the UORED-VAFCLS, CWRU, and HUST datasets.  

provides the characteristic values for the three datasets used 

for this test.  

For the UORED-VAFCLS dataset, to capture acoustic 

sensor data within the human audible range of 20 Hz to 

20 kHz and by applying the Nyquist Theorem (Kester, 

2023), a sampling rate of 42,000 Hz is selected by Sehri et 

al. (Sehri & Dumond, 2023). On the other hand, the CWRU 

test rig uses data collection sampling rates of 12 and 

48 kHz, while the HUST dataset uses 51.2 kHz. All three 

datasets need to be checked for reliability. While the CWRU 

(S. Gao et al., 2022; He et al., 2021; Hou et al., 2023; H. Lu 

et al., 2023; Mahesh et al., 2024; W. Xu & Li, 2022) and 

HUST (Hou et al., 2023; F. Lu et al., 2024; Y. Xu et al., 

2024) dataset reliabilities have already been measured in 

previous studies, the UORED-VAFCLS dataset has yet to 

be verified. 

Figure 3 shows UORED-VAFCLS inner race data from 

different bearing tests using the t-SNE technique on ANN 

results. This statistical method is used to arrange high-

dimensional data in a 2-dimensional space. By using t-SNE, 

embedded features can be visualized, allowing for the 

assessment of the effectiveness of ML methodologies (Duo 

et al., 2021). Moreover, t-SNE helps to determine the 

statistical robustness of a dataset by ensuring that the dataset 

is compactly separated without overlapping clusters (Arora 

et al., 2018). 

Based on a visual analysis of Figure 3, the clusters 

appear compact and well-separated, with only a few 

overlapping outliers among the inner race fault data points. 

Similar results are obtained for the other fault types. Hence, 

it can be concluded that the UORED-VAFCLS dataset is 

statistically robust and reliable when using the ANN 

algorithm. 

 
Figure 3. UORED-VAFCLS: Accelerometer Inner Race t-

SNE Plot When Using an ANN 

 

4.1. Validation Accuracy Values for Window Length and 

Stride Using the UORED-VAFCLS Dataset 

This section aims to narrow down window length and 

stride by using ANN and CNN algorithms in conjunction 

with the UORED-VAFCLS dataset. The dataset includes 

various bearing fault types contained within accelerometer 

and acoustic sensor data. By conducting tests with different 

window lengths and strides and assessing their impact on 

the performance of ML models, the aim is to assess the 

effects of window length and stride on fault diagnosis 

accuracy. This investigation starts with an exploration of 

dataset characteristics, followed by an analysis of how 

varying window lengths and strides influence the accuracy 
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Table 5. UORED-VAFCLS Inner Race Dataset Results and Test Cases for Features in the Time Domain for ANN and 

1D-CNN 
# of Fault Harmonics [a], Number of samples [b], Data Collection Duration (s) [c], 

Freq. Resolution [d], Window Length [e] 

ANN, BPFI, Stride %, Validation Accuracy 

(%), Average Run Time (minutes) 

1D-CNN, BPFI, Stride %Validation Accuracy (%), 

Average Run Time (minutes) 

a b c d e Acc., 3% Aco., 3% Acc., 

10% 

Aco., 

10% 

Acc., 

50% 

Aco., 

50% 

Time 

(min) 

Acc., 

3% 

Aco., 

3% 

Acc., 

10% 

Aco., 

10% 

Acc., 

50% 

Aco., 

50% 

Time 

(min) 

140 

42,000 1 1.00 

512 

79.26 77.02 77.60 73.06 39.07 44.54 1.53 38.49 66.18 20.81 57.89 25.65 49.73 2.26 

84,000 2 0.50 90.51 85.45 87.67 82.01 54.56 53.47 3.32 89.37 90.12 86.36 75.91 33.06 55.65 4.51 

126,000 3 0.33 91.77 89.37 88.54 86.54 52.65 58.28 4.51 87.13 89.75 86.96 71.91 35.10 67.15 6.24 

168,000 4 0.25 95.99 89.25 94.23 87.01 66.42 66.28 6.10 89.84 91.84 90.94 81.38 24.76 59.19 8.10 

210,000 5 0.20 95.13 89.84 95.10 89.43 67.35 71.85 8.26 93.77 90.18 91.45 83.58 28.96 70.28 10.36 

420,000 10 0.10 95.41 95.55 95.68 93.29 81.88 77.74 9.57 94.59 92.41 93.46 85.94 68.50 71.07 12.12 

140 

42,000 1 1.00 

1024 

67.58 66.79 63.41 63.53 27.07 25.97 1.42 73.45 80.67 61.20 70.29 33.70 39.78 2.12 

84,000 2 0.50 79.37 78.66 77.11 79.41 34.43 41.26 2.15 78.60 84.13 62.61 62.65 14.48 51.64 3.46 

126,000 3 0.33 88.91 87.41 85.78 86.80 33.61 50.36 2.50 85.81 87.76 71.30 73.82 17.49 62.00 3.57 

168,000 4 0.25 92.16 93.18 88.65 90.94 54.97 57.96 3.34 91.53 94.17 86.12 85.33 51.84 65.71 4.10 

