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ABSTRACT 

Prognostics and maintenance decision-making rely heavily 

on accurate and reliable measurements derived from sensors. 

However, sensor degradation introduces measurement 

uncertainties that compromise the precision of fault 

detection, remaining useful life estimation, and overall 

maintenance strategies. This paper provides a comprehensive 

review of the multifaceted impacts of sensor degradation on 

measurement uncertainty and its subsequent influence on 

prognostics and maintenance. The paper synthesizes various 

sensor degradation mechanisms and existing modelling 

techniques, emphasizing the growing research focus on 

developing accurate degradation models. The review also 

provides an in-depth analysis of how sensor degradation 

affects measurement uncertainty, exploring both qualitative 

and quantitative impacts through various modelling 

approaches and tools. Furthermore, this review examines the 

implications of this uncertainty on prognostics and 

maintenance decision-making methodologies, showcasing 

current mitigation methods and models. Finally, the review 

identifies key challenges and research gaps, outlining 

promising directions for future research in sensor degradation 

and its impact on prognostics and maintenance. By 

addressing these critical issues, this paper contributes to the 

advancement of more reliable, adaptive, and efficient 

Prognostics and Health Management (PHM) systems across 

various industrial and technological domains. 

Keywords: Sensor Degradation, Measurement Uncertainty, 

Prognostics, Maintenance Decision-Making 

1. INTRODUCTION 

Sensors are devices that detect and monitor physical 

phenomena (Wilson, 2004; Algamili, Khir, Dennis, Ahmed, 

Alabsi, Ba Hashwan and Junaid, 2021). They convert 

composition variations of the phenomenon (such as electrical 

conductivity, hydrogen potential, etc.) into a particular form 

that can be utilized (Basuwaqi, Khir, Ahmed, Rabih, Mian 

and Dennis, 2017), typically electrical signal (Wilson, 2004; 

Su, Ma, Chen, Wu, Luo, Peng and Li, 2020). They form part 

of the interface between the physical world and electronic 

devices such as computers, with actuators representing the 

other part by converting electrical signals into physical 

actions (Wilson, 2004).  

Sensor degradation is a well-known phenomenon that 

impacts the accuracy and reliability of measurements, as 

sensors degrade over time, the data they provide become less 

precise and more uncertain (Abid, Sayed Mouchaweh and 

Cornez, 2019; Elattar, Elminir and Riad, 2016; Javed, 

Gouriveau and Zerhouni, 2017). The quality of 

measurements provided by sensors is a critical factor 

impacting the performance of prognostics, maintenance 

decision-making and optimization, and it can be 

compromised by sensor degradation (Liu, Do, Iung and Xie, 

2019). Lukens, Rousis, Baer, Lujan and Smith (2022) echoed 

that poor data quality can lead to incorrect assessments of 

equipment health, resulting in unnecessary maintenance or 

unexpected failures. As a result, low-quality data can lead to 

increased maintenance costs and operational disruptions, as 

organizations may either over-maintain or under-maintain 
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their equipment based on flawed data interpretations. The 

degradation of sensors can introduce systematic errors in the 

data they collect. Many existing references in the literature 

note that sensor degradation causes increased measurement 

error (Mukhopadhyay, Liu, Bedford and Finkelstein, 2023; 

Ohsuga & Ohyama, 1988; Zhang, Si, Du and Hu, 2018; He, 

Sun, Xie and Kuo, 2022) and error rates over time (Zhang, 

Xin, Yin, Wang and Wang, 2016). Thereby, it worsens error 

metrics such as Mean Squared Error (MSE) or Root Mean 

Squared Error (RMSE) (Hachem, Vu and Fouladirad, 2024). 

Consequently, it weakens the correlation between sensor 

output and actual conditions (Li, Price, Stott and Marshall, 

2007) leading to reduced measurement reliability (Wanga, Al 

Atata, Ghaffaria, Leea and Xib, 2008; Li & Dai, 2020). 

Several methods designed to deal with uncertainty face 

various difficulties due to sensor degradation. Filtering 

methods encounter filtering error dynamic instability (He, 

Wang and Zhou, 2008), indicating difficulty in deriving exact 

values of filtering error covariance (FEC) which tends to be 

increasing (Huang & Shen, 2021). Similarly, Wen, Wang, 

Yang and Ma (2023) showed increased estimation error 

covariance due to sensor degradation. Calibration methods 

suffer from a reduction in accuracy (Sun & Xiong, 2020; Yu 

& Wu, 2009), possible errors in the calibration coefficients 

(Kamei, Nakamura, Yamamoto, Nakamura, Tsuchida, 

Yamamoto and Wu, 2012), and increased frequency of 

recalibration (Aldrin, Medina, Allwine, QadeerAhmed, 

Fisher, Knopp and Lindgren, 2007). 

Several decades ago, maintenance decisions were primarily 

made in response to failures, however, today, making 

maintenance decision is widely acknowledged as a vital 

business function and a key component of asset management 

(De Jonge & Scarf, 2020). It is the process of selecting the 

most appropriate maintenance strategy or action to ensure the 

optimal performance, reliability, and cost-effectiveness of 

equipment, systems, or assets (Liu, Lv and Yang, 2016; Cao, 

Zhang, Gong, Jia and Zhang, 2021; Zandiyehvakili, 

Aminnejad and Lork, 2022). This process involves 

considering various factors such as the assets' conditions, 

failure modes, maintenance costs, resource constraints, and 

operational requirements (Ðuric, Josimovic, Adamovic, 

Radovanovic, Jovanov, Adamovic and Jovanov, 2012; Ding, 

Goh, Tan, Wee and Kamaruddin, 2012; Tee & Ekpiwhre, 

2020). Several factors have been considered for inclusion in 

the process to improve effectiveness, including the impacts 

from sensor degradation (Liu et al., 2019; Kaiser & Gebraeel, 

2009; Salehpour-Oskouei & Pourgol-Mohammad, 2017). 

Many maintenance models assume that sensor performance 

remains constant, which is often not the case in reality 

(Mukhopadhyay et al., 2023; van Oosterom, Maillart and 

Kharoufeh, 2017). Condition monitoring systems that rely on 

sensor data are used to identify changes in machinery 

conditions and inform maintenance decisions (Li, Jiang, 

Carroll and Negenborn, 2021). However, the uncertainties 

caused by sensor degradation and limitations in degradation 

mechanisms can lead to inaccurate determination of 

machinery condition, which in turn affects the reliability of 

maintenance decisions (Li et al., 2021; Huynh, Barros and 

Bérenguer, 2012; Hegedus & Kosztyán, 2011). Liu et al. 

(2019) highlighted that sensor degradation results in distorted 

measurements, causing observations to deviate significantly 

from true values, which can mislead Condition-Based 

Maintenance (CBM) strategies. 

Achieving predictive maintenance, prognostics is required, 

which is an emerging science of predicting the health 

condition of systems. A typical definition of prognostics is 

found in the International Organization for Standardization 

[ISO] 13381-1; its goal is to provide the user with the ability 

to predict the remaining useful life (RUL) with a satisfactory 

level of confidence. The accuracy of prognostics is affected 

by multiple sources of uncertainties, including input 

uncertainty such as initial state estimation; model uncertainty 

such as misspecified methods, unexplained features, 

unmodelled phenomena; operational uncertainty such as 

operating and environmental conditions; and measurement 

uncertainty such as sensor errors, estimation error (Goebel, 

Saxena, Daigle, Celaya, Roychoudhury and Clements, 2012; 

Saxena & Goebel, 2012; Sankararaman & Goebel, 2015; 

Huang, Gardoni and Hurlebaus, 2012). Accurate prognostics 

requires reliable measurement on the states of the system, 

which can be compromised by sensor degradation and the 

resulting measurement uncertainty (Zhao, Zhang, Liu and 

Qiu, 2019; Sun, Zuo and Pecht, 2011; Tao, 2012). Addressing 

the challenges of sensor degradation is crucial for developing 

reliable and effective prognostics systems, as degradation-

related features extracted from the sensor data can 

dramatically improve the accuracy of RUL prediction (Qin, 

Cai, Gao, Zhang, Cheng and Chen, 2022). 

Despite the critical impact of sensor degradation on 

prognostics and maintenance decision-making, no 

comprehensive review on this topic has been conducted to 

date. This study aims to fill that gap by providing an in-depth 

analysis of the multifaceted impacts of sensor degradation on 

measurement uncertainty and its influence on prognostics 

and maintenance decision-making. This review explores 

sensor degradation mechanisms, existing modelling 

techniques, application domains, and their impact on 

measurement uncertainty, emphasizing both qualitative and 

quantitative effects. It also examines how this uncertainty 

influences prognostics and maintenance decision-making 

while highlighting methods to mitigate its impact. Finally, the 

review identifies key challenges and research gaps, outlining 

promising directions for future research in sensor degradation 

and its impact on prognostics and maintenance optimization. 

This article is organized as follows. Section 2 describes the 

methodology used for the systematic review. The 

bibliometric results and analysis are also presented. Section 

3 focuses on the literature review of various degradation 

processes and their modelling techniques. Section 4 discusses 
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the impact of sensor degradation on measurement errors and 

examines different approaches to quantify and model the 

measurement uncertainty induced by sensor degradation. 

Sections 5 and 6 explore the existing works considering the 

sensor degradation impacts on prognostics and maintenance, 

ultimately leading to more robust maintenance optimization. 

Section 7 discusses the issues, challenges, and research gaps 

identified through the review, providing insights into areas 

requiring further investigation. Finally, Section 8 concludes 

by presenting the main results of our study and future 

perspectives, summarizing the key findings and suggesting 

directions for future research. 

2. METHODOLOGY  

The review protocol followed in this paper adheres to the 

Kitchenham guidelines (Keele, 2007), ensuring a thorough 

and systematic literature review. This approach structures the 

articles around specific questions that align with the study’s 

objectives, thereby focusing the analysis on key topics of 

interest. We formulated the following main research 

questions to guide our analysis: 

1. What is sensor degradation and how to model the sensor 

degradation processes? 

2. What are the impacts of sensor degradation on 

measurement uncertainty? 

3. How have impacts of sensor degradation on 

measurement uncertainty been considered in prognostics 

and maintenance decision-making? 

With these research questions, we address in detail the 

impacts of sensor degradation on measurement uncertainty 

within the context of prognostics and maintenance 

optimization. 

2.1. Keywords and Search String Definition 

To achieve comprehensive coverage, some widely used 

scientific databases were explored, including Web of Science 

(WOS), Scopus, IEEE Xplore, and ACM Digital Library. 

These databases are typically considered sufficient for a 

literature search. The articles sourced from Scopus and WOS 

are published by well-known publishers such as Elsevier, 

Springer, Taylor & Francis Online, IEEE, among others, 

thereby enhancing the thoroughness of this research. 

Defining the search string was conducted, described in 

Section 2.1.2. Then, filtering criteria were defined, described 

in Section 2.1.3. 

To effectively identify articles relevant to the research 

questions, specific keywords were carefully formulated to 

construct the search string. Synonyms and alternative 

spellings were included to ensure comprehensive coverage. 

The keywords were categorized into search topics, sensor 

degradation, measurement uncertainty, and their implications 

for prognostics and maintenance, which were connected 

using Boolean operators. Within each topic, keywords were 

linked with the OR operator, while the topics themselves 

were combined using the AND operator, resulting in the 

following query: 

(“sensor degradation” OR “sensor deterioration” OR 

“sensor impairment” OR “sensor decline” OR “sensor 

wear” OR “degradation of sensor” OR “deterioration of 

sensor” OR “impairment of sensor” OR “degrading 

sensor” OR “deteriorating sensor” OR “impairing sensor” 

OR “degraded sensor” OR “deteriorated sensor” OR 

“impaired sensor”)  

AND (“error” OR “uncertainty” OR “reliability” OR 

“accuracy” OR “precision” OR “consistency” OR 

“quality” OR “prognostics” OR “maintenance” OR 

“structural health monitoring”) 

To ensure a systematic review, the primary search relied on 

article metadata. They included titles, abstracts, authors, and 

keywords, providing a structured framework for the 

identification of relevant articles, as these metadata are 

meticulously curated by authors and editors to reflect the core 

content of the article. Table 1 shows the total number of 

articles retrieved from each scientific database from the 

search string. Those retrieved articles were then filtered 

according to the criteria explained in the next section. 

