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ABSTRACT

Prognostics and maintenance decision-making rely heavily
on accurate and reliable measurements derived from sensors.
However, sensor degradation introduces measurement
uncertainties that compromise the precision of fault
detection, remaining useful life estimation, and overall
maintenance strategies. This paper provides a comprehensive
review of the multifaceted impacts of sensor degradation on
measurement uncertainty and its subsequent influence on
prognostics and maintenance. The paper synthesizes various
sensor degradation mechanisms and existing modelling
techniques, emphasizing the growing research focus on
developing accurate degradation models. The review also
provides an in-depth analysis of how sensor degradation
affects measurement uncertainty, exploring both qualitative
and quantitative impacts through various modelling
approaches and tools. Furthermore, this review examines the
implications of this uncertainty on prognostics and
maintenance decision-making methodologies, showcasing
current mitigation methods and models. Finally, the review
identifies key challenges and research gaps, outlining
promising directions for future research in sensor degradation
and its impact on prognostics and maintenance. By
addressing these critical issues, this paper contributes to the
advancement of more reliable, adaptive, and efficient
Prognostics and Health Management (PHM) systems across
various industrial and technological domains.
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1. INTRODUCTION

Sensors are devices that detect and monitor physical
phenomena (Wilson, 2004; Algamili, Khir, Dennis, Ahmed,
Alabsi, Ba Hashwan and Junaid, 2021). They convert
composition variations of the phenomenon (such as electrical
conductivity, hydrogen potential, etc.) into a particular form
that can be utilized (Basuwagqi, Khir, Ahmed, Rabih, Mian
and Dennis, 2017), typically electrical signal (Wilson, 2004;
Su, Ma, Chen, Wu, Luo, Peng and Li, 2020). They form part
of the interface between the physical world and electronic
devices such as computers, with actuators representing the
other part by converting electrical signals into physical
actions (Wilson, 2004).

Sensor degradation is a well-known phenomenon that
impacts the accuracy and reliability of measurements, as
sensors degrade over time, the data they provide become less
precise and more uncertain (Abid, Sayed Mouchaweh and
Cornez, 2019; Elattar, Elminir and Riad, 2016; Javed,
Gouriveau and Zerhouni, 2017). The quality of
measurements provided by sensors is a critical factor
impacting the performance of prognostics, maintenance
decision-making and optimization, and it can be
compromised by sensor degradation (Liu, Do, Tung and Xie,
2019). Lukens, Rousis, Baer, Lujan and Smith (2022) echoed
that poor data quality can lead to incorrect assessments of
equipment health, resulting in unnecessary maintenance or
unexpected failures. As a result, low-quality data can lead to
increased maintenance costs and operational disruptions, as
organizations may either over-maintain or under-maintain
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their equipment based on flawed data interpretations. The
degradation of sensors can introduce systematic errors in the
data they collect. Many existing references in the literature
note that sensor degradation causes increased measurement
error (Mukhopadhyay, Liu, Bedford and Finkelstein, 2023;
Ohsuga & Ohyama, 1988; Zhang, Si, Du and Hu, 2018; He,
Sun, Xie and Kuo, 2022) and error rates over time (Zhang,
Xin, Yin, Wang and Wang, 2016). Thereby, it worsens error
metrics such as Mean Squared Error (MSE) or Root Mean
Squared Error (RMSE) (Hachem, Vu and Fouladirad, 2024).
Consequently, it weakens the correlation between sensor
output and actual conditions (Li, Price, Stott and Marshall,
2007) leading to reduced measurement reliability (Wanga, Al
Atata, Ghaffaria, Leea and Xib, 2008; Li & Dai, 2020).
Several methods designed to deal with uncertainty face
various difficulties due to sensor degradation. Filtering
methods encounter filtering error dynamic instability (He,
Wang and Zhou, 2008), indicating difficulty in deriving exact
values of filtering error covariance (FEC) which tends to be
increasing (Huang & Shen, 2021). Similarly, Wen, Wang,
Yang and Ma (2023) showed increased estimation error
covariance due to sensor degradation. Calibration methods
suffer from a reduction in accuracy (Sun & Xiong, 2020; Yu
& Wu, 2009), possible errors in the calibration coefficients
(Kamei, Nakamura, Yamamoto, Nakamura, Tsuchida,
Yamamoto and Wu, 2012), and increased frequency of
recalibration (Aldrin, Medina, Allwine, QadeerAhmed,
Fisher, Knopp and Lindgren, 2007).

Several decades ago, maintenance decisions were primarily
made in response to failures, however, today, making
maintenance decision is widely acknowledged as a vital
business function and a key component of asset management
(De Jonge & Scarf, 2020). It is the process of selecting the
most appropriate maintenance strategy or action to ensure the
optimal performance, reliability, and cost-effectiveness of
equipment, systems, or assets (Liu, Lv and Yang, 2016; Cao,
Zhang, Gong, Jia and Zhang, 2021; Zandiyehvakili,
Aminnejad and Lork, 2022). This process involves
considering various factors such as the assets' conditions,
failure modes, maintenance costs, resource constraints, and
operational requirements (Puric, Josimovic, Adamovic,
Radovanovic, Jovanov, Adamovic and Jovanov, 2012; Ding,
Goh, Tan, Wee and Kamaruddin, 2012; Tee & Ekpiwhre,
2020). Several factors have been considered for inclusion in
the process to improve effectiveness, including the impacts
from sensor degradation (Liu et al., 2019; Kaiser & Gebraeel,
2009; Salehpour-Oskouei & Pourgol-Mohammad, 2017).
Many maintenance models assume that sensor performance
remains constant, which is often not the case in reality
(Mukhopadhyay et al., 2023; van Oosterom, Maillart and
Kharoufeh, 2017). Condition monitoring systems that rely on
sensor data are used to identify changes in machinery
conditions and inform maintenance decisions (Li, Jiang,
Carroll and Negenborn, 2021). However, the uncertainties
caused by sensor degradation and limitations in degradation

mechanisms can lead to inaccurate determination of
machinery condition, which in turn affects the reliability of
maintenance decisions (Li et al., 2021; Huynh, Barros and
Bérenguer, 2012; Hegedus & Kosztyan, 2011). Liu et al.
(2019) highlighted that sensor degradation results in distorted
measurements, causing observations to deviate significantly
from true values, which can mislead Condition-Based
Maintenance (CBM) strategies.

Achieving predictive maintenance, prognostics is required,
which is an emerging science of predicting the health
condition of systems. A typical definition of prognostics is
found in the International Organization for Standardization
[ISO] 13381-1; its goal is to provide the user with the ability
to predict the remaining useful life (RUL) with a satisfactory
level of confidence. The accuracy of prognostics is affected
by multiple sources of uncertainties, including input
uncertainty such as initial state estimation; model uncertainty
such as misspecified methods, unexplained features,
unmodelled phenomena; operational uncertainty such as
operating and environmental conditions; and measurement
uncertainty such as sensor errors, estimation error (Goebel,
Saxena, Daigle, Celaya, Roychoudhury and Clements, 2012;
Saxena & Goebel, 2012; Sankararaman & Goebel, 2015;
Huang, Gardoni and Hurlebaus, 2012). Accurate prognostics
requires reliable measurement on the states of the system,
which can be compromised by sensor degradation and the
resulting measurement uncertainty (Zhao, Zhang, Liu and
Qiu, 2019; Sun, Zuo and Pecht, 2011; Tao, 2012). Addressing
the challenges of sensor degradation is crucial for developing
reliable and effective prognostics systems, as degradation-
related features extracted from the sensor data can
dramatically improve the accuracy of RUL prediction (Qin,
Cai, Gao, Zhang, Cheng and Chen, 2022).

Despite the critical impact of sensor degradation on
prognostics and maintenance decision-making, no
comprehensive review on this topic has been conducted to
date. This study aims to fill that gap by providing an in-depth
analysis of the multifaceted impacts of sensor degradation on
measurement uncertainty and its influence on prognostics
and maintenance decision-making. This review explores
sensor degradation mechanisms, existing modelling
techniques, application domains, and their impact on
measurement uncertainty, emphasizing both qualitative and
quantitative effects. It also examines how this uncertainty
influences prognostics and maintenance decision-making
while highlighting methods to mitigate its impact. Finally, the
review identifies key challenges and research gaps, outlining
promising directions for future research in sensor degradation
and its impact on prognostics and maintenance optimization.

This article is organized as follows. Section 2 describes the
methodology wused for the systematic review. The
bibliometric results and analysis are also presented. Section
3 focuses on the literature review of various degradation
processes and their modelling techniques. Section 4 discusses
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the impact of sensor degradation on measurement errors and
examines different approaches to quantify and model the
measurement uncertainty induced by sensor degradation.
Sections 5 and 6 explore the existing works considering the
sensor degradation impacts on prognostics and maintenance,
ultimately leading to more robust maintenance optimization.
Section 7 discusses the issues, challenges, and research gaps
identified through the review, providing insights into areas
requiring further investigation. Finally, Section 8 concludes
by presenting the main results of our study and future
perspectives, summarizing the key findings and suggesting
directions for future research.

2. METHODOLOGY

The review protocol followed in this paper adheres to the
Kitchenham guidelines (Keele, 2007), ensuring a thorough
and systematic literature review. This approach structures the
articles around specific questions that align with the study’s
objectives, thereby focusing the analysis on key topics of
interest. We formulated the following main research
questions to guide our analysis:

1. What is sensor degradation and how to model the sensor
degradation processes?

2. What are the impacts of sensor degradation on
measurement uncertainty?

3. How have impacts of sensor degradation on
measurement uncertainty been considered in prognostics
and maintenance decision-making?

With these research questions, we address in detail the
impacts of sensor degradation on measurement uncertainty
within the context of prognostics and maintenance
optimization.

2.1. Keywords and Search String Definition

To achieve comprehensive coverage, some widely used
scientific databases were explored, including Web of Science
(WOS), Scopus, IEEE Xplore, and ACM Digital Library.
These databases are typically considered sufficient for a
literature search. The articles sourced from Scopus and WOS
are published by well-known publishers such as Elsevier,
Springer, Taylor & Francis Online, IEEE, among others,
thereby enhancing the thoroughness of this research.
Defining the search string was conducted, described in
Section 2.1.2. Then, filtering criteria were defined, described
in Section 2.1.3.

To effectively identify articles relevant to the research
questions, specific keywords were carefully formulated to
construct the search string. Synonyms and alternative
spellings were included to ensure comprehensive coverage.
The keywords were categorized into search topics, sensor
degradation, measurement uncertainty, and their implications
for prognostics and maintenance, which were connected
using Boolean operators. Within each topic, keywords were

linked with the OR operator, while the topics themselves
were combined using the AND operator, resulting in the
following query:

(“sensor degradation” OR “sensor deterioration” OR
“sensor impairment” OR “sensor decline” OR “sensor
wear” OR “degradation of sensor” OR “deterioration of
sensor” OR “impairment of sensor” OR “degrading
sensor” OR “deteriorating sensor” OR “impairing sensor”
OR “degraded sensor” OR “deteriorated sensor” OR
“impaired sensor’)

AND (“error” OR “uncertainty” OR “reliability” OR
“accuracy” OR “precision” OR “consistency” OR
“quality” OR “prognostics” OR “maintenance” OR
“structural health monitoring™)

To ensure a systematic review, the primary search relied on
article metadata. They included titles, abstracts, authors, and
keywords, providing a structured framework for the
identification of relevant articles, as these metadata are
meticulously curated by authors and editors to reflect the core
content of the article. Table 1 shows the total number of
articles retrieved from each scientific database from the
search string. Those retrieved articles were then filtered
according to the criteria explained in the next section.

Databases Number of papers
Web Of Science | 245

Scopus 369

IEEE Xplore 147

ACM 63

Total 824

Table 1. Number of papers by databases

2.2. Article Filtering

Gathering all primary articles from the keyword-based search
within scientific databases, a two-phase filtering process was
conducted to assess their relevance. The first phase involved
a thorough examination of the metadata of each article to
determine their initial suitability. In the second phase, a more
in-depth evaluation of the full-text content of the articles was
investigated.

The keyword-based search yielded 824 references from
digital libraries. A series of exclusion criteria were applied to
identify relevant studies. They were formulated based on the
research objectives investigated, as detailed in Table 2. First,
duplicate and non-English papers were excluded, reducing
the count to 477. Next, the relevance of the remaining papers
was assessed by examining their metadata, including titles,
abstracts, and keywords, further narrowing the number to
223. After excluding inaccessible papers and thoroughly
analysing the full text of the remaining papers and additional
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papers identified during the process to avoid bias, resulting in
85 papers being selected. Two statistical analyses of these
selected papers are discussed in the following sections.

Phases N° papers
Total N° papers retrieved from digital libraries 824

N° papers remained after removing duplications 486

N° papers remained after removing non-English 477

N° papers remained after revising metadata 223

N° papers remained after reading full text 71

Ne papers to be reported 85

Table 2. Summary of article filtering process

2.3. Growth Trend of the Research Topic

Figure 1 shows that the number of selected publications
shows a trend of being low in the early years but shows a
significant increasing trend from 2018 onwards. In addition,
it is worth mentioning that the contribution of journal articles
has substantially increased in recent years. This can indicate
that the literature witnessed a growing interest related to the
relationship between sensor degradation and measurement
uncertainty and prognostics and maintenance.
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m conference M journal

Figure 1. Number of publications by publication years

2.4. Keyword Occurrence Analysis

Conducting  keyword  occurrence  analysis, the
interconnections among various terms associated with sensor
degradation are visualized through a multi-coloured network
visualized in Figure 2. At the centre of the network, “sensor
degradation” emerges as the most prominent and
interconnected keyword, signifying its central role in this
thematic landscape. Surrounding it are clusters of related
concepts, such as “remaining useful lifetime”,
“maintenance”, ‘“uncertainty analysis”, and ‘“degradation
modelling”. The clusters are color-coded, revealing thematic
groupings such as reliability analysis, maintenance and health
monitoring, and estimation techniques. This network reveals
how research topics interrelate, with frequent co-occurrences
suggesting strong conceptual ties, aiding in the identification
of notable themes within the field.
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Figure 2. Keyword co-occurrence analysis



3. REVIEW ON SENSOR DEGRADATION

In this section, the root causes of sensor degradation across
various domain applications are first reviewed. This
foundational understanding of how sensors degrade is
crucial, as it directly informs the appropriate development of
quantification models, which are standard in the literature to
manage this phenomenon. Subsequently, several modeling
techniques for sensor degradation processes are discussed in
this section.

3.1. Sensor Degradation Process

The degradation of sensors is a complex phenomenon driven
by a variety of physical and chemical conditions, and are
highly dependent on the sensor type and its operational
environment. For example, sensors face degradation under
extreme operating conditions, such as high pressures and
temperatures, scaling, or erosion (Abdel-Jaber & Glisic,
2016; Bikmukhametov, Stanko and Jadschke, 2018). For
instance, magnetostrictive sensors degrade through cyclic
relaxation and ambient temperature variations affecting the
FeCo strip and epoxy layers (Chen, Yang, Liu and Liu, 2021)
and causing interlayer diffusion (Bonhote, Chang, Judy,
Kitamoto, Krongelb, Romankiw and Zangari, 2006), or
piezoelectric sensors experience fiber breakage from fatigue
loading and electrode misalignment from fiber breakage and
mechanical stress (Mehdizadeh, John, Wang, Ghorbani and
Rowe, 2012). To further illustrate the diversity of these
processes across various sensor types, Table 3 categorizes a
range of reported degradation mechanisms based on their
common characteristics.

Sensor types | Reported degradation processes

physicochemical degradation (Zhang et al.,
2018; Li, Zhang, Thayil, Chang, Sang and
Ma, 2021); contamination accumulation

Temperature (Sakurai, Yamaguchi, Hiura, Yoneshita,
SENSOrs Kimura and Tamura, 2008); mechanical
degradation (Mandal, Sairam, Sridhar and
Swaminathan, 2017)
noise-induced (Khanam, Aslam, Saha, Zhai,
Ehsan, Stolkin and McDonald-Maier, 2021);
. electro-optical degradation (Yin, Shi, Peng,
gglciil and Zhang and Guo, 2022; Yang, Wen, Zhao, Liu,
sensgorsg Feng, Li and Guo, 2024); contamination

accumulation (Li et al., 2007; Kamstrup &
Hansen, 2003); mechanical degradation (Kim,
Cao and Liang, 2013)

mechanical degradation (Aldrin et al., 2007;
Shu, Wang, Yan, Fan and Wu, 2019; Li,
Peng and Yu, 2017); physicochemical
degradation (Shu et al., 2019; Li et al., 2017;
Johnson, Kim, Zhang, Wu and Jiang, 2014;
Quattrocchi, Alizzio, Martella, Lukaj, Villari
and Montanini, 2022); contamination
accumulation (Li et al., 2017)

Acoustic and
ultrasonic
Sensors

mechanical degradation (Li et al., 2007;
Motion sensors Wanga et al., 2008); contamination
accumulation (Ohsuga & Ohyama, 1988;
Wanga et al., 2008)
Pressure mechanical degradation (Park, Jung, Ko,
Park and Cho, 2021); physicochemical
SCNSors degradation (He et al., 2022)
physicochemical degradation (Xu, Meng and
Yang, 2022); contamination accumulation
Chemical (Anil, 2020; Moriya & Sako, 2001; Bai,
sensors Huang, Wang, Ying, Zheng, Shi and Hu,
2020; Liu, Diao, Hu, Zhao, Shi, Wang and
Li, 2023)
Power mechanical degradgtion (Hu,'Zhang, Liu,
electronics Lin, Dey and Onori, 2020; Xia, Xu and Gou,
SenSOrS 2020) electromagnetic interference (Hu et
al., 2020)

Table 3. A classification of sensor degradation mechanisms
by measurement characteristics

Studies have shown that thermistors subjected to thermal
shock cycles exhibit significant changes in their resistance
characteristics, which can compromise their accuracy and
reliability (Li et al., 2021). Thermocouples experience ageing
due to natural wear and tear, mechanical issues leading to loss
of sensor component contacts, environmental factors, and
physicochemical reactions (Zhang et al., 2018; Mandal et al.,
2017). Resistance thermometers experience oxidation
processes of sensing wires, which lead to instabilities in their
readings, as highlighted with platinum resistance
thermometers by Sakurai et al. (Sakurai et al., 2008).

Medium-resolution spectral imagers are affected by changes
in the reflectivity of scan mirrors caused by vibrations during
launch and the harsh conditions of space, along with the
ageing of the instrument (Kim et al., 2013). Complementary
Metal-Oxide-Semiconductor (CMOS) image sensors degrade
due to gamma-ray-induced photo-signal processes, radiation-
induced noise (Khanam et al., 2021), or proton-induced
displacement damage (Yang et al., 2024). Thematic mappers
face issues such as sensor outgassing leading to decreased
responsivity (Kamstrup & Hansen, 2003). Brightness sensors
exhibit defects such as dark current tolerance, open circuit
faults, low insulation resistance, and large reverse currents in
light-emitting tubes, which are exacerbated by weather
conditions, vibration, sand, and temperature rise, leading to
data distortion (Yin et al., 2022). Solar radiation sensors
accumulate deposits on their transparent external casings
from environmental exposure (Li et al., 2007).

Acoustic and ultrasonic sensors commonly use piezoelectric
materials, which are sensitive to temperature fluctuations and
can experience changes in their mechanical properties.
Acoustic sensors often lose their piezoelectric properties at
high operating temperatures, typically above 500°C to
700°C, which eventually results in sensitivity degradation
(Johnson et al., 2014). Similarly, surface acoustic wave
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(SAW) sensors are highly sensitive to environmental changes
such as temperature and humidity, surface scratching,
oxidation, and chemical degradation, which can lead to
irreversible material degradation and functional failure (Shu
et al., 2019; Li et al., 2017). Low-cost ultrasonic transducers
face rapid sensor ageing caused by temperature and humidity,
leading to critical issues in metrology and reliability that can
compromise their functionality and safety (Quattrocchi et al.,
2022). Acoustic emission transducers and ultrasonic current
sensors in structural health monitoring can be degraded by
several processes such as sensor bond breakdown, thermal
loading, and dynamic stress (Aldrin et al., 2007).

Motion sensors are prone to mechanical degradation, which
can lead to failures, for instance, anemometers may become
stuck in fixed positions as a result of such wear and tear (Li
et al., 2007). Wheel speed sensors face issues such as air gap
problems, wear on toothed rings, wiring problems, and
failures in internal IC components due to extreme
temperatures, high humidity, chemical attacks, strong
vibrations, electromagnetic interference, and pollution
(Wanga et al., 2008). Hot-wire type air flow meters degrade
due to dust deposition from airborne particles, and gas
diffusion layer type air-fuel ratio sensors suffer performance
issues from contaminants accumulating in exhaust gas
components (Ohsuga & Ohyama, 1988).

Pressure sensors often degrade under harsh conditions such
as mechanical fatigue, environmental factors, and material
limitations. For instance, high temperature can accelerate
degradation by altering the coefficients in piezoresistive
pressure sensors in reliability tests (He et al., 2022). Park et
al. (2021) also highlighted that existing pressure sensors,
specifically  polyurethane-based, exhibit insufficient
durability when subjected to a wide pressure range.

One of the primary factors contributing to the degradation of
chemical sensors is the gradual accumulation of
contaminants on the sensor’s surface. Continuous exposure
to target gases can lead to surface contamination degrading
the sensor performance in gas sensors (Anil, 2020).
Antimony-based pH sensors degrade through the formation
of an antimony oxide layer during use due to oxidation
processes (Liu et al.,, 2023). Oxygen sensors degrade as
silicon oxide deposits accumulate from the decomposition of
seal rubber (Moriya & Sako, 2001). Aerosol particulate
matter sensors are prone to ageing of the electric components
and dust accumulation on optical components due to
insufficient maintenance (Bai et al., 2020). In addition,
degradation can be caused by physicochemical interactions
between the sensor materials and the analytes they are
designed to detect. For instance, in metal oxide
semiconductor gas sensors, irreversible chemical reactions
over time exacerbated by high humidity and temperature
fluctuations, can degrade the sensing material’s properties
(Xu et al., 2022).

Degradation in power electronics sensors is susceptible to
internal and external influencing factors. Hu et al. (2020)
highlighted that mechanical stress from component
disruptions, vibrations, thermal stress from operational
losses, and electromagnetic interference can degrade voltage-
current sensors, affecting the operation of closed-loop control
systems. Similarly, Xia et al. (2020) emphasized that
environmental factors such as mechanical vibration and
equipment ageing can lead to faulty in current sensors, which
can severely affect control performance and potentially lead
to system shutdowns.

In other articles, sensor degradation has been described as a
generalized process. It can be categorized into three classes,
as shown in Table 4.

Degradation types | References

Li & Dai, 2020; Lu, He, Liang and

Gradual, continuous Zhang, 2021; Gao & Liu, 2022; Murthy,

degradation 1982; Zhang, Song, Zhao and Deng,
2021
Abrupt, catastrophic Murthy, 1982; Hachem, Vu and
degradation Fouladirad, 2021
Stochastic He et al., 2008; Huang & Shen, 2021;
. Wen et al., 2023; van Oosterom et al.,
degradation

2017

Table 4. Generalized degradation processes

Some studies have described sensor degradation using
gradual and continuous processes. The gradual and
continuous radiometric sensor degradation process has been
observed in panchromatic and multispectral sensors,
highlighting the consistent decline in sensor performance
over time (Lu et al., 2021). Additionally, various sensors have
exhibited additive and multiplicative degradation, indicating
a combination of steady deterioration and proportional
changes in sensor output (Gao & Liu, 2022). Furthermore, in
chemical processes involving soft sensors, time-varying
chemical impacts have been noted as influencing sensor
degradation (Li & Dai, 2020).

In addition to gradual processes, sensor degradation can
occur abruptly or catastrophically. Other studies have
identified general processes that include continuous
degradation alongside abrupt changes caused by external
shocks, suggesting a complex interplay between gradual and
sudden deterioration mechanisms (Hachem et al., 2021). The
degradation patterns also encompass gradual deterioration,
catastrophic  deterioration, and combinations thereof,
reflecting a broad spectrum of degradation behaviours in
various sensors (Murthy, 1982).

Stochastic degradation presents another important category
of sensor degradation processes. This type of degradation is
inherently random and can be described by probabilistic
models. Various sensors have been observed to undergo
stochastic degradation, reflecting the unpredictable nature of
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their performance decline over time (He et al., 2008; Huang
& Shen, 2021). Instantaneous and delayed sensors alike have
been subject to stochastic degradation, suggesting that this
random degradation behaviour is prevalent across different
sensor types (Wen et al, 2023). Additionally, the
probabilistic relational degradation has been analysed to
understand and model the stochastic nature of sensor
degradation (van Oosterom et al., 2017).

The detailed exploration of diverse sensor degradation
mechanisms in this section underscores the multifaceted
nature of sensor deterioration. Understanding these
degradation pathways is a crucial prerequisite for effectively
managing and predicting sensor degradation over time. This

comprehensive overview of how sensors degrade naturally
leads to the next critical step: developing robust models to
quantify these degradation, which will be the focus of
subsection 3.2.

3.2. Sensor Degradation Modelling

Modelling of sensor degradation provides essential insights
for advancing the acquisition of reliable measurements as it
translates the understanding of degradation mechanisms into
quantitative frameworks, thereby enabling predictive
analysis of sensor performance and reliability. These
modelling methods, examined in the literature, can be
categorized into various approaches as presented in Table 5.

Categories Some modelling techniques Some implicit and explicit representations
Calibration coefficients (Sun & Xiong, 2020; Aldrin et al.,
. . 2007; van Oosterom et al., 2017; Kamstrup & Hansen, 2003; _ , ..
Calibration Kim etal., 2013; Lu etal., 2021; Gao & Liu, 2022; Detsch, Otte, | 2 (t) = {calibCoefficients(t)}
Appelhans and Nauss, 2016)
Normalization to undamaged condition (Michaels, Michaels, _ o
Mi, Cobb and Stobbe, 2005) D(®) = fF(X (D), Xinitiar)
Rul If is Ak is Ak,
Normalization | Belief rule base (Yin et al., 2022) e X118 A1, X218 Azen XM

is A then D(t) is D; with belief Bf

Fitness function (Arosh, Nayak and Duttagupta, 2015)

1 N-1_
D= Nzt—n [Zrzwn—degraded ®- Zz(t)]

Deterministic

Linear model (Zhang et al., 2016; Kim et al., 2013)

D(t)=Dy+at+p

Accumulation model (Zhang, Qin, Lu, Liu and Faber, 2023; Su,
Huang, Liu and Wang, 2024)

t
D(t) = DO + Zt:oAD(ti)

Power law model (Kamstrup & Hansen, 2003; Hua, Al-Khalifa,
Hamouda and Elsayed, 2013)

D(t) = Dy + at® (Kamstrup & Hansen, 2003)

D(t) = Dy + at® + 6Vatc~1B(t) (Hua et al.,
2013)

Exponential growth model (Aldrin et al., 2007; Saha, Goebel,
Poll and Christophersen, 2007)

D(t) = f(eg(t))

Explicit empirical/physics-based equations (Bonhote et al.,
2006; Carrino, Nicassio and Scarselli, 2018; Carratu, Gallo,
lacono, Sommella, Ciani and Patrizi, 2024; Yang et al., 2024)

D(t) = f(6(t)), 6(t) are parameters of sensor
changing overtime

Stochastic
Process

Wiener process (Mukhopadhyay et al., 2023; Zhang et al., 2018;
He et al., 2022; Hachem et al., 2024; Liu et al., 2019; Hachem
et al., 2021; Hua et al., 2013; Hossain, Kobayashi and Alam,
2024; Liu, Wang, Liu, Coombes and Chen, 2022; Dinh, Do,
Hoang, Vo and Bang, 2024)

D(t) =Dy + at + oB(t)
D(t) = Dy + at + BX(t) + oB(t) (Dinh et al,
2024)

Gamma process (Mukhopadhyay et al., 2023; Hachem et al.,
2024; Hachem et al., 2021; Hua et al., 2013)

D(t)~Gamma(a, B)

Gaussian process (Zhang et al., 2021)

D(t)~Gaussian(u, o)

Weibull process (Wu, Cantero-Chinchilla, Prescott, Remenyte-
Prescott and Chiachio, 2024)

D(t)~Weibull(n,B)

Uniform distributions (Huang & Shen, 2021; Wen et al., 2023)

D(t)~Unif orm(Kmin, Kmax)

Stochastic matrix transformation (van Oosterom et al., 2017)

D(t) = D(t — 1) - StochasticMatrix(t)

One approach
where degradation is

calibration,

Table 5. Sensor degradation process modelling technique categorizations

to model sensor degradation is through
accounted for by

continuously updating calibration coefficients to maintain
measurement accuracy. Calibration coefficients were used to
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indicate degradation in additive and multiplicative
degradation processes (Gao & Liu, 2022). Gradual and
continuous radiometric sensor degradation was effectively
identified using monthly updated calibration coefficients,
highlighting the necessity of timely cross-calibration to
ensure reliability (Lu et al., 2021). Self-calibration methods
were proposed to record degradation process of sensor bonds
over time, demonstrating their utility in prolonging sensor
lifespan (Aldrin et al.,, 2007). Similarly, Sun and Xiong
(2020) calculated hybrid F-factors for solar diffuser (SD)
processes. Some statistical post-analysis methods were
applied such as Theil-Sen and Mann-Kendall Test to identify
degradation trends (Detsch et al., 2016). This approach offers
the advantage of managing sensor accuracy over time, as it
adapts the model to real-world conditions. It is
straightforward and allows for continuous improvement
based on data observation, however, can heavily relies on the
availability of stable and reliable reference data for frequent
recalibration, which can be costly challenging to obtain.

Normalization approaches offer the integration of expert
insights into sensor degradation phenomena. Normalization
to undamaged conditions, such as the normalized energy ratio
method used by Michaels et al. (2005), accounts for
transducer degradation by addressing the fact that damaged
sensors record varying measurement levels under different
conditions, while consistent levels are observed in no-
degradation scenarios. Yin et al. (2022) used belief rule base,
characterized by expert knowledge encoding for the
modelling of mixed sensor degradation processes. Estimating
sensor degradation levels using fitness functions was also
discussed, comparing the current conditions with estimated
non-degraded conditions, specifically the case of H-infinity
filter (Arosh et al., 2015). A key strength of this method is its
ability to model complex, nonlinear degradation patterns that
may be difficult to capture with purely data-driven
techniques. However, the approach is fundamentally limited
by its reliance on expert knowledge, which can be subjective,
and the challenge of defining an accurate non-degraded
baseline for comparison.

Deterministic models offer empirical insights into sensor
degradation phenomena. Measures such as slope, y-intercept,
and correlation coefficient have been used to analyse sensor
ageing (Zhang et al., 2016), or simple linear regression
models are applied to assess changes in reflectivity of scan
mirrors (Kim et al., 2013). The accumulation model was used
(Zhang et al., 2023; Su et al, 2024), which treats the
degradation process as independent increments, a specific
type of discrete Markov process. The power law model,
frequently observed in practice, is used for various
degradation processes (Kamstrup & Hansen, 2003; Hua et al.,
2013), which is considered the best function describing gain
changes over time (Kamstrup & Hansen, 2003). Exponential
growth models can be applied to model specific degradation
processes such as plate sulfation, passivation, and corrosion
(Saha et al., 2007). Bonhote et al. (2006) utilized Fick’s law

to model interdiffusion processes and temperature-dependent
time to failure fitted with the Arrhenius equation. Carrino et
al. (2018) implemented a physics-based approach,
specifically Rayleigh’s quotient, to calculate the natural
bending frequency of a partially debonded piezoelectric
sensor, which helps identify degradation by analysing
frequency shifts caused by debonding. Yang et al. (2024)
modelled sensor degradation due to proton radiation using an
equation describing how factors such as temperature, defect
energy levels, and carrier concentrations influence the defect
generation rate over time. Carratu et al. (2024) proposed a
Health Index for MEMS (Micro-Electro-Mechanical
Systems) sensors, derived from time-domain and frequency-
domain features using Principal Component Analysis,
effectively capturing the sensor's degradation trend over time.
The primary advantage of this approach lies in its high
interpretability, as the models are based on well-understood
physical laws and empirical evidence. However, these
models often struggle to capture the inherent randomness and
variability of real-world degradation processes, and their
accuracy is highly dependent on precise knowledge of
physical parameters that can be difficult to obtain.

Using stochastic processes to model sensor degradation
offers the advantage of capturing the probabilistic nature of
degradation over time, allowing for a dynamic representation
that reflects the inherent randomness of the phenomena.
Wiener process parameters (Mukhopadhyay et al., 2023;
Zhang et al., 2018; He et al., 2022; Hachem et al., 2024; Liu
etal., 2019; Hachem et al., 2021; Hua et al., 2013; Hossain et
al., 2024; Liu et al., 2022; Dinh et al., 2024), Gamma process
parameters (Mukhopadhyay et al., 2023; Hachem et al., 2024;
Hachem et al., 2021; Hua et al., 2013), Gaussian process
parameters (Zhang et al., 2021), and Weibull process
parameters (Wu et al.,, 2024) provide frameworks for
understanding random degradation patterns. A uniform
distribution was also used to model sensor degradation
process (Huang & Shen, 2021; Wen et al, 2023).
Additionally, stochastic matrix transformation (van
Oosterom et al., 2017) offers additional tools for capturing
the probabilistic nature of sensor degradation. The limitation
of this approach lies in the significant mathematical
complexity and the requirement for substantial historical data
to accurately select the appropriate stochastic process and
estimate its parameters.

In summary, this review section provides an overview of the
various mechanisms underlying sensor degradation and the
methods used for its modelling. Degradation processes can
be broadly categorized into two main types: time-dependent
degradation, which may occur either gradually (continuous)
or abruptly (catastrophic), and stochastic degradation, which
follows a probabilistic nature. Time-dependent degradation is
typically modelled using either discrete approaches, such as
calibration-based methods, or continuous approaches,
including normalization techniques and deterministic
models. On the other hand, stochastic degradation is analysed
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using probability distributions or matrix transformations to
capture the inherent randomness of the process. Building
upon this foundation, the following section will explore in
detail, how sensor degradation influences measurement
uncertainty, ultimately affecting the precision, reliability, and
consistency of sensor measurements. Meanwhile, section 7
will delve into the existing research gaps and challenges that
remain in the field.

4. REVIEW ON IMPACTS OF SENSOR DEGRADATION ON
MEASUREMENT UNCERTAINTY

This section provides a comprehensive review of how sensor
degradation impacts measurement uncertainty. As sensors
age and their performance deteriorates, the reliability and
accuracy of the data they produce are compromised, directly
affecting the precision and credibility of measurements
derived from them. We will first delve into the various forms
and implications of sensor degradation on measurement
uncertainty, identifying and categorizing the critical effects
observed in different sensor systems. Following this, we will
explore the diverse modeling approaches employed to
quantify and predict these impacts, offering a systematic
overview of techniques used to account for degradation in
measurement uncertainty assessments.

4.1. Impact of Sensor Degradation on Measurement
Uncertainty

As sensors age and their accuracy diminishes, the reliability
of the data they produce is compromised as the complex
nature of degraded measurements makes it difficult to
accurately capture system states (Wen et al., 2023), directly
affecting the precision and credibility of measurements. By
examining the relationship between sensor degradation and
uncertainty, several critical implications of sensor
degradation on measurement uncertainty can be seen,
summarized with categorizations presented in Table 6,
followed by their interpretations.

Impacts References
He et al., 2008; Michaels et al., 2005; Liu, Wang,
Gain He, Ghinea and Alsaadi, 2016; Yoo, Kim, Yoon,
degradation | Kim, Kim and Youn, 2020; Jiang, Djurdjanovic,
Ni and Lee, 2006
He et al., 2022; Liu et al., 2019; Bai et al., 2020;
Bias Chughtai, Tahir and Uppal, 2022; Li & Ying,
2017
Sensitivity | e, 6 et al., 2012; Aldrin et al., 2007
degradation
van Oosterom et al., 2017; Bikmukhametov et al.,
2018; Khanam et al., 2021; Murthy, 1982; Liu et
Noi al., 2022; Chughtai et al., 2022; Loo, Ding,
o1se Baskaran, Nurzaman and Tan, 2022; Feng,
Hajizadeh, Samadi, Sevil, Hobbs, Brandt and
Cinar, 2018; Guo, Li, Xue and Zhang, 2024

Sun & Xiong, 2020; Bikmukhametov et al., 2018;
Mandal et al., 2017; Liu et al., 2023; Murthy,
Drift 1982; Loo et al., 2022; Feng et al., 2018; Jordan,
Deline, Kurtz, Kimball and Anderson, 2017,
Phan, Kim, Islam, Kim and Lee, 2024

Shift Hickinbotham & Austin, 1999

Increased Kamstrup & Hansen, 2003; Liu et al., 2023
latency

Sensor Li et al., 2007; Bikmukhametov et al., 2018;
failure Murthy, 1982

Table 6. Major impacts of sensor degradation on
measurement uncertainty

Gain degradation is a common impact in sensor systems and
can be caused by factors such as ageing, intermittent failure,
and transmission congestion (Liu et al., 2016). When sensor
deterioration occurs, estimating the exact gain reduction
becomes challenging, complicating maintenance and
prognostics processes (He et al., 2008). Another form, which
is normalized gain, shows a decreasing trend (Jiang et al.,
2006). A specific gain degradation, which is the reduction in
the through-transmission ultrasonic signal amplitude, occurs
due to changes in the coupling of transducers to the specimen
or the degradation of the transducers themselves (Michaels et
al., 2005). It was also reported that gain degradation
frequently occurs in rotary speed-R sensors (Yoo et al.,
2020).

Bias in sensor measurements can cause data distortion (Liu et
al., 2019). Mean normalized bias tends to increase, associated
with the ageing of electric components and the accumulation
of dust on optical components (Bai et al., 2020). Ultra-wide
Band (UWB) sensors suffer from bias when transceivers face
physical obstructions during transmission (Chughtai et al.,
2022). Measurement biases can be complex, as reported in
(Li & Ying, 2017) and might not follow a Gaussian
distribution.

Sensitivity degradation affects the responsiveness of sensors.
It was mentioned to be associated with optical sensors
(Kamei et al.,, 2012). Additionally, strain-gauge acoustic
emission transducers and ultrasonic eddy current sensors
suffer from sensor bond degradation processes and can result
in inconsistent sensitivity (Aldrin et al., 2007).

Noise is a pervasive issue in sensor systems and is
exacerbated by degradation processes. Ageing processes
further increase noise levels, affecting sensor accuracy (van
Oosterom et al., 2017). Additionally, distributed optical fibre
sensors exposed to radiation can experience increased noise
intensity (Guo et al., 2024; Khanam et al., 2021).
Degradation-induced noises were reported to cause the
system to become non-Gaussian (Liu et al., 2022). UWB
sensors often encounter outliers and missing data (Chughtai
et al., 2022). The presence of noise can cause significant
fluctuations in estimated task space coordinates and other
measurements (Loo et al., 2022). Mechanical degradation in
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pressure and temperature sensors leads to increased
measurement noise (Bikmukhametov et al., 2018).
Continuous glucose monitoring and energy expenditure
sensors may experience missing signals, stuck signals,
spikes, and other noise-related issues (Feng et al., 2018).

Drift in sensor readings is a synthesised impact, can result
from long-term use or improper storage. For instance,
antimony-based  sensors exhibit such performance
characteristics, causing potential drift (Liu et al., 2023).
Mechanical degradation processes and ageing also contribute
to drift, as shown in pressure and temperature sensors
(Bikmukhametov et al., 2018; Mandal et al., 2017). In
continuous glucose monitoring sensors, the sensors
experience drift over time (Feng et al., 2018). It was
mentioned that sensor data records may show long-term and
erroneous drift due to a non-uniform degradation process
(Sun & Xiong, 2020). Additionally, drift increases were also
mentioned as being associated with a gradual deterioration
process (Murthy, 1982). Drift can lead to error in the
estimation algorithm, as seen in Recurrent Neural Network
Direct (RNN-Direct) estimations (Loo et al., 2022).
Membrane dissolution and oxidative ageing process in
intraocular pressure sensors contribute significantly to zero
drift over time, which is a common issue in long-term
implantation scenarios (Phan et al., 2024). Sensor
degradation also causes a shift in sensor measurements; for
instance, it can alter the gradient of the load-response
regression relationship, which distorts the distribution of
measurement data (Hickinbotham & Austin, 1999).

Increased latency is another measurement impact of sensor
degradation. Long-term use of antimony-based sensors leads
to the formation of an antimony oxide layer, resulting in
decreased response sensitivity and longer response times (Liu

et al., 2023). Thematic mapper sensors show decreasing
response times over periods of use (Kamstrup & Hansen,
2003).

Finally, sensor failure is an inevitable outcome of severe
degradation. Sensor failure was linked with catastrophic
deterioration  process (Murthy, 1982). Mechanical
degradation in pressure and temperature sensors can lead to
sensor failure (Bikmukhametov et al., 2018). Anemometers
and wind speed indicators suffer from failure due to sticking
in a fixed position due to mechanical failure (Li et al., 2007).

The various manifestations of sensor degradation contribute
to increased measurement uncertainty. Recognizing these
distinct impacts is crucial, as it provides the necessary
insights for developing effective strategies to quantitatively
model these effects. The following subsection 4.2, will delve
into the diverse methodologies and techniques used to
achieve this, bridging the gap between identifying the
problem and finding quantifiable solutions.

4.2. Modelling Impact of Sensor Degradation on
Measurement Uncertainty

Understanding the effects of sensor degradation on
measurement uncertainty is essential for evaluating system
performance and reliability. To systematize the various
approaches found in the literature, Table 7 provides a
comprehensive summary and categorization of key
modelling techniques. The table outlines the main categories
of these techniques, presents representative examples for
each, describes the specific degradation impacts they model,
and details how measurement uncertainty is represented,
either implicitly or explicitly.

Techni R tati delli . . .
echnique cpresentative modetiing Types of impacts to be modelled (©) Uncertainty representation
categories | techniques
mf’d?ﬁed likelihood ﬁmcm.ms Noise (Chughtai et al., 2022); Sensor PV |xk, Or)
within the filters (Chughtai et . . —19: -1
al., 2022) Failure (Chughtai et al., 2022) = N (yr|h(xx), (R diag(0r))™1)
Noise (Mukhopadhyay et al., 2023;
integrating sensor degradation Hachem et al., 2024; Liu et al., 2019; Liu Z(t) = COX () +6(t) +v(D)
as part of measurement model | et al., 2022; Loo et al., 2022; Feng et al., (Mukhopadhyay et al., 2023; He et al.,
within the filters 2018; Dinh et al., 2024; Wu & Yan, 2022; | 2022; Hachem etal,, 2024; Liu et al.,
(Mukhopadhyay etal., 2023; | Wu & Liu, 2024; He et al., 2025; 2019; Li & Ying, 2017; Feng et al.,
T He et al., 2022; Hachem et al., Mayilsamy et al., 2025); Drift 2018; Dinh et al., 2024; Zhang et al.,
Filtering ' ) 2022; C 1., 2024; He et al., 2025
technique- | 2024; He ctal., 2008; Huang & | (Mukhopadhyay et al., 2023; He et al., 5 Caoetal,, 2024; He et al, 20255
based Shen, 2021; Liu et al., 2019; 2022; Hachem et al., 2024; Liu et al., Mayilsamy et al., 2025)

Liu et al., 2022; Liu et al.,
2016; Loo et al., 2022; Feng et
al., 2018; Li & Ying, 2017; Wu
& Yan, 2022; Zhang, Song,
Zhao, Xu and Deng, 2022; He,
Zheng, Jin and Li, 2025;
Mayilsamy, Lee, Joo, and
Jeong, 2025)

2019; Liu et al., 2022; Loo et al., 2022;
Feng et al., 2018; Cao, Niazi, Barreau and
Johansson, 2024); Bias (He et al., 2022;
Liu et al., 2022; Feng et al., 2018; Li &
Ying, 2017; Dinh et al., 2024; Zhang et al.,
2022; Cao et al., 2024; Mayilsamy et al.,
2025); Gain Degradation (He et al., 2008;
Huang & Shen, 2021; Liu et al., 2016; Liu
et al., 2022; Dinh et al., 2024; Zhang et al.,

Z(t)=0)C(t)X() +v(t) +

S(t, X(t),¢(t)) (He et al., 2008; Huang
& Shen, 2021; Liu et al., 2016; Zhang

etal., 2022; Wu & Liu, 2024)

Z(t) = C()[X(®),0()] + v(t) (Liuet

al., 2022)

Z(t) = fWI,X(t)), W] is a neural

network (Loo et al., 2022)
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2022; Wu & Liu, 2024); Sensor Failure
(Zhang et al., 2022)
O(t) ~ Distribution(params);
Z(t) =0@)C()X(t) +v(t) (Wenet
al., 2023; Zhang et al., 2019);
Z)=COX@®)+0o()+
random variables/ probabilistic | General/Not Explicit Impact (Wu et al., v(t) (Hickinbotham & Austin, 1999)
models (Wen et al., 2023; Yoo | 2024), Gain Degradation (Wen et al., Uncertainty of Z(t) «
et al., 2020; Hickinbotham & 2023; Zhang et al., 2019); Bias (He et al., ResilienceMeasure = f(@(t)),
Austin, 1999; Zhang, Wang, 2022); Noise (Hickinbotham & Austin, 0(t) = [0,1] indicating failure
Ma and Alsaadi, 2019; Wu et 1999); Shift (Hickinbotham & Austin, probability (Yoo et al., 2020)
Statistical al., 2024) 1999); Sensor Failure (Yoo et al., 2020) Uncertainty of Z(t) «
and InformationGain =
probabilistic f(pe(6,Z(t),Cy), 6 indicate system
parameters, C,, indicate sensor
configuration (Wu et al., 2024)
ARMAX model (Jiang et al., Gain Degradation (Jiang et al., 2006); g((q))i((tk)): @(q)u(tt ;32-{ )
2006) Increased latency (Jiang et al., 2006) q » @ present shilt {(defay
operator
Markov decision process (van . Uncertainty of Z(t) o
Oosterom et al., 2017) Noise (van Oosterom et al., 2017) Q) = [P (tlOO)]
descriptive statistics (Li et al., . .
2007) Noise (Li et al., 2007)
explicit empirical/physics-
based equations (Ohsuga & General/Not Explicit Impact (Kim et al., Z () = f(X(),0(t))
Ohyama, 1988; Yu & Wu, 2013; Lu et al., 2021); Sensitivity (Ohsuga & Ohyama, 1988; Yu & Wu,
2009; Aldrin et al., 2007; Kim Degradation (Aldrin et al., 2007; Singh & 2009; Aldrin et al., 2007; Kim et al.,
L etal., 2013; Lu et al., 2021; Shanmugam, 2018); Drift (Ohsuga & 2013; Lu et al., 2021; Singh &
Empirical Singh & Shanmugam, 2018; Ohyama, 1988; Chughtai et al., 2022; Shanmugam, 2018)
Zhan, Shen, Mao, Shu, Shen, Zhan et al., 2025)
Yang, ... and Lu, 2025)
conditional rules (Li et al., . . Ruley: If Zj,(t) is A (t) then O(t)
2007) Sensor Failure (Li et al., 2007) marked as failure (Li et al., 2007)
weights and biases in neural
networks (Bai et al., 2020; Li, . . ] L X@® = FWE, Z()) (Bai et al., 2020;
Machine | Gou, Li and Liu, 2023; Wu & | oise (Baietal, 2020; Wu & Yan, 2022); | ¢ 5 5023; Wu & Yan, 2022)
learning Yan, 2022): transfer Drift (Bai et al., 2920, Zhang et al., 2021); X(t) = GP(F(WJ,Z(£)), &) (Zhang et
) - . Sensor Failure (Li et al., 2023) = 0 ¢ g
learning/domain adaptation al., 2021)
(Zhang et al., 2021)

Table 7. Modelling techniques for impacts of sensor degradation on measurement uncertainty

Filtering technique-based models, commonly explored in the
literature, are prominently recognized within the frameworks
of filtering methods. This approach enhances adaptability and
provides robust uncertainty quantification by leveraging
inherent structures of filtering algorithms. In (Chughtai et al.,
2022), noise (outliers) and sensor failures (missing data) are
modelled as special cases of outliers using a measurement
likelihood function within Selective Observations-Rejecting
Unscented Kalman Filter (SOR-UKF). This is achieved by
incorporating an indicator vector as a parameter in the
measurement likelihood function, which takes a value of 1
when the measurement is valid (no outlier) and a value of €,
a number close to zero, when the measurement is considered
an outlier or corrupted. In addition, most methods incorporate
measurement uncertainty from sensor degradation,
specifically gain degradation, bias, drift, sensor failure, into

the measurement model within filters, specifically, local
recursive filter (Huang & Shen, 2021), particle filter
(Hachem et al., 2024; Liu et al., 2022), Kalman filter
(Mukhopadhyay et al., 2023; Liu et al., 2019; Loo et al.,
2022; Feng et al., 2018; Dinh et al., 2024; Wu & Liu, 2024;
He et al., 2025; Mayilsamy et al., 2025), distributed resilient
filter (Liu et al., 2016), H-infinity filter (He et al., 2008),
Bayesian framework (He et al., 2022), Gaussian data
reconciliation (Li & Ying, 2017), Probabilistic Local
Maximum Mean Discrepancy (PLMMD) framework (Zhang
et al, 2022), Neural Network-based Kazantzis-
Kravaris/Luenberger observer (NN-KKL) (Cao et al., 2024).
The performance of these filtering approaches is critically
dependent on the accuracy of the underlying system model
and the statistical assumptions made about the process and
measurement noise.
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Statistical and probabilistic models are founded on the
principles of statistics and probability, focusing on
deterministic relationships while incorporating elements of
uncertainty. Wen et al. (2023) incorporated random variables
representing gain degradation directly into the measurement
model, while Zhang et al. (2019) employed set-membership
estimation, treating gain degradation as a probabilistic factor
characterized by random variables bounded within a specific
interval. Yoo et al. (2020) modelled sensor failure by defining
“sensor fault” as a gain reduced to 70% of its normal value
and measuring resilience under such conditions. Noise and
sensor failure (loss of informativeness) are modelled by van
Oosterom et al. (2017) using a Partially Observable Markov
Decision Process (POMDP) with an observation matrix that
evolves with sensor age. He et al. (2022) integrated bias and
noise into the measurement model through a Bayesian
framework that incorporates sensor degradation. In
(Hickinbotham & Austin, 1999), noise is modelled using a
Gaussian distribution, then sensor shifts are detected via the
eigenface algorithm, leveraging Principal Component
Analysis of sensor responses. Wu et al. (2024) quantified
measurement uncertainty through the Information Gain
(EIQG), calculated using Relative Entropy to capture the loss
of information and an increase uncertainty due to sensor
network degradation processes. Jiang et al. (2006) captured
gain degradation and increased latency (time constant) in
throttle position sensors by using Autoregressive Moving
Average with Extra Input (ARMAX) model. Wanga et al.
(2008) modelled “synthetic” gain by combining
multivariable measurements into a Confidence Value. In (Li
et al., 2007), noise was modelled by the standard deviation,
such that an increase in the standard deviation is interpreted
as a sign of sensor degradation. The strength of this approach
lies in its remarkable versatility, offering a diverse toolkit of
statistical methods to model a wide array of degradation
effects. A notable challenge, however, lies in the selection
and validation of the appropriate statistical model, as an
improper choice can lead to non-descriptive results and/or
inaccurate predictions.

Empirical models are constructed using data observed from
experiments or real-world measurements, providing data-
driven insights into system behaviour. In measuring Top-of-
Atmosphere radiance, implicit impact, which could be a
synthesis, e.g., drift, shift, bias, ... was modelled by updating
calibration coefficients monthly with cross-calibration using
observed data (Lu et al., 2021), or under a mathematical
model followed by a Bidirectional Reflectance Distribution
Function (BRDF) and fitted using linear regression analysis
(Kim et al., 2013). Aldrin et al. (2007) modelled sensor
sensitivity degradation in a variety of sensors used in
Structural Health Monitoring (SHM) through flaw size, as
sensors degrade, it becomes less sensitive, requiring a larger
flaw size to detect the same flaw with a given probability, as
determined by a Probability of Detection (POD) model. Zhan
et al. (2025) modelled sensor drift through the use of Hessian

matrix and the analysis of its eigenvalues for positioning
systems, "when sensors become degenerate, the
corresponding eigenvalues become much smaller. Yu and
Wu (2009) modelled drift by a degradation rate using
formulas using a time series of observations. Ohsuga and
Ohyama (1988) described “drift” by a correction coefficient
Kgraqa- Li et al. (2007) modelled implicit impact using
correlation coefficients between two related sensor readings,
such that a decrease in this correlation over time suggests that
one or both measurements indicate increasing uncertainty,
additionally, they modeled sensor fault using rules that the
sensor was identified as stuck when its measurement meets
specific conditions. A principal benefit of this approach is its
practicality, as these models can often be developed and
implemented straightforwardly from available data.
However, a major weakness of empirical models is their
limited ability to extrapolate, as their predictive accuracy can
degrade when applied to varying conditions outside of the
original observed operating points.

Machine learning methods leverage training processes to
learn from data with complex patterns, enabling the
development of models that can adapt and generalize to
diverse scenarios. Bai et al. (2020) modelled noise and drift
by considering multiple input parameters, including sensor
outputs and environmental factors, and then adjusting the
weights and biases through training to account for
measurement errors caused by sensor degradation over time.
Li and Dai (2023) proposed a physics-guided neural network
model for detecting sensor faults in aeroengine control
systems. Wu and Yan (2022) addressed the challenge of
bounded noise in measurement data by proposing a novel
autoencoder-based model designed to effectively capture and
mitigate the impact of such noise. Zhang et al. (2021)
modelled drift with Domain Adaptation Mixture of Gaussian
Processes (DA-MGP) model, which integrates Gaussian
Processes and domain adaptation techniques. The most
significant advantage of this approach is its ability to
automatically learn and represent highly complex and
nonlinear degradation patterns directly from data. However,
these models often act as “black boxes” with low
interpretability, and their performance is critically dependent
on the availability of large, representative training datasets.

In summary, it is clearly demonstrated that sensor
degradation has discernible impacts on measurement quality,
affecting both qualitative and quantitative aspects. These
effects can be systematically analysed and modelled using a
variety of techniques, ranging from empirical models based
on observations and experimental data to more advanced

filtering methods employed within state estimation
frameworks. Additionally, theoretical and data-driven
methodologies, including statistical, probabilistic, and

machine learning-based approaches, offer insights into
degradation patterns and their consequences. The complexity
of sensor degradation necessitates a multifaceted approach,
incorporating domain expertise, computational techniques,
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and real-world validation to ensure robustness and reliability.
This introduce into prognostics and maintenance decision-
making strategies, the necessity of effectively adapting and
mitigating these challenges to safeguard the system
reliability. These strategies will be discussed in the next
sections. While substantial progress has been made in this
domain, certain research gaps remain, which will be further
explored in Section 7.

5. REVIEW ON PROGNOSTICS WITH MEASUREMENT
UNCERTAINTY FROM SENSOR DEGRADATION

This section delves into reviewing the topic of prognostics in
the presence of measurement uncertainty arising from sensor
degradation. Investigating sensor degradation in prognostics
is crucial, as accurate measurements are essential for
predicting system health and sensor degradation is a
significant source of measurement uncertainties that
undermine the accuracy of the prognostics process
(Mukhopadhyay et al., 2023; Zhang et al., 2018; Liu et al.,
2019). Sensor degradation impacts prognostics by reducing
the availability of effective monitoring data and making it
difficult to distinguish adjacent health states, leading to
inaccurate predictions of health conditions and increased risk
of failure in critical systems (Yin et al., 2022).

Prognostics approaches can be classified into three
categories: data-driven, physics-based, and hybrid methods
(Guo, Li and Li, 2019). Data-driven approaches leverage
techniques such as artificial intelligence and statistical
methods. Physics-based methods rely on principles such as
physics of failure and system modelling. Hybrid approaches
combine data-driven techniques with knowledge of
degradation mechanisms to enhance prediction accuracy.
These classifications are illustrated in Figure 3.

Physical
Model
Failure physics,

Hybrid Model

virtual sensing, functional

Data-driven
Model

Classification, fuzzy logic, NN,

state estimation models

Experience-based prognostic

Increasing domain knowledge and accuracy

Generic, statistical life usage

algorithm, i.e., Failure PDFs

AAL
/

Range scope

Figure 3. Applications of various prognostics approaches
(Guo et al., 2019)

Studies have highlighted a range of methods for addressing
sensor degradation and measurement uncertainty in
prognostics. They can be categorized, as shown in Table 8.

Experience-based methods rely on historical data and expert
knowledge to inform predictions and decision-making,
drawing insights from observations and professional
expertise. Yin et al. (2022) proposed a Belief Rule Base
(BRB) model to encode expert knowledge about the sensor’s
degradation and failure mechanisms, represented by
probabilities of failure at each time step of data, which
accommodate uncertainties and inaccuracies in the data
caused by sensor degradation, and subsequently use fuzzy
logic under Membership Functions (MF) to predict the
sensor's future health state, categorizing it into different states
with a high accuracy and a reasonable state based on the
probabilities of failure. The proposed BRB-MF model
demonstrated high accuracy in predicting sensor health
states; a case study using brightness sensors showed that
BRB-MF has clear advantages in effectively utilizing
comprehensive expert knowledge when dealing with limited
data availability, naturally, when a full range of data is
available, the results would not be different from other data-
driven methods such as neural networks, as stated by the
authors. A primary benefit of such methods is their high
degree of interpretability, as the explicit encoding of expert
rules allows for clear insight into the model's decision-
making logic. The approach's main vulnerability, however,
lies in its potential for subjectivity and bias, as the model's
accuracy is fundamentally constrained by the quality and
completeness of the expert knowledge it is built upon.

Categories Description

References

Experience-based predictions

relies on historical data and expert knowledge to make

Yin et al., 2022

Data-driven physical understandings are available)

utilizes statistical methods for prognostics (when no or rare

Zhang et al., 2018; Wanga et al., 2008; Yuan, Xu,
Adjallah, Wang, Liu and Xu, 2024; Carratu et al.,
2024
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Physical-Based prognostics estimation models

incorporates parameters about sensor degradation into

Mukhopadhyay et al., 2023; Hachem et al., 2024;
Liu et al., 2019; Hossain et al., 2024

driven models of sensor degradation

combining physical-based models of prognostics with data-

Michaels et al., 2005; Bonhote et al., 2006

Hybrid

data-driven models of prognostics

combining physical-based models of sensor degradation with

He et al., 2022; Aldrin et al., 2007; Yoo et al.,
2020

Table 8. Categorizations of prognostics methods with measurement uncertainty from sensor degradation

Data-driven methods employ statistical techniques for
prognostics, particularly in scenarios where physical
understanding of the system is limited or unavailable. Zhang
et al. (2018) effectively quantified the influence of sensor
measurement errors on RUL prediction in a blast furnace
system by modelling system degradation with a Wiener
process that incorporated deteriorating sensor measurement
errors quantified using Relative Entropy, and estimated
failure time using an Inverse Gaussian distribution, numerical
results indicate that controlling the measurement error within
specified permissible ranges significantly improves the
accuracy of lifetime estimates. Wanga et al. (2008) used a
Statistical Pattern Recognition model to estimate a
Confidence Value (CV) as the RUL for automotive sensors
by training with data during the offline phase to recognize the
normal behaviour of the sensor based on historical data, and
then to be used in online phase to calculate a CV that
quantified the similarity between the current sensor
behaviour and the normal behaviour observed during
training, which showed that as the sensors degrade, the CV
clearly showed a declining trend, effectively detecting even
small and early-stage degradation in the sensor's
performance. Yuan et al. (2024) presented a data-driven
method for predicting the remaining useful life of sensors,
considering the impacts of sensor degradation on
measurement uncertainty, by employing statistical models
such as the Weibull distribution to estimate failure
probabilities over time based on historical sensor failure data.
Carratu et al. (2024) proposed a data-driven method for
predicting the RUL of MEMS sensors, that utilized a neural
network trained to forecast RUL based on degradation trends
captured by the Health Index. The core strength of this
approach is its ability to build effective prognostic models
directly from operational data, even in the absence of a
detailed first-principles understanding of the system's failure
physics; however, the quality and quantity of historical data
directly govern the model's predictive accuracy and
generalizability.

Physics-based methods integrate sensor degradation
parameters into prognostics estimation models to enhance
accuracy and reliability in predicting system performance
over time, requiring a deep understanding of the system's and
sensor's physical degradation processes. Hachem et al. (2024)
incorporated parameters about sensor degradation into state
estimation models in the case of wastewater treatment using
stochastic processes such as Gamma and Wiener, with state

estimation carried out through particle filters, and RUL is
predicted by simulating the future degradation path based on
the current state estimation-based particle filter, specifically,
for each particle, the future degradation is simulated by
advancing the stochastic process forward in time, resulting in
a significant reduction in MSE and RMSE when sensor
degradation is considered in estimating system’s degradation
state. Liu et al. (2019) presented a physics-based approach
that uses a Wiener process to model both system and sensor
degradation of wastewater treatment plants and employed the
Kalman filter to incorporate sensor degradation parameters
into the system's state estimation for accurate RUL prediction
through its cumulative distribution function. The same
approach was also used by Hossain et al. (2024) for the case
of nuclear reactor pressure vessels. Mukhopadhyay et al.
(2023) proposed a methodology for estimating the RUL of an
offshore wind system where both the system and the sensor
degrade over time, by modelling the degradation processes of
both the system and the sensor, and then estimating them
using a Kalman filter, RUL was estimated by simulating the
future trajectory of the system degradation using the updated
state probability distribution, with results that finally showed
that accounting for sensor degradation leads to more accurate
predictions, without accounting for degradation, deviations
were evident; whereas with the proposed method, estimations
closely matched actual degradation.

Hybrid methods in prognostics and health management
represent a powerful approach by integrating physics-based
models with data-driven techniques, either by combining
physical models of prognostics with data-driven insights into
sensor degradation or vice versa, enabling more accurate and
robust system health predictions. Michaels et al. (2005)
contributed to prognostics of aluminium components by
monitoring their progression of damage using affixed
ultrasonic sensors by physics-based monitoring fatigue crack
growth using through-transmission ultrasonic signals, while
addressing measurement uncertainty from sensor degradation
through pulse echo corrections and Energy Ratio methods
that effectively compensate for the impacts of sensor
degradation. In addition, Chunping et al. (2006) used the
Arrhenius model to predict time to failure of giant

E
magnetoresistance (GMR) sensor heads TFF = AerT fitted
with historical data. Yoo et al. (2020) presented a hybrid
prognostics method that integrates physics-based models of
sensor degradation accounting for faults such as bias, gain,
and drift, and with linear discriminant analysis to estimate
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system resilience demonstrated with the electro-hydrostatic
actuator (EHA) system, resulting in a more precise resilience
estimation that reveals a 6% drop in resilience due to sensor
degradation. Aldrin et al. (2007) presented an approach for
assessing aircraft system reliability that integrates a physics-
based, time-dependent POD model for sensor degradation
with a data-driven probabilistic risk assessment framework to
evaluate the impact of sensor degradation on SHM
performance and system prognostics, and concluded that
sensor degradation leads to an increased probability of failure
over time in the POD model compared to a fixed POD model.
He et al. (2022) predicted the RUL through reliability
metrics, including lifetime quantiles and system reliability,
which is used to quantify how long a system will function
before failure, by modelling the degradation of both the
system and the sensor using Wiener processes and
dynamically updating these models through an Approximate
Bayesian Computation (ABC) algorithm, which incorporates
measurement uncertainty arising from sensor degradation
during sequential Accelerated Degradation Tests (ADT),
numerical studies on a gas turbine system achieved a
significantly lower asymptotic variance in RUL prediction
metrics compared to the benchmark sequential model that
ignored sensor degradation. The strength of hybrid
philosophy is its ability to leverage first-principles models
while using data-driven techniques to capture complex
interactions or correct for unmodelled effects. Still, the
development of such integrated models can be more complex
to properly fuse the different modelling paradigms.

This section provides insights into how prognostic techniques
have evolved to manage the challenges posed by sensor
degradation. Several approaches and techniques have been
applied to address the challenges, ranging from encoding
expert experience or physics of sensor degradation into the
approach, to data-driven methods with the capability for
generalization for various applications, or hybrid methods to
utilize the strengths of both. Given the critical role of
prognostics as an input for many maintenance decision-
making processes, the next section will review maintenance
decision-making, with a focus on the effects of sensor
degradation. Remaining research gaps will be discussed in
Section 7.

6. REVIEW ON MAINTENANCE DECISION-MAKING WITH
MEASUREMENT UNCERTAINTY FROM SENSOR
DEGRADATION

Condition-Based Maintenance (CBM) and Predictive
Maintenance (PdM) are popular concepts in maintenance
decision-making. CBM is a proactive approach that utilizes
real-time monitoring of equipment conditions to assess and
determine the necessity for maintenance (Golmakani, 2022;
Kroculick, 2014; de Meyer, Goosen, van Rensburg, du
Plessis and van Laar, 2021). Meanwhile, PdM leverages data

through the prognostics process, enabling proactive
predictions of future health based on current and historical
data (Roehrich & Raffaele, 2023; Assagaf, Sukandi,
Abdillah, Arifin and Ga, 2023). The relationship between
them can be visualized in Figure 4, where the data acquisition
process directly informs the maintenance decision-making
process or is further utilized for predictive capability.

Approach 1: Condition-based
Conditions maintenance
monitored
by sensor system
4 Approach 2: Predictive
maintenance
Prognostics - Maintenance

process decision making process

Figure 4. Maintenance decision-making approaches
considering measurement uncertainty from = sensor
degradation

Building upon the insights provided in the previous sections
that explored impacts on measurement uncertainty and the
adaptation of prognostics in managing uncertainty arising
from sensor degradation, this section delves into maintenance
decision-making under these factors. Considering
measurement uncertainty resulting from sensor degradation,
the maintenance decision-making process has been adapted.
Table 9 summarizes the approaches outlined by the following
interpretations.

Sensor degradation increases the probability of undetected
failures and unnecessary repairs due to false alarms. To
address this, Aldrin et al. (2007) employed a probabilistic risk
assessment and cost-benefit analysis to evaluate how sensor
degradation affects the reliability of SHM systems. Inputs
include time-dependent sensor degradation characteristics,
capturing how sensor performance deteriorates over time,
and the relationship between the actual damage state and the
detected damage state, ensuring accurate damage
assessments. Essential parameters such as the 50% detectable
flaw size and the random missed flaw rate are dynamically
modelled as functions of time to reflect ongoing sensor
reliability changes. Maintenance outputs are actionable
recommendations for sensor replacement when degradation
compromises system reliability, ensuring consistent
monitoring effectiveness. Additionally, cost evaluations and
maintenance interval decisions are optimized by assessing
reliability and associated costs under varying degradation
scenarios. The results show that sensor degradation
significantly increases the probability of failure (e.g., an
increase in random missed detection rate to 10% or detectable
crack size to 0.07 inches leads to higher failure risks), while
slightly reducing total maintenance costs due to fewer repairs,
highlighting the critical need for sensor replacement or
recalibration to balance safety and cost.
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Categories Description

References

Condition-Based
Maintenance

Characteristics: involves monitoring the actual condition of equipment in real-
time to determine whether maintenance is needed, minimizing unnecessary
repairs by performing work only when justified by equipment health.

Inputs: system states, sensor measurements, belief states, degradation states, ...

Aldrin et al., 2007; Liu et al.,
2019; van Oosterom et al., 2017,
Murthy, 1982; Li & Ying, 2017;
Zhang et al., 2023

Predictive
Maintenance
Inputs: prognostics information

Characteristics: involves predicting the future health of a system or component
by estimating RUL based on current and historical data, requires investment in
prognostic models and historical data for accurate predictions

Zhang et al., 2018; Dinh et al.,
2024; Yuan et al., 2024

Table 9. Maintenance decision-making approach considering measurement uncertainty from sensor degradation

Disregarding sensor degradation significantly increases the
risk of inaccurate system state estimation, leading to
suboptimal maintenance decisions with ineffective actions
and increased costs. Liu et al. (2019) proposed a maintenance
policy utilizing estimated system and sensor states as key
maintenance inputs, derived through a stochastic filtering
approach using the Kalman filter, applicable to systems
operating in harsh environments, such as wastewater
treatment plants, manufacturing systems, chemical plants,
and pharmaceutical factories. This method effectively
accounts for both system degradation and sensor degradation,
ensuring accurate state estimation despite measurement
uncertainties. Maintenance actions are dynamically
determined at each inspection, offering two primary
responses: corrective replacement is performed if the system
is found to have failed, while preventive replacement is
initiated when the predicted system reliability is projected to
reach a critical threshold before the next inspection. The
method achieves a near-optimal maintenance policy
effectively addressing sensor degradation and achieving a
long-run cost rate that is lower than 36% compared to when
sensor degradation is disregarded.

Considering degrading sensors allows for the optimization of
maintenance strategies, balancing the trade-off between
sensor performance (minimizing variance in estimation) and
the costs of maintenance. Murthy et al. (1982) developed
maintenance for deteriorating sensors guided by degradation
indicators, specifically, signal intensity, noise intensity, and
drift quantification, which can be applied broadly to
industries relying on sensor-based systems for real-time
monitoring and control. Indicators reflect the gradual or
catastrophic deterioration of sensor performance over time.
Maintenance actions are optimally chosen between full
maintenance and no maintenance during specific periods,
depending on the sensor’s degradation level. The decision-
making process aims to balance reducing the measurement
variance caused by sensor degradation and controlling
maintenance costs. This balance is achieved through
optimization methods that determine the most effective
maintenance strategy, specifying when and how much
maintenance should be applied to achieve this balance. The
results showed that the optimal maintenance strategy often
involves either full maintenance during a portion of the
operational time or no maintenance, with maintenance

improving the mean time to failure and reducing the variance
of the signal estimation error.

Oosterom et al. (2017) presented a maintenance strategy that
integrated sensor degradation into its decision-making
process utilizing a belief state that quantifies the probability
that the system is in an out-of-control state, applied in safety-
critical systems, such as chemical plants, hospitals, and
nuclear power reactors. This belief is dynamically updated
using Bayes’ rule as new, potentially imperfect, observations
from the deteriorating sensor are received. The maintenance
actions derived from this model include: (1) continuing
operation when the system is deemed stable, (2) conducting
a full inspection to perfectly determine the system’s
condition, (3) replacing the system if the inspection confirms
it is out-of-control, and (4) replacing the sensor when its
degradation surpasses a defined threshold to restore
measurement reliability. These decisions are systematically
guided by a Markov decision Process framework, which
incorporates both the updated belief state and the sensor's
age. The model employs a threshold-based policy, wherein
actions are triggered when the belief and/or the sensor age
exceed thresholds, ensuring optimized coordination between
system inspections and sensor replacements. The model is
highly effective, with numerical results showing the optimal
policy achieving significantly lower total costs compared to
heuristic policies, with examples showing optimality gaps of
1.0% for a heuristic policy using a simplified threshold and
up to 11.9% for a less coordinated policy.

Li and Ying (2017) presented an enhancement to gas turbine
reliability by addressing measurement inputs affected by
sensor degradation. Over time, gas-path sensors can produce
biased measurements due to degradation or failure,
compromising the accuracy of diagnostic results. To mitigate
this, the proposed method outputs critical maintenance
actions, including the detection of degraded sensors, isolation
of faulty sensors, and quantification of the degradation rates
of both gas-path components and sensors. This is achieved
through an advanced maintenance decision-making process
utilizing an extended nonlinear Gas Path Analysis (GPA)
method. The approach integrates Gaussian data
reconciliation to identify and correct suspicious sensor data
and employs multiple operating points to distinguish between
sensor faults and actual component degradation. This
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comprehensive process ensures accurate fault detection,
effective isolation of faulty components, and precise
assessment of degradation severity, thereby improving
maintenance decisions and overall engine performance. The
proposed method significantly improves diagnostic accuracy,
enabling the correct identification and quantification of
components across five test cases.

Zhang et al. (2023) developed maintenance decision-making
in the context of SHM systems, specifically addressing how
measurement uncertainty caused by sensor degradation
impacts the reliability of maintenance strategies. The study
incorporates the effects of time-varying sensor performance,
including random measurement errors and systematic biases,
which influence the accuracy of structural condition
assessments. Maintenance decisions are guided by key
information such as the monitored structural damage
condition, SHM measurement outcomes affected by
degradation, and diagnostic reliability indicators such as the
Probability of Detection and the Probability of False
Indication. Based on this information, the framework
supports  critical ~maintenance  activities, including
determining when to conduct inspections, triggered when
monitoring data exceed specific thresholds, and deciding on
repairs when detected damage surpasses safety limits.
Additionally, the approach considers the need to renew or
recalibrate SHM systems as their performance deteriorates
over time. The study proposes two maintenance strategies:
the first initiates inspections based on real-time monitoring
data exceeding a damage threshold, while the second relies
on the annual failure probability inferred from SHM data to
trigger inspections when it exceeds a predefined limit. The
results demonstrate that the impact of ignoring SHM
performance degradation significantly elevates the lifecycle
cost (LCC) of structures, underscoring the necessity of
incorporating time-varying measurement uncertainties into
maintenance strategies. Specifically, the results from
degradation scenarios show that neglecting sensor
degradation can significantly increase the expected LCC
compared to strategies that account for measurement
uncertainty.

Sensor degradation leads to inaccuracies in lifetime
estimation due to measurement errors, which can cause
suboptimal maintenance decisions, increased costs, and
elevated safety risks. Zhang et al. (2018) revolved around the
critical role of accurate lifetime estimation in guiding
maintenance decisions, which can be applied in complex
industrial systems such as blast furnaces. This estimation is
notably influenced by measurement errors stemming from
sensor degradation over time. Such errors can bias lifetime
predictions, impacting the effectiveness of maintenance
policies. Specifically, maintenance outputs include the
development of replacement policies and the determination
of optimal maintenance intervals to avoid unscheduled
maintenance events and minimize associated costs. A
degraded sensor is scheduled for replacement either when its

degradation trajectory intersects a defined failure threshold or
when it reaches a predetermined age. This decision-making
process is deeply rooted in lifetime estimation models that
account for potential measurement errors. Consequently,
maintenance decisions, primarily following an age-based
replacement strategy, are informed by evaluating lifetime
predictions while incorporating sensor measurement errors,
which ensures a more robust maintenance framework. The
numerical results demonstrate that controlling measurement
errors reduces maintenance costs significantly, specifically,
in test cases, when measurement errors are controlled within
permissible ranges, the long-run average maintenance cost
per unit can be minimized, whereas uncontrolled
measurement errors lead to substantial cost increases.

Yuan et al. (2024) introduced a risk-based PdM method that
quantifies the impact of sensor degradation on decision-
making risks to optimize maintenance schedules. This
method relies on inputs such as historical sensor failure data,
sensor lifespan  distribution models (e.g., Weibull
distribution), and risk assessment metrics that link sensor
failure probabilities to operational risks, including financial
losses and customer complaints. The outputs/actions involve
determining the optimal timing for sensor replacements or
inspections based on predicted risk thresholds, allowing for
proactive interventions before failures cause significant
disruptions. The maintenance method employs mathematical
models that calculate both individual and combined risks of
sensor failures, integrating failure probabilities with risk
values to assess how degradation affects system performance.
This approach also accounts for the compounded effects of
multiple sensor failures, enabling a more comprehensive risk
evaluation. Numerical results from case studies demonstrate
the method’s effectiveness, showing that without predictive
maintenance, the risk of financial loss can reach 336.13 per
day when critical sensors fail simultaneously, while the
proposed method significantly reduces both financial risks
and the frequency of customer complaints compared to
traditional periodic maintenance strategies that do not
consider the impacts of sensor degradation on measurement
uncertainty.

Dinh et al. (2024) introduced an adaptive PdM strategy
specifically designed for manufacturing systems where
measurement uncertainty arises from the degradation of
health monitoring devices (HMDs). The decision-making
process is driven by several critical factors, including
estimated degradation levels of both the system and the
HMDs, prediction of the reliability of the system at future
inspection intervals, and data collected during regular
monitoring activities. Additionally, maintenance-related cost
parameters, such as inspection expenses, costs of preventive
and corrective actions, HMD replacement or calibration
costs, and potential downtime losses are integral to the
decision framework. Based on these factors, maintenance
actions are determined through a structured approach:
corrective maintenance is triggered if the estimated system
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degradation exceeds the failure threshold, preventive
maintenance is scheduled when system reliability drops
below a critical level while the HMD remains reliable, and
HMD replacement or calibration is initiated if its degradation
undermines the accuracy of condition monitoring. If the
system’s reliability remains high, maintenance actions are
deferred to optimize resource usage. This decision-making
process operates within an adaptive framework, where
system and HMD conditions are continuously evaluated
using Kalman filter techniques. By integrating real-time data
with predictive modelling, the approach ensures that
maintenance decisions are both cost-effective and responsive
to the dynamic interplay between system degradation and
sensor performance, ultimately enhancing system reliability
while minimizing unnecessary maintenance interventions.
The proposed method achieved an optimal maintenance cost
rate; compared to the conventional method, which had a
higher cost rate, it reduced costs by approximately 12.5%.
Further analysis showed that the maintenance cost rate is
sensitive to the sensor replacement threshold: compared to
the optimal value, lower thresholds increase costs due to
frequent sensor replacements, while higher thresholds reduce
replacements but raise costs from system failures or poor
maintenance timing caused by degraded sensor accuracy.

In brief, the performance of CBM and PdM fundamentally
depends on measurement quality, which can be compromised
by sensor degradation. Various approaches have been
developed to mitigate this issue, incorporating sensor
degradation into maintenance frameworks through additional
indicators, state estimation, and filtering. New policies define
maintenance actions for both sensors and systems, supported
by optimization algorithms. Despite these advancements,
significant gaps remain. The next section will explore several
challenges and potential research opportunities.

7. DISCUSSION AND RESEARCH OPPORTUNITIES

7.1. Modelling Sensor Degradation and Impacts in
Measurement Uncertainty

The challenge of developing precise models that represent
sensor degradation processes persists. Most current models
rely on oversimplified assumptions and fail to capture the
complexity of real-world dynamic operating conditions.
These conditions include a range of stochastic factors such as
variable operational loads, thermal cycling, intermittent
power-on/off cycles, and exposure to sudden shocks and
vibrations, which are often ignored in laboratory settings. For
instance, current studies frequently overlook shocks or
assume their effects are constant (Hachem et al., 2021),
failing to capture the stochastic nature of these events.
Therefore, a key research direction involves creating more
robust, multifaceted degradation models. Future work should
focus on integrating sensor-specific parameters with models
that can dynamically account for these real-world conditions.
This includes advanced techniques such as probabilistic

modelling for shock events, hybrid simulations, and real-time
anomaly detection.

Furthermore, performance under a wide range of operating
conditions has also received insufficient attention
(Mehdizadeh et al., 2012). Existing approaches often fail to
model degradation across different operating points. This is
evident in the case of the Solar Diffuser Stability Monitor
(SDSM), which cannot track degradation uniformly across its
full sensing range (Sun & Xiong, 2020). Addressing these
limitations requires models that can account for the full
spectrum of operational variabilities encountered in real-
world scenarios.

Traditional degradation modelling methods such as the
Wiener process, though widely used, may not be sufficient to
capture the nonlinear and complex nature of sensor
degradation (Liu et al., 2019). Although root-cause analysis
of the nonlinear physical mechanisms of sensor degradation
can provide more accurate modelling; however, this can be
hard and costly due to the multi-factor complexity of
degradation phenomena. This limitation hinders the
generalization of models to real-world data, where
degradation conditions vary significantly across different
sensors. Recent research highlights the need for models that
incorporate nonlinear and non-stationary degradation
processes to better capture the diverse nature of sensor
degradation (Hachem et al., 2021). There is a recognized gap
in the integration of physics-based and stochastic models for
sensor degradation, while both approaches have been
explored separately, combining them could provide more
comprehensive and accurate degradation models (Hua et al.,
2013). While physics-based models excel at describing
degradation through well-defined mechanisms, stochastic
models effectively capture the probabilistic and uncertain
nature of degradation processes. By developing hybrid
frameworks integrating physics-based terms with a stochastic
approach, researchers can create models capable of capturing
both deterministic and probabilistic degradation trends. Data-
driven approaches, such as machine learning, can support
modelling degradation patterns by leveraging historical
sensor data. Unlike traditional methods that rely on
predefined degradation models, machine learning techniques
can uncover complex, nonlinear relationships and patterns
directly from the data that can be highly adaptable to various
applications. Physics-Informed Machine Learning (PIML)
can be a standout approach to modelling sensor degradation,
by integrating physical terms with the data-driven
adaptability power of machine learning, which ensures
predictions remain consistent with real-world physical
behaviours, especially in scenarios where training data may
be sparse or noisy, that eventually improve model accuracy
and explainability.

Multi-dimensional correlated sensor degradation remains
underexplored (Mandal et al., 2017; Hua et al., 2013). Real-
world systems often experience complex interactions
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between multiple degradation factors, such as operational
stress or environmental influences. Current research typically
focuses on isolated degradation mechanisms, failing to
capture the interdependence among these dimensions. In
addition, there is a lack of research on the simultaneous
degradation of both the monitored system and the sensor,
which may require decoupling their dynamics for effective
degradation detection (Jiang et al, 2006). Moreover,
distinguishing between sensor degradation and system
degradation is critical, especially for applications such as
SHM, yet advanced techniques to differentiate between these
two phenomena are still lacking (Mehdizadeh et al., 2012).
These gaps present significant research opportunities,
particularly in developing advanced modelling algorithms
capable of analysing multi-dimensional degradation
processes.

Integration of sensor degradation modelling into analysis of
measurement uncertainty takes a pivotal role in the domain
of estimation and filtering. Although sensor measurement
degradation can be conveniently detected, challenges persist
in quantifying the consequent uncertainty, for example, the
difficulty in estimating the detected gain degradation (He et
al., 2008). Research opportunities could focus on developing
more sophisticated modelling and estimation methods to
better evaluate sensor performance reduction. Currently,
measurement errors are often treated as time-independent
random variables; however, in reality, sensor errors tend to
change over time due to degradation (Zhang et al., 2018). An
important focus is the development of dynamic models that
account for sensor degradation time-varying errors. This
opens a wealth of research opportunities focused on
developing augmented state modelling techniques that
account for the dynamics of degraded sensors by
incorporating degradation-related parameters, integrating
these into estimation frameworks such as adaptive Kalman or
particle filters. In addition, the integration of physics with
data-driven approaches can significantly improve modelling
performance. Furthermore, there is a need for investigations
into probabilistic models to consider robustness (He et al.,
2008). Data-driven approaches depend on datasets, which are
currently limited, and their construction is often resource-
intensive and laborious, particularly due to conditions such as
environmental variability during the data acquisition process
(Qiu, Shen, Yue and Zheng, 2023). Future research could
focus efforts on introducing more data collection for future
development and benchmarking. Furthermore, less attention
has been given to fusing degradation data from multiple
sensors, multiple sensor data, and data fusion algorithms can
be implemented for multi-sensor degradation systems (Arosh
et al., 2015). Another prominent research gap is the need for
more comprehensive indicators to capture measurement
uncertainty caused by sensor degradation. Future work can
focus on developing resilience measures that accommodate
the time-dependent degradation dynamics of sensors (Yoo et
al., 2020). Moreover, further development of advanced

simulation methods could support data augmentation and
precision (Kamei et al., 2012).

To summarize the current limitations and highlight the
avenues for future research in modelling sensor degradation
and its impacts on measurement uncertainty, Table 10
provides a concise overview of key research gaps, their
current limitations, and promising future directions.

Current Limitations

Possible Research Directions

Simple assumptions,
ignore
dynamic/stochastic
factors (shocks, loads).

Develop robust, multifaceted
models; account for real-world
conditions; probabilistic shock
modelling, hybrid simulations,
real-time anomaly detection

Fail to model degradation
uniformly across
operating points

Develop models for full spectrum
of operational variabilities.

Traditional degradation
models insufficient for
nonlinear/complex
degradation; high cost for
root analysis.

Incorporate nonlinear/non-
stationary processes; hybrid
physics-stochastic models;
Physics-Informed ML (PIML).

Focus on isolated
mechanisms; lack of
interaction analysis,
simultaneous
system/sensor
degradation, and
differentiation
techniques.

Develop algorithms for multi-
dimensional degradation analysis;
decouple system/sensor dynamics.

Difficulty quantifying
measurement uncertainty;
errors often treated as
time-independent.

Develop sophisticated modelling
for performance reduction;
dynamic models for time-varying
errors; augmented state modelling;
probabilistic models.

Datasets are scarce,
resource-intensive;
environmental variability
issues.

Increase data
collection/benchmarking; develop
resilience measures for time-
dependent degradation; advanced
simulation for data augmentation.

Less focus on fusing
degradation data from
multiple sensors.

Implement multi-sensor data
fusion algorithms for degradation
systems.

Lack of comprehensive
indicators for
degradation-induced
uncertainty.

Develop resilience measures for
time-dependent sensor degradation
dynamics.

Table 10. Research Opportunities in Modelling Sensor
Degradation and Measurement Uncertainty

7.2. Managing Impacts of Sensor Degradation in

Prognostics

Sensor degradation introduces additional uncertainty in RUL
predictions. Most existing studies have largely overlooked
how sensor deterioration affects RUL predictions,
necessitating more focused research in this area
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(Mukhopadhyay et al., 2023; Hachem et al., 2024).
Prognostic algorithms must incorporate sensor degradation
more effectively through the development of sensor-aware
prognostic frameworks. These frameworks must dynamically
adjust to varying levels of sensor reliability.

Developing adaptive prognostic algorithms represents a
critical area of research. These algorithms must adjust their
behaviour based on changes in sensor performance, ensuring
improved accuracy when considering sensor degradation.
The focus has been primarily on simple systems; however,
prognostic frameworks must also account for more complex
engineering systems, consisting of multiple sensors and
components with interdependent degradation processes,
which require further study (Mukhopadhyay et al., 2023).
Multi-rate systems (MRSs) with sensor degradation have
received particularly little attention, despite the clear need for
robust fusion estimation methods tailored to handle
degradation effects (Huang & Shen, 2021). Research can
focus on developing prognostic algorithms that integrate data
from multiple sensors while accounting for their interaction
and individual degradation patterns.

Another promising avenue is explainable Al (XAI) in
prognostics. Many advanced data-driven algorithms, such as
deep neural networks, are often seen as “black boxes,” which
limits their applicability in safety-critical industries (Nor,
Pedapati, Muhammad and Leiva, 2021). By integrating
explainability into prognostic algorithms, researchers can
ensure that the models not only provide accurate predictions
but also offer insights into the underlying reasons for those
predictions; included the impacts of sensor degradation, a
crucial source of measurement uncertainty within prognostics
implementations (Guo et al., 2019). The ability of XAI to
explain diagnostic and prognostic activities by discovering
features and unusual patterns responsible for system and
sensor degradation can assist in managing these impacts and
provide more descriptive prognostic results.

Current prognostics methods also struggle with the challenge
of limited useful data. Extensive monitoring data and expert
knowledge are often required, but effective sensor health data
can often be scarce (Yin et al., 2022). This opens up research
opportunities to develop innovative techniques that can
function effectively under data-constrained conditions. This
points to a need for innovative approaches that combine
limited data with expert insights, such as employing fuzzy
evaluation techniques for more precise prognostics outcomes
(Yin et al., 2022). Moreover, exploring methods integrating
data augmentation, transfer learning, or synthetic data
generation may provide a pathway to overcome these
limitations and enhance the reliability of prognostics systems.

Another key related area is the development of digital twins,
which are virtual representations of physical systems. Digital
twins continuously ingest real-time data from sensors and can
incorporate sensor degradation models to monitor system
health. The integration of digital twin technology in

prognostics presents a significant opportunity for enhancing
PdM and operational efficiency. By continuously
assimilating data from various sensors, digital twins can
provide insights into the potential degradation issues,
allowing for timely interventions (Liu, Blasch, Liao, Yang,
Tsukada and Meyendorf, 2023; Li, Wang, Fan, Zhang and
Gao, 2023). By simulating the effects of sensor degradation
on system behaviour, digital twins can provide better
predictions of RUL and identify critical components
requiring attention. This real-time synchronization between
the physical and digital environments allows for proactive
and precise maintenance strategies.

Experimental validation and real-world case studies are
indispensable for advancing the field of prognostics and
understanding the impacts of sensor degradation. Research
can focus on creating benchmark datasets that include
controlled degradation patterns and corresponding system
failures. Such datasets are critical for developing and testing
models that can robustly handle degraded sensor data. Real-
world case studies are equally important for bridging the gap
between theory and practice. For instance, in the aerospace
sector, sensors play a critical role in monitoring engine health
and flight systems. Case studies on how degraded sensor data
affect RUL predictions can yield valuable insights for
enhancing algorithmic robustness. Another opportunity lies
in the development of cross-domain case studies that
compare sensor degradation and prognostics in different
industries. This approach can help identify universal
principles and best practices that apply across domains.
Furthermore, collaborative studies with industry partners can
ensure access to operational data, which is often proprietary
but critical for validating models in real-world contexts.
Research can also focus on long-term monitoring projects,
where systems are observed over their lifecycle to collect
continuous data on sensor performance and system health.
These projects provide a unique opportunity to study
degradation as they unfold in real time, offering insights that
static datasets cannot capture. For instance, monitoring an
industrial robot’s sensors over several years can reveal
patterns of degradation that inform maintenance schedules
and predictive models.

To summarize the current limitations and highlight the
avenues for future research in managing the impacts of sensor
degradation on prognostics, Table 11 provides a concise
overview of key research gaps, their current limitations, and
promising future directions.

Current

N Possible Research Directions
Limitations

Most studies overlook
sensor deterioration's
effect on RUL.

Focus on simple
systems; complex
multi-sensor systems

Develop sensor-aware prognostics
frameworks; dynamically adjust to
varying sensor reliability.

Develop adaptive algorithms for
complex  multi-sensor  systems
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and MRSs
underexplored.

(interactions, individual degradation);
robust fusion for MRSs.

Advanced data-driven
algorithms are “black
boxes”.

Integrate XAl to provide insights into
predictions and degradation causes.

Develop techniques for data-
constrained conditions; combine
limited data with expert insights
(fuzzy evaluation); data
augmentation, transfer learning,
synthetic data.

Effective sensor health
data are often scarce;
extensive monitoring is
needed.

Integrate digital twins for enhanced
PdM; assimilate real-time sensor
data, incorporate degradation models

Emerging integration;
full potential not yet

realized. for timely interventions, RUL
prediction.
Create benchmark datasets with
Need for benchmark controlled degradation; conduct
datasets and bridging cross-domain/industry case studies;
theory/practice. collaborate with industry; long-term

monitoring projects.

Table 11. Research Opportunities in Managing Impacts of
Sensor Degradation in Prognostics

7.3. Managing Impacts of Sensor Degradation in
Maintenance Decision-Making

Future research could delve deeper into how variations in
data quality resulting from sensor degradation, influence
maintenance decision-making processes. A promising
direction is the study of frameworks that more effectively
incorporate uncertainty quantification due to sensor
degradation. This includes understanding how operators
perceive and react to uncertain data, how trust in the system
evolves, and how cognitive biases might affect maintenance
prioritization under uncertain conditions. A CBM framework
accounting for sensor degradation presents research
opportunities. There is a need to investigate the integration of
sensor degradation models into the framework that capture
sensor abnormal behaviours, and failure patterns of sensors.
The integration of adaptive filtering and sensor fusion
techniques to mitigate the impact of degraded or faulty
sensors on data reliability represents a critical area for
exploration. The development of a robust PAM decision-
making framework with deeper utilization of prognostics
under the influence of sensor degradation also introduces
numerous research opportunities. A significant area of focus
could be the integration of advanced prognostics models that
can explicitly incorporate sensor degradation parameters into
the RUL predictions, ensuring more reliable forecasts despite
noisy or incomplete data. Another promising opportunity is
the development of predictive analytics capable of
distinguishing between actual system degradation and
erroneous sensor readings. Additionally, integrating
proactive sensor health monitoring into the PdM framework

could help ensure the reliability of predictive models over
time. Research into decision-making algorithms considering
multi-objective optimization that balances maintenance
costs, downtime, and the risk of uncertainty from sensor
degradation using techniques such as robust optimization,
Bayesian inference, or reinforcement learning can improve
maintenance decision-making.

Maintenance policies considering sensor degradation can
also be introduced. For example, research can focus on
developing dynamic maintenance policies that incorporate
sensor recalibration and adjustment to mitigate the effects of
sensor degradation (van Qosterom et al., 2017). In addition,
when the true state of a system is considered unknown due to
sensor degradation, the maintenance decision-making
process can rely on a combination of indirect indicators,
probabilistic models, and historical data to assess risks and
prioritize actions. The policies can involve observable
parameters (e.g., vibration, temperature, or performance
metrics), using predictive algorithms to infer the system's
condition, and leveraging Failure Modes, Effects, and
Criticality Analysis (FMECA) to estimate the likelihood and
impacts of potential issues. Maintenance cost analysis can
also be conducted to provide more details on the trade-offs.
Another innovative approach is the integration of self-healing
mechanisms in sensors, enabling automated repairs or
calibrations when degradation is detected. The use of digital
twins to simulate sensor performance and anticipate
degradation scenarios can also enhance maintenance
planning by creating adaptive maintenance policies capable
of dynamically revising plans based on sensor performance.
Additionally, implementing redundancy in critical systems
by deploying backup sensors or adaptive algorithms that
compensate for faulty readings can significantly improve
system reliability in the face of sensor wear and tear.

The development of standards and guidelines for managing
sensor-related uncertainties is also a pressing need. Research
can contribute to standards for uncertainty quantification and
propose maintenance guidelines for robust systems that
account for sensor degradation. For example, there is a gap in
the research on quantifying how much sensor degradation can
be tolerated while still ensuring reliable prognostics and
maintenance decisions. By establishing clear metrics and
classification schemes, researchers can lay the groundwork
for standardized uncertainty management practices. Another
vital area for exploration is the integration of these standards
into sensor design and maintenance strategies. Research
could focus on embedding sensor uncertainty management
principles into the lifecycle of sensor systems, from design
and manufacturing to deployment and maintenance. For
instance, guidelines could specify calibration routines,
validation techniques, and redundancy strategies to mitigate
uncertainty in sensor data. Furthermore, collaboration
between academia, industry, and regulatory bodies would be
essential to ensure that these standards are practical, widely
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applicable, and capable of addressing the diverse needs of
industries relying on sensors in safety-critical applications.

To summarize the current limitations and highlight the
avenues for future research in managing the impacts of sensor
degradation on maintenance decision-making, Table 12
provides a concise overview of key research gaps, their
current limitations, and promising future directions.

Current Limitations Possible Research Directions

Data quality variations
from degradation
influence decisions;
operator perception of
uncertain data, trust, and
cognitive biases

Develop frameworks for
comprehensive uncertainty
quantification; understand
operator response to uncertain
data, system trust evolution, and
cognitive biases in maintenance

underexplored. prioritization.
BM lacks integrat .
¢ cgrated Integrate sensor degradation
models for sensor . -
models; incorporate adaptive
abnormal . .
. . filtering and sensor fusion to
behaviours/failure .
mitigate degraded/faulty sensors.
patterns.

Challenges in integrating
explicit sensor degradation
into RUL; distinguishing
system degradation from
erroneous readings.

Integrate advanced prognostics
models with degradation
parameters; develop predictive
analytics to distinguish system vs.
sensor degradation; integrate
proactive sensor health
monitoring.

Balancing maintenance
costs, downtime, and
degradation risk is
complex.

Research decision-making
algorithms using multi-objective
optimization (costs, downtime,
uncertainty risk) via robust
optimization, Bayesian inference,
or reinforcement learning.

Policies often lack
dynamic
recalibration/adjustment;
maintenance for unknown
system states is

Develop dynamic policies
(recalibration, adjustment); rely
on indirect indicators,
probabilistic models, historical
data; utilize FMECA; conduct

challenging. cost analysis.
Integrate self-healing sensors; use
Limited self-healing digital twins for adaptive

mechanisms or advanced
redundancy strategies.

maintenance planning; implement
redundancy (backup sensors,
adaptive algorithms).

Lack of clear standards for
managing sensor
uncertainties; need to
quantify tolerable
degradation.

Develop standards for uncertainty
quantification; propose
maintenance guidelines for robust
systems; establish
metrics/classification schemes.

Insufficient integration of
uncertainty management
principles across sensor
lifecycle (design,
manufacturing,
deployment, maintenance).

Embed uncertainty management
principles into sensor
design/maintenance (calibration,
validation, redundancy); foster
academia/industry/regulatory
collaboration.

Table 12. Research Opportunities in Managing Impacts of
Sensor Degradation in Maintenance Decision-Making

8. CONCLUSION

This article provided a comprehensive review of the impact
of sensor degradation on measurement uncertainty and its
implications for prognostics and maintenance decision-
making. A structured methodology was adopted,
identification of relevant
classification of key themes, and synthesis of critical
findings. The literature review focused on sensor degradation
mechanisms, their influence on measurement uncertainty,
and how this uncertainty propagates through prognostics and
maintenance strategies. The review highlighted that sensor
degradation significantly affects measurement reliability,
potentially compromising the accuracy of fault detection,
remaining useful life estimation, and maintenance
optimization. Various modelling techniques have been
employed to address these challenges, ranging from
empirical models based on experimental data to advanced
filtering methods within state estimation frameworks.
Additionally, theoretical and data-driven approaches,
including statistical, probabilistic, and machine learning-
based methods, offer deeper insights into degradation
patterns and their impact on system performance.
Incorporating measurement uncertainty into prognostics and
maintenance frameworks has become a crucial strategy for
improving system health predictions and optimizing
maintenance decisions. Effective solutions have emerged,
integrating sensor degradation into predictive maintenance
and condition-based maintenance frameworks. These
approaches often utilize expert knowledge, physical
degradation models, and data-driven or hybrid methods to
enhance generalization across diverse applications.
Furthermore, mitigation strategies such as state estimation,
filtering techniques, and revised maintenance policies have
been developed to account for sensor degradation and sustain
system reliability. Many of these approaches leverage
optimization algorithms to enhance decision-making
efficiency, ensuring that both sensor maintenance and overall
system performance are effectively managed.

encompassing the studies,

In addition, the research opportunities underscore the need
for ongoing exploration of methodologies to quantify sensor
degradation-related uncertainties and develop robust
prognostics and uncertainty-aware maintenance decision-
making frameworks.
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