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ABSTRACT

This paper explores rolling element bearing data collection
and hyperparameter tuning for machine learning-based fault
diagnosis to aid in the development of modern condition
monitoring systems. The integration of industrial internet of
things (IloT) products and cloud databases has led to an
increased interest in utilizing artificial intelligence (AI)
models, including artificial neural networks (ANNs) and
convolutional neural networks (CNNs), to diagnose machine
faults. However, the development of AI methodologies in
smart monitoring is hindered by a lack of publicly available
industry data, as well as limitations involved in the
collection and storage of large high-dimensional datasets.
Combining machine learning (ML) methods, such as
traditional learning (TL), deep learning (DL), and bearing
signature theory, will allow for a better understanding of
data collection and hyperparameter tuning. Moreover,
considering how high-dimensional datasets for rolling
element bearing fault diagnosis affect ML algorithms has
yet to be explored in the literature, providing little
robustness for analysis. Concerns around the way data has
been collected and used historically for both TL and DL are
raised. Therefore, recommendations for data collection
specifically suited to TL and DL methods for rolling
element bearing fault diagnosis are proposed by analyzing
existing lab-based datasets. The recommendations proposed
combine knowledge of these methodologies to aid in
selecting an appropriate sampling rate, as well as the ideal
number of samples, stride, duration of each sample, and
resolution for rolling element bearing fault diagnosis. The
goal is to increase efficiency and reduce setup and collection
time when selecting the design parameters for creating new
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rolling element bearing datasets. To achieve this, the study
applied a structured approach with the use of multiple
datasets to determine a threshold accuracy of 95% for fault
diagnosis. Furthermore, the results of this study will help
IIoT companies re-evaluate the constraints imposed by the
limited data storage and transmission of their devices when
used for ML. This paper will also help improve the
efficiency and effectiveness of Al methodologies in smart
monitoring systems by establishing data collection
recommendations. This work will hopefully motivate the
vast collection of open-access data that can be used by
researchers to further develop ML-based methods for rolling
element fault diagnosis.

1. INTRODUCTION

In the heavy machinery industry, IIoT devices, as well
as TL and DL methods, collectively known as ML methods,
have recently gained popularity for tracking machine health
and performing condition monitoring. However, obtaining
quality data to train these ML-based techniques presents a
substantial challenge (Chandrvanshi et al., 2024; Rahman et
al., 2023). So far, a few high-dimensional datasets have
been collected by researchers in the lab without describing
their reasoning for the data collection method they used,
especially when related to their use with ML techniques for
fault diagnosis. However, a methodological approach to data
collection is crucial for the continued development of useful
ML algorithms (Chandrvanshi et al., 2024; Soomro et al.,
2024). This study intends to clarify the important
characteristics associated with data collection parameters, as
well as the hyperparameters, that affect the training of ML
algorithms to overcome existing constraints and enhance the
accuracy and effectiveness of rolling element bearing
analysis when using ML. The parameters selected are used
to identify a threshold accuracy based on computational
efficiency and storage requirements to allow IloT
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companies to integrate ML fault diagnosis in their devices
and systems.

The proposed approach recommends data collection
parameters for rolling element bearings by combining ML
approaches and bearing signature theory. ML algorithms,
such as convolutional neural networks (CNNs), enable more
rapid and accurate fault diagnosis when provided with an
adequate input. The selection of parameters such as
sampling rate, number of fault harmonics, number of
samples, data collection duration, frequency resolution,
window length, and stride is made easier with the help of
existing research based on bearing dataset benchmarks.
Bearing signature theory, which sheds light on the
distinctive patterns of defects in roller element bearings,
allows for identifying the number of fault harmonics
contained within a signal. Researchers are encouraged to use
the findings in this paper to collect data for rolling element
bearings specifically intended for use with ML algorithms,
which will encourage the collection of a greater number of
datasets and will also help improve Al-based fault diagnosis
techniques for IIoT applications.

The proposed recommendations for collecting data used
with ML approaches for rolling element bearings open a
wide range of possibilities. Importantly, it encourages I1oT
companies to develop devices that can be used with ML
algorithms, as well as allowing researchers to collect data
based on bearing signature theory, ensuring that the data
gathered is in line with the specific requirements of the
current problem. Storage space limitations can be overcome
by optimizing the sample rate and quantity of data collected.
The proposed recommendations establish a foundation for
advancements in IIoT products and services and serve as a
useful tool for further study in data-driven fault diagnosis.

1.1. Motivation

ML-based bearing fault diagnosis is a widely studied
topic, particularly with the emergence of data driven
methods such as neural networks (Sehri et al., 2023; Sehri,
Varejdo, et al., 2025). However, many existing studies omit
critical details regarding the computational time, software
frameworks, hyperparameters (Wu et al, 2019), and
hardware configurations used to implement these methods,
making reproducibility and fair comparison difficult
(Vashishtha et al., 2025). This lack of transparency in the
literature hinders the ability to evaluate algorithmic
performance in real-world conditions (Sehri, Hua, et al.,
2025). This work acknowledges this gap and incorporates a
brief explanation to justify experimental design choices.
Additionally, a majority of publicly available rolling
element bearing datasets were created before the emergence
of DL algorithms, often making them non-ideal for training
modern DL models. This work identifies and addresses
these limitations by proposing optimized data usage
strategies for these datasets. This paper also highlights the
importance of understanding both the data and Al-based

condition monitoring processes, aiming to bridge the gap
between ML researchers and signal processing engineers.
To ensure clarity and accessibility for a broader audience,
this work includes an overview of neural networks and their
application to fault analysis in rolling element bearings. The
remainder of this paper is organized as follows: Section 2
describes the background for different methods and models
used. Section 3 outlines the results for bearing fault
diagnosis analysis using DL. Section 4 presents the
discussion, and Section 5 concludes with key takeaways and
future work.

2. BACKGROUND

A significant problem in developing ML models is
identifying the dimension and size of the dataset required to
properly train a particular model. The dimensionality of a
dataset refers to the characteristics of each set of data, for
instance, how many columns of data are present and how
many samples are collected. The size refers to the number of
distinct objects (e.g., rolling element bearings) that are used
in collecting the data. The size of the dataset helps in
assessing whether a dataset is large or robust. Some
misunderstand the difference between large datasets and
high-dimensional datasets. Large datasets are preferred over
high-dimensional datasets because of their ability to obtain
higher accuracy results when using ML algorithms (Mufloz-
Terol et al., 2020). However, due to a lack of guiding
principles for data collection, data scientists tend to collect
data without consideration for these differences (Mazhar,
2021; Soomro et al., 2024). Moreover, most datasets that are
publicly accessible have been collected in a lab
environment, where typical data collected, consisting of
load, temperature, vibration, and/or acoustic data, is
obtained from sensors at the maximum sampling rate of the
particular configuration used, rather than for any reasons
related to ML algorithm training (Nasir & Sassani, 2021;
Soomro et al., 2024). Due to limited resources, this often
leads to the creation of high-dimensional datasets, but not
large datasets with many distinct objects. This leads to the
question of whether there exists a minimal set of parameters
(e.g., sampling rate, number of samples, data collection
duration, and stride) for the effective development and
implementation of ML methodologies. To address this
question, these parameters are considered in this study. A
structured evaluation is carried out using multiple bearing
datasets, where a 95% accuracy threshold is used as a
benchmark to determine the minimum parameter values
required for effective fault diagnosis.

With the introduction of new machinery datasets, a
need to assess data reliability is raised. t- distributed
stochastic neighbor embedding (t-SNE) is the most useful
method for determining whether high-dimensional data is
reliable, as it helps to cluster data into two-dimensional
visualizations (van der Maaten & Hinton, 2008). This
method can be used to visualize either raw data or data that
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has been processed using an ML algorithm. Numerous
studies use the t-SNE method to determine the reliability of
rolling element bearing datasets (Duo et al., 2021; Jiang et
al., 2022; F. Xie et al., 2023).

As a branch of ML, DL can be used for data analysis.
Data classification accuracy for DL models are based on
high-quality and large quantities of training data (Cho et al.,
2016). The question then becomes how much data is
required to train adequate ML models? Cho et al. evaluate
the quantity of data needed to train DL algorithms by using
medical image (CT scans) recognition to identify medical
concerns. They conclude that small window lengths lead to
high misclassification, while dataset sizes consisting of 100
to 200 images had similarly high accuracies, indicating that
there is a minimum amount of data that must be collected
for satisfactory results (Cho et al., 2016). Their findings
indicate that it may be possible to define a particular set of
data collection parameters for other ML tasks to achieve
adequate results as well. On the other hand, Perez et al.
concluded that for TL, more harmonics (968) outperformed
the use of 8 fault signatures using k-nearest neighbours
(KNN) and support vector machine (SVM) algorithms
(Duque-Perez et al., 2019). Nonetheless, when artificial
neural networks (ANNSs) are compared to KNN and SVM
algorithms, Ren concludes that ANNs outperform both
(Ren, 2012). In this study, ANNs and CNNs are used as
benchmarks for understanding the dataset requirements of
TL and DL methods, respectively. Both TL and DL methods
require significant training data to achieve high accuracy.
Although most TL studies indicate that more fault signatures
are needed for higher accuracy, they do not provide enough
information to determine the minimum sampling rate,
number of bearing fault harmonics, number of samples, data
collection duration, signal resolution, window length, stride,
and 2D CNN image resolution needed for “high enough”
ML accuracies.

2.1. Parameter Selection

The selection of appropriate data collection parameters
plays an essential role in creating a quality rolling element
bearing dataset. Once bearing hardware has been selected,
researchers must understand bearing fault frequencies to
select accelerometers that will capture enough data to
distinguish different fault types.

2.1.1. Bearing Fault Frequencies

A key component of data collection is understanding
the signal of interest. Bearing test rigs often focus on the
fundamental bearing fault frequencies since the controlled
research lab environment allows for relatively clean data
collection with minimal interference. In such cases, high-
frequency resonant bands, which are typically much higher
than the fundamental fault frequencies, can sometimes be
overlooked. Unfortunately, in industry, fundamental bearing
fault frequencies are often buried in machine and

environmental noise. Therefore, early detection often relies
on more distinct high-frequency signal content. As
highlighted by Randall and Antoni (Randall & Antoni,
2011), bearing faults often excite high-frequency structural
resonances, which depend more on the machine setup, such
as the test rig, rather than the bearing type itself. However,
in lab test rigs, the data is generally less noisy, allowing
researchers to focus on the fundamental bearing frequencies
with fewer concerns about high-frequency resonance
interference.