210,000 5 0.20 95.61 95.78 95.13 95.04 59.24 64.78 3.41 95.85 95.69 95.78 95.15 60.11 59.89 4.51 

420,000 10 0.10 95.43 95.84 95.46 95.91 70.07 79.01 6.32 95.13 95.73 95.87 95.68 69.58 73.70 7.14 

140 

42,000 1 1.00 

2048 

53.26 42.71 49.09 38.64 30.68 26.14 1.35 57.13 60.38 35.00 55.00 18.18 29.55 1.58 

84,000 2 0.50 64.52 67.24 61.31 65.19 35.36 28.18 2.05 60.54 67.71 55.65 70.95 35.91 40.88 2.12 

126,000 3 0.33 67.28 74.05 60.86 74.05 25.41 33.70 2.41 63.87 71.43 58.76 74.12 42.54 57.88 3.25 

168,000 4 0.25 82.01 87.11 80.67 85.16 36.61 42.08 3.13 67.89 74.46 44.47 71.47 56.28 60.38 3.57 

210,000 5 0.20 84.34 93.45 82.52 92.07 64.48 49.13 3.40 92.88 86.74 85.09 79.72 35.15 67.90 5.01 

420,000 10 0.10 88.71 95.83 85.95 95.54 77.64 70.65 6.10 94.71 89.67 93.30 86.39 71.52 74.46 6.37 

140 

84,000 2 0.50 

4096 

42.45 41.66 39.77 40.23 14.86 11.36 1.33 20.23 62.47 16.84 58.45 18.18 31.82 1.35 

126,000 3 0.33 53.49 55.78 50.35 52.46 25.12 22.22 2.03 42.51 64.18 38.86 64.01 34.92 40.00 2.01 

168,000 4 0.25 81.22 71.93 77.17 67.18 34.56 23.20 2.36 61.49 71.33 56.36 67.49 45.36 42.54 3.24 

210,000 5 0.20 91.47 86.34 88.92 83.77 61.47 30.84 3.38 81.72 79.44 75.20 70.48 68.45 55.07 4.35 

420,000 10 0.10 95.11 95.70 95.47 95.81 79.56 44.54 6.03 89.66 83.35 87.37 70.39 72.89 78.56 6.15 

Legend: Acc. Is the accelerometer, Aco. is acoustic. 

of basic ML algorithms. 

Table 5 shows the UORED-VAFCLS inner race results 

for the number of fault harmonics, number of samples , data 

collection duration, frequency resolution, and window 

length while also considering a 3%, 10%, and 50% stride. 

To achieve threshold accuracy levels above 95% for both 

accelerometer and acoustic data when using ML, a total of 

140 fault harmonics, 210,000 data samples for each set of 

data, a data collection duration of 5 s, and a resolution of 

0.20 are necessary for both ANN and 1D-CNN models. 

Specifically, a window length of 1024 is required, with a 

10% stride. Notably, when the stride is increased to 50%, 

the accuracy of the algorithms significantly decreases, 

indicating that a smaller data stride yields more accurate 

results for this case due to more overlap. Conversely, a 3% 

stride demonstrates a minimal accuracy improvement at the 

expense of a significant increase in computational time and 

resources. 

Inner race results obtained from applying an ANN [65] 

to the UORED-VAFCLS are presented in Figure 4. The 

validation accuracy of the model reaches 95.13% after 100 

epochs. Notably, improvements in accuracy reduce 

significantly after 20 epochs. The results were obtained for a 

sample that used a 10% stride a window size of, 1024 

samples, and a split of 80% (336,000 samples) for training 

and 20% for validation (84,000 samples). The training 

process utilized a batch size of 64. 

 
Figure 4. UORED-VAFCLS: Accuracy Results of 

Accelerometer Data for Inner Race Faults and Healthy Data 

vs Number of Epochs Using an ANN 
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2D-CNNs are used to obtain results by converting raw 

acceleration and acoustic data into grayscale images. Table 

6 tabulates the number of fault harmonics, number of 

samples, data collection duration, number of images per 

class, and input size per image. It is observed that the 

resolution of grayscale images increases with larger window 

lengths. The results presented in Table 6 indicate that 

validation accuracies plateau around 95% for both 

accelerometer and acoustic sensor data when 140 fault 

harmonics, 168,000 samples, a data collection duration of 

4 s, 200 images per class, and an input size of 20x50 when 

using either a 3% or 10% stride. Like Table 5, it can be 

concluded that increasing the stride adversely affects the 

accuracy of the network, resulting in a significant drop in 

accuracy. 

Table 7 summarizes the values required to achieve the 

results found in Table 5 and Table 6 and extends them to 

include other fault types. The results indicate that after 

including a certain number of samples, validation accuracy 

plateaus for all fault types when using 140 fault harmonics 

(highest fault frequency identified), 168,000 (1D-CNN), and 

210,000 samples (2D-CNN), 4 and 5 s data collection 

durations, 0.25 and 0.20 frequency resolutions, a window 

length of 1024, 200 images, and a 10% stride. For the 

remainder of dataset testing, a window length of 1024 and a 

10% stride will be used to identify appropriate threshold 

accuracies, as these values were determined to be 

consistently adequate with different fault types in each 

testing scenario. 