Databases Number of papers 

Web Of Science 245 

Scopus 369 

IEEE Xplore 147 

ACM 63 

Total 824 

Table 1. Number of papers by databases 

2.2. Article Filtering 

Gathering all primary articles from the keyword-based search 

within scientific databases, a two-phase filtering process was 

conducted to assess their relevance. The first phase involved 

a thorough examination of the metadata of each article to 

determine their initial suitability. In the second phase, a more 

in-depth evaluation of the full-text content of the articles was 

investigated. 

The keyword-based search yielded 824 references from 

digital libraries. A series of exclusion criteria were applied to 

identify relevant studies. They were formulated based on the 

research objectives investigated, as detailed in Table 2. First, 

duplicate and non-English papers were excluded, reducing 

the count to 477. Next, the relevance of the remaining papers 

was assessed by examining their metadata, including titles, 

abstracts, and keywords, further narrowing the number to 

223. After excluding inaccessible papers and thoroughly 

analysing the full text of the remaining papers and additional 
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papers identified during the process to avoid bias, resulting in 

85 papers being selected. Two statistical analyses of these 

selected papers are discussed in the following sections. 

Phases No papers 

Total No papers retrieved from digital libraries 824 

No papers remained after removing duplications 486 

No papers remained after removing non-English 477 

No papers remained after revising metadata 223 

No papers remained after reading full text 71 

No papers to be reported 85 

Table 2. Summary of article filtering process 

2.3. Growth Trend of the Research Topic 

Figure 1 shows that the number of selected publications 

shows a trend of being low in the early years but shows a 

significant increasing trend from 2018 onwards. In addition, 

it is worth mentioning that the contribution of journal articles 

has substantially increased in recent years. This can indicate 

that the literature witnessed a growing interest related to the 

relationship between sensor degradation and measurement 

uncertainty and prognostics and maintenance. 

 

Figure 1. Number of publications by publication years 

2.4. Keyword Occurrence Analysis 

Conducting keyword occurrence analysis, the 

interconnections among various terms associated with sensor 

degradation are visualized through a multi-coloured network 

visualized in Figure 2. At the centre of the network, “sensor 

degradation” emerges as the most prominent and 

interconnected keyword, signifying its central role in this 

thematic landscape. Surrounding it are clusters of related 

concepts, such as “remaining useful lifetime”, 

“maintenance”, “uncertainty analysis”, and “degradation 

modelling”. The clusters are color-coded, revealing thematic 

groupings such as reliability analysis, maintenance and health 

monitoring, and estimation techniques. This network reveals 

how research topics interrelate, with frequent co-occurrences 

suggesting strong conceptual ties, aiding in the identification 

of notable themes within the field. 

 

Figure 2. Keyword co-occurrence analysis 
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3. REVIEW ON SENSOR DEGRADATION 

In this section, the root causes of sensor degradation across 

various domain applications are first reviewed. This 

foundational understanding of how sensors degrade is 

crucial, as it directly informs the appropriate development of 

quantification models, which are standard in the literature to 

manage this phenomenon. Subsequently, several modeling 

techniques for sensor degradation processes are discussed in 

this section. 

3.1. Sensor Degradation Process 

The degradation of sensors is a complex phenomenon driven 

by a variety of physical and chemical conditions, and are 

highly dependent on the sensor type and its operational 

environment. For example, sensors face degradation under 

extreme operating conditions, such as high pressures and 

temperatures, scaling, or erosion (Abdel-Jaber & Glisic, 

2016; Bikmukhametov, Stanko and Jäschke, 2018). For 

instance, magnetostrictive sensors degrade through cyclic 

relaxation and ambient temperature variations affecting the 

FeCo strip and epoxy layers (Chen, Yang, Liu and Liu, 2021) 

and causing interlayer diffusion (Bonhote, Chang, Judy, 

Kitamoto, Krongelb, Romankiw and Zangari, 2006), or 

piezoelectric sensors experience fiber breakage from fatigue 

loading and electrode misalignment from fiber breakage and 

mechanical stress (Mehdizadeh, John, Wang, Ghorbani and 

Rowe, 2012). To further illustrate the diversity of these 

processes across various sensor types,  Table 3 categorizes a 

range of reported degradation mechanisms based on their 

common characteristics. 

Sensor types Reported degradation processes 

Temperature 

sensors 

physicochemical degradation (Zhang et al., 

2018; Li, Zhang, Thayil, Chang, Sang and 

Ma, 2021); contamination accumulation 

(Sakurai, Yamaguchi, Hiura, Yoneshita, 
Kimura and Tamura, 2008); mechanical 

degradation (Mandal, Sairam, Sridhar and 

Swaminathan, 2017) 

Optical and 

imaging 

sensors 

noise-induced (Khanam, Aslam, Saha, Zhai, 

Ehsan, Stolkin and McDonald-Maier, 2021); 

electro-optical degradation (Yin, Shi, Peng, 

Zhang and Guo, 2022; Yang, Wen, Zhao, Liu, 

Feng, Li and Guo, 2024); contamination 

accumulation (Li et al., 2007; Kamstrup & 

Hansen, 2003); mechanical degradation (Kim, 

Cao and Liang, 2013) 

Acoustic and 

ultrasonic 

sensors 

mechanical degradation (Aldrin et al., 2007; 

Shu, Wang, Yan, Fan and Wu, 2019; Li, 

Peng and Yu, 2017); physicochemical 

degradation (Shu et al., 2019; Li et al., 2017; 

Johnson, Kim, Zhang, Wu and Jiang, 2014; 

Quattrocchi, Alizzio, Martella, Lukaj, Villari 

and Montanini, 2022); contamination 

accumulation (Li et al., 2017) 

Motion sensors 

mechanical degradation (Li et al., 2007; 

Wanga et al., 2008); contamination 

accumulation (Ohsuga & Ohyama, 1988; 

Wanga et al., 2008) 

Pressure 

sensors 

mechanical degradation (Park, Jung, Ko, 

Park and Cho, 2021); physicochemical 

degradation (He et al., 2022) 

Chemical 

sensors 

physicochemical degradation (Xu, Meng and 

Yang, 2022); contamination accumulation 

(Anil, 2020; Moriya & Sako, 2001; Bai, 

Huang, Wang, Ying, Zheng, Shi and Hu, 
2020; Liu, Diao, Hu, Zhao, Shi, Wang and 

Li, 2023) 

Power 

electronics 

sensors 

mechanical degradation (Hu, Zhang, Liu, 

Lin, Dey and Onori, 2020; Xia, Xu and Gou, 

2020) electromagnetic interference (Hu et 

al., 2020) 

Table 3. A classification of sensor degradation mechanisms 

by measurement characteristics 

Studies have shown that thermistors subjected to thermal 

shock cycles exhibit significant changes in their resistance 

characteristics, which can compromise their accuracy and 

reliability (Li et al., 2021). Thermocouples experience ageing 

due to natural wear and tear, mechanical issues leading to loss 

of sensor component contacts, environmental factors, and 

physicochemical reactions (Zhang et al., 2018; Mandal et al., 

2017). Resistance thermometers experience oxidation 

processes of sensing wires, which lead to instabilities in their 

readings, as highlighted with platinum resistance 

thermometers by Sakuraï et al. (Sakurai et al., 2008). 

Medium-resolution spectral imagers are affected by changes 

in the reflectivity of scan mirrors caused by vibrations during 

launch and the harsh conditions of space, along with the 

ageing of the instrument (Kim et al., 2013). Complementary 

Metal-Oxide-Semiconductor (CMOS) image sensors degrade 

due to gamma-ray-induced photo-signal processes, radiation-

induced noise (Khanam et al., 2021), or proton-induced 

displacement damage (Yang et al., 2024). Thematic mappers 

face issues such as sensor outgassing leading to decreased 

responsivity (Kamstrup & Hansen, 2003). Brightness sensors 

exhibit defects such as dark current tolerance, open circuit 

faults, low insulation resistance, and large reverse currents in 

light-emitting tubes, which are exacerbated by weather 

conditions, vibration, sand, and temperature rise, leading to 

data distortion (Yin et al., 2022). Solar radiation sensors 

accumulate deposits on their transparent external casings 

from environmental exposure (Li et al., 2007). 

Acoustic and ultrasonic sensors commonly use piezoelectric 

materials, which are sensitive to temperature fluctuations and 

can experience changes in their mechanical properties. 

Acoustic sensors often lose their piezoelectric properties at 

high operating temperatures, typically above 500°C to 

700°C, which eventually results in sensitivity degradation 

(Johnson et al., 2014). Similarly, surface acoustic wave 
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(SAW) sensors are highly sensitive to environmental changes 

such as temperature and humidity, surface scratching, 

oxidation, and chemical degradation, which can lead to 

irreversible material degradation and functional failure (Shu 

et al., 2019; Li et al., 2017). Low-cost ultrasonic transducers 

face rapid sensor ageing caused by temperature and humidity, 

leading to critical issues in metrology and reliability that can 

compromise their functionality and safety (Quattrocchi et al., 

2022). Acoustic emission transducers and ultrasonic current 

sensors in structural health monitoring can be degraded by 

several processes such as sensor bond breakdown, thermal 

loading, and dynamic stress (Aldrin et al., 2007). 

Motion sensors are prone to mechanical degradation, which 

can lead to failures, for instance, anemometers may become 

stuck in fixed positions as a result of such wear and tear (Li 

et al., 2007). Wheel speed sensors face issues such as air gap 

problems, wear on toothed rings, wiring problems, and 

failures in internal IC components due to extreme 

temperatures, high humidity, chemical attacks, strong 

vibrations, electromagnetic interference, and pollution 

(Wanga et al., 2008). Hot-wire type air flow meters degrade 

due to dust deposition from airborne particles, and gas 

diffusion layer type air-fuel ratio sensors suffer performance 

issues from contaminants accumulating in exhaust gas 

components (Ohsuga & Ohyama, 1988). 

Pressure sensors often degrade under harsh conditions such 

as mechanical fatigue, environmental factors, and material 

limitations. For instance, high temperature can accelerate 

degradation by altering the coefficients in piezoresistive 

pressure sensors in reliability tests (He et al., 2022). Park et 

al. (2021) also highlighted that existing pressure sensors, 

specifically polyurethane-based, exhibit insufficient 

durability when subjected to a wide pressure range. 

One of the primary factors contributing to the degradation of 

chemical sensors is the gradual accumulation of 

contaminants on the sensor’s surface. Continuous exposure 

to target gases can lead to surface contamination degrading 

the sensor performance in gas sensors (Anil, 2020). 

Antimony-based pH sensors degrade through the formation 

of an antimony oxide layer during use due to oxidation 

processes (Liu et al., 2023). Oxygen sensors degrade as 

silicon oxide deposits accumulate from the decomposition of 

seal rubber (Moriya & Sako, 2001). Aerosol particulate 

matter sensors are prone to ageing of the electric components 

and dust accumulation on optical components due to 

insufficient maintenance (Bai et al., 2020). In addition, 

degradation can be caused by physicochemical interactions 

between the sensor materials and the analytes they are 

designed to detect. For instance, in metal oxide 

semiconductor gas sensors, irreversible chemical reactions 

over time exacerbated by high humidity and temperature 

fluctuations, can degrade the sensing material’s properties 

(Xu et al., 2022). 

Degradation in power electronics sensors is susceptible to 

internal and external influencing factors. Hu et al. (2020) 

highlighted that mechanical stress from component 

disruptions, vibrations, thermal stress from operational 

losses, and electromagnetic interference can degrade voltage-

current sensors, affecting the operation of closed-loop control 

systems. Similarly, Xia et al. (2020) emphasized that 

environmental factors such as mechanical vibration and 

equipment ageing can lead to faulty in current sensors, which 

can severely affect control performance and potentially lead 

to system shutdowns. 

In other articles, sensor degradation has been described as a 

generalized process. It can be categorized into three classes, 

as shown in Table 4. 