Nevertheless, moving to real world industrial
environments introduces significant operational noise,
making it crucial to consider these high-frequency resonant
bands. In such cases, the high-frequency bursts caused by
impacts due to faults excite resonant frequencies, and these
signals are further modulated by the load and transmission
path. Ignoring these high-frequency components can result
in improper fault detection, as the fundamental fault
frequencies and their harmonics can easily be masked by
noise from other machinery (Randall & Antoni, 2011).
Techniques like envelope analysis and spectral kurtosis
become essential for capturing these high-frequency signals,
which carry significant diagnostic information in noisy
industrial environments (Randall & Antoni, 2011). While
lab test rigs might allow for a focus on fundamental
frequencies, ensuring that the frequency range in industry
data collection includes these high-frequency resonant
bands is currently crucial for effective fault diagnosis.
However, due to upper frequency limitations in existing
IIoT devices, as well as the lack of publicly available
industrial datasets, this paper seeks to understand how ML
algorithms interact with bearing fundamental frequencies to
provide fault diagnosis. It hypothesized that ML algorithms
will provide additional capacity to filter through noisy
industry data rather than require high-frequency resonant
bands to provide adequate performance.

Rolling element bearing fault frequencies play an
important role in identifying bearing fault types. In most
cases, researchers are interested in classifying bearing fault
types. Sacerdoit et al. analyzed the signal obtained from
their intelligent maintenance system (IMS) test rig using the
bearing characteristic equations (1)-(4) (Sacerdoti et al.,
2023). They specified that each sample obtained from the
IMS test rig had a sampling rate of 20,480 Hz collected over
1 s at 2,000 RPM. 26,690 N of the load was applied radially
to the bearing via a spring (Sacerdoti et al., 2023). Although
the authors focused on bearing signals, they did not justify
their reasons for using their sampling rate or collection time.
To better understand bearing faults, Figure 1 a), b), and c¢)
are provided to visualize the characteristic features of
rolling element bearings.

Characteristic bearing fault frequency equations
can be written as, where BPFO is the ball pass frequency of
the outer race, BPFI is the ball pass frequency of the inner
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race, FTF is the fundamental train frequency, and BSF is the

ball spin frequency.:
BPFO =anT(1 —%cos@) M
BPFI = anr 1+ %COSQ)) &
FTF = };—r(l - % cos®) )
BSF = ];Tg [1- (% cos®)?] @

where D represents the pitch diameter of the bearing, d is
the rolling element (ball) diameter, n is the number of
rolling elements and @ is the load contact angle.
Characteristic bearing frequencies are also usually
associated with a set of harmonic frequencies in integer
intervals of the characteristic frequency. Bearing fault
frequency harmonics are known to be useful for
understanding the type and severity of the faults contained
within a signal. Bearing faults come from the formation of
cracks or pits in bearing surfaces that cause impacts, which
are reflected in vibration signals as a spike (Smith &
Randall, 2015). These faults can also generate harmonics
that are primarily driven by non-linear loads or conditions.
Since these harmonics play such a key role in identifying
differences between similar characteristic bearing fault
values, providing enough data to identify these bearing fault
harmonics is important. The number of fault harmonics
available in a signal depends on the wvalue of the
characteristic bearing fault frequency and the sampling rate.
The total number of fault harmonics contained in a signal
can be calculated as half the sampling rate divided by the
highest identified bearing fault frequency, as shown in
equation (5).
_f/2 (5)

Hbearing

# of Fault Harmonics =

In the tutorial paper for “Rolling element bearing
diagnostics” provided by Randall and Antoni, the use of 10
or more harmonics in capturing bearing fault frequencies is
essential for identifying bearing faults using traditional
methods (Randall & Antoni, 2011). Thus, within this
tutorial framework, 10 fault harmonics serve as a minimum
requirement for fault diagnosis by an expert when collecting
data without the intended use of ML. As such, there is a
similar need to determine the minimum number of
harmonics required for performing bearing fault diagnosis
via simple ML algorithms. This helps define the frequency
range of interest during data collection.

Figure 1. a) Contact Angle (“BALL BEARING BASICS
AND TYPES,” n.d.), b) Rolling Element Component
Identification (Deep Groove Ball Bearings | SKF, n.d.), ¢)
Important Dimensions of the Rolling Element (Skf Ball
Bearing, n.d.)

To examine the impact of bearing fault frequencies on
data collection, a range of Svenska Kullagerfabriken (SKF)
bearings with varying bore diameters were selected. This
selection includes the entire spectrum of commonly
available bearings, starting from the smallest bore size and
extending to the largest bore diameter available. The goal
was to observe how different bearing frequencies (i.e.,
BPFI, BPFO, BSF, and FTF) would affect the data
collection process.

The SKF 6000 bearing is selected to be the smallest
diameter used frequently in the industry. This helps set the
frequency range possible (6000 - Deep Groove Ball
Bearings | SKF, n.d.). Although smaller bearings are
manufactured by SKF and are used for special applications
requiring high speeds, they are not often used in industry.
The SKF 6000 dimensions include a 26 mm outer diameter,
a 10 mm bore diameter, a pitch diameter of 18 mm, and a
ball diameter of 6 mm. The bearing contains 9 balls and is
rated for a maximum rotation speed of 40,000 RPM. Loads
are assumed to be applied only in the radial direction at a
maximum motor speed. In this case, characteristic bearing
frequencies include a BPFO of 2,166.7 Hz, a BPFI of
3,833.3 Hz, an FTF of 240.7 Hz, and a BSF of 1,107.4 Hz.
SKF’s largest single-row ball bearing in common use, the
708/1250AMB (708/1250 AMB - Angular Contact Ball
Bearings | SKF, n.d.), has an outer diameter of 1500 mm, a
bore diameter of 1250 mm, a pitch diameter of 1375 mm,
and a ball diameter of 55 mm. It contains 14 balls and is
rated for a maximum speed of 280 RPM. Loads are assumed
to be applied only in the radial direction at 280 RPM. Based
on this information, the largest bearing will have a BPFO of
31.4 Hz, a BPFI of 34.0 Hz, an FTF of 2.2 Hz, and a BSF of
58.2 Hz. From equations (1)-(4), rotational speed can be
seen to have the most significant effect on bearing
frequencies for data collection, especially since the number
of balls cannot be adjusted due to each manufacturer’s
specifications.

The fault frequency range of SKF bearings is obtained
by calculating the characteristic bearing frequencies in the
bore range of 10 to 1250 mm. Tests were only conducted at
typical industry speeds to determine the bearing fault with
the highest frequency. Figure 2 provides a sub-set of results
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for the highest fault characteristic frequencies obtained at
common AC and DC motor speeds (Nagel, 2018) used in
industry. Since the largest common bearings operate well
below 900 RPM and have lower fault frequencies, they are
not included in this figure. The inner race is specifically
chosen due to it having the highest frequency among the
four fault signatures. Figure 2 exhibits the highest frequency
of 490 Hz at 5000 RPM, representing a single fault
harmonic. This frequency aligns reasonably well with
industry expectations and can be considered as the typical
maximum fault signature frequency. It is important not to
forget, though, that fault harmonics play an important role in
the diagnosis of bearing faults when using ML algorithms.
A few factors must be considered: differentiating between
different fault types and noise, reliability, and redundancy.
Differentiating between different fault types and noise in
bearing data is important so that enough fault harmonics are
available to classify differences between each class type
when trying to obtain high ML algorithm accuracies.
Reliability and redundancy refer to gathering enough fault
harmonics to have a clear, distinguished signal. This is
crucial for effectively differentiating between potential
noise in data and bearing fault signatures. The goal is to
ensure that there are enough fault harmonics included in the
signal to enable the network to recognize and accurately
respond to various fault conditions. Reliability involves the
consistent and accurate performance of the system in
identifying and distinguishing between healthy and faulty
conditions. Redundancy, on the other hand, consists of
additional components and measures beyond the essential
requirements, providing backup functionality to strengthen
overall system reliability. In this way, the combination of
reliability and redundancy contributes to a robust fault
detection mechanism.

500

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Bore Diameter (mm)

Figure 2. Frequency vs. Bore Diameter for SKF Bearing
Inner Race Frequencies with Various Motor Speeds, 10 mm
to 200 mm

1200 RPM 1800 RPM 3600 RPM 5000 RPM

2.1.2. Sampling Rate

The sampling rate (sampling rate) indicates the rate at
which a continuous analog signal is converted to a discrete
digital signal. Continuous, discrete signals are signals
obtained from sensors and measured in differences of
voltages. The sampling rate is an important parameter for
sensor selection (e.g., accelerometers and microphones)
(Delaunay et al., 1994). For bearing data collection
applications at lower speeds, a low pass filter (LPF) is

required before converting the analog signal to remove
higher frequency components from the signal that do not aid
in understanding the health state of the bearing (X. Zhang et
al., 2012). This helps to avoid aliasing by removing high
frequency artifacts. If an LPF is not applied, noise
(including electrical interference) or other signal
disturbances can occur, as well as artifacts introduced by
aliasing of the signal. Aliasing occurs when the sampling
rate is less than the minimum sampling rate required to
represent the analog (original) signal obtained from the
sensor.

To prevent aliasing and to select an appropriate
sampling rate, the Nyquist-Shannon sampling theorem must
be applied to the signal (Nyquist, 1924; Shannon, 1948).
According to the theorem, the sampling rate must be greater
than two times the analog input’s highest frequency of
interest to prevent aliasing (Nyquist criterion) (Kester,
2023). If samples are collected below this frequency, as seen
in Figure 3, aliasing will corrupt the digitized signal. For
instance, if a sensor (e.g., accelerometer) has a maximum
frequency capacity of 15 kHz, and all information is
intended to be captured, then according to the Nyquist
criterion, the sampling rate should be greater than 30 kHz.
This paper investigates the effect of sampling rate on the
fault diagnosis accuracy by analyzing different existing
bearing datasets that have different sampling frequencies
using ML algorithms. Setting a threshold accuracy is
required to ensure a reduction in the requirement for high-
dimensional datasets to avoid prolonged algorithm running
times and lower hardware requirements (Dini et al., 2024;
Rahman et al., 2023; X. Zhang et al., 2021). There are only
a few ML applications of IloT-bearing diagnosis that can
train or update ML models within less than 5 minutes with
high accuracy, as most articles refrain from publishing
computational times (Z. Chen et al., 2024; Shao et al., 2018;
Y. Wang et al., 2020).

According to Xie et al., DL CNN models should
achieve a minimum accuracy of 95% or higher in both
training and validation datasets (W. Xie et al., 2022).
Although the threshold accuracy is case-dependent for
selected machinery components, when it comes to bearing
diagnosis, numerous IIoT research articles indicate that a
validation accuracy above 95% is satisfactory based on
results achieved (Asutkar & Tallur, 2023; Djaballah et al.,
2024; Kumar et al., 2022; Sun & Gao, 2024; J. Xu et al.,
2022). Bearing’s operate in industry under high-stake
environments in terms of machine failure, leading to costly
downtimes and potential equipment damage when they fail
(Bloch & Geitner, 2012; Karabay & Uzman, 2009; Theissler
et al., 2021). Therefore, fault diagnosis models should be
performed with high accuracy to minimize incorrect
detection (Z. Gao et al., 2015; Isermann, 2006). This paper
will seek to justify the threshold accuracy that can be
reasonably attained for bearing fault diagnosis using
standard ML algorithms based on test accuracies of bearing
conditions and computational times. This will be obtained
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by comparing TL and DL algorithms with different existing
bearing datasets as benchmarks. For instance, if a specific
architecture cannot reach a targeted threshold accuracy on
noisy bearing data but can on clean bearing data, it shows
the limitation of the model in handling real world data,
which is a step towards understanding noisy industrial
scenarios. It is expected that more complex algorithms
should provide better fault diagnosis results, but these often
come at the cost of hardware requirements and additional
computational time. Therefore, for the remainder of this
study, ML algorithm performance will be considered
satisfactory based on the results obtained from the
algorithms described herein.

2.1.3. Number of Samples and Data Collection Duration

The number of samples depends on the accelerometer
selected, the number of harmonics, machine component
frequencies, and data from the scientist’s expertise. The
maximum frequency capacity of a sensor can be determined
from the manufacturer’s specifications or the required
maximum frequency of interest, and by applying the
Nyquist criterion, the minimum sampling rate is determined.
Using the resolution formula, different numbers of samples
are selected and tested for existing datasets. The number of
samples and the duration of data collection are related to
each other via the sampling rate. To know the duration of
data collection required (in seconds) to collect the
appropriate number of samples, the number of samples
required must simply be divided by the sampling rate. Data
quantities and durations are investigated by performing
bearing fault diagnosis using different network types to
attain a minimum threshold accuracy.

2.1.4. Frequency Resolution

In machine condition monitoring, converting time-
domain signals into the frequency domain is crucial for
gaining additional insight from a mechanical system. This
transformation is frequently done using techniques such as
the fast Fourier transform (FFT) or other spectral analysis.
These methods transform time-domain signals (which show
a signal’s amplitude over time) into frequency components.
This conversion allows for a more extensive evaluation of
the signals’ spectral content, providing a better
understanding of the root cause of a machinery’s dynamics.

Frequency resolution plays an essential role in
identifying intricate details within the gathered bearing data
that has been converted to the frequency domain. For
bearing diagnosis, frequency resolution holds significant
importance, impacting the precision of bearing fault analysis
directly. Notably, increasing resolution helps differentiate
between fault types such as inner race, outer race, ball, and
cage faults. In the context of data collection for ML
purposes, one must acknowledge that data resolution stands
as a critical parameter, inherently dependent upon the
sampling rate and the number of samples collected. The

sampling rate is the number of points required to convert an
analog signal to a digital signal, while the quantity of
samples defines the dimensionality of the dataset, both of
which have a large effect on the total dataset size.
According to Duan et al., increasing the number of samples
results in a finer frequency resolution, as indicated by
equation (6) (Duan et al., 2019).

_5 ©)

Aw = N

where Aw is the frequency resolution, F; is the sampling
rate, and N is the total number of samples. Consequently,
different window lengths will be tested to account for this
relationship. To have an enhanced resolution in the
frequency domain, the number of samples collected in the
time domain should be increased while maintaining a
sampling rate that satisfies the Nyquist criterion. Having an
enhanced resolution means a finer detailed signal, which can
help distinguish between different bearing fault frequencies.
However, the goal is to identify if there is a minimum
resolution required to reduce the number of samples
collected while ensuring high accuracy. Different bearing
datasets are analyzed using ML algorithms to observe if a
causal relation exists between the effects of frequency
resolution and the network’s accuracy. To understand how
frequency resolution affects fault identification accuracy,
ANN and 1D-CNN algorithms are utilized.

2.2. ML Algorithms

2.2.1. Neural Network Specifications

Basic TL and DL algorithms used for this study are
summarized in Table 1, including references to the
algorithms used for each implementation. The table also
provides information on the number of hidden layers and
network classifier type. Based on referenced ML research,
obtaining high training and validation accuracies relies on
the quality of the data itself. Therefore, sensor placement
must be carefully considered to minimize noise and to
obtain reliable signals.

Additionally, for algorithm selection in Table 1, an
ANN is categorized as a TL algorithm, while methodologies
employing a 1D-CNN or 2D-CNN are classified as DL
algorithms. They are chosen to explore algorithm
hyperparameter tuning by employing the simplest
configuration with minimal hidden layers.

Batch size refers to the number of training samples
processed together in one iteration during ML algorithm
training. It helps in balancing computational efficiency with
training stability and convergence speed. Larger batch sizes
can expedite training but may require more memory, while
smaller batch sizes may lead to faster convergence but could
increase training time. Selecting a batch size involves
finding a balance between these factors to ensure efficient
and effective model training. Based on ML researcher
findings, the following hyperparameters are selected; the
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batch size set to 64 (C.-C. Chen et al., 2021; T. Kim & Chali,
2021; Neupane & Seok, 2020; Wu et al., 2020; R. Zhang &
Gu, 2022), classifier as Softmax (Hoang & Kang, 2019; C.
Lu et al., 2017; Neupane & Seok, 2020; Shao et al., 2018; J.
Zhang et al., 2020; W. Zhang et al., 2017; Zilong & Wei,
2018), 100 epochs (Althobiani, 2024; Che et al., 2021; Wei
et al., 2021; Wu et al., 2020), and a learning rate of 0.01 (Gu
et al., 2022; Wen et al., 2021; R. Zhang & Gu, 2022;
Zhiwei, 2022) which are determined based on high
accuracies achieved with the CWRU bearing dataset. A
batch size of 64 balances memory efficiency and training
stability, allowing for faster convergence without
overloading system memory. A Softmax classifier is better
for multi-class problems because it provides normalized
probabilities for each class, making sure that the model
predicts each class with the highest confidence. 100 epochs
provides a sufficient number of iterations for the model to
learn complex patterns while avoiding overfitting of data.
Lastly, a learning rate of 0.01 controls the speed at which
the model updates its weights, providing a balance between
fast convergence and avoiding overshooting. This learning
rate is preferred over 0.001 or 0.0001 since it allows for
faster convergence while maintaining pattern identification
for bearing classes. Therefore, different batch sizes,
classifiers, learning rates, and number of epochs are not
explored in this study.

In all networks, the ReLU activation function was used
in the hidden layers to introduce non-linearity and prevent
vanishing gradients, given the two shallow hidden layers of
the networks studied. The Softmax activation function was
used only at the output layer to handle multi-class
classification by providing class probabilities. Although
deeper networks may require more careful handling of
gradient flow, the shallow configurations used in this study
did not exhibit vanishing gradient issues.

Table 1. ML Algorithms Used for TL and DL

Ref Algo. # of Batch | Classifier | Epoch | Learning
Hidden Size Rate
Layers
(Samanta
& Al-
balushi, ANN
2003)
(X.
Wa:;g et 1D-CNN 2 64 Softmax 100 0.01
2021)
(S. Yang 2D-CNN,
etal., grayscale
2022) images

* Ref- references, Algo- algorithms

2.2.2. Window Length

The window length is a time series hyperparameter
used in ML algorithms that represents the input size for
training neural networks. The window length is what
enables the capture of patterns created by bearing faults
when training neural networks. In ANNs and 1D-CNNs for

time domain analysis, window length refers to the number
of data point segments that are fed into the network at any
given time for training purposes. For 2D-CNNs using
grayscale images, window length is the filter or kernel’s
dimensions that are used to define the image characteristics.
Matrix dimensions are a common way of defining a kernel’s
size. For instance, a kernel can measure 20x20, meaning the
image created has 20 pixels along each axis. The created
images are then fed into the convolutional layer for
processing. The window length is used to define how many
samples are pushed into the neural network for training and
testing of the data. A window length can impact the
validation accuracy results of a network due to insufficient
features captured if not selected correctly.

2.2.3. Stride

Stride is a hyperparameter used in ML algorithms that
reduces the spatial dimensions of processed data by
allowing overlapping of the window to occur on the existing
signal during ANN and CNN operations (Hendriks et al.,
2022). Stride is useful when handling datasets with limited
quantities of specific samples (small-sized datasets), such as
those obtained from bearings tested in a lab. Stride is
measured as the number of time domain segment points that
overlap the window length for ANNs and 1D-CNNs, as well
as the number of pixels that the kernel shifts over the image
during each convolution for 2D CNN grayscale images. A
smaller stride allows the usage of smaller datasets. A
smaller stride value means a higher overlap in the data that
is used as input during network training. As the stride is
reduced, it is assumed that the network accuracy will
increase so that the network should be able to identify more
similarities between images at the expense of computation
time. However, an ideal stride should be determined based
on different bearing datasets to reach a certain network
threshold accuracy. Stride will be investigated by selecting
different stride values and applying them to different
bearing datasets used for training different types of neural
networks. Suggested values for stride will be determined
based on the minimum threshold accuracy.

2.2.4. Image Resolution for 2D CNNs

When raw bearing data is converted to grayscale
images in the frequency domain, the resolution is then
dependent on the quality of the created image and can
change as the data is passed through the network from one
convolutional layer to the other, as the data works through
operations such as pooling and stride. These operations
reduce the dimensions of the feature maps. Therefore, the
resulting resolution of the output images is directly
dependent on the network architecture used by the algorithm
and cannot be determined explicitly without knowledge of
the specific structure used. The number of grayscale images
per class for testing is justified based on existing research on
the CWRU dataset by identifying research results that have
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the highest obtained fault diagnosis accuracies. The number
of grayscale images used for training and testing that have
the highest accuracies per class ranges from 100 to 500
images (Han & Jeong, 2020; He et al., 2023; She et al.,
2024; Wei et al., 2021). Additionally, 10 to 100 images are
also tested for comparison in an attempt to further reduce
computational requirements. Evidently, as the number of
images created increases, so does computational time.

2.2.5. Training and Testing Split of the Data

For each bearing dataset used in an algorithm, the data
is split using Hendriks et al.’s framework for training and
testing (Hendriks et al., 2022; Unal et al., 2014). This
framework is designed to prevent data leakage by using test
samples that come from different operational conditions or
machines than those used for training, thereby providing a
more realistic evaluation of model generalization. Unlike
traditional k-fold cross-validation, which may not respect
distribution shifts, this approach enforces domain separation
to mimic real-world scenarios.

2.3. Existing Datasets

Table 2 reveals that most rolling element bearing
datasets that are currently openly accessible and typically
used in the literature were created before the publication of
LeCun et al.’s seminal DL paper in 2015 (LeCun et al.,
2015). This suggests that DL was not considered when
determining the number of samples and sampling
frequencies used in the creation of these datasets. In all
cases, the emphasis was on collecting a substantial number
of samples without undergoing a justification process
related to ML. For instance, in the case of bearing data
under constant load and speed conditions (1400-1948
RPMs), CWRU and UORED-VAFCLS data collection was
conducted for 10s without providing a justification for this
timing. This extended duration was likely chosen to ensure
that a wide range of features were captured within the
signals, resulting in high-dimensional datasets rather than
large and robust datasets.

The three datasets were chosen for analysis based on
specific criteria: data available for performing diagnosis,
constant speeds, and data collection duration of at least 10s
to ensure a wide range of available test configurations. The
CWRU and UORED-VAFCLS datasets were selected
because they exhibit similar speeds and bearing
characteristics, making them suitable for comparison.
Additionally, the HUST dataset was included due to its
diverse range of bearing dimensions while also providing a
different constant speed variation for testing purposes. Due
to the overall similarity among the three selected bearing

datasets in terms of signal characteristics and fault types, the
assignment of each dataset to a specific parameter
optimization task was made arbitrarily. The UORED-
VAFCLS dataset was used to determine the optimal stride
and window length parameters, the CWRU dataset was used
to determine the optimal number of fault harmonics, and the
HUST dataset was used to identify the optimal duration and
frequency resolution parameters. While each dataset could
theoretically serve any of these roles, this distribution was
chosen to balance the experimental workload and ensure
diversity in validation sources.

Table 2 displays a range of sampling frequencies,
spanning 12 to 51.2kHz, and data collection times,
depending on the dataset. To further optimize bearing fault
diagnosis, a more in-depth analysis is conducted on the
UORED-VAFCLS, CWRU, and HUST datasets to
determine the number of data samples that should be
collected to attain the threshold accuracy. The values for
data collection duration are chosen based on those most
used in the literature by ML researchers, including values
between 1 (Sacerdoti et al., 2023), 4 (Konstruktions- und
Antriebstechnik (KAt) - Data Sets and Download
(Universitit Paderborn), n.d.), and 10s (Gousseau et al.,
2016) (Table 2). 2, 3, and 5 s collection times are also
included for completeness. Three stride values are selected
(3% (Hendriks et al., 2022), 10% (De la Fuente et al., 2021),
and 50% (De la Fuente et al., 2021)) to assess whether
comparable accuracies can be achieved using less data.
Specifically, smaller stride values indicate a larger overlap
that should lead to higher accuracy, which leads to more
data usage when training networks. In this case, 10% and
50% are selected in trying to use the least amount of data to
train the networks, while 3% is chosen to see the effect of
using more data on the network’s accuracy. However, it is
worth noting that when converting data into grayscale
images, the resolution changes significantly based on image
size, making it more challenging for neural networks to
detect faults accurately.

3. METHODOLOGY

The background section provided a concise overview of
established concepts and datasets necessary for
understanding this study, such as neural networks, fault
analysis of rolling element bearings, and data collection
parameters. This section now turns to the original
contributions of the work. It begins with the research
procedure, outlining the approach used to evaluate dataset
requirements and algorithm performance. This is followed
by the selection and justification of hyperparameters for
ANN and CNN models, which are tailored to the goals of
this study. Together, these elements define the experimental

Table 2. Comparison of Bearing Fault Signature Datasets.

. Fault
. SF? Collection ~ Motor Speed . .

Dataset Date Signal type (kHz) # of samples time (s) Range (RPM) Analysis type ( At}b/plz 5 Bearing ID

CWRU 2012 v 12.0 121,265 10 1720- 1797 Diagnosis A 6205, 6203

CWRU 2012 vd 48.0 487,384 10 1720- 1797 Diagnosis A 6205, 6203

HUST 2023 vd 51.2 512,000 10 1400-1500 Diagnosis A 6204, 6205, 6206, 6207,

6208
UORED-VAFCLS | 2023 Vi, Ae, TF 42.0 420,000 10 1700- 1948 Diagnosis N Nippon Seiko Kabushiki- 8

gaisha (NSK) &
FAFNIR 6203

Legend: SF- Sampling frequency, ° A- artificial, © N- natural, ¢ V- vibration, ¢ A-acoustic, { T- temperature
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framework that links the theoretical considerations
introduced earlier with the results and discussion that
follow.

3.1. Research Procedure

The first step is to define the hyperparameters for
evaluating model performance. Subsequently, a diverse
range of stride and window lengths are chosen, covering a
spectrum from small to large, to comprehend how model
performance scales with data volume. The procedure
utilized during this study is developed to determine the
minimal parameter values required to train ANNs and
CNNs for attaining a threshold accuracy when performing
rolling element bearing fault diagnosis, while also
considering the balance between data efficiency and the risk
of overfitting. These values are intended as lower bounds
for effective training rather than optimal values. To
determine the optimal stride and window length for ML
algorithms, including both ANNs and CNNs, the UORED-
VAFCLS dataset is used to achieve the threshold accuracy
needed to refine these parameters. The CWRU dataset is
then used to establish the number of fault harmonics
required to attain this same threshold accuracy. Finally, the
HUST dataset is used to fine-tune the data collection
duration and frequency resolution, employing the same
ANN and CNN algorithms. The study also considers
specific sampling rates, the number of samples, and image
resolution requirements for 2D CNNs. The robustness of
these findings is assessed for generalizability to other
datasets and similar problems. The iterative nature of the
methodology allows for refinement and adjustment as
needed.

3.2. Hyperparameters for Bearing Fault Frequency
Analysis Using TL and DL Algorithms

In section 2.3, Table 2 tabulates openly accessible
datasets that can be wused to analyze bearing fault
frequencies. Among these datasets, inner race faults are
consistently responsible for the highest characteristic
bearing fault frequency at 150 Hz, as determined by the
bearing frequency equations (1)-(4). The largest common
fault harmonic is identified by determining the fault
frequencies of all bearings using the methodology described
in section 2.1.1. This is achieved by examining the datasets
provided below and considering the bearings and speeds
they correspond to. The sampling rate is divided by the
characteristic bearing fault frequency, and after applying the
Nyquist criterion in equation (5), the resulting number of
fault harmonics that are likely captured in each dataset are
shown in Table 3.

The sampling rate of the setup is a crucial factor, which
varies depending on the researcher’s choice and the
manufacturer’s specifications. Different sampling rates are
used for the datasets considered in this study, and these are
detailed in Table 3 as well. This study seeks to determine

whether the lowest sampling rate used for these datasets is
sufficient for fault identification using ML algorithms.
Data sample collection durations, which are another
essential parameter, were selected based on commonly used
durations in the literature by ML researchers. These
intervals include 1 (Sacerdoti et al.,, 2023), 4
(Konstruktions- und Antriebstechnik (KAt) - Data Sets and
Download  (Universitit Paderborn), n.d.), and 10s
(Konstruktions- und Antriebstechnik (KAt) - Data Sets and
Download (Universitit Paderborn), n.d.) as primary
choices. For a comprehensive analysis, we have also
included intervals of 2, 3, and 5 s. The number of samples in
each dataset is directly proportional to the data sample
collection duration and is calculated as the product of the
sampling rate and the data collection duration. The
resolution of each dataset is dependent on the sampling rate
and number of samples, as described in Table 3.

In section 2.2.1, three configurations of traditional and
DL algorithms were identified to evaluate performance in
analyzing bearing fault frequencies using the datasets in
Table 3. Among these configurations, the window length
and stride were highlighted by researchers for their distinct
effects on each model’s ability to detect fault

Table 3. Characteristics of the Rolling Element Fault

Frequencies for a Subset of Openly Accessible Datasets.

Dataset Number Sampling | Resolution Duration Number of
of rate of Data Fault
Samples Intervals Harmonics
(s)
UORED- 42,000 1.00 1
VAFCLS 84,000 0.50 2
(Sehri et 126,000 0.33 3
al., 2023; 168,000 42,000 0.25 4 140
Sehri & [ 210,000 0.20 5
Dumond, - 430,000 0.10 10
2023)
CWRU 12,000 1.00 1
(Apparatus 24,000 0.50 2
p § | 36,000 0.33 3
rocedures
Case School 489000 0.25 4
of 60,000 12,000 0.20 5 40
Engineering | 120,000 0.10 10
Case Western
Reserve
University,
2021)
CWRU 48,000 1.00 1
(Apparatus & 96,000 0.50 2
Procedures |
Case School 144,000 0.33 3
of 192,000 48,000 0.25 4 160
Engineering | 236,000 0.20 5
Case Western
Reserve 480,000 0.10 10
University,
2021)
HUST 51,200 1.00 1
Th & 102,400 0.50 2
( Hgﬁ‘; 153,600 | 51,200 033 3 170
2023a) 204,800 0.25 4
256,000 0.20 5

harmonics, as determined by the input sizes and data
training/testing splits described in Table 4.

Window length is an important parameter for 2D
grayscale image-based CNNs. Therefore, different window
lengths are selected for analysis (Table 4). These include
window lengths of 512, 1024, 2048, and 4096 samples,
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which are based on the most used parameters by scientists to
contain sufficient information regarding bearing signals
(Ruan et al., 2023; Y. Yang et al., 2018; S. Zhang et al.,
2021). Additionally, stride percentages of 3%, 10%, and
50% were chosen for the evaluation mentioned in section
2.3.

The input size for each model was directly influenced
by window length and stride combinations, resulting in four
distinct configurations, as presented in Table 4. Training
and testing data splits were chosen to be 80% and 20%,
respectively, to ensure a balance between model training
and evaluation (Chuya et al., 2022; Pham et al., 2020).

The number of images generated for training each
model varied based on window length and stride
configurations, with values ranging from 10 to 500 images,
providing a wide range of values for exploring their effect
on performance. Furthermore, the number of epochs,
representing the number of training iterations over the entire
dataset, was fixed at 100 for all configurations to ensure
consistent convergence of the models (Althobiani, 2024).

The parameters listed in Table 4 correspond to the ML
models defined in Table 1. For TL, the raw vibration signals
were flattened and used directly as inputs to the ANN
model. For DL, the 1D-CNN used windowed raw time-
series inputs, while the 2D-CNN was trained using
grayscale spectrogram images derived from the same
signals. The input sizes listed here reflect the dimensions
fed into each model, depending on the type of preprocessing
used.

Table 4. Parameters of the TL and DL Algorithms Used in

This Study
Window Length Stride (%) # of Images Input Size
512 10, 20, 30, 40, 25x20
1024 50. 60, 70, 80, 20x 50
2048 3,10,50 90, 100, 150, 40 x 50
4096 200, 250, 500 50 x 80
4. RESULTS

In this section, the aim is to narrow down the values
selected in Table 3 to attain a threshold accuracy when
using the UORED-VAFCLS, CWRU, and HUST datasets.
provides the characteristic values for the three datasets used
for this test.

For the UORED-VAFCLS dataset, to capture acoustic
sensor data within the human audible range of 20 Hz to
20 kHz and by applying the Nyquist Theorem (Kester,
2023), a sampling rate of 42,000 Hz is selected by Sehri et
al. (Sehri & Dumond, 2023). On the other hand, the CWRU
test rig uses data collection sampling rates of 12 and
48 kHz, while the HUST dataset uses 51.2 kHz. All three
datasets need to be checked for reliability. While the CWRU
(S. Gao et al.,, 2022; He et al., 2021; Hou et al., 2023; H. Lu
et al., 2023; Mahesh et al., 2024; W. Xu & Li, 2022) and
HUST (Hou et al., 2023; F. Lu et al., 2024; Y. Xu et al.,
2024) dataset reliabilities have already been measured in

previous studies, the UORED-VAFCLS dataset has yet to
be verified.

Figure 3 shows UORED-VAFCLS inner race data from
different bearing tests using the t-SNE technique on ANN
results. This statistical method is used to arrange high-
dimensional data in a 2-dimensional space. By using t-SNE,
embedded features can be visualized, allowing for the
assessment of the effectiveness of ML methodologies (Duo
et al., 2021). Moreover, t-SNE helps to determine the
statistical robustness of a dataset by ensuring that the dataset
is compactly separated without overlapping clusters (Arora
et al., 2018).

Based on a visual analysis of Figure 3, the clusters
appear compact and well-separated, with only a few
overlapping outliers among the inner race fault data points.
Similar results are obtained for the other fault types. Hence,
it can be concluded that the UORED-VAFCLS dataset is
statistically robust and reliable when using the ANN
algorithm.

T-SNE component 2

Fault
132
121

e 131

e 151

142

111
141
H10
112
122
152

RO

-10 -5 0 5 10
TSNE component 1

Figure 3. UORED-VAFCLS: Accelerometer Inner Race t-
SNE Plot When Using an ANN

4.1. Validation Accuracy Values for Window Length and
Stride Using the UORED-VAFCLS Dataset

This section aims to narrow down window length and
stride by using ANN and CNN algorithms in conjunction
with the UORED-VAFCLS dataset. The dataset includes
various bearing fault types contained within accelerometer
and acoustic sensor data. By conducting tests with different
window lengths and strides and assessing their impact on
the performance of ML models, the aim is to assess the
effects of window length and stride on fault diagnosis
accuracy. This investigation starts with an exploration of
dataset characteristics, followed by an analysis of how
varying window lengths and strides influence the accuracy

10
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of basic ML algorithms.

Table 5 shows the UORED-VAFCLS inner race results
for the number of fault harmonics, number of samples , data
collection duration, frequency resolution, and window
length while also considering a 3%, 10%, and 50% stride.
To achieve threshold accuracy levels above 95% for both
accelerometer and acoustic data when using ML, a total of
140 fault harmonics, 210,000 data samples for each set of
data, a data collection duration of 5 s, and a resolution of
0.20 are necessary for both ANN and 1D-CNN models.
Specifically, a window length of 1024 is required, with a
10% stride. Notably, when the stride is increased to 50%,
the accuracy of the algorithms significantly decreases,
indicating that a smaller data stride yields more accurate
results for this case due to more overlap. Conversely, a 3%
stride demonstrates a minimal accuracy improvement at the
expense of a significant increase in computational time and
resources.

Inner race results obtained from applying an ANN [65]
to the UORED-VAFCLS are presented in Figure 4. The
validation accuracy of the model reaches 95.13% after 100

significantly after 20 epochs. The results were obtained for a
sample that used a 10% stride a window size of, 1024
samples, and a split of 80% (336,000 samples) for training
and 20% for validation (84,000 samples). The training
process utilized a batch size of 64.
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Figure 4. UORED-VAFCLS: Accuracy Results of
Accelerometer Data for Inner Race Faults and Healthy Data

Table 5. UORED-VAFCLS Inner Race Dataset Results and Test Cases for Features in the Time Domain for ANN and

1D-CNN
# of Fault Harmonics [a], Number of samples [b], Data Collection Duration (s) [c], ANN, BPF]I, Stride %, Validation Accuracy 1D-CNN, BPFI, Stride % Validation Accuracy (%),
Freq. Resolution [d], Window Length [e] (%), Average Run Time (minutes) Average Run Time (mi )

a b ¢ d e Acc., 3% Aco., 3% Acc., Aco., Acc., Aco., Time Acc., Aco., Acc., Aco., Acc., Aco., Time
10% 10% 50% 50% (min) 3% 3% 10% 10% 50% 50% (min)

42,000 1 1.00 79.26 77.02 77.60 73.06 | 39.07 | 44.54 1.53 3849 | 66.18 | 20.81 57.89 | 25.65 | 49.73 2.26

84,000 2 0.50 90.51 85.45 87.67 82.01 54.56 53.47 3.32 89.37 90.12 86.36 75.91 33.06 55.65 4.51

140 126,000 3 0.33 512 91.77 89.37 88.54 86.54 52.65 58.28 4.51 87.13 89.75 86.96 71.91 35.10 67.15 6.24
168,000 4 0.25 95.99 89.25 94.23 87.01 66.42 66.28 6.10 89.84 91.84 90.94 81.38 24.76 59.19 8.10
210,000 5 0.20 95.13 89.84 95.10 89.43 67.35 71.85 8.26 93.77 90.18 91.45 83.58 28.96 70.28 10.36
420,000 10 | 0.10 95.41 95.55 95.68 93.29 | 81.88 | 77.74 9.57 94.59 | 92.41 93.46 | 85.94 | 68.50 [ 71.07 12.12

42,000 1 1.00 67.58 66.79 63.41 63.53 27.07 25.97 1.42 73.45 80.67 61.20 70.29 33.70 39.78 2.12

84,000 2 0.50 79.37 78.66 77.11 79.41 3443 | 41.26 2.15 78.60 | 84.13 | 62.61 62.65 14.48 51.64 3.46

140 126,000 3 0.33 1024 88.91 87.41 85.78 86.80 33.61 50.36 2.50 85.81 87.76 71.30 73.82 17.49 62.00 3.57
168,000 4 0.25 92.16 93.18 88.65 90.94 54.97 57.96 3.34 91.53 94.17 86.12 85.33 51.84 65.71 4.10
210,000 5 0.20 95.61 95.78 95.13 95.04 59.24 64.78 3.41 95.85 95.69 95.78 95.15 60.11 59.89 4.51
420,000 10 0.10 95.43 95.84 95.46 95.91 70.07 79.01 6.32 95.13 95.73 95.87 95.68 69.58 73.70 7.14

42,000 1 1.00 53.26 42.71 49.09 38.64 30.68 26.14 1.35 57.13 60.38 35.00 55.00 18.18 29.55 1.58

84,000 2 0.50 64.52 67.24 61.31 65.19 35.36 28.18 2.05 60.54 67.71 55.65 70.95 35.91 40.88 2.12

140 126,000 3 0.33 2048 67.28 74.05 60.86 74.05 25.41 33.70 2.41 63.87 | 71.43 | 58.76 | 74.12 | 42.54 | 57.88 3.25
168,000 4 0.25 82.01 87.11 80.67 85.16 | 36.61 42.08 3.13 67.89 | 7446 | 44.47 | 7147 | 56.28 | 60.38 3.57
210,000 5 0.20 84.34 93.45 82.52 92.07 64.48 49.13 3.40 92.88 86.74 85.09 79.72 35.15 67.90 5.01
420,000 10 0.10 88.71 95.83 85.95 95.54 77.64 70.65 6.10 94.71 89.67 93.30 86.39 71.52 74.46 6.37

84,000 2 | 0.50 42.45 41.66 39.77 | 4023 | 14.86 | 11.36 133 | 2023 | 6247 | 16.84 | 58.45 | 18.18 | 31.82 | 1.35

126,000 3 0.33 53.49 55.718 50.35 52.46 25.12 22.22 2.03 42.51 64.18 38.86 64.01 34.92 40.00 2.01

140 168,000 4 0.25 4096 81.22 71.93 77.17 67.18 34.56 23.20 2.36 61.49 71.33 56.36 67.49 45.36 42.54 3.24
210,000 5 0.20 91.47 86.34 88.92 83.77 | 61.47 | 30.84 3.38 81.72 79.44 | 7520 | 70.48 | 68.45 55.07 4.35
420,000 10 0.10 95.11 95.70 95.47 95.81 79.56 44.54 6.03 89.66 83.35 87.37 70.39 72.89 78.56 6.15

Legend: Acc. Is the accelerometer, Aco. is acoustic.
epochs. Notably, improvements in accuracy reduce vs Number of Epochs Using an ANN
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Table 6. UORED-VAFCLS Inner Race Dataset Results for Image and Test Case Features for 2D-CNN

# of Fault Harmonics [a], Number of samples [b], Data Collection Duration (s) [c], # of Images per Class 2D-CNN, BPF]I, Stride %, Validation Accuracy (%), Average Run Time
[d], Input Size [e] (mi
a b c d Acc., Aco., Acc., Aco., Acc., Aco., Time
3% 3% 10% 10% 50% 50% (min)
42,000 1 50 70.31 67.44 78.42 73.71 36.74 52.46 17.33
84,000 2 100 90.16 88.49 89.52 85.68 45.90 54.97 19.17
140 126,000 3 150 25x20 87.13 89.75 88.89 89.17 58.23 63.08 20.35
168,000 4 200 88.84 90.71 92.29 90.61 74.29 67.30 21.22
210,000 5 250 95.72 93.35 95.41 91.69 75.05 72.78 23.12
420,000 10 500 95.43 94.77 95.85 93.48 86.62 82.45 25.34
42,000 1 50 87.81 83.79 84.59 75.61 41.99 48.62 15.13
84,000 2 100 89.16 87.81 87.45 86.14 50.55 58.74 18.55
140 126,000 3 150 20x50 92.27 93.48 89.43 90.00 52.19 66.18 19.13
168,000 4 200 95.42 96.49 95.24 95.16 66.12 68.84 20.51
210,000 5 250 95.88 95.41 95.13 95.89 72.72 75.54 22.56
420,000 10 500 95.45 95.70 95.40 95.74 80.86 82.81 23.27
42,000 1 20 80.44 79.79 76.59 74.77 34.09 54.55 14.57
84,000 2 40 91.56 90.13 89.91 88.25 56.93 59.12 17.55
140 126,000 3 60 40x50 93.71 92.22 91.91 90.18 58.01 64.47 19.04
168,000 4 80 95.45 94.48 95.40 91.26 62.02 72.40 20.31
210,000 5 100 95.87 95.19 95.76 94.71 63.32 72.71 21.46
420,000 10 250 95.81 95.87 95.19 95.49 81.41 90.98 22.10
84,000 2 20 74.16 69.71 68.86 64.11 42.71 35.71 15.47
126,000 3 30 92.46 94.62 89.45 95.98 54.48 52.27 16.13
140 168,000 4 40 50x80 94.74 95.81 91.68 95.90 59.86 70.72 20.09
210,000 5 50 95.71 95.46 95.56 95.59 65.23 75.89 21.06
420,000 10 100 95.55 95.87 95.78 95.81 84.65 90.14 21.17

Legend: Acc. Is the accelerometer, Aco. is acoustic.

2D-CNNs are used to obtain results by converting raw
acceleration and acoustic data into grayscale images. Table
6 tabulates the number of fault harmonics, number of
samples, data collection duration, number of images per
class, and input size per image. It is observed that the
resolution of grayscale images increases with larger window
lengths. The results presented in Table 6 indicate that
validation accuracies plateau around 95% for both
accelerometer and acoustic sensor data when 140 fault
harmonics, 168,000 samples, a data collection duration of
4 s, 200 images per class, and an input size of 20x50 when
using either a 3% or 10% stride. Like Table 5, it can be
concluded that increasing the stride adversely affects the
accuracy of the network, resulting in a significant drop in
accuracy.

Table 7 summarizes the values required to achieve the
results found in Table 5 and Table 6 and extends them to
include other fault types. The results indicate that after

including a certain number of samples, validation accuracy
plateaus for all fault types when using 140 fault harmonics
(highest fault frequency identified), 168,000 (1D-CNN), and
210,000 samples (2D-CNN), 4 and 5 s data collection
durations, 0.25 and 0.20 frequency resolutions, a window
length of 1024, 200 images, and a 10% stride. For the
remainder of dataset testing, a window length of 1024 and a
10% stride will be used to identify appropriate threshold
accuracies, as these values were determined to be
consistently adequate with different fault types in each
testing scenario.

4.2. Validation Accuracy Values for Sampling Rate and
Fault Harmonics Using the CWRU Dataset

The CWRU dataset is analyzed to understand the effect
of sampling rate and number of fault harmonic values on
identifying threshold accuracies by using ML algorithms.

Table 7. UORED-VAFCLS Classification Accuracy Results Using a Sampling Rate of 42kHz and a Stride of 10%

Sensor Type Accelerometer Acoustic
Sampling Rate 42,000 Hz 42,000 Hz
# Fault Harmonics 140 140
Training Data Size 1024 1024
# of Images 200 200
Average Run Time ANN (minutes) 4.05 431
Average Run Time 1D-CNN (minutes) 447 445
Average Run Time 2D-CNN (minutes) 20.36 20.47
0, 0,
Bearing Faults using 1D-CNN, 210,000 iner Race e o0
Samples, sample duration of 5 seconds, 0.20 Outer Race 97.48 % 96.88 %
’ frequency resolution o Cage 98.76 % 96.46 %
quency resolu Ball 96.87 % 97.79 %
Average Total 97.06 % 96.54 %
0, 0,
Bearing Faults using 2D-CNNs, 168,000 (I;’l‘:t: RRich ggfg (;" g;;g of
Samples, sample duration of 4 seconds, 0.25 Cage 99'59 "/Z 95.18 0/2
frequency resolution Ball 97.43 % 91.65 %
Average Total 97.86 % 93.89 %
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Table 8. CWRU Inner Race Dataset Results

Sampling Rate (Hz) [a], # of Fault Harmonics [b], ber of [¢], Data Coll ML Models, BPFI, Validation Accuracy (%), Average Run Time (minutes)
Duration (s) [d], Frequency Resolution [e], Window Length [f], # of Images per Class [g],
Input Size [h
a b [ d e f g h ANN Ace., Time 1D 2-layer Time 2D-CNN Time
10% stride (min) CNN Acc., (min) Acc., 10% (min)
(%) 10% stride stride (%)
(%)

12,000 1 1.00 10 70.08 0.57 73.86 2.24 76.89 7.22
24,000 2 0.50 20 83.51 1.15 85.87 2.33 86.41 10.45
36,000 3 0.33 30 91.38 1.35 90.71 2.58 93.44 13.33
12,000 40 48,000 4 0.25 1024 40 20x50 95.11 1.45 95.16 3.15 95.13 15.47
60,000 5 0.20 50 95.16 2.21 95.06 4.31 95.16 16.13
120,000 10 0.10 100 95.21 3.11 95.10 5.31 95.08 18.51
48,000 1 1.00 50 77.50 1.59 79.56 3.42 88.45 17.51
96,000 2 0.50 100 85.66 2.41 86.83 4.17 93.96 19.13
144,000 3 0.33 150 93.45 3.23 90.26 4.23 94.92 21.11
48,000 160 192,000 4 0.25 1024 200 20x50 95.08 4.11 95.71 4.51 95.50 25.18
236,000 5 0.20 250 95.18 5.21 95.56 6.17 95.51 26.35
480,000 10 0.10 500 95.13 7.16 95.80 8.35 95.84 27.17

The CWRU dataset is assessed using ANNs, 1D-CNNs, and
2D-CNNSs, and results are provided in Table 8. 2D-CNNs
are used with grayscale images as inputs to train the
network. Table 8 reveals that results plateau around 95% as
well for the CWRU 48 kHz sampling rate dataset, when 160
fault harmonics, 192,000 samples, a data collection duration
of 4 s, a 0.25 frequency resolution, a 1024 window length,
200 grayscale images per class, and an input image size of
20x50 are required. On the other hand, if a 12 kHz sampling
rate is used, the dataset only needs 40 fault harmonics,
48,000 samples, a data collection duration of 4 s, 0.25
frequency resolution, 40 grayscale images per class, and
20x50 image input size to achieve similar accuracies.

Table 9 demonstrates that either a 12 kHz or 48 kHz
sampling rate can be utilized when reducing the number of
samples during data collection since, after a certain number
of sample, the accuracy does not change. This suggests that
fewer samples can be collected for bearing fault diagnosis.
While a minimum sampling rate is required to capture
enough fault information so that an ML algorithm can
assess a specific fault, these results indicate that once this
minimum threshold is identified, sampling rates have little

effect on achieving a high accuracy. In fact, other
parameters can be adjusted to reduce the total amount of
data needed to achieve adequate performance.

Finally, the CWRU dataset also shows that a minimum
of 40 fault harmonics still attains an adequate accuracy
when other parameters are adjusted accordingly. Therefore,
further study would be required to better understand how
ML algorithms utilize fault harmonics in assessing faults by
reducing the sampling frequency further to find the lower
limit.

4.3. Validation Accuracy Values for Data Collection

Duration and Frequency Resolution Using the

HUST Dataset

Table 10 illustrates that the HUST dataset yields
unsatisfactory results for both the ANN and 1D-CNN
models, especially when analyzing data from the bearing
sets ranging from 6204 to 6208. However, when the datasets
are processed using a 2D-CNN with grayscale images, a
threshold accuracy of around 95% can be successfully
achieved. This was accomplished using 170 fault harmonics,
204,800 samples, a data collection duration of 4 s, a 0.24

Table 9. CWRU Classification Accuracy Results of 2D-CNNs at Sampling Frequencies of 12 kHz and 48 kHz

Sensor Type Accelerometer
Data Collection Duration (s) 4

Frequency Resolution 0.25

Window Length 1024

Stride 10 %

Average Run Time [12 kHz] (minutes) 15.34

Average Run Time [48 kHz] (minutes) 25.51
Inner Race 95.13 %
Bearing Faults (12 kHz, 40 fault harmonics, 48,000 samples, 40 images per class) Outer Race 95.36 %
Ball 95.75 %
Average Total 95.41 %
Inner Race 95.50 %
Bearing Faults (48 kHz, 160 fault harmonics, 192,000 samples, 200 images per class) Outer Race 95.90 %
Ball 95.46 %
Average Total 95.62 %
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Table 10. HUST Inner Race Dataset Results

Bearing Name [a], # of Fault Harmonics [b], # of samples [c], Data Collection Duration (s) [d], ML Models, BPFI, Validation Accuracy (%), Average Run Time (minutes)
Frequency Resolution [e], Window Length [f], # of Images per Class [g], Input Size [h]
a b c d e f g h ANN Ace., Time 1D 2-layer Time 2D-CNN Time
10% stride (min) CNN Ace., (min) Acc., 10% (min)
(%) 10% stride stride (%)
(%)
51,200 i 1.00 50 64.24 221 70.13 3.55 8146 18.44
102,400 2 0.50 100 69.79 2.55 76.37 431 89.33 20.15
6204 170 153,600 3 0.33 1024 150 20x50 72.93 3.57 77.18 4.36 92.45 22.34
204,800 4 0.25 200 71.23 4.49 75.22 4.59 95.44 26.50
256,000 5 0.20 250 71.76 5.55 77.79 5.73 95.32 27.19
51,200 1 1.00 50 63.54 2.26 75.45 3.48 80.88 18.40
102,400 2 0.50 100 67.95 2.51 77.61 4.21 85.43 20.11
6205 170 153,600 3 0.33 1024 150 20x50 73.45 3.51 80.47 441 92.19 22.21
204,800 4 0.25 200 72.46 4.43 74.98 4.49 95.23 26.47
256,000 5 0.20 250 71.43 6.31 75.11 6.35 95.01 27.26
51,200 1 1.00 50 61.77 2.16 78.55 3.40 79.46 18.38
102,400 2 0.50 100 66.13 243 79.43 4.26 83.81 20.29
6206 170 153,600 3 0.33 1024 150 20x50 70.64 3.51 76.15 4.47 91.47 22.47
204,800 4 0.25 200 71.55 4.41 77.69 4.40 95.28 26.31
256,000 5 0.20 250 76.49 6.13 74.11 6.31 95.10 27.50
51,200 1 1.00 50 59.99 2.16 75.49 3.57 84.61 18.22
102,400 2 0.50 100 65.56 2.51 77.13 4.51 86.13 20.18
6207 170 153,600 3 0.33 1024 150 20x50 64.83 3.50 79.84 4.58 90.44 22.36
204,800 4 0.25 200 65.95 4.41 74.21 5.21 95.06 26.44
256,000 5 0.20 250 70.51 6.27 75.87 7.42 95.15 2731
51,200 1 1.00 50 60.45 2.30 77.41 3.23 85.69 18.31
102,400 2 0.50 100 62.88 2.45 75.89 3.30 90.12 20.26
6208 170 153,600 3 0.33 1024 150 20x50 65.41 3.42 73.86 3.45 93.88 2233
204,800 4 0.25 200 68.87 4.33 74.77 4.01 95.17 26.58
256,000 5 0.20 250 72.59 7.01 77.67 6.07 95.84 27.07
frequency resolution, a 1024 window length, 200 grayscale data, which is essential for transitioning into industry.
images per class, and a 20x50 image input size. Bearing 100
6204 is selected for further analysis using a 2D-CNN as 95
bearings in the range of 6204 to 6208 all had similar results. .
Table 11 demonstrates that the final accuracy climbs to g
95.65% when considering different fault conditions with the g 85
threshold accuracy parameters obtained from Table 10. The 8 a0
results indicate that to reach an adequate accuracy, the data g
collection duration for a 2D-CNN should be a minimum of g7
4 s and a frequency resolution of at least 0.25. =70
Table 11. HUST Classification Accuracy Results at a 65
Sampling Rate of 51.2 kHz for the 6204 Bearing
Sensor Type Accelerometer 60
Sampling Rate 51,200 ! 2 8 a8 5 7 8
# of Fault Harmonics 170 Time (minuites)
#of Samples 204.800 —+—UORED-VAFCLS -« CWRU 12kHz —s -CWRU 48kHz —=- - Hust (6204 bearing) —s—Threshold Accuracy
Data Collection Duration (s) 4 Figure 5. ANN Validation Accuracy vs Computational
Window Length 1024 Times for the Datasets Considered
# "“‘;‘agef ;’,"r Class 2(2)0(5)0 Figure 6 displays a similar pattern, where the UORED-
nput Size X .
gm.de 10% VAFCLS and CWRU datasets both reach plateau accuracies
Average Run Time (minutes) 26.46 of approximately 95% in less than 5 minutes. The HUST
Inner Race 95.44 % dataset, again, lags behind due to the dataset being noisy.
1 0, . . . . . .
Bearing Faults O“tgaﬁace gg;gof‘ This causes the validation accuracy to fluctuate, indicating
. (] . . .
Average Total 95.65 % that noisy data cannot be used to achieve a satisfactory

5. DISCUSSIONS

Figures 5, 6, and 7 consist of validation accuracy vs
computational times for the ANN, 1D-CNN, and 2D-CNN,
respectively. In general, as the number of samples used as
an input to each algorithm increases, so does computation
time and accuracy, up to a plateau value. In Figure 5, the
UORED-VAFCLS and CWRU datasets approach plateau
accuracies of approximately 95% in less than 5 minutes.
However, the HUST dataset does not meet this accuracy,
suggesting that the architecture is not able to diagnose noisy

accuracy with simple ML algorithms when using time
domain data.
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100

Validation Accuracy (%)

Time (minutes)

—+—UORED-VAFCLS - * ~-CWRU 12kHz —s -CWRU 48kHz —- - Hust (6204 bearing) —s—Threshold Accuracy
Figure 6. ID-CNN Validation Accuracy vs Computational
Times for the Datasets Considered

Finally, in Figure 7, all datasets, including the noisy
HUST dataset, surpass the threshold accuracy. The 2D-CNN
architecture demonstrates its robustness in handling noisy
data, potentially making it more suitable for industrial
datasets, which are often noisy. This observation points to
the potential of integrating 2D-CNNs into real world
industrial applications for fault diagnosis or machine
monitoring, where data noise is a common issue. To
overcome the noise issue in industrial datasets, the
frequency domain should be considered, as demonstrated by
many studies (Feng et al., 2013; Y. Kim & Kim, 2023; Q.
Wang et al., 2009).

100

95

90

85

80

75

Validation Accuracy (%)

70
65

60
10 12 14 16 18 20 22 24 26 28

Time (minutes)
——UORED-VAFCLS - = -CWRU 12kHz — - CWRU 48kHz —- - Hust (6204 bearing) —s—Threshold Accuracy

Figure 7. 2D-CNN Validation Accuracy vs Computational
Times for the Datasets Considered

With all simple ML algorithms considered herein,
validation accuracy seems to plateau around 95%, justifying
this value as the threshold accuracy that should be achieved
for satisfactory fault diagnosis results. In fact, when
considering validation accuracy versus computation time,
95% provides the best value for IIoT systems. Therefore,
when testing new combinations of parameters or datasets, a
minimum 95% threshold accuracy can be used as a
satisfactory yet reasonable benchmark. With the
development of more complex and more efficient
algorithms, it is expected that the threshold accuracy for
satisfactory results should increase.

5.1.1. Accelerometer Data

To achieve an adequate validation accuracy, all three
datasets used in this study (i.e., UORED-VAFCLS, CWRU,
and HUST) required similar sample collection durations,
regardless of sampling rate differences. For all three datasets
1, 2, 3,4, 5, and 10s durations were tested. Nonetheless, the
minimum data collection duration for TL and 1D-CNN
rolling element bearing diagnosis was found to be 5 s, as
seen in Table 12 for clean data, while for 2D-CNNs, 4 s was
found to be sufficient for both clean and noisy data. It was
not possible to achieve a satisfactory accuracy for the HUST
dataset when using an ANN or a 1D-CNN. This may be due
to a potential lack of data quality, as mentioned by the
researchers who published the HUST dataset themselves,
which is an indication of potential poor data collection
(Thuan & Hong, 2023b). However, data collection duration
and frequency resolution were found to be sufficient when
using constant values of 4 s and 0.25, respectively while
using a 2D-CNN.

The average run times in Table 12 show that 2D-CNN
models are generally the slowest in processing data across
all datasets despite achieving high accuracy. For example,
when applied to the UORED-VAFCLS dataset, 2D-CNNs
have an average run time of 20.36 minutes, while 1D-CNNs
take 4.47 minutes, and ANNs are the fastest at 4.05 minutes.
A similar trend is seen in the CWRU and HUST datasets,
where the 2D-CNN takes the longest time to process (up to
26.46 minutes with HUST), while 1D-CNNs are moderately
faster, and ANNSs consistently process the data the fastest, as
expected.

Table 12. Accuracy Sample Duration Based on Accelerometer Sampling Rate Needed to Achieve a Network
Accuracy Greater than 95%

# of Average
. . # of Fault Number of Sample Frequency Window Images Input Stride Run Time
Dataset Name Sampling Rate Harmonics Samples Duration Resolution Length per Size (%) (minutes) Network
Class
UORED-VAFCLS 42 kHz 140 210,000 Ss 0.20 4.05
CWRU 12 kHz 40 48,000 4s 0.25 1.45
CWRU 48 kHz 160 192,000 4s 0.25 1024 N/A N/A 10 4.11 ANN
HUST 51.2 kHz N/A N/A N/A N/A 4.41
UORED-VAFCLS 42 kHz 140 210,000 5s 0.20 4.47
CWRU 12 kHz 40 48,000 4s 0.25 3.15
CWRU 48 kHz 160 192,000 4s 0.25 1024 N/A N/A 10 4.51 ID-CNN
HUST 51.2 kHz N/A N/A N/A N/A 4.46
UORED-VAFCLS 42 kHz 140 168,000 4s 0.25 200 20.36
CWRU 12 kHz 40 48,000 4s 0.25 40 15.34
CWRU 48 kHz 160 192,000 4s 0.25 1024 200 20x30 10 25.51 2D-CNN
HUST 51.2 kHz 170 204,800 4s 0.25 200 26.46
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This performance discrepancy is crucial for IloT
researchers and companies that prioritize efficiency in both
accuracy and runtime, especially in real-time applications.
Although 2D-CNNs achieve the highest accuracy across all
datasets, their higher computational cost might not be ideal
for cases requiring quicker responses, as evidenced by the
25.51 minute runtime for the CWRU dataset using the 2D-
CNN.

Figure 6 shows that high accuracies (greater than 95%)
can still be obtained by increasing the number of samples,
but for applications where runtime is critical, ANNs and
1D-CNNs may be preferred. For instance, the HUST dataset
processes much faster using an ANN (4.41 minutes)
compared to a 2D-CNN (26.46 minutes) but does not
achieve satisfactory results, thus making 2D-CNNs the only
viable solution for both accuracy and computational time
(even though it is slightly longer).

Table 12 includes a summary of best performing 2D-
CNN networks (above 95% accuracies). This is found to
occur when the number of samples is four times larger than
the sampling rate. Interestingly, a relationship related to
resolution, equation (5), can be observed when looking at all
the results in this study. Evidently, as the number of samples
collected increases, so does the resolution. Then, the data
collection duration can be used to determine how much data
is required to achieve an accuracy over 95%. For example,
if a data scientist selects an accelerometer that operates at 15
kHz (50 fault harmonics) to collect data, then to reach a
network accuracy of at least 95% when using a 2D-CNN
with grayscale images, 60,000 samples collected over 4 s
would be required. Additionally, ANNs are found to be less
reliable then CNNss if the data collection process is poor, as
shown with the HUST dataset when compared to cleaner
datasets (UORED-VAFCLS and CWRU).

Thus, while ANNs and 1D-CNNs provide faster
runtimes in terms of computation, they do not reach a
satisfactory threshold accuracy for all datasets. Therefore,

IIoT companies should consider 2D-CNNs by sacrificing
some computational runtime for achieving validation
accuracies above 95% for proper condition monitoring, even
under noisy environments.

The average run times shown in Table 12 were obtained
using an Intel® Core™ i7-1255U processor, up to 16 GB of
RAM, 1 TB of storage, Intel® UHD Graphics, and Jupyter
notebook. Additionally, average run times consist of how
long it takes to run 100 epochs.

5.1.2. Acoustic Data

Results also suggest that for TL and DL algorithms, the
data sampling duration should be 4 s (2D-CNNs) and 5 s
(ANNSs, 1D-CNNs) for microphone data, as observed in the
UORED-VAFCLS dataset. Unfortunately, the CWRU and
HUST datasets did not include acoustic data, making
conclusions for this type of data difficult. However, a
recommendation is made based on the UORED-VAFCLS
data results. This involves collecting samples for a duration
of 5 s to obtain a 2D-CNN network accuracy of more than
95% when using a microphone. Notably, acoustic sensors
pick up more noise during signal collection than
accelerometers, which could explain why a longer data
collection duration is needed. More datasets need to be
collected for acoustic data to provide greater insight using
traditional and DL.

5.1.3. Summary of Results and Bearing Data Collection
Recommendations

Based on Table 13’s summary of the results, the
minimum required resolution for ML diagnosis can be
calculated using equation (5) for each dataset, using all three
algorithms used in this study. For ANNs and 1D-CNNs, a
resolution of 0.20 (5 seconds of data collection) is needed,
while for 2D-CNNs, a lower resolution of 0.25 (4 seconds
of data collection) is required when using simple ML

Table 13. Resolution (Hz) for Each Dataset

. . Number of Sample Duration .
Dataset Name Algorithm Sampling Rate Samples Required Required Resolution
UORED-VAFCLS 42 kHz 210,000 5s 0.20
CWRU 12 kHz 48,000 4s 0.25
ANN

CWRU 48 kHz 192,000 4s 0.25

HUST 51.2 kHz N/A N/A N/A

UORED-VAFCLS 42 kHz 210,000 S5s 0.20

CWRU 12 kHz 48,000 4s 0.25
1D-CNN

CWRU 48 kHz 192,000 4s 0.25

HUST 51.2 kHz N/A N/A N/A

UORED-VAFCLS 42 kHz 168,000 4s 0.25

CWRU 12 kHz 48,000 4s 0.25
2D-CNN

CWRU 48 kHz 192,000 4s 0.25

HUST 51.2kHz 204,800 4s 0.25
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algorithms. It is expected that more complex algorithms
could require parameters with lesser values to attain a
satisfactory accuracy after a certain number of samples.

To ensure optimal ML performance in rolling element
bearing fault diagnosis, this study explored data collection
parameters that balance model accuracy with the amount of
bearing data used. Only 2D-CNNs were able to achieve a
satisfactory threshold accuracy for all three datasets. For this
case, results indicate that a minimum sampling rate of 12
kHz and a data collection duration of 4 s are effective in
capturing bearing conditions, allowing 2D-CNNs to reach
satisfactory accuracies while maintaining relatively low
computational times. When using 2D-CNN grayscale
images in the frequency domain, all three datasets analyzed
herein can achieve a satisfactory threshold accuracy at the
expense of increased computational times. The number of
harmonics, which is defined using bearing signal theory, is a
critical factor for diagnosis. Based on the results, 40 fault
signatures are enough to obtain a satisfactory accuracy.
Additionally, the suggested minimum image resolution is
20x50 pixels, and a stride of 10% provides better accuracies
for fault diagnosis without excessive computational times,
while an input signal window length of 1024 is satisfactory
in all cases. The provided configurations support an efficient
yet accurate set of parameters for IloT applications where
data storage and processing constraints are considered.
These guidelines provide a methodological approach to data
collection, which will help support accurate fault diagnosis
in industrial settings. This will aid in developing efficient
ML-based monitoring systems for IIoT companies.

Both the CWRU and HUST datasets contain data for
three bearings of each fault type, including inner race, outer
race, and ball faults. On the other hand, the UORED-
VAFCLS dataset has data for five bearings with natural
faults of each fault type, including inner race, outer race,
ball, and cage faults. To enhance the robustness of the
dataset, multiple sets of 5 of the same fault type but on
different bearings of the same size and from the same
manufacturer are recommended. This will facilitate effective
training of ML algorithms by allowing for larger datasets
rather than high-dimensional datasets. Lower dimensions
and larger datasets are essential for transitioning research in
this field into industry. Moreover, this study demonstrates
that frequency-domain data can be used with simple ML
algorithms to determine rolling element bearing faults with
95% accuracy. Unfortunately, most IIoT products currently
available in the market pre-process their data due to storage
and communication limitations of their devices. As such,
these devices would need to be able to send time series data
directly if ML algorithms are to be integrated with IIoT
products.

5.1.4. Limitations

It is important to note that due to the limited number of
datasets available for this study, conclusions made herein

can be said to only apply to accelerometer sampling
frequencies between 12 kHz and 51.2 kHz and speeds
ranging between 1400 and 1900 RPM. While such ranges
are common in practice, the extent to which these
assumptions are restrictive should be further studied.
Additionally, for 2D-CNNs using grayscale images, a
window length of 1024 seems to yield the minimum
required accuracy sought in this study. Although the paper
provides general conclusions, more structured evidence is
needed to support their applicability to other fault types and
broader operating conditions.

It is important to note that hyperparameters such as
window length, stride, and data duration were varied
independently in this study to observe their isolated effects
on model accuracy. However, potential interactions between
these parameters (e.g., stride and window length affecting
the number and overlap of samples) may impact
performance.

6. CONCLUSIONS

The results indicate that a minimum number of samples
is required to achieve a training and validation accuracy
above 95%. This number varies depending on the sampling
rate provided by each dataset.

When selecting the data collection duration for TL and
DL, it is recommended that data be collected for a duration
of 5s (resolution of 0.20) for ANNs and 1D-CNNs for clean
data, and 4s (resolution of 0.25) for 2D-CNNs for clean and
noisy data. The 2D-CNN finding is applicable for
accelerometers that have a sampling rate range between 12
and 51.2 kHz and speeds ranging between 1400 and
1900 RPM.

Once the minimum threshold of samples is reached, it
was observed that sampling rates have little effect on
achieving a high classification accuracy. Additionally, for
2D-CNNs, the best performance was found to occur when
the number of samples was approximately four times the
sampling rate, establishing a practical relationship between
these two key data collection parameters.

Finally, a 10% stride was found to provide sufficient
information for achieving an ML accuracy of at least 95%.
To increase the robustness of these results, further testing on
more bearing datasets will be required at different constant
speeds to see the effects on resolution.

The research succeeds in delivering general conclusions
that can be directly applied across a wide variety of bearing
conditions. The findings presented here are based on
research lab-based bearing datasets, with sampling rates and
machine speeds confined to specific ranges. As a result, the
conclusions drawn do not fully capture the variability of all
machine applications where accelerometers may operate
outside the ranges studied.

Moreover, the study provides useful insights into how
different ML models (ANNs, 1D-CNNs, and 2D-CNNs)
perform under specific conditions. It has been shown that
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for ball bearing fault diagnosis within the speed ranges and
frequencies considered in this study, even with noisy data,
the threshold accuracy can be reached using 2D-CNN
grayscale images in the frequency domain by sacrificing
computational time. The identification of a threshold
accuracy will help data scientists and ML researchers to
conduct research more efficiently and will allow the
implementation of ML algorithms in IIoT systems by
maximizing accuracy while reducing samples and
computational times.

These results provide researchers a basis for setting
their parameters during data collection but also serve as a
first step for integrating ML algorithm-based rolling element
bearing fault diagnosis into IloT monitoring products by
identifying the minimum amount of data needed to reach
threshold fault diagnosis accuracies.

Future work will focus on exploring the interaction
between hyperparameters such as window length, stride, and
duration, rather than treating them independently.
Additionally, future plans include examining statistical
robustness by reporting mean performance metrics and
standard deviations across repeated runs and investigating
the impact of cross-validation versus domain-split validation
frameworks. Expanding the scope to include variable speed
conditions, a wider range of machine types, and more
diverse sensor configurations will further enhance the
applicability of these findings in real-world industrial
settings.

NOMENCLATURE

Al Artificial Intelligence

ANN  Attificial Neural Networks

BPFO Ball Pass Frequency of Outer Race
BPFI  Ball Pass Frequency of Inner Race
BSF Ball Spin Frequency

CNN  Convolutional Neural Networks

DL Deep Learning

FTF  Fundamental Train Frequency
lloT Industrial Internet of Things
IMS Intelligent Maintenance System
KNN  K-Nearest Neighbors Algorithm

ML Machine Learning

NSK  Nippon Seiko Kabushiki-gaisha

SVM  Support Vector Machine

SKF Svenska Kullagerfabriken

TL Traditional Learning

t-SNE  T- distributed Stochastic Neighbor Embedding
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