4.2. Validation Accuracy Values for Sampling Rate and 

Fault Harmonics Using the CWRU Dataset 

The CWRU dataset is analyzed to understand the effect 

of sampling rate and number of fault harmonic values on 

identifying threshold accuracies by using ML algorithms. 

Table 6. UORED-VAFCLS Inner Race Dataset Results for Image and Test Case Features for 2D-CNN 
# of Fault Harmonics [a], Number of samples [b], Data Collection Duration (s) [c], # of Images per Class 

[d], Input Size [e] 

2D-CNN, BPFI, Stride %, Validation Accuracy (%), Average Run Time 

(minutes) 

a b c d e Acc., 

3% 

Aco., 

3% 

Acc., 

10% 

Aco., 

10% 

Acc., 

50% 

Aco., 

50% 

Time 

(min) 

140 

42,000 1 50 

25x20 

70.31 67.44 78.42 73.71 36.74 52.46 17.33 

84,000 2 100 90.16 88.49 89.52 85.68 45.90 54.97 19.17 

126,000 3 150 87.13 89.75 88.89 89.17 58.23 63.08 20.35 

168,000 4 200 88.84 90.71 92.29 90.61 74.29 67.30 21.22 

210,000 5 250 95.72 93.35 95.41 91.69 75.05 72.78 23.12 

420,000 10 500 95.43 94.77 95.85 93.48 86.62 82.45 25.34 

140 

42,000 1 50 

20x50 

87.81 83.79 84.59 75.61 41.99 48.62 15.13 

84,000 2 100 89.16 87.81 87.45 86.14 50.55 58.74 18.55 

126,000 3 150 92.27 93.48 89.43 90.00 52.19 66.18 19.13 

168,000 4 200 95.42 96.49 95.24 95.16 66.12 68.84 20.51 

210,000 5 250 95.88 95.41 95.13 95.89 72.72 75.54 22.56 

420,000 10 500 95.45 95.70 95.40 95.74 80.86 82.81 23.27 

140 

42,000 1 20 

40x50 

80.44 79.79 76.59 74.77 34.09 54.55 14.57 

84,000 2 40 91.56 90.13 89.91 88.25 56.93 59.12 17.55 

126,000 3 60 93.71 92.22 91.91 90.18 58.01 64.47 19.04 

168,000 4 80 95.45 94.48 95.40 91.26 62.02 72.40 20.31 

210,000 5 100 95.87 95.19 95.76 94.71 63.32 72.71 21.46 

420,000 10 250 95.81 95.87 95.19 95.49 81.41 90.98 22.10 

140 

84,000 2 20 

50x80 

74.16 69.71 68.86 64.11 42.71 35.71 15.47 

126,000 3 30 92.46 94.62 89.45 95.98 54.48 52.27 16.13 

168,000 4 40 94.74 95.81 91.68 95.90 59.86 70.72 20.09 

210,000 5 50 95.71 95.46 95.56 95.59 65.23 75.89 21.06 

420,000 10 100 95.55 95.87 95.78 95.81 84.65 90.14 21.17 

Legend: Acc. Is the accelerometer, Aco. is acoustic. 

Table 7. UORED-VAFCLS Classification Accuracy Results Using a Sampling Rate of 42kHz and a Stride of 10% 
Sensor Type Accelerometer Acoustic 

Sampling Rate 42,000 Hz 42,000 Hz 

# Fault Harmonics 140 140 

Training Data Size 1024 1024 

# of Images 200 200 

Average Run Time ANN (minutes) 4.05 4.31 

Average Run Time 1D-CNN (minutes) 4.47 4.45 

Average Run Time 2D-CNN (minutes) 20.36 20.47 

Bearing Faults using 1D-CNNs, 210,000 
Samples, sample duration of 5 seconds, 0.20 

frequency resolution 

Inner Race 95.13 % 95.04 % 
Outer Race 97.48 % 96.88 % 

Cage 98.76 % 96.46 % 

Ball 96.87 % 97.79 % 

Average Total 97.06 % 96.54 % 

Bearing Faults using 2D-CNNs, 168,000 

Samples, sample duration of 4 seconds, 0.25 
frequency resolution 

Inner Race 
Outer Race 

95.24 % 
98.18 % 

95.16 % 
93.55 % 

Cage 99.59 % 95.18 % 
Ball 97.43 % 91.65 % 

Average Total 97.86 % 93.89 % 
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The CWRU dataset is assessed using ANNs, 1D-CNNs, and 

2D-CNNs, and results are provided in Table 8. 2D-CNNs 

are used with grayscale images as inputs to train the 

network. Table 8 reveals that results plateau around 95% as 

well for the CWRU 48 kHz sampling rate dataset, when 160 

fault harmonics, 192,000 samples, a data collection duration 

of 4 s, a 0.25 frequency resolution, a 1024 window length, 

200 grayscale images per class, and an input image size of 

20x50 are required. On the other hand, if a 12 kHz sampling 

rate is used, the dataset only needs 40 fault harmonics, 

48,000 samples, a data collection duration of 4 s, 0.25 

frequency resolution, 40 grayscale images per class, and 

20x50 image input size to achieve similar accuracies. 

Table 9 demonstrates that either a 12 kHz or 48 kHz 

sampling rate can be utilized when reducing the number of 

samples during data collection since, after a certain number 

of sample, the accuracy does not change. This suggests that 

fewer samples can be collected for bearing fault diagnosis. 

While a minimum sampling rate is required to capture 

enough fault information so that an ML algorithm can 

assess a specific fault, these results indicate that once this 

minimum threshold is identified, sampling rates have little 

effect on achieving a high accuracy. In fact, other 

parameters can be adjusted to reduce the total amount of 

data needed to achieve adequate performance. 

Finally, the CWRU dataset also shows that a minimum 

of 40 fault harmonics still attains an adequate accuracy 

when other parameters are adjusted accordingly. Therefore, 

further study would be required to better understand how 

ML algorithms utilize fault harmonics in assessing faults by 

reducing the sampling frequency further to find the lower 

limit. 

4.3. Validation Accuracy Values for Data Collection 

Duration and Frequency Resolution Using the 

HUST Dataset 

Table 10 illustrates that the HUST dataset yields 

unsatisfactory results for both the ANN and 1D-CNN 

models, especially when analyzing data from the bearing 

sets ranging from 6204 to 6208. However, when the datasets 

are processed using a 2D-CNN with grayscale images, a 

threshold accuracy of around 95% can be successfully 

achieved. This was accomplished using 170 fault harmonics, 

204,800 samples, a data collection duration of 4 s, a 0.24 

Table 8. CWRU Inner Race Dataset Results 
 Sampling Rate (Hz) [a], # of Fault Harmonics [b], number of samples [c], Data Collection 

Duration (s) [d], Frequency Resolution [e], Window Length [f], # of Images per Class [g], 

Input Size [h] 

ML Models, BPFI, Validation Accuracy (%), Average Run Time (minutes) 

a b c d e f g h ANN Acc., 

10% stride 

(%) 

Time 

(min) 

1D 2-layer 

CNN Acc., 

10% stride 

(%) 

Time 

(min) 

2D-CNN 

Acc., 10% 

stride (%) 

Time 

(min) 

12,000 40 

12,000 1 1.00 

1024 

10 

20x50 

70.08 0.57 73.86 2.24 76.89 7.22 

24,000 2 0.50 20 83.51 1.15 85.87 2.33 86.41 10.45 

36,000 3 0.33 30 91.38 1.35 90.71 2.58 93.44 13.33 

48,000 4 0.25 40 95.11 1.45 95.16 3.15 95.13 15.47 

60,000 5 0.20 50 95.16 2.21 95.06 4.31 95.16 16.13 

120,000 10 0.10 100 95.21 3.11 95.10 5.31 95.08 18.51 

48,000 160 

48,000 1 1.00 

1024 

50 

20x50 

77.50 1.59 79.56 3.42 88.45 17.51 

96,000 2 0.50 100 85.66 2.41 86.83 4.17 93.96 19.13 

144,000 3 0.33 150 93.45 3.23 90.26 4.23 94.92 21.11 

192,000 4 0.25 200 95.08 4.11 95.71 4.51 95.50 25.18 

236,000 5 0.20 250 95.18 5.21 95.56 6.17 95.51 26.35 

480,000 10 0.10 500 95.13 7.16 95.80 8.35 95.84 27.17 

 

Table 9. CWRU Classification Accuracy Results of 2D-CNNs at Sampling Frequencies of 12 kHz and 48 kHz 
Sensor Type Accelerometer 

Data Collection Duration (s) 4 

Frequency Resolution 0.25 

Window Length 1024 

Stride 10 % 

Average Run Time [12 kHz] (minutes) 15.34 

Average Run Time [48 kHz] (minutes) 25.51 

Bearing Faults (12 kHz, 40 fault harmonics, 48,000 samples, 40 images per class) 
Inner Race 
Outer Race 

95.13 % 
95.36 % 

Ball 95.75 % 

Average Total 95.41 % 

Bearing Faults (48 kHz, 160 fault harmonics, 192,000 samples, 200 images per class) 
Inner Race 
Outer Race 

Ball 

95.50 % 
95.90 % 

95.46 % 

Average Total 95.62 % 
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Table 10. HUST Inner Race Dataset Results 
Bearing Name [a], # of Fault Harmonics [b], # of samples [c], Data Collection Duration (s) [d], 

Frequency Resolution [e], Window Length [f], # of Images per Class [g], Input Size [h] 

ML Models, BPFI, Validation Accuracy (%),  Average Run Time (minutes) 

a b c d e f g h ANN Acc., 

10% stride 

(%) 

Time 

(min) 

1D 2-layer 

CNN Acc., 

10% stride 

(%) 

Time 

(min) 

2D-CNN 

Acc., 10% 

stride (%) 

Time 

(min) 

6204 170 

51,200 1 1.00 

1024 

50 

20x50 

64.24 2.21 70.13 3.55 81.46 18.44 

102,400 2 0.50 100 69.79 2.55 76.37 4.31 89.33 20.15 

153,600 3 0.33 150 72.93 3.57 77.18 4.36 92.45 22.34 

204,800 4 0.25 200 71.23 4.49 75.22 4.59 95.44 26.50 

256,000 5 0.20 250 71.76 5.55 77.79 5.73 95.32 27.19 

6205 170 

51,200 1 1.00 

1024 

50 

20x50 

63.54 2.26 75.45 3.48 80.88 18.40 

102,400 2 0.50 100 67.95 2.51 77.61 4.21 85.43 20.11 

153,600 3 0.33 150 73.45 3.51 80.47 4.41 92.19 22.21 

204,800 4 0.25 200 72.46 4.43 74.98 4.49 95.23 26.47 

256,000 5 0.20 250 71.43 6.31 75.11 6.35 95.01 27.26 

6206 170 

51,200 1 1.00 

1024 

50 

20x50 

61.77 2.16 78.55 3.40 79.46 18.38 

102,400 2 0.50 100 66.13 2.43 79.43 4.26 83.81 20.29 

153,600 3 0.33 150 70.64 3.51 76.15 4.47 91.47 22.47 

204,800 4 0.25 200 71.55 4.41 77.69 4.40 95.28 26.31 

256,000 5 0.20 250 76.49 6.13 74.11 6.31 95.10 27.50 

6207 170 

51,200 1 1.00 

1024 

50 

20x50 

59.99 2.16 75.49 3.57 84.61 18.22 

102,400 2 0.50 100 65.56 2.51 77.13 4.51 86.13 20.18 

153,600 3 0.33 150 64.83 3.50 79.84 4.58 90.44 22.36 

204,800 4 0.25 200 65.95 4.41 74.21 5.21 95.06 26.44 

256,000 5 0.20 250 70.51 6.27 75.87 7.42 95.15 27.31 

6208 170 

51,200 1 1.00 

1024 

50 

20x50 

60.45 2.30 77.41 3.23 85.69 18.31 

102,400 2 0.50 100 62.88 2.45 75.89 3.30 90.12 20.26 

153,600 3 0.33 150 65.41 3.42 73.86 3.45 93.88 22.33 

204,800 4 0.25 200 68.87 4.33 74.77 4.01 95.17 26.58 

256,000 5 0.20 250 72.59 7.01 77.67 6.07 95.84 27.07 

 frequency resolution, a 1024 window length, 200 grayscale 

images per class, and a 20x50 image input size. Bearing 

6204 is selected for further analysis using a 2D-CNN as 

bearings in the range of 6204 to 6208 all had similar results.  
Table 11 demonstrates that the final accuracy climbs to 

95.65% when considering different fault conditions with the 

threshold accuracy parameters obtained from Table 10. The 

results indicate that to reach an adequate accuracy, the data 

collection duration for a 2D-CNN should be a minimum of 

4 s and a frequency resolution of at least 0.25. 
Table 11. HUST Classification Accuracy Results at a 

Sampling Rate of 51.2 kHz for the 6204 Bearing 
Sensor Type Accelerometer 

Sampling Rate 51,200 

# of Fault Harmonics 170 

# of Samples 204,800 

Data Collection Duration (s) 4 

Window Length 1024 

# of Images Per Class 200 

Input Size 20x50 

Stride 10 % 

Average Run Time (minutes) 26.46 

Bearing Faults 
Inner Race 
Outer Race 

95.44 % 
95.75 % 

Ball 95.77 % 

Average Total 95.65 % 

5. DISCUSSIONS 

Figures 5, 6, and 7 consist of validation accuracy vs 

computational times for the ANN, 1D-CNN, and 2D-CNN, 

respectively. In general, as the number of samples used as 

an input to each algorithm increases, so does computation 

time and accuracy, up to a plateau value. In Figure 5, the 

UORED-VAFCLS and CWRU datasets approach plateau 

accuracies of approximately 95% in less than 5 minutes. 

However, the HUST dataset does not meet this accuracy, 

suggesting that the architecture is not able to diagnose noisy 

data, which is essential for transitioning into industry.

 
Figure 5. ANN Validation Accuracy vs Computational 

Times for the Datasets Considered 

Figure 6 displays a similar pattern, where the UORED-

VAFCLS and CWRU datasets both reach plateau accuracies 

of approximately 95% in less than 5 minutes. The HUST 

dataset, again, lags behind due to the dataset being noisy. 

This causes the validation accuracy to fluctuate, indicating 

that noisy data cannot be used to achieve a satisfactory 

accuracy with simple ML algorithms when using time 

domain data. 
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Figure 6. 1D-CNN Validation Accuracy vs Computational 

Times for the Datasets Considered 

Finally, in Figure 7, all datasets, including the noisy 

HUST dataset, surpass the threshold accuracy. The 2D-CNN 

architecture demonstrates its robustness in handling noisy 

data, potentially making it more suitable for industrial 

datasets, which are often noisy. This observation points to 

the potential of integrating 2D-CNNs into real world 

industrial applications for fault diagnosis or machine 

monitoring, where data noise is a common issue. To 

overcome the noise issue in industrial datasets, the 

frequency domain should be considered, as demonstrated by 

many studies (Feng et al., 2013; Y. Kim & Kim, 2023; Q. 

Wang et al., 2009). 

 
Figure 7. 2D-CNN Validation Accuracy vs Computational 

Times for the Datasets Considered 

With all simple ML algorithms considered herein, 

validation accuracy seems to plateau around 95%, justifying 

this value as the threshold accuracy that should be achieved 

for satisfactory fault diagnosis results. In fact, when 

considering validation accuracy versus computation time, 

95% provides the best value for IIoT systems. Therefore, 

when testing new combinations of parameters or datasets, a 

minimum 95% threshold accuracy can be used as a 

satisfactory yet reasonable benchmark. With the 

development of more complex and more efficient 

algorithms, it is expected that the threshold accuracy for 

satisfactory results should increase. 

5.1.1. Accelerometer Data 

To achieve an adequate validation accuracy, all three 

datasets used in this study (i.e., UORED-VAFCLS, CWRU, 

and HUST) required similar sample collection durations, 

regardless of sampling rate differences. For all three datasets 

1, 2, 3, 4, 5, and 10s durations were tested. Nonetheless, the 

minimum data collection duration for TL and 1D-CNN 

rolling element bearing diagnosis was found to be 5 s, as 

seen in Table 12 for clean data, while for 2D-CNNs, 4 s was 

found to be sufficient for both clean and noisy data. It was 

not possible to achieve a satisfactory accuracy for the HUST 

dataset when using an ANN or a 1D-CNN. This may be due 

to a potential lack of data quality, as mentioned by the 

researchers who published the HUST dataset themselves, 

which is an indication of potential poor data collection 

(Thuan & Hong, 2023b). However, data collection duration 

and frequency resolution were found to be sufficient when 

using constant values of 4 s and 0.25, respectively while 

using a 2D-CNN. 

The average run times in Table 12 show that 2D-CNN 

models are generally the slowest in processing data across 

all datasets despite achieving high accuracy. For example, 

when applied to the UORED-VAFCLS dataset, 2D-CNNs 

have an average run time of 20.36 minutes, while 1D-CNNs 

take 4.47 minutes, and ANNs are the fastest at 4.05 minutes. 

A similar trend is seen in the CWRU and HUST datasets, 

where the 2D-CNN takes the longest time to process (up to 

26.46 minutes with HUST), while 1D-CNNs are moderately 

faster, and ANNs consistently process the data the fastest, as 

expected. 

Table 12. Accuracy Sample Duration Based on Accelerometer Sampling Rate Needed to Achieve a Network 

Accuracy Greater than 95% 

Dataset Name Sampling Rate 
# of Fault 

Harmonics 

Number of 

Samples 

Sample 

Duration 

Frequency 

Resolution 

Window 

Length 

# of 

Images 

per 

Class 

Input 

Size 

Stride 

(%) 

Average 

Run Time 

(minutes) 
Network 

UORED-VAFCLS 42 kHz 140 210,000 5 s 0.20 

1024 N/A N/A 10 

4.05 

ANN 
CWRU 12 kHz 40 48,000 4 s 0.25 1.45 

CWRU 48 kHz 160 192,000 4 s 0.25 4.11 

HUST 51.2 kHz N/A N/A N/A N/A 4.41 

UORED-VAFCLS 42 kHz 140 210,000 5 s 0.20 

1024 N/A N/A 10 

4.47 

1D-CNN 
CWRU 12 kHz 40 48,000 4 s 0.25 3.15 

CWRU 48 kHz 160 192,000 4 s 0.25 4.51 

HUST 51.2 kHz N/A N/A N/A N/A 4.46 

UORED-VAFCLS 42 kHz 140 168,000 4 s 0.25 

1024 

200 

20x50 10 

20.36 

2D-CNN 
CWRU 12 kHz 40 48,000 4 s 0.25 40 15.34 

CWRU 48 kHz 160 192,000 4 s 0.25 200 25.51 

HUST 51.2 kHz 170 204,800 4 s 0.25 200 26.46 

 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

16 

This performance discrepancy is crucial for IIoT 

researchers and companies that prioritize efficiency in both 

accuracy and runtime, especially in real-time applications. 

Although 2D-CNNs achieve the highest accuracy across all 

datasets, their higher computational cost might not be ideal 

for cases requiring quicker responses, as evidenced by the 

25.51 minute runtime for the CWRU dataset using the 2D-

CNN. 

Figure 6 shows that high accuracies (greater than 95%) 

can still be obtained by increasing the number of samples, 

but for applications where runtime is critical, ANNs and 

1D-CNNs may be preferred. For instance, the HUST dataset 

processes much faster using an ANN (4.41 minutes) 

compared to a 2D-CNN (26.46 minutes) but does not 

achieve satisfactory results, thus making 2D-CNNs the only 

viable solution for both accuracy and computational time 

(even though it is slightly longer). 

Table 12 includes a summary of best performing 2D-

CNN networks (above 95% accuracies). This is found to 

occur when the number of samples is four times larger than 

the sampling rate. Interestingly, a relationship related to 

resolution, equation (5), can be observed when looking at all 

the results in this study. Evidently, as the number of samples 

collected increases, so does the resolution. Then, the data 

collection duration can be used to determine how much data 

is required to achieve an accuracy over 95%. For example, 

if a data scientist selects an accelerometer that operates at 15 

kHz (50 fault harmonics) to collect data, then to reach a 

network accuracy of at least 95% when using a 2D-CNN 

with grayscale images, 60,000 samples collected over 4 s 

would be required. Additionally, ANNs are found to be less 

reliable then CNNs if the data collection process is poor, as 

shown with the HUST dataset when compared to cleaner 

datasets (UORED-VAFCLS and CWRU). 

Thus, while ANNs and 1D-CNNs provide faster 

runtimes in terms of computation, they do not reach a 

satisfactory threshold accuracy for all datasets. Therefore, 

IIoT companies should consider 2D-CNNs by sacrificing 

some computational runtime for achieving validation 

accuracies above 95% for proper condition monitoring, even 

under noisy environments. 

The average run times shown in Table 12 were obtained 

using an Intel® Core™ i7-1255U processor, up to 16 GB of 

RAM, 1 TB of storage, Intel® UHD Graphics, and Jupyter 

notebook. Additionally, average run times consist of how 

long it takes to run 100 epochs. 

5.1.2. Acoustic Data 

Results also suggest that for TL and DL algorithms, the 

data sampling duration should be 4 s (2D-CNNs) and 5 s 

(ANNs, 1D-CNNs) for microphone data, as observed in the 

UORED-VAFCLS dataset. Unfortunately, the CWRU and 

HUST datasets did not include acoustic data, making 

conclusions for this type of data difficult. However, a 

recommendation is made based on the UORED-VAFCLS 

data results. This involves collecting samples for a duration 

of 5 s to obtain a 2D-CNN network accuracy of more than 

95% when using a microphone. Notably, acoustic sensors 

pick up more noise during signal collection than 

accelerometers, which could explain why a longer data 

collection duration is needed. More datasets need to be 

collected for acoustic data to provide greater insight using 

traditional and DL. 

5.1.3. Summary of Results and Bearing Data Collection 

Recommendations 

Based on Table 13’s summary of the results, the 

minimum required resolution for ML diagnosis can be 

calculated using equation (5) for each dataset, using all three 

algorithms used in this study. For ANNs and 1D-CNNs, a 

resolution of 0.20 (5 seconds of data collection) is needed, 

while for 2D-CNNs, a lower resolution of 0.25 (4 seconds 

of data collection) is required when using simple ML 

Table 13. Resolution (Hz) for Each Dataset 

Dataset Name Algorithm Sampling Rate 
Number of 

Samples Required 

Sample Duration 

Required 
Resolution 

UORED-VAFCLS 

ANN 

42 kHz 210,000 5 s 0.20 

CWRU 12 kHz 48,000 4 s 0.25 

CWRU 48 kHz 192,000 4 s 0.25 

HUST 51.2 kHz N/A N/A N/A 

UORED-VAFCLS 

1D-CNN 

42 kHz 210,000 5 s 0.20 

CWRU 12 kHz 48,000 4 s 0.25 

CWRU 48 kHz 192,000 4 s 0.25 

HUST 51.2 kHz N/A N/A N/A 

UORED-VAFCLS 

2D-CNN 

42 kHz 168,000 4 s 0.25 

CWRU 12 kHz 48,000 4 s 0.25 

CWRU 48 kHz 192,000 4 s 0.25 

HUST 51.2 kHz 204,800 4 s 0.25 
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algorithms. It is expected that more complex algorithms 

could require parameters with lesser values to attain a 

satisfactory accuracy after a certain number of samples. 

To ensure optimal ML performance in rolling element 

bearing fault diagnosis, this study explored data collection 

parameters that balance model accuracy with the amount of 

bearing data used. Only 2D-CNNs were able to achieve a 

satisfactory threshold accuracy for all three datasets. For this 

case, results indicate that a minimum sampling rate of 12 

kHz and a data collection duration of 4 s are effective in 

capturing bearing conditions, allowing 2D-CNNs to reach 

satisfactory accuracies while maintaining relatively low 

computational times. When using 2D-CNN grayscale 

images in the frequency domain, all three datasets analyzed 

herein can achieve a satisfactory threshold accuracy at the 

expense of increased computational times. The number of 

harmonics, which is defined using bearing signal theory, is a 

critical factor for diagnosis. Based on the results, 40 fault 

signatures are enough to obtain a satisfactory accuracy. 

Additionally, the suggested minimum image resolution is 

20x50 pixels, and a stride of 10% provides better accuracies 

for fault diagnosis without excessive computational times, 

while an input signal window length of 1024 is satisfactory 

in all cases. The provided configurations support an efficient 

yet accurate set of parameters for IIoT applications where 

data storage and processing constraints are considered. 

These guidelines provide a methodological approach to data 

collection, which will help support accurate fault diagnosis 

in industrial settings. This will aid in developing efficient 

ML-based monitoring systems for IIoT companies. 

Both the CWRU and HUST datasets contain data for 

three bearings of each fault type, including inner race, outer 

race, and ball faults. On the other hand, the UORED-

VAFCLS dataset has data for five bearings with natural 

faults of each fault type, including inner race, outer race, 

ball, and cage faults. To enhance the robustness of the 

dataset, multiple sets of 5 of the same fault type but on 

different bearings of the same size and from the same 

manufacturer are recommended. This will facilitate effective 

training of ML algorithms by allowing for larger datasets 

rather than high-dimensional datasets. Lower dimensions 

and larger datasets are essential for transitioning research in 

this field into industry. Moreover, this study demonstrates 

that frequency-domain data can be used with simple ML 

algorithms to determine rolling element bearing faults with 

95% accuracy. Unfortunately, most IIoT products currently 

available in the market pre-process their data due to storage 

and communication limitations of their devices. As such, 

these devices would need to be able to send time series data 

directly if ML algorithms are to be integrated with IIoT 

products. 

5.1.4. Limitations 

It is important to note that due to the limited number of 

datasets available for this study, conclusions made herein 

can be said to only apply to accelerometer sampling 

frequencies between 12 kHz and 51.2 kHz and speeds 

ranging between 1400 and 1900 RPM. While such ranges 

are common in practice, the extent to which these 

assumptions are restrictive should be further studied. 

Additionally, for 2D-CNNs using grayscale images, a 

window length of 1024 seems to yield the minimum 

required accuracy sought in this study. Although the paper 

provides general conclusions, more structured evidence is 

needed to support their applicability to other fault types and 

broader operating conditions. 

It is important to note that hyperparameters such as 

window length, stride, and data duration were varied 

independently in this study to observe their isolated effects 

on model accuracy. However, potential interactions between 

these parameters (e.g., stride and window length affecting 

the number and overlap of samples) may impact 

performance. 

6. CONCLUSIONS 

The results indicate that a minimum number of samples 

is required to achieve a training and validation accuracy 

above 95%. This number varies depending on the sampling 

rate provided by each dataset. 

When selecting the data collection duration for TL and 

DL, it is recommended that data be collected for a duration 

of 5s (resolution of 0.20) for ANNs and 1D-CNNs for clean 

data, and 4s (resolution of 0.25) for 2D-CNNs for clean and 

noisy data. The 2D-CNN finding is applicable for 

accelerometers that have a sampling rate range between 12 

and 51.2 kHz and speeds ranging between 1400 and 

1900 RPM. 

Once the minimum threshold of samples is reached, it 

was observed that sampling rates have little effect on 

achieving a high classification accuracy. Additionally, for 

2D-CNNs, the best performance was found to occur when 

the number of samples was approximately four times the 

sampling rate, establishing a practical relationship between 

these two key data collection parameters. 

Finally, a 10% stride was found to provide sufficient 

information for achieving an ML accuracy of at least 95%. 

To increase the robustness of these results, further testing on 

more bearing datasets will be required at different constant 

speeds to see the effects on resolution. 

The research succeeds in delivering general conclusions 

that can be directly applied across a wide variety of bearing 

conditions. The findings presented here are based on 

research lab-based bearing datasets, with sampling rates and 

machine speeds confined to specific ranges. As a result, the 

conclusions drawn do not fully capture the variability of all 

machine applications where accelerometers may operate 

outside the ranges studied. 

Moreover, the study provides useful insights into how 

different ML models (ANNs, 1D-CNNs, and 2D-CNNs) 

perform under specific conditions. It has been shown that 
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for ball bearing fault diagnosis within the speed ranges and 

frequencies considered in this study, even with noisy data, 

the threshold accuracy can be reached using 2D-CNN 

grayscale images in the frequency domain by sacrificing 

computational time. The identification of a threshold 

accuracy will help data scientists and ML researchers to 

conduct research more efficiently and will allow the 

implementation of ML algorithms in IIoT systems by 

maximizing accuracy while reducing samples and 

computational times. 

These results provide researchers a basis for setting 

their parameters during data collection but also serve as a 

first step for integrating ML algorithm-based rolling element 

bearing fault diagnosis into IIoT monitoring products by 

identifying the minimum amount of data needed to reach 

threshold fault diagnosis accuracies. 

Future work will focus on exploring the interaction 

between hyperparameters such as window length, stride, and 

duration, rather than treating them independently. 

Additionally, future plans include examining statistical 

robustness by reporting mean performance metrics and 

standard deviations across repeated runs and investigating 

the impact of cross-validation versus domain-split validation 

frameworks. Expanding the scope to include variable speed 

conditions, a wider range of machine types, and more 

diverse sensor configurations will further enhance the 

applicability of these findings in real-world industrial 

settings. 

NOMENCLATURE 

AI Artificial Intelligence 

ANN Artificial Neural Networks 

BPFO Ball Pass Frequency of Outer Race 

BPFI Ball Pass Frequency of Inner Race  

BSF Ball Spin Frequency 

CNN Convolutional Neural Networks 

DL Deep Learning 

FTF Fundamental Train Frequency 

IIoT Industrial Internet of Things 

IMS Intelligent Maintenance System 

KNN K-Nearest Neighbors Algorithm 

ML Machine Learning 

NSK Nippon Seiko Kabushiki-gaisha 

SVM Support Vector Machine 

SKF Svenska Kullagerfabriken 

TL Traditional Learning 

t-SNE T- distributed Stochastic Neighbor Embedding 
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