Degradation types References 

Gradual, continuous 

degradation 

Li & Dai, 2020; Lu, He, Liang and 

Zhang, 2021; Gao & Liu, 2022; Murthy, 
1982; Zhang, Song, Zhao and Deng, 

2021 

Abrupt, catastrophic 

degradation 

Murthy, 1982; Hachem, Vu and 

Fouladirad, 2021 

Stochastic 

degradation 

He et al., 2008; Huang & Shen, 2021; 

Wen et al., 2023; van Oosterom et al., 

2017 

Table 4. Generalized degradation processes 

Some studies have described sensor degradation using 

gradual and continuous processes. The gradual and 

continuous radiometric sensor degradation process has been 

observed in panchromatic and multispectral sensors, 

highlighting the consistent decline in sensor performance 

over time (Lu et al., 2021). Additionally, various sensors have 

exhibited additive and multiplicative degradation, indicating 

a combination of steady deterioration and proportional 

changes in sensor output (Gao & Liu, 2022). Furthermore, in 

chemical processes involving soft sensors, time-varying 

chemical impacts have been noted as influencing sensor 

degradation (Li & Dai, 2020). 

In addition to gradual processes, sensor degradation can 

occur abruptly or catastrophically. Other studies have 

identified general processes that include continuous 

degradation alongside abrupt changes caused by external 

shocks, suggesting a complex interplay between gradual and 

sudden deterioration mechanisms (Hachem et al., 2021). The 

degradation patterns also encompass gradual deterioration, 

catastrophic deterioration, and combinations thereof, 

reflecting a broad spectrum of degradation behaviours in 

various sensors (Murthy, 1982). 

Stochastic degradation presents another important category 

of sensor degradation processes. This type of degradation is 

inherently random and can be described by probabilistic 

models. Various sensors have been observed to undergo 

stochastic degradation, reflecting the unpredictable nature of 
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their performance decline over time (He et al., 2008; Huang 

& Shen, 2021). Instantaneous and delayed sensors alike have 

been subject to stochastic degradation, suggesting that this 

random degradation behaviour is prevalent across different 

sensor types (Wen et al., 2023). Additionally, the 

probabilistic relational degradation has been analysed to 

understand and model the stochastic nature of sensor 

degradation (van Oosterom et al., 2017).  

The detailed exploration of diverse sensor degradation 

mechanisms in this section underscores the multifaceted 

nature of sensor deterioration. Understanding these 

degradation pathways is a crucial prerequisite for effectively 

managing and predicting sensor degradation over time. This 

comprehensive overview of how sensors degrade naturally 

leads to the next critical step: developing robust models to 

quantify these degradation, which will be the focus of 

subsection 3.2. 

3.2. Sensor Degradation Modelling 

Modelling of sensor degradation provides essential insights 

for advancing the acquisition of reliable measurements as it 

translates the understanding of degradation mechanisms into 

quantitative frameworks, thereby enabling predictive 

analysis of sensor performance and reliability. These 

modelling methods, examined in the literature, can be 

categorized into various approaches as presented in Table 5. 

Categories Some modelling techniques Some implicit and explicit representations 

Calibration 

Calibration coefficients (Sun & Xiong, 2020; Aldrin et al., 

2007; van Oosterom et al., 2017; Kamstrup & Hansen, 2003; 

Kim et al., 2013; Lu et al., 2021; Gao & Liu, 2022; Detsch, Otte, 

Appelhans and Nauss, 2016) 

𝐷(𝑡) = {𝑐𝑎𝑙𝑖𝑏𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(𝑡)} 

Normalization 

Normalization to undamaged condition (Michaels, Michaels, 

Mi, Cobb and Stobbe, 2005) 
𝐷(𝑡) = 𝑓(𝑋(𝑡), 𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

Belief rule base (Yin et al., 2022) 
𝑅𝑢𝑙𝑒𝑘 : If 𝑥1 is 𝐴1

𝑘 , 𝑥2 is 𝐴2
𝑘 ..., 𝑥𝑀 

is 𝐴𝑀
𝑘  then 𝐷(𝑡) is 𝐷𝑗  with belief 𝛽𝑗

𝑘 

Fitness function (Arosh, Nayak and Duttagupta, 2015) 𝐷 =
1

𝑁
∑ [𝑍̂𝑛𝑜𝑛−𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑

2 (𝑡) − 𝑍2(𝑡)]
𝑁−1

𝑡=0
 

Deterministic 

Linear model (Zhang et al., 2016; Kim et al., 2013) 𝐷(𝑡) = 𝐷0 + 𝛼𝑡 + 𝛽 

Accumulation model (Zhang, Qin, Lu, Liu and Faber, 2023; Su, 

Huang, Liu and Wang, 2024) 
𝐷(𝑡) = 𝐷0 + ∑ ∆𝐷(𝑡𝑖)

𝑡

𝑡𝑖=0
 

Power law model (Kamstrup & Hansen, 2003; Hua, Al-Khalifa, 

Hamouda and Elsayed, 2013) 

𝐷(𝑡) = 𝐷0 + 𝑎𝑡𝑐 (Kamstrup & Hansen, 2003) 

𝐷(𝑡) = 𝐷0 + 𝑎𝑡𝑐 + 𝛿√𝑎𝑡𝑐−1𝐵(𝑡)  (Hua et al., 

2013) 

Exponential growth model (Aldrin et al., 2007; Saha, Goebel, 

Poll and Christophersen, 2007) 
𝐷(𝑡) = 𝑓(𝑒𝑔(𝑡)) 

Explicit empirical/physics-based equations (Bonhote et al., 

2006; Carrino, Nicassio and Scarselli, 2018; Carratù, Gallo, 

Iacono, Sommella, Ciani and Patrizi, 2024; Yang et al., 2024) 

𝐷(𝑡) = 𝑓(𝜃(𝑡)) , 𝜃(𝑡)  are parameters of sensor 

changing overtime 

Stochastic 

Process 

Wiener process (Mukhopadhyay et al., 2023; Zhang et al., 2018; 

He et al., 2022; Hachem et al., 2024; Liu et al., 2019; Hachem 

et al., 2021; Hua et al., 2013; Hossain, Kobayashi and Alam, 

2024; Liu, Wang, Liu, Coombes and Chen, 2022; Dinh, Do, 

Hoang, Vo and Bang, 2024) 

𝐷(𝑡) = 𝐷0 + 𝛼𝑡 + 𝜎𝐵(𝑡) 

𝐷(𝑡) = 𝐷0 + 𝛼𝑡 + 𝛽𝑋(𝑡) + 𝜎𝐵(𝑡)  (Dinh et al., 

2024) 

Gamma process (Mukhopadhyay et al., 2023; Hachem et al., 

2024; Hachem et al., 2021; Hua et al., 2013) 
𝐷(𝑡)~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 

Gaussian process (Zhang et al., 2021) 𝐷(𝑡)~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇, 𝜎) 

Weibull process (Wu, Cantero-Chinchilla, Prescott, Remenyte-

Prescott and Chiachío, 2024) 
𝐷(𝑡)~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜂, 𝛽) 

Uniform distributions (Huang & Shen, 2021; Wen et al., 2023) 𝐷(𝑡)~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝜅𝑚𝑖𝑛, 𝜅𝑚𝑎𝑥) 

Stochastic matrix transformation (van Oosterom et al., 2017) 𝐷(𝑡) = 𝐷(𝑡 − 1) ∙ 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝑀𝑎𝑡𝑟𝑖𝑥(𝑡) 

Table 5. Sensor degradation process modelling technique categorizations

One approach to model sensor degradation is through 

calibration, where degradation is accounted for by 

continuously updating calibration coefficients to maintain 

measurement accuracy. Calibration coefficients were used to 
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indicate degradation in additive and multiplicative 

degradation processes (Gao & Liu, 2022). Gradual and 

continuous radiometric sensor degradation was effectively 

identified using monthly updated calibration coefficients, 

highlighting the necessity of timely cross-calibration to 

ensure reliability (Lu et al., 2021). Self-calibration methods 

were proposed to record degradation process of sensor bonds 

over time, demonstrating their utility in prolonging sensor 

lifespan (Aldrin et al., 2007). Similarly, Sun and Xiong 

(2020) calculated hybrid F-factors for solar diffuser (SD) 

processes. Some statistical post-analysis methods were 

applied such as Theil-Sen and Mann-Kendall Test to identify 

degradation trends (Detsch et al., 2016). This approach offers 

the advantage of managing sensor accuracy over time, as it 

adapts the model to real-world conditions. It is 

straightforward and allows for continuous improvement 

based on data observation, however, can heavily relies on the 

availability of stable and reliable reference data for frequent 

recalibration, which can be costly challenging to obtain. 

Normalization approaches offer the integration of expert 

insights into sensor degradation phenomena. Normalization 

to undamaged conditions, such as the normalized energy ratio 

method used by Michaels et al. (2005), accounts for 

transducer degradation by addressing the fact that damaged 

sensors record varying measurement levels under different 

conditions, while consistent levels are observed in no-

degradation scenarios. Yin et al. (2022) used belief rule base, 

characterized by expert knowledge encoding for the 

modelling of mixed sensor degradation processes. Estimating 

sensor degradation levels using fitness functions was also 

discussed, comparing the current conditions with estimated 

non-degraded conditions, specifically the case of H-infinity 

filter (Arosh et al., 2015). A key strength of this method is its 

ability to model complex, nonlinear degradation patterns that 

may be difficult to capture with purely data-driven 

techniques. However, the approach is fundamentally limited 

by its reliance on expert knowledge, which can be subjective, 

and the challenge of defining an accurate non-degraded 

baseline for comparison. 

Deterministic models offer empirical insights into sensor 

degradation phenomena. Measures such as slope, y-intercept, 

and correlation coefficient have been used to analyse sensor 

ageing (Zhang et al., 2016), or simple linear regression 

models are applied to assess changes in reflectivity of scan 

mirrors (Kim et al., 2013). The accumulation model was used 

(Zhang et al., 2023; Su et al., 2024), which treats the 

degradation process as independent increments, a specific 

type of discrete Markov process. The power law model, 

frequently observed in practice, is used for various 

degradation processes (Kamstrup & Hansen, 2003; Hua et al., 

2013), which is considered the best function describing gain 

changes over time (Kamstrup & Hansen, 2003). Exponential 

growth models can be applied to model specific degradation 

processes such as plate sulfation, passivation, and corrosion 

(Saha et al., 2007). Bonhote et al. (2006) utilized Fick’s law 

to model interdiffusion processes and temperature-dependent 

time to failure fitted with the Arrhenius equation. Carrino et 

al. (2018) implemented a physics-based approach, 

specifically Rayleigh’s quotient, to calculate the natural 

bending frequency of a partially debonded piezoelectric 

sensor, which helps identify degradation by analysing 

frequency shifts caused by debonding. Yang et al. (2024) 

modelled sensor degradation due to proton radiation using an 

equation describing how factors such as temperature, defect 

energy levels, and carrier concentrations influence the defect 

generation rate over time. Carratù et al. (2024) proposed a 

Health Index for MEMS (Micro-Electro-Mechanical 

Systems) sensors, derived from time-domain and frequency-

domain features using Principal Component Analysis, 

effectively capturing the sensor's degradation trend over time. 

The primary advantage of this approach lies in its high 

interpretability, as the models are based on well-understood 

physical laws and empirical evidence. However, these 

models often struggle to capture the inherent randomness and 

variability of real-world degradation processes, and their 

accuracy is highly dependent on precise knowledge of 

physical parameters that can be difficult to obtain. 

Using stochastic processes to model sensor degradation 

offers the advantage of capturing the probabilistic nature of 

degradation over time, allowing for a dynamic representation 

that reflects the inherent randomness of the phenomena. 

Wiener process parameters (Mukhopadhyay et al., 2023; 

Zhang et al., 2018; He et al., 2022; Hachem et al., 2024; Liu 

et al., 2019; Hachem et al., 2021; Hua et al., 2013; Hossain et 

al., 2024; Liu et al., 2022; Dinh et al., 2024), Gamma process 

parameters (Mukhopadhyay et al., 2023; Hachem et al., 2024; 

Hachem et al., 2021; Hua et al., 2013), Gaussian process 

parameters (Zhang et al., 2021), and Weibull process 

parameters (Wu et al., 2024) provide frameworks for 

understanding random degradation patterns. A uniform 

distribution was also used to model sensor degradation 

process (Huang & Shen, 2021; Wen et al., 2023). 

Additionally, stochastic matrix transformation (van 

Oosterom et al., 2017) offers additional tools for capturing 

the probabilistic nature of sensor degradation. The limitation 

of this approach lies in the significant mathematical 

complexity and the requirement for substantial historical data 

to accurately select the appropriate stochastic process and 

estimate its parameters. 

In summary, this review section provides an overview of the 

various mechanisms underlying sensor degradation and the 

methods used for its modelling. Degradation processes can 

be broadly categorized into two main types: time-dependent 

degradation, which may occur either gradually (continuous) 

or abruptly (catastrophic), and stochastic degradation, which 

follows a probabilistic nature. Time-dependent degradation is 

typically modelled using either discrete approaches, such as 

calibration-based methods, or continuous approaches, 

including normalization techniques and deterministic 

models. On the other hand, stochastic degradation is analysed 
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using probability distributions or matrix transformations to 

capture the inherent randomness of the process. Building 

upon this foundation, the following section will explore in 

detail, how sensor degradation influences measurement 

uncertainty, ultimately affecting the precision, reliability, and 

consistency of sensor measurements. Meanwhile, section 7 

will delve into the existing research gaps and challenges that 

remain in the field.  

4. REVIEW ON IMPACTS OF SENSOR DEGRADATION ON 

MEASUREMENT UNCERTAINTY 

This section provides a comprehensive review of how sensor 

degradation impacts measurement uncertainty. As sensors 

age and their performance deteriorates, the reliability and 

accuracy of the data they produce are compromised, directly 

affecting the precision and credibility of measurements 

derived from them. We will first delve into the various forms 

and implications of sensor degradation on measurement 

uncertainty, identifying and categorizing the critical effects 

observed in different sensor systems. Following this, we will 

explore the diverse modeling approaches employed to 

quantify and predict these impacts, offering a systematic 

overview of techniques used to account for degradation in 

measurement uncertainty assessments. 

4.1. Impact of Sensor Degradation on Measurement 

Uncertainty 

As sensors age and their accuracy diminishes, the reliability 

of the data they produce is compromised as the complex 

nature of degraded measurements makes it difficult to 

accurately capture system states (Wen et al., 2023), directly 

affecting the precision and credibility of measurements. By 

examining the relationship between sensor degradation and 

uncertainty, several critical implications of sensor 

degradation on measurement uncertainty can be seen, 

summarized with categorizations presented in Table 6, 

followed by their interpretations. 

 

Impacts References 

Gain 

degradation 

He et al., 2008; Michaels et al., 2005; Liu, Wang, 

He, Ghinea and Alsaadi, 2016; Yoo, Kim, Yoon, 

Kim, Kim and Youn, 2020; Jiang, Djurdjanovic, 

Ni and Lee, 2006 

Bias 

He et al., 2022; Liu et al., 2019; Bai et al., 2020; 

Chughtai, Tahir and Uppal, 2022; Li & Ying, 

2017 

Sensitivity 

degradation 
Kamei et al., 2012; Aldrin et al., 2007 

Noise 

van Oosterom et al., 2017; Bikmukhametov et al., 

2018; Khanam et al., 2021; Murthy, 1982; Liu et 
al., 2022; Chughtai et al., 2022; Loo, Ding, 

Baskaran, Nurzaman and Tan, 2022; Feng, 

Hajizadeh, Samadi, Sevil, Hobbs, Brandt and 

Cinar, 2018; Guo, Li, Xue and Zhang, 2024 

Drift 

Sun & Xiong, 2020; Bikmukhametov et al., 2018; 

Mandal et al., 2017; Liu et al., 2023; Murthy, 

1982; Loo et al., 2022; Feng et al., 2018; Jordan, 
Deline, Kurtz, Kimball and Anderson, 2017; 

Phan, Kim, Islam, Kim and Lee, 2024 

Shift Hickinbotham & Austin, 1999 

Increased 

latency 
Kamstrup & Hansen, 2003; Liu et al., 2023 

Sensor 

failure 

Li et al., 2007; Bikmukhametov et al., 2018; 

Murthy, 1982 

Table 6. Major impacts of sensor degradation on 

measurement uncertainty 

Gain degradation is a common impact in sensor systems and 

can be caused by factors such as ageing, intermittent failure, 

and transmission congestion (Liu et al., 2016). When sensor 

deterioration occurs, estimating the exact gain reduction 

becomes challenging, complicating maintenance and 

prognostics processes (He et al., 2008). Another form, which 

is normalized gain, shows a decreasing trend (Jiang et al., 

2006). A specific gain degradation, which is the reduction in 

the through-transmission ultrasonic signal amplitude, occurs 

due to changes in the coupling of transducers to the specimen 

or the degradation of the transducers themselves (Michaels et 

al., 2005). It was also reported that gain degradation 

frequently occurs in rotary speed-R sensors (Yoo et al., 

2020). 

Bias in sensor measurements can cause data distortion (Liu et 

al., 2019). Mean normalized bias tends to increase, associated 

with the ageing of electric components and the accumulation 

of dust on optical components (Bai et al., 2020). Ultra-wide 

Band (UWB) sensors suffer from bias when transceivers face 

physical obstructions during transmission (Chughtai et al., 

2022). Measurement biases can be complex, as reported in 

(Li & Ying, 2017) and might not follow a Gaussian 

distribution. 

Sensitivity degradation affects the responsiveness of sensors. 

It was mentioned to be associated with optical sensors 

(Kamei et al., 2012). Additionally, strain-gauge acoustic 

emission transducers and ultrasonic eddy current sensors 

suffer from sensor bond degradation processes and can result 

in inconsistent sensitivity (Aldrin et al., 2007). 

Noise is a pervasive issue in sensor systems and is 

exacerbated by degradation processes. Ageing processes 

further increase noise levels, affecting sensor accuracy (van 

Oosterom et al., 2017). Additionally, distributed optical fibre 

sensors exposed to radiation can experience increased noise 

intensity (Guo et al., 2024; Khanam et al., 2021). 

Degradation-induced noises were reported to cause the 

system to become non-Gaussian (Liu et al., 2022). UWB 

sensors often encounter outliers and missing data (Chughtai 

et al., 2022). The presence of noise can cause significant 

fluctuations in estimated task space coordinates and other 

measurements (Loo et al., 2022). Mechanical degradation in 
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pressure and temperature sensors leads to increased 

measurement noise (Bikmukhametov et al., 2018). 

Continuous glucose monitoring and energy expenditure 

sensors may experience missing signals, stuck signals, 

spikes, and other noise-related issues (Feng et al., 2018). 

Drift in sensor readings is a synthesised impact, can result 

from long-term use or improper storage. For instance, 

antimony-based sensors exhibit such performance 

characteristics, causing potential drift (Liu et al., 2023). 

Mechanical degradation processes and ageing also contribute 

to drift, as shown in pressure and temperature sensors 

(Bikmukhametov et al., 2018; Mandal et al., 2017). In 

continuous glucose monitoring sensors, the sensors 

experience drift over time (Feng et al., 2018). It was 

mentioned that sensor data records may show long-term and 

erroneous drift due to a non-uniform degradation process 

(Sun & Xiong, 2020). Additionally, drift increases were also 

mentioned as being associated with a gradual deterioration 

process (Murthy, 1982). Drift can lead to error in the 

estimation algorithm, as seen in Recurrent Neural Network 

Direct (RNN-Direct) estimations (Loo et al., 2022). 

Membrane dissolution and oxidative ageing process in 

intraocular pressure sensors contribute significantly to zero 

drift over time, which is a common issue in long-term 

implantation scenarios (Phan et al., 2024). Sensor 

degradation also causes a shift in sensor measurements; for 

instance, it can alter the gradient of the load-response 

regression relationship, which distorts the distribution of 

measurement data (Hickinbotham & Austin, 1999). 

Increased latency is another measurement impact of sensor 

degradation. Long-term use of antimony-based sensors leads 

to the formation of an antimony oxide layer, resulting in 

decreased response sensitivity and longer response times (Liu 

et al., 2023). Thematic mapper sensors show decreasing 

response times over periods of use (Kamstrup & Hansen, 

2003). 

Finally, sensor failure is an inevitable outcome of severe 

degradation. Sensor failure was linked with catastrophic 

deterioration process (Murthy, 1982). Mechanical 

degradation in pressure and temperature sensors can lead to 

sensor failure (Bikmukhametov et al., 2018). Anemometers 

and wind speed indicators suffer from failure due to sticking 

in a fixed position due to mechanical failure (Li et al., 2007). 

The various manifestations of sensor degradation contribute 

to increased measurement uncertainty. Recognizing these 

distinct impacts is crucial, as it provides the necessary 

insights for developing effective strategies to quantitatively 

model these effects. The following subsection 4.2, will delve 

into the diverse methodologies and techniques used to 

achieve this, bridging the gap between identifying the 

problem and finding quantifiable solutions. 

4.2. Modelling Impact of Sensor Degradation on 

Measurement Uncertainty 

Understanding the effects of sensor degradation on 

measurement uncertainty is essential for evaluating system 

performance and reliability. To systematize the various 

approaches found in the literature, Table 7 provides a 

comprehensive summary and categorization of key 

modelling techniques. The table outlines the main categories 

of these techniques, presents representative examples for 

each, describes the specific degradation impacts they model, 

and details how measurement uncertainty is represented, 

either implicitly or explicitly. 

 

Technique

categories 

Representative modelling 

techniques 
Types of impacts to be modelled (Θ) Uncertainty representation 

Filtering 

technique-

based 

modified likelihood functions 

within the filters (Chughtai et 

al., 2022) 

Noise (Chughtai et al., 2022); Sensor 

Failure (Chughtai et al., 2022) 

𝑝(𝑦𝑘|𝑥𝑘 , 𝛩𝑘)

= 𝒩(𝑦𝑘|ℎ(𝑥𝑘), (𝑅𝑘
−1𝑑𝑖𝑎𝑔(𝛩𝑘))−1) 

integrating sensor degradation 

as part of measurement model 
within the filters 

(Mukhopadhyay et al., 2023; 

He et al., 2022; Hachem et al., 

2024; He et al., 2008; Huang & 
Shen, 2021; Liu et al., 2019; 

Liu et al., 2022; Liu et al., 

2016; Loo et al., 2022; Feng et 

al., 2018; Li & Ying, 2017; Wu 
& Yan, 2022; Zhang, Song, 

Zhao, Xu and Deng, 2022; He, 

Zheng, Jin and Li, 2025; 
Mayilsamy, Lee, Joo, and 

Jeong, 2025) 

Noise (Mukhopadhyay et al., 2023; 

Hachem et al., 2024; Liu et al., 2019; Liu 
et al., 2022; Loo et al., 2022; Feng et al., 

2018; Dinh et al., 2024; Wu & Yan, 2022; 

Wu & Liu, 2024; He et al., 2025; 

Mayilsamy et al., 2025); Drift 
(Mukhopadhyay et al., 2023; He et al., 

2022; Hachem et al., 2024; Liu et al., 

2019; Liu et al., 2022; Loo et al., 2022; 

Feng et al., 2018; Cao, Niazi, Barreau and 
Johansson, 2024); Bias (He et al., 2022; 

Liu et al., 2022; Feng et al., 2018; Li & 

Ying, 2017; Dinh et al., 2024; Zhang et al., 

2022; Cao et al., 2024; Mayilsamy et al., 

2025); Gain Degradation (He et al., 2008; 

Huang & Shen, 2021; Liu et al., 2016; Liu 

et al., 2022; Dinh et al., 2024; Zhang et al., 

𝑍(𝑡) = 𝐶(𝑡)𝑋(𝑡) + 𝛩(𝑡) + 𝑣(𝑡)  
(Mukhopadhyay et al., 2023; He et al., 

2022; Hachem et al., 2024; Liu et al., 

2019; Li & Ying, 2017; Feng et al., 
2018; Dinh et al., 2024; Zhang et al., 

2022; Cao et al., 2024; He et al., 2025; 

Mayilsamy et al., 2025) 

𝑍(𝑡) = 𝛩(𝑡)𝐶(𝑡)𝑋(𝑡) + 𝑣(𝑡) +
𝑆(𝑡, 𝑋(𝑡), 𝜍(𝑡)) (He et al., 2008; Huang 

& Shen, 2021; Liu et al., 2016; Zhang 

et al., 2022; Wu & Liu, 2024) 

𝑍(𝑡) = 𝐶(𝑡)[𝑋(𝑡), 𝛩(𝑡)] + 𝑣(𝑡) (Liu et 

al., 2022) 

𝑍(𝑡) = 𝑓(𝑊𝛩
𝑇, 𝑋(𝑡)), 𝑊𝛩

𝑇 is a neural 

network (Loo et al., 2022) 
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2022; Wu & Liu, 2024); Sensor Failure 

(Zhang et al., 2022) 

Statistical 

and 

probabilistic 

random variables/ probabilistic 

models (Wen et al., 2023; Yoo 
et al., 2020; Hickinbotham & 

Austin, 1999; Zhang, Wang, 

Ma and Alsaadi, 2019; Wu et 

al., 2024) 

General/Not Explicit Impact (Wu et al., 

2024), Gain Degradation (Wen et al., 
2023; Zhang et al., 2019); Bias (He et al., 

2022); Noise (Hickinbotham & Austin, 

1999); Shift (Hickinbotham & Austin, 

1999); Sensor Failure (Yoo et al., 2020) 

𝛩(𝑡) ∼ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑝𝑎𝑟𝑎𝑚𝑠); 

𝑍(𝑡) = 𝛩(𝑡)𝐶(𝑡)𝑋(𝑡) + 𝑣(𝑡) (Wen et 
al., 2023; Zhang et al., 2019); 

𝑍(𝑡) = 𝐶(𝑡)𝑋(𝑡) + 𝛩(𝑡) +
𝑣(𝑡) (Hickinbotham & Austin, 1999) 

Uncertainty of 𝑍(𝑡) ∝

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑓(𝛩(𝑡)),  

𝛩(𝑡) = [0,1] indicating failure 

probability (Yoo et al., 2020) 

Uncertainty of 𝑍(𝑡) ∝
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛 =
𝑓(𝑝𝛩(𝜃, 𝑍(𝑡), 𝐶𝑛), 𝜃 indicate system 

parameters, 𝐶𝑛 indicate sensor 

configuration (Wu et al., 2024) 

ARMAX model (Jiang et al., 

2006) 

Gain Degradation (Jiang et al., 2006); 

Increased latency (Jiang et al., 2006) 

𝐴(𝑞)𝑧(𝑡) = 𝛩(𝑞)𝑢(𝑡 − 𝑛𝑘) +
𝐷(𝑞)𝑣(𝑘), 𝑞 present shift (delay) 

operator 

Markov decision process (van 

Oosterom et al., 2017) 
Noise (van Oosterom et al., 2017) 

Uncertainty of 𝑍(𝑡) ∝ 
𝑄(𝑡) = [𝑝𝑖𝑘(𝑡|𝛩(𝑡))] 

descriptive statistics (Li et al., 

2007) 
Noise (Li et al., 2007)  

Empirical 

explicit empirical/physics-

based equations (Ohsuga & 
Ohyama, 1988; Yu & Wu, 

2009; Aldrin et al., 2007; Kim 

et al., 2013; Lu et al., 2021; 

Singh & Shanmugam, 2018; 
Zhan, Shen, Mao, Shu, Shen, 

Yang, ... and Lu, 2025) 

General/Not Explicit Impact (Kim et al., 

2013; Lu et al., 2021); Sensitivity 

Degradation (Aldrin et al., 2007; Singh & 

Shanmugam, 2018); Drift (Ohsuga & 

Ohyama, 1988; Chughtai et al., 2022; 

Zhan et al., 2025) 

𝑍𝑘(𝑡) = 𝑓(𝑋(𝑡), 𝛩(𝑡))   
(Ohsuga & Ohyama, 1988; Yu & Wu, 

2009; Aldrin et al., 2007; Kim et al., 

2013; Lu et al., 2021; Singh & 

Shanmugam, 2018) 

 

conditional rules (Li et al., 

2007) 
Sensor Failure (Li et al., 2007) 

𝑅𝑢𝑙𝑒𝑘: If 𝑍𝑘(𝑡) is 𝐴𝑘(𝑡) then 𝛩(𝑡) 
marked as failure (Li et al., 2007) 

Machine 

learning 

weights and biases in neural 

networks (Bai et al., 2020; Li, 

Gou, Li and Liu, 2023; Wu & 

Yan, 2022); transfer 

learning/domain adaptation 

(Zhang et al., 2021) 

Noise (Bai et al., 2020; Wu & Yan, 2022); 

Drift (Bai et al., 2020; Zhang et al., 2021); 

Sensor Failure (Li et al., 2023) 

𝑋(𝑡) =  𝑓(𝑊𝛩
𝑇, 𝑍(𝑡)) (Bai et al., 2020; 

Li et al., 2023; Wu & Yan, 2022) 

𝑋(𝑡) = 𝒢𝒫(𝑓(𝑊𝛩
𝑇, 𝑍(𝑡)), 𝛿) (Zhang et 

al., 2021) 

Table 7. Modelling techniques for impacts of sensor degradation on measurement uncertainty

Filtering technique-based models, commonly explored in the 

literature, are prominently recognized within the frameworks 

of filtering methods. This approach enhances adaptability and 

provides robust uncertainty quantification by leveraging 

inherent structures of filtering algorithms. In (Chughtai et al., 

2022), noise (outliers) and sensor failures (missing data) are 

modelled as special cases of outliers using a measurement 

likelihood function within Selective Observations-Rejecting 

Unscented Kalman Filter (SOR-UKF). This is achieved by 

incorporating an indicator vector as a parameter in the 

measurement likelihood function, which takes a value of 1 

when the measurement is valid (no outlier) and a value of ϵ, 

a number close to zero, when the measurement is considered 

an outlier or corrupted. In addition, most methods incorporate 

measurement uncertainty from sensor degradation, 

specifically gain degradation, bias, drift, sensor failure, into 

the measurement model within filters, specifically, local 

recursive filter (Huang & Shen, 2021), particle filter 

(Hachem et al., 2024; Liu et al., 2022), Kalman filter 

(Mukhopadhyay et al., 2023; Liu et al., 2019; Loo et al., 

2022; Feng et al., 2018; Dinh et al., 2024; Wu & Liu, 2024; 

He et al., 2025; Mayilsamy et al., 2025), distributed resilient 

filter (Liu et al., 2016), H-infinity filter (He et al., 2008), 

Bayesian framework (He et al., 2022), Gaussian data 

reconciliation (Li & Ying, 2017), Probabilistic Local 

Maximum Mean Discrepancy (PLMMD) framework (Zhang 

et al., 2022), Neural Network-based Kazantzis-

Kravaris/Luenberger observer (NN-KKL) (Cao et al., 2024). 

The performance of these filtering approaches is critically 

dependent on the accuracy of the underlying system model 

and the statistical assumptions made about the process and 

measurement noise. 
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Statistical and probabilistic models are founded on the 

principles of statistics and probability, focusing on 

deterministic relationships while incorporating elements of 

uncertainty. Wen et al. (2023) incorporated random variables 

representing gain degradation directly into the measurement 

model, while Zhang et al. (2019) employed set-membership 

estimation, treating gain degradation as a probabilistic factor 

characterized by random variables bounded within a specific 

interval. Yoo et al. (2020) modelled sensor failure by defining 

“sensor fault” as a gain reduced to 70% of its normal value 

and measuring resilience under such conditions. Noise and 

sensor failure (loss of informativeness) are modelled by van 

Oosterom et al. (2017) using a Partially Observable Markov 

Decision Process (POMDP) with an observation matrix that 

evolves with sensor age. He et al. (2022) integrated bias and 

noise into the measurement model through a Bayesian 

framework that incorporates sensor degradation. In 

(Hickinbotham & Austin, 1999), noise is modelled using a 

Gaussian distribution, then sensor shifts are detected via the 

eigenface algorithm, leveraging Principal Component 

Analysis of sensor responses. Wu et al. (2024) quantified 

measurement uncertainty through the Information Gain 

(EIG), calculated using Relative Entropy to capture the loss 

of information and an increase uncertainty due to sensor 

network degradation processes. Jiang et al. (2006) captured 

gain degradation and increased latency (time constant) in 

throttle position sensors by using Autoregressive Moving 

Average with Extra Input (ARMAX) model. Wanga et al. 

(2008) modelled “synthetic” gain by combining 

multivariable measurements into a Confidence Value. In (Li 

et al., 2007), noise was modelled by the standard deviation, 

such that an increase in the standard deviation is interpreted 

as a sign of sensor degradation. The strength of this approach 

lies in its remarkable versatility, offering a diverse toolkit of 

statistical methods to model a wide array of degradation 

effects. A notable challenge, however, lies in the selection 

and validation of the appropriate statistical model, as an 

improper choice can lead to non-descriptive results and/or 

inaccurate predictions. 

Empirical models are constructed using data observed from 

experiments or real-world measurements, providing data-

driven insights into system behaviour. In measuring Top-of-

Atmosphere radiance, implicit impact, which could be a 

synthesis, e.g., drift, shift, bias, … was modelled by updating 

calibration coefficients monthly with cross-calibration using 

observed data (Lu et al., 2021), or under a mathematical 

model followed by a Bidirectional Reflectance Distribution 

Function (BRDF) and fitted using linear regression analysis 

(Kim et al., 2013). Aldrin et al. (2007) modelled sensor 

sensitivity degradation in a variety of sensors used in 

Structural Health Monitoring (SHM) through flaw size, as 

sensors degrade, it becomes less sensitive, requiring a larger 

flaw size to detect the same flaw with a given probability, as 

determined by a Probability of Detection (POD) model. Zhan 

et al. (2025) modelled sensor drift through the use of Hessian 

matrix and the analysis of its eigenvalues for positioning 

systems, "when sensors become degenerate, the 

corresponding eigenvalues become much smaller. Yu and 

Wu (2009) modelled drift by a degradation rate using 

formulas using a time series of observations. Ohsuga and 

Ohyama (1988) described “drift” by a correction coefficient 

𝐾𝑔𝑟𝑎𝑑 . Li et al. (2007) modelled implicit impact using 

correlation coefficients between two related sensor readings, 

such that a decrease in this correlation over time suggests that 

one or both measurements indicate increasing uncertainty, 

additionally, they modeled sensor fault using rules that the 

sensor was identified as stuck when its measurement meets 

specific conditions. A principal benefit of this approach is its 

practicality, as these models can often be developed and 

implemented straightforwardly from available data. 

However, a major weakness of empirical models is their 

limited ability to extrapolate, as their predictive accuracy can 

degrade when applied to varying conditions outside of the 

original observed operating points. 

Machine learning methods leverage training processes to 

learn from data with complex patterns, enabling the 

development of models that can adapt and generalize to 

diverse scenarios. Bai et al. (2020) modelled noise and drift 

by considering multiple input parameters, including sensor 

outputs and environmental factors, and then adjusting the 

weights and biases through training to account for 

measurement errors caused by sensor degradation over time. 

Li and Dai (2023) proposed a physics-guided neural network 

model for detecting sensor faults in aeroengine control 

systems. Wu and Yan (2022) addressed the challenge of 

bounded noise in measurement data by proposing a novel 

autoencoder-based model designed to effectively capture and 

mitigate the impact of such noise. Zhang et al. (2021) 

modelled drift with Domain Adaptation Mixture of Gaussian 

Processes (DA-MGP) model, which integrates Gaussian 

Processes and domain adaptation techniques. The most 

significant advantage of this approach is its ability to 

automatically learn and represent highly complex and 

nonlinear degradation patterns directly from data. However, 

these models often act as “black boxes” with low 

interpretability, and their performance is critically dependent 

on the availability of large, representative training datasets. 

In summary, it is clearly demonstrated that sensor 

degradation has discernible impacts on measurement quality, 

affecting both qualitative and quantitative aspects. These 

effects can be systematically analysed and modelled using a 

variety of techniques, ranging from empirical models based 

on observations and experimental data to more advanced 

filtering methods employed within state estimation 

frameworks. Additionally, theoretical and data-driven 

methodologies, including statistical, probabilistic, and 

machine learning-based approaches, offer insights into 

degradation patterns and their consequences. The complexity 

of sensor degradation necessitates a multifaceted approach, 

incorporating domain expertise, computational techniques, 
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and real-world validation to ensure robustness and reliability. 

This introduce into prognostics and maintenance decision-

making strategies, the necessity of effectively adapting and 

mitigating these challenges to safeguard the system 

reliability. These strategies will be discussed in the next 

sections. While substantial progress has been made in this 

domain, certain research gaps remain, which will be further 

explored in Section 7. 

5. REVIEW ON PROGNOSTICS WITH MEASUREMENT 

UNCERTAINTY FROM SENSOR DEGRADATION 

This section delves into reviewing the topic of prognostics in 

the presence of measurement uncertainty arising from sensor 

degradation. Investigating sensor degradation in prognostics 

is crucial, as accurate measurements are essential for 

predicting system health and sensor degradation is a 

significant source of measurement uncertainties that 

undermine the accuracy of the prognostics process 

(Mukhopadhyay et al., 2023; Zhang et al., 2018; Liu et al., 

2019). Sensor degradation impacts prognostics by reducing 

the availability of effective monitoring data and making it 

difficult to distinguish adjacent health states, leading to 

inaccurate predictions of health conditions and increased risk 

of failure in critical systems (Yin et al., 2022). 

Prognostics approaches can be classified into three 

categories: data-driven, physics-based, and hybrid methods 

(Guo, Li and Li, 2019). Data-driven approaches leverage 

techniques such as artificial intelligence and statistical 

methods. Physics-based methods rely on principles such as 

physics of failure and system modelling. Hybrid approaches 

combine data-driven techniques with knowledge of 

degradation mechanisms to enhance prediction accuracy. 

These classifications are illustrated in Figure 3. 

 

Figure 3. Applications of various prognostics approaches 

(Guo et al., 2019) 

Studies have highlighted a range of methods for addressing 

sensor degradation and measurement uncertainty in 

prognostics. They can be categorized, as shown in Table 8. 

Experience-based methods rely on historical data and expert 

knowledge to inform predictions and decision-making, 

drawing insights from observations and professional 

expertise. Yin et al. (2022) proposed a Belief Rule Base 

(BRB) model to encode expert knowledge about the sensor’s 

degradation and failure mechanisms, represented by 

probabilities of failure at each time step of data, which 

accommodate uncertainties and inaccuracies in the data 

caused by sensor degradation, and subsequently use fuzzy 

logic under Membership Functions (MF) to predict the 

sensor's future health state, categorizing it into different states 

with a high accuracy and a reasonable state based on the 

probabilities of failure. The proposed BRB-MF model 

demonstrated high accuracy in predicting sensor health 

states; a case study using brightness sensors showed that 

BRB-MF has clear advantages in effectively utilizing 

comprehensive expert knowledge when dealing with limited 

data availability, naturally, when a full range of data is 

available, the results would not be different from other data-

driven methods such as neural networks, as stated by the 

authors. A primary benefit of such methods is their high 

degree of interpretability, as the explicit encoding of expert 

rules allows for clear insight into the model's decision-

making logic. The approach's main vulnerability, however, 

lies in its potential for subjectivity and bias, as the model's 

accuracy is fundamentally constrained by the quality and 

completeness of the expert knowledge it is built upon. 

 

Categories Description References 

Experience-based 
relies on historical data and expert knowledge to make 

predictions 
Yin et al., 2022 

Data-driven 

utilizes statistical methods for prognostics (when no or rare 

physical understandings are available) 

Zhang et al., 2018; Wanga et al., 2008; Yuan, Xu, 

Adjallah, Wang, Liu and Xu, 2024; Carratù et al., 

2024 
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Physical-Based 
incorporates parameters about sensor degradation into 

prognostics estimation models 

Mukhopadhyay et al., 2023; Hachem et al., 2024; 

Liu et al., 2019; Hossain et al., 2024 

Hybrid 

combining physical-based models of prognostics with data-

driven models of sensor degradation 
Michaels et al., 2005; Bonhote et al., 2006 

combining physical-based models of sensor degradation with 

data-driven models of prognostics 

He et al., 2022; Aldrin et al., 2007; Yoo et al., 

2020 

Table 8. Categorizations of prognostics methods with measurement uncertainty from sensor degradation 

Data-driven methods employ statistical techniques for 

prognostics, particularly in scenarios where physical 

understanding of the system is limited or unavailable. Zhang 

et al. (2018) effectively quantified the influence of sensor 

measurement errors on RUL prediction in a blast furnace 

system by modelling system degradation with a Wiener 

process that incorporated deteriorating sensor measurement 

errors quantified using Relative Entropy, and estimated 

failure time using an Inverse Gaussian distribution, numerical 

results indicate that controlling the measurement error within 

specified permissible ranges significantly improves the 

accuracy of lifetime estimates. Wanga et al. (2008) used a 

Statistical Pattern Recognition model to estimate a 

Confidence Value (CV) as the RUL for automotive sensors 

by training with data during the offline phase to recognize the 

normal behaviour of the sensor based on historical data, and 

then to be used in online phase to calculate a CV that 

quantified the similarity between the current sensor 

behaviour and the normal behaviour observed during 

training, which showed that as the sensors degrade, the CV 

clearly showed a declining trend, effectively detecting even 

small and early-stage degradation in the sensor's 

performance. Yuan et al. (2024) presented a data-driven 

method for predicting the remaining useful life of sensors, 

considering the impacts of sensor degradation on 

measurement uncertainty, by employing statistical models 

such as the Weibull distribution to estimate failure 

probabilities over time based on historical sensor failure data. 

Carratù et al. (2024) proposed a data-driven method for 

predicting the RUL of MEMS sensors, that utilized a neural 

network trained to forecast RUL based on degradation trends 

captured by the Health Index. The core strength of this 

approach is its ability to build effective prognostic models 

directly from operational data, even in the absence of a 

detailed first-principles understanding of the system's failure 

physics; however, the quality and quantity of historical data 

directly govern the model's predictive accuracy and 

generalizability. 

Physics-based methods integrate sensor degradation 

parameters into prognostics estimation models to enhance 

accuracy and reliability in predicting system performance 

over time, requiring a deep understanding of the system's and 

sensor's physical degradation processes. Hachem et al. (2024) 

incorporated parameters about sensor degradation into state 

estimation models in the case of wastewater treatment using 

stochastic processes such as Gamma and Wiener, with state 

estimation carried out through particle filters, and RUL is 

predicted by simulating the future degradation path based on 

the current state estimation-based particle filter, specifically, 

for each particle, the future degradation is simulated by 

advancing the stochastic process forward in time, resulting in 

a significant reduction in MSE and RMSE when sensor 

degradation is considered in estimating system’s degradation 

state. Liu et al. (2019) presented a physics-based approach 

that uses a Wiener process to model both system and sensor 

degradation of wastewater treatment plants and employed the 

Kalman filter to incorporate sensor degradation parameters 

into the system's state estimation for accurate RUL prediction 

through its cumulative distribution function. The same 

approach was also used by Hossain et al. (2024) for the case 

of nuclear reactor pressure vessels. Mukhopadhyay et al. 

(2023) proposed a methodology for estimating the RUL of an 

offshore wind system where both the system and the sensor 

degrade over time, by modelling the degradation processes of 

both the system and the sensor, and then estimating them 

using a Kalman filter, RUL was estimated by simulating the 

future trajectory of the system degradation using the updated 

state probability distribution, with results that finally showed 

that accounting for sensor degradation leads to more accurate 

predictions, without accounting for degradation, deviations 

were evident; whereas with the proposed method, estimations 

closely matched actual degradation.  

Hybrid methods in prognostics and health management 

represent a powerful approach by integrating physics-based 

models with data-driven techniques, either by combining 

physical models of prognostics with data-driven insights into 

sensor degradation or vice versa, enabling more accurate and 

robust system health predictions. Michaels et al. (2005) 

contributed to prognostics of aluminium components by 

monitoring their progression of damage using affixed 

ultrasonic sensors by physics-based monitoring fatigue crack 

growth using through-transmission ultrasonic signals, while 

addressing measurement uncertainty from sensor degradation 

through pulse echo corrections and Energy Ratio methods 

that effectively compensate for the impacts of sensor 

degradation. In addition, Chunping et al. (2006) used the 

Arrhenius model to predict time to failure of giant 

magnetoresistance (GMR) sensor heads 𝑇𝐹𝐹 = 𝐴𝑒
𝐸𝑎
𝑘𝑇  fitted 

with historical data. Yoo et al. (2020) presented a hybrid 

prognostics method that integrates physics-based models of 

sensor degradation accounting for faults such as bias, gain, 

and drift, and with linear discriminant analysis to estimate 
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system resilience demonstrated with the electro-hydrostatic 

actuator (EHA) system, resulting in a more precise resilience 

estimation that reveals a 6% drop in resilience due to sensor 

degradation. Aldrin et al. (2007) presented an approach for 

assessing aircraft system reliability that integrates a physics-

based, time-dependent POD model for sensor degradation 

with a data-driven probabilistic risk assessment framework to 

evaluate the impact of sensor degradation on SHM 

performance and system prognostics, and concluded that 

sensor degradation leads to an increased probability of failure 

over time in the POD model compared to a fixed POD model. 

He et al. (2022) predicted the RUL through reliability 

metrics, including lifetime quantiles and system reliability, 

which is used to quantify how long a system will function 

before failure, by modelling the degradation of both the 

system and the sensor using Wiener processes and 

dynamically updating these models through an Approximate 

Bayesian Computation (ABC) algorithm, which incorporates 

measurement uncertainty arising from sensor degradation 

during sequential Accelerated Degradation Tests (ADT), 

numerical studies on a gas turbine system achieved a 

significantly lower asymptotic variance in RUL prediction 

metrics compared to the benchmark sequential model that 

ignored sensor degradation. The strength of hybrid 

philosophy is its ability to leverage first-principles models 

while using data-driven techniques to capture complex 

interactions or correct for unmodelled effects. Still, the 

development of such integrated models can be more complex 

to properly fuse the different modelling paradigms. 

This section provides insights into how prognostic techniques 

have evolved to manage the challenges posed by sensor 

degradation. Several approaches and techniques have been 

applied to address the challenges, ranging from encoding 

expert experience or physics of sensor degradation into the 

approach, to data-driven methods with the capability for 

generalization for various applications, or hybrid methods to 

utilize the strengths of both. Given the critical role of 

prognostics as an input for many maintenance decision-

making processes, the next section will review maintenance 

decision-making, with a focus on the effects of sensor 

degradation. Remaining research gaps will be discussed in 

Section 7. 

6. REVIEW ON MAINTENANCE DECISION-MAKING WITH 

MEASUREMENT UNCERTAINTY FROM SENSOR 

DEGRADATION 

Condition-Based Maintenance (CBM) and Predictive 

Maintenance (PdM) are popular concepts in maintenance 

decision-making. CBM is a proactive approach that utilizes 

real-time monitoring of equipment conditions to assess and 

determine the necessity for maintenance (Golmakani, 2022; 

Kroculick, 2014; de Meyer, Goosen, van Rensburg, du 

Plessis and van Laar, 2021). Meanwhile, PdM leverages data 

through the prognostics process, enabling proactive 

predictions of future health based on current and historical 

data (Roehrich & Raffaele, 2023; Assagaf, Sukandi, 

Abdillah, Arifin and Ga, 2023). The relationship between 

them can be visualized in Figure 4, where the data acquisition 

process directly informs the maintenance decision-making 

process or is further utilized for predictive capability. 

 

Figure 4. Maintenance decision-making approaches 

considering measurement uncertainty from sensor 

degradation 

Building upon the insights provided in the previous sections 

that explored impacts on measurement uncertainty and the 

adaptation of prognostics in managing uncertainty arising 

from sensor degradation, this section delves into maintenance 

decision-making under these factors. Considering 

measurement uncertainty resulting from sensor degradation, 

the maintenance decision-making process has been adapted. 

Table 9 summarizes the approaches outlined by the following 

interpretations. 

Sensor degradation increases the probability of undetected 

failures and unnecessary repairs due to false alarms. To 

address this, Aldrin et al. (2007) employed a probabilistic risk 

assessment and cost-benefit analysis to evaluate how sensor 

degradation affects the reliability of SHM systems. Inputs 

include time-dependent sensor degradation characteristics, 

capturing how sensor performance deteriorates over time, 

and the relationship between the actual damage state and the 

detected damage state, ensuring accurate damage 

assessments. Essential parameters such as the 50% detectable 

flaw size and the random missed flaw rate are dynamically 

modelled as functions of time to reflect ongoing sensor 

reliability changes. Maintenance outputs are actionable 

recommendations for sensor replacement when degradation 

compromises system reliability, ensuring consistent 

monitoring effectiveness. Additionally, cost evaluations and 

maintenance interval decisions are optimized by assessing 

reliability and associated costs under varying degradation 

scenarios. The results show that sensor degradation 

significantly increases the probability of failure (e.g., an 

increase in random missed detection rate to 10% or detectable 

crack size to 0.07 inches leads to higher failure risks), while 

slightly reducing total maintenance costs due to fewer repairs, 

highlighting the critical need for sensor replacement or 

recalibration to balance safety and cost. 
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Categories Description References 

Condition-Based 

Maintenance 

Characteristics: involves monitoring the actual condition of equipment in real-

time to determine whether maintenance is needed, minimizing unnecessary 

repairs by performing work only when justified by equipment health. 

Inputs: system states, sensor measurements, belief states, degradation states, … 

Aldrin et al., 2007; Liu et al., 
2019; van Oosterom et al., 2017; 

Murthy, 1982; Li & Ying, 2017; 

Zhang et al., 2023 

Predictive 

Maintenance 

Characteristics: involves predicting the future health of a system or component 

by estimating RUL based on current and historical data, requires investment in 

prognostic models and historical data for accurate predictions 

Inputs: prognostics information 

Zhang et al., 2018; Dinh et al., 

2024; Yuan et al., 2024 

Table 9. Maintenance decision-making approach considering measurement uncertainty from sensor degradation 

Disregarding sensor degradation significantly increases the 

risk of inaccurate system state estimation, leading to 

suboptimal maintenance decisions with ineffective actions 

and increased costs. Liu et al. (2019) proposed a maintenance 

policy utilizing estimated system and sensor states as key 

maintenance inputs, derived through a stochastic filtering 

approach using the Kalman filter, applicable to systems 

operating in harsh environments, such as wastewater 

treatment plants, manufacturing systems, chemical plants, 

and pharmaceutical factories. This method effectively 

accounts for both system degradation and sensor degradation, 

ensuring accurate state estimation despite measurement 

uncertainties. Maintenance actions are dynamically 

determined at each inspection, offering two primary 

responses: corrective replacement is performed if the system 

is found to have failed, while preventive replacement is 

initiated when the predicted system reliability is projected to 

reach a critical threshold before the next inspection. The 

method achieves a near-optimal maintenance policy 

effectively addressing sensor degradation and achieving a 

long-run cost rate that is lower than 36% compared to when 

sensor degradation is disregarded. 

Considering degrading sensors allows for the optimization of 

maintenance strategies, balancing the trade-off between 

sensor performance (minimizing variance in estimation) and 

the costs of maintenance. Murthy et al. (1982) developed 

maintenance for deteriorating sensors guided by degradation 

indicators, specifically, signal intensity, noise intensity, and 

drift quantification, which can be applied broadly to 

industries relying on sensor-based systems for real-time 

monitoring and control. Indicators reflect the gradual or 

catastrophic deterioration of sensor performance over time. 

Maintenance actions are optimally chosen between full 

maintenance and no maintenance during specific periods, 

depending on the sensor’s degradation level. The decision-

making process aims to balance reducing the measurement 

variance caused by sensor degradation and controlling 

maintenance costs. This balance is achieved through 

optimization methods that determine the most effective 

maintenance strategy, specifying when and how much 

maintenance should be applied to achieve this balance. The 

results showed that the optimal maintenance strategy often 

involves either full maintenance during a portion of the 

operational time or no maintenance, with maintenance 

improving the mean time to failure and reducing the variance 

of the signal estimation error. 

Oosterom et al. (2017) presented a maintenance strategy that 

integrated sensor degradation into its decision-making 

process utilizing a belief state that quantifies the probability 

that the system is in an out-of-control state, applied in safety-

critical systems, such as chemical plants, hospitals, and 

nuclear power reactors. This belief is dynamically updated 

using Bayes’ rule as new, potentially imperfect, observations 

from the deteriorating sensor are received. The maintenance 

actions derived from this model include: (1) continuing 

operation when the system is deemed stable, (2) conducting 

a full inspection to perfectly determine the system’s 

condition, (3) replacing the system if the inspection confirms 

it is out-of-control, and (4) replacing the sensor when its 

degradation surpasses a defined threshold to restore 

measurement reliability. These decisions are systematically 

guided by a Markov decision Process framework, which 

incorporates both the updated belief state and the sensor's 

age. The model employs a threshold-based policy, wherein 

actions are triggered when the belief and/or the sensor age 

exceed thresholds, ensuring optimized coordination between 

system inspections and sensor replacements. The model is 

highly effective, with numerical results showing the optimal 

policy achieving significantly lower total costs compared to 

heuristic policies, with examples showing optimality gaps of 

1.0% for a heuristic policy using a simplified threshold and 

up to 11.9% for a less coordinated policy. 

Li and Ying (2017) presented an enhancement to gas turbine 

reliability by addressing measurement inputs affected by 

sensor degradation. Over time, gas-path sensors can produce 

biased measurements due to degradation or failure, 

compromising the accuracy of diagnostic results. To mitigate 

this, the proposed method outputs critical maintenance 

actions, including the detection of degraded sensors, isolation 

of faulty sensors, and quantification of the degradation rates 

of both gas-path components and sensors. This is achieved 

through an advanced maintenance decision-making process 

utilizing an extended nonlinear Gas Path Analysis (GPA) 

method. The approach integrates Gaussian data 

reconciliation to identify and correct suspicious sensor data 

and employs multiple operating points to distinguish between 

sensor faults and actual component degradation. This 
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comprehensive process ensures accurate fault detection, 

effective isolation of faulty components, and precise 

assessment of degradation severity, thereby improving 

maintenance decisions and overall engine performance. The 

proposed method significantly improves diagnostic accuracy, 

enabling the correct identification and quantification of 

components across five test cases. 

Zhang et al. (2023) developed maintenance decision-making 

in the context of SHM systems, specifically addressing how 

measurement uncertainty caused by sensor degradation 

impacts the reliability of maintenance strategies. The study 

incorporates the effects of time-varying sensor performance, 

including random measurement errors and systematic biases, 

which influence the accuracy of structural condition 

assessments. Maintenance decisions are guided by key 

information such as the monitored structural damage 

condition, SHM measurement outcomes affected by 

degradation, and diagnostic reliability indicators such as the 

Probability of Detection and the Probability of False 

Indication. Based on this information, the framework 

supports critical maintenance activities, including 

determining when to conduct inspections, triggered when 

monitoring data exceed specific thresholds, and deciding on 

repairs when detected damage surpasses safety limits. 

Additionally, the approach considers the need to renew or 

recalibrate SHM systems as their performance deteriorates 

over time. The study proposes two maintenance strategies: 

the first initiates inspections based on real-time monitoring 

data exceeding a damage threshold, while the second relies 

on the annual failure probability inferred from SHM data to 

trigger inspections when it exceeds a predefined limit. The 

results demonstrate that the impact of ignoring SHM 

performance degradation significantly elevates the lifecycle 

cost (LCC) of structures, underscoring the necessity of 

incorporating time-varying measurement uncertainties into 

maintenance strategies. Specifically, the results from 

degradation scenarios show that neglecting sensor 

degradation can significantly increase the expected LCC 

compared to strategies that account for measurement 

uncertainty. 

Sensor degradation leads to inaccuracies in lifetime 

estimation due to measurement errors, which can cause 

suboptimal maintenance decisions, increased costs, and 

elevated safety risks. Zhang et al. (2018) revolved around the 

critical role of accurate lifetime estimation in guiding 

maintenance decisions, which can be applied in complex 

industrial systems such as blast furnaces. This estimation is 

notably influenced by measurement errors stemming from 

sensor degradation over time. Such errors can bias lifetime 

predictions, impacting the effectiveness of maintenance 

policies. Specifically, maintenance outputs include the 

development of replacement policies and the determination 

of optimal maintenance intervals to avoid unscheduled 

maintenance events and minimize associated costs. A 

degraded sensor is scheduled for replacement either when its 

degradation trajectory intersects a defined failure threshold or 

when it reaches a predetermined age. This decision-making 

process is deeply rooted in lifetime estimation models that 

account for potential measurement errors. Consequently, 

maintenance decisions, primarily following an age-based 

replacement strategy, are informed by evaluating lifetime 

predictions while incorporating sensor measurement errors, 

which ensures a more robust maintenance framework. The 

numerical results demonstrate that controlling measurement 

errors reduces maintenance costs significantly, specifically, 

in test cases, when measurement errors are controlled within 

permissible ranges, the long-run average maintenance cost 

per unit can be minimized, whereas uncontrolled 

measurement errors lead to substantial cost increases. 

Yuan et al. (2024) introduced a risk-based PdM method that 

quantifies the impact of sensor degradation on decision-

making risks to optimize maintenance schedules. This 

method relies on inputs such as historical sensor failure data, 

sensor lifespan distribution models (e.g., Weibull 

distribution), and risk assessment metrics that link sensor 

failure probabilities to operational risks, including financial 

losses and customer complaints. The outputs/actions involve 

determining the optimal timing for sensor replacements or 

inspections based on predicted risk thresholds, allowing for 

proactive interventions before failures cause significant 

disruptions. The maintenance method employs mathematical 

models that calculate both individual and combined risks of 

sensor failures, integrating failure probabilities with risk 

values to assess how degradation affects system performance. 

This approach also accounts for the compounded effects of 

multiple sensor failures, enabling a more comprehensive risk 

evaluation. Numerical results from case studies demonstrate 

the method’s effectiveness, showing that without predictive 

maintenance, the risk of financial loss can reach 336.13 per 

day when critical sensors fail simultaneously, while the 

proposed method significantly reduces both financial risks 

and the frequency of customer complaints compared to 

traditional periodic maintenance strategies that do not 

consider the impacts of sensor degradation on measurement 

uncertainty. 

Dinh et al. (2024) introduced an adaptive PdM strategy 

specifically designed for manufacturing systems where 

measurement uncertainty arises from the degradation of 

health monitoring devices (HMDs). The decision-making 

process is driven by several critical factors, including 

estimated degradation levels of both the system and the 

HMDs, prediction of the reliability of the system at future 

inspection intervals, and data collected during regular 

monitoring activities. Additionally, maintenance-related cost 

parameters, such as inspection expenses, costs of preventive 

and corrective actions, HMD replacement or calibration 

costs, and potential downtime losses are integral to the 

decision framework. Based on these factors, maintenance 

actions are determined through a structured approach: 

corrective maintenance is triggered if the estimated system 
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degradation exceeds the failure threshold, preventive 

maintenance is scheduled when system reliability drops 

below a critical level while the HMD remains reliable, and 

HMD replacement or calibration is initiated if its degradation 

undermines the accuracy of condition monitoring. If the 

system’s reliability remains high, maintenance actions are 

deferred to optimize resource usage. This decision-making 

process operates within an adaptive framework, where 

system and HMD conditions are continuously evaluated 

using Kalman filter techniques. By integrating real-time data 

with predictive modelling, the approach ensures that 

maintenance decisions are both cost-effective and responsive 

to the dynamic interplay between system degradation and 

sensor performance, ultimately enhancing system reliability 

while minimizing unnecessary maintenance interventions. 

The proposed method achieved an optimal maintenance cost 

rate; compared to the conventional method, which had a 

higher cost rate, it reduced costs by approximately 12.5%. 

Further analysis showed that the maintenance cost rate is 

sensitive to the sensor replacement threshold: compared to 

the optimal value, lower thresholds increase costs due to 

frequent sensor replacements, while higher thresholds reduce 

replacements but raise costs from system failures or poor 

maintenance timing caused by degraded sensor accuracy. 

In brief, the performance of CBM and PdM fundamentally 

depends on measurement quality, which can be compromised 

by sensor degradation. Various approaches have been 

developed to mitigate this issue, incorporating sensor 

degradation into maintenance frameworks through additional 

indicators, state estimation, and filtering. New policies define 

maintenance actions for both sensors and systems, supported 

by optimization algorithms. Despite these advancements, 

significant gaps remain. The next section will explore several 

challenges and potential research opportunities. 

7. DISCUSSION AND RESEARCH OPPORTUNITIES 

7.1. Modelling Sensor Degradation and Impacts in 

Measurement Uncertainty 

The challenge of developing precise models that represent 

sensor degradation processes persists. Most current models 

rely on oversimplified assumptions and fail to capture the 

complexity of real-world dynamic operating conditions. 

These conditions include a range of stochastic factors such as 

variable operational loads, thermal cycling, intermittent 

power-on/off cycles, and exposure to sudden shocks and 

vibrations, which are often ignored in laboratory settings. For 

instance, current studies frequently overlook shocks or 

assume their effects are constant (Hachem et al., 2021), 

failing to capture the stochastic nature of these events. 

Therefore, a key research direction involves creating more 

robust, multifaceted degradation models. Future work should 

focus on integrating sensor-specific parameters with models 

that can dynamically account for these real-world conditions. 

This includes advanced techniques such as probabilistic 

modelling for shock events, hybrid simulations, and real-time 

anomaly detection.  

Furthermore, performance under a wide range of operating 

conditions has also received insufficient attention 

(Mehdizadeh et al., 2012). Existing approaches often fail to 

model degradation across different operating points. This is 

evident in the case of the Solar Diffuser Stability Monitor 

(SDSM), which cannot track degradation uniformly across its 

full sensing range (Sun & Xiong, 2020). Addressing these 

limitations requires models that can account for the full 

spectrum of operational variabilities encountered in real-

world scenarios. 

Traditional degradation modelling methods such as the 

Wiener process, though widely used, may not be sufficient to 

capture the nonlinear and complex nature of sensor 

degradation (Liu et al., 2019). Although root-cause analysis 

of the nonlinear physical mechanisms of sensor degradation 

can provide more accurate modelling; however, this can be 

hard and costly due to the multi-factor complexity of 

degradation phenomena. This limitation hinders the 

generalization of models to real-world data, where 

degradation conditions vary significantly across different 

sensors. Recent research highlights the need for models that 

incorporate nonlinear and non-stationary degradation 

processes to better capture the diverse nature of sensor 

degradation (Hachem et al., 2021). There is a recognized gap 

in the integration of physics-based and stochastic models for 

sensor degradation, while both approaches have been 

explored separately, combining them could provide more 

comprehensive and accurate degradation models (Hua et al., 

2013). While physics-based models excel at describing 

degradation through well-defined mechanisms, stochastic 

models effectively capture the probabilistic and uncertain 

nature of degradation processes. By developing hybrid 

frameworks integrating physics-based terms with a stochastic 

approach, researchers can create models capable of capturing 

both deterministic and probabilistic degradation trends. Data-

driven approaches, such as machine learning, can support 

modelling degradation patterns by leveraging historical 

sensor data. Unlike traditional methods that rely on 

predefined degradation models, machine learning techniques 

can uncover complex, nonlinear relationships and patterns 

directly from the data that can be highly adaptable to various 

applications. Physics-Informed Machine Learning (PIML) 

can be a standout approach to modelling sensor degradation, 

by integrating physical terms with the data-driven 

adaptability power of machine learning, which ensures 

predictions remain consistent with real-world physical 

behaviours, especially in scenarios where training data may 

be sparse or noisy, that eventually improve model accuracy 

and explainability. 

Multi-dimensional correlated sensor degradation remains 

underexplored (Mandal et al., 2017; Hua et al., 2013). Real-

world systems often experience complex interactions 
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between multiple degradation factors, such as operational 

stress or environmental influences. Current research typically 

focuses on isolated degradation mechanisms, failing to 

capture the interdependence among these dimensions. In 

addition, there is a lack of research on the simultaneous 

degradation of both the monitored system and the sensor, 

which may require decoupling their dynamics for effective 

degradation detection (Jiang et al., 2006). Moreover, 

distinguishing between sensor degradation and system 

degradation is critical, especially for applications such as 

SHM, yet advanced techniques to differentiate between these 

two phenomena are still lacking (Mehdizadeh et al., 2012). 

These gaps present significant research opportunities, 

particularly in developing advanced modelling algorithms 

capable of analysing multi-dimensional degradation 

processes. 

Integration of sensor degradation modelling into analysis of 

measurement uncertainty takes a pivotal role in the domain 

of estimation and filtering. Although sensor measurement 

degradation can be conveniently detected, challenges persist 

in quantifying the consequent uncertainty, for example, the 

difficulty in estimating the detected gain degradation (He et 

al., 2008). Research opportunities could focus on developing 

more sophisticated modelling and estimation methods to 

better evaluate sensor performance reduction. Currently, 

measurement errors are often treated as time-independent 

random variables; however, in reality, sensor errors tend to 

change over time due to degradation (Zhang et al., 2018). An 

important focus is the development of dynamic models that 

account for sensor degradation time-varying errors. This 

opens a wealth of research opportunities focused on 

developing augmented state modelling techniques that 

account for the dynamics of degraded sensors by 

incorporating degradation-related parameters, integrating 

these into estimation frameworks such as adaptive Kalman or 

particle filters. In addition, the integration of physics with 

data-driven approaches can significantly improve modelling 

performance. Furthermore, there is a need for investigations 

into probabilistic models to consider robustness (He et al., 

2008). Data-driven approaches depend on datasets, which are 

currently limited, and their construction is often resource-

intensive and laborious, particularly due to conditions such as 

environmental variability during the data acquisition process 

(Qiu, Shen, Yue and Zheng, 2023). Future research could 

focus efforts on introducing more data collection for future 

development and benchmarking. Furthermore, less attention 

has been given to fusing degradation data from multiple 

sensors, multiple sensor data, and data fusion algorithms can 

be implemented for multi-sensor degradation systems (Arosh 

et al., 2015). Another prominent research gap is the need for 

more comprehensive indicators to capture measurement 

uncertainty caused by sensor degradation. Future work can 

focus on developing resilience measures that accommodate 

the time-dependent degradation dynamics of sensors (Yoo et 

al., 2020). Moreover, further development of advanced 

simulation methods could support data augmentation and 

precision (Kamei et al., 2012). 

To summarize the current limitations and highlight the 

avenues for future research in modelling sensor degradation 

and its impacts on measurement uncertainty, Table 10 

provides a concise overview of key research gaps, their 

current limitations, and promising future directions. 

Current Limitations Possible Research Directions 

Simple assumptions, 

ignore 

dynamic/stochastic 

factors (shocks, loads). 

Develop robust, multifaceted 

models; account for real-world 

conditions; probabilistic shock 
modelling, hybrid simulations, 

real-time anomaly detection 

Fail to model degradation 

uniformly across 

operating points 

Develop models for full spectrum 

of operational variabilities. 

Traditional degradation 

models insufficient for 

nonlinear/complex 
degradation; high cost for 

root analysis. 

Incorporate nonlinear/non-

stationary processes; hybrid 

physics-stochastic models; 

Physics-Informed ML (PIML). 

Focus on isolated 

mechanisms; lack of 

interaction analysis, 

simultaneous 
system/sensor 

degradation, and 

differentiation 

techniques. 

Develop algorithms for multi-

dimensional degradation analysis; 

decouple system/sensor dynamics. 

 

Difficulty quantifying 

measurement uncertainty; 

errors often treated as 

time-independent. 

Develop sophisticated modelling 

for performance reduction; 
dynamic models for time-varying 

errors; augmented state modelling; 

probabilistic models. 

Datasets are scarce, 

resource-intensive; 
environmental variability 

issues. 

Increase data 

collection/benchmarking; develop 

resilience measures for time-
dependent degradation; advanced 

simulation for data augmentation. 

Less focus on fusing 

degradation data from 

multiple sensors. 

Implement multi-sensor data 

fusion algorithms for degradation 

systems. 

Lack of comprehensive 

indicators for 

degradation-induced 

uncertainty. 

Develop resilience measures for 

time-dependent sensor degradation 

dynamics. 

Table 10. Research Opportunities in Modelling Sensor 

Degradation and Measurement Uncertainty 

7.2. Managing Impacts of Sensor Degradation in 

Prognostics 

Sensor degradation introduces additional uncertainty in RUL 

predictions. Most existing studies have largely overlooked 

how sensor deterioration affects RUL predictions, 

necessitating more focused research in this area 
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(Mukhopadhyay et al., 2023; Hachem et al., 2024). 

Prognostic algorithms must incorporate sensor degradation 

more effectively through the development of sensor-aware 

prognostic frameworks. These frameworks must dynamically 

adjust to varying levels of sensor reliability. 

Developing adaptive prognostic algorithms represents a 

critical area of research. These algorithms must adjust their 

behaviour based on changes in sensor performance, ensuring 

improved accuracy when considering sensor degradation. 

The focus has been primarily on simple systems; however, 

prognostic frameworks must also account for more complex 

engineering systems, consisting of multiple sensors and 

components with interdependent degradation processes, 

which require further study (Mukhopadhyay et al., 2023).  

Multi-rate systems (MRSs) with sensor degradation have 

received particularly little attention, despite the clear need for 

robust fusion estimation methods tailored to handle 

degradation effects (Huang & Shen, 2021). Research can 

focus on developing prognostic algorithms that integrate data 

from multiple sensors while accounting for their interaction 

and individual degradation patterns.  

Another promising avenue is explainable AI (XAI) in 

prognostics. Many advanced data-driven algorithms, such as 

deep neural networks, are often seen as “black boxes,” which 

limits their applicability in safety-critical industries (Nor, 

Pedapati, Muhammad and Leiva, 2021). By integrating 

explainability into prognostic algorithms, researchers can 

ensure that the models not only provide accurate predictions 

but also offer insights into the underlying reasons for those 

predictions; included the impacts of sensor degradation, a 

crucial source of measurement uncertainty within prognostics 

implementations (Guo et al., 2019). The ability of XAI to 

explain diagnostic and prognostic activities by discovering 

features and unusual patterns responsible for system and 

sensor degradation can assist in managing these impacts and 

provide more descriptive prognostic results. 

Current prognostics methods also struggle with the challenge 

of limited useful data. Extensive monitoring data and expert 

knowledge are often required, but effective sensor health data 

can often be scarce (Yin et al., 2022). This opens up research 

opportunities to develop innovative techniques that can 

function effectively under data-constrained conditions. This 

points to a need for innovative approaches that combine 

limited data with expert insights, such as employing fuzzy 

evaluation techniques for more precise prognostics outcomes 

(Yin et al., 2022). Moreover, exploring methods integrating 

data augmentation, transfer learning, or synthetic data 

generation may provide a pathway to overcome these 

limitations and enhance the reliability of prognostics systems. 

Another key related area is the development of digital twins, 

which are virtual representations of physical systems. Digital 

twins continuously ingest real-time data from sensors and can 

incorporate sensor degradation models to monitor system 

health. The integration of digital twin technology in 

prognostics presents a significant opportunity for enhancing 

PdM and operational efficiency. By continuously 

assimilating data from various sensors, digital twins can 

provide insights into the potential degradation issues, 

allowing for timely interventions (Liu, Blasch, Liao, Yang, 

Tsukada and Meyendorf, 2023; Li, Wang, Fan, Zhang and 

Gao, 2023). By simulating the effects of sensor degradation 

on system behaviour, digital twins can provide better 

predictions of RUL and identify critical components 

requiring attention. This real-time synchronization between 

the physical and digital environments allows for proactive 

and precise maintenance strategies. 

Experimental validation and real-world case studies are 

indispensable for advancing the field of prognostics and 

understanding the impacts of sensor degradation. Research 

can focus on creating benchmark datasets that include 

controlled degradation patterns and corresponding system 

failures. Such datasets are critical for developing and testing 

models that can robustly handle degraded sensor data. Real-

world case studies are equally important for bridging the gap 

between theory and practice. For instance, in the aerospace 

sector, sensors play a critical role in monitoring engine health 

and flight systems. Case studies on how degraded sensor data 

affect RUL predictions can yield valuable insights for 

enhancing algorithmic robustness. Another opportunity lies 

in the development of cross-domain case studies that 

compare sensor degradation and prognostics in different 

industries. This approach can help identify universal 

principles and best practices that apply across domains. 

Furthermore, collaborative studies with industry partners can 

ensure access to operational data, which is often proprietary 

but critical for validating models in real-world contexts. 

Research can also focus on long-term monitoring projects, 

where systems are observed over their lifecycle to collect 

continuous data on sensor performance and system health. 

These projects provide a unique opportunity to study 

degradation as they unfold in real time, offering insights that 

static datasets cannot capture. For instance, monitoring an 

industrial robot’s sensors over several years can reveal 

patterns of degradation that inform maintenance schedules 

and predictive models. 

To summarize the current limitations and highlight the 

avenues for future research in managing the impacts of sensor 

degradation on prognostics, Table 11 provides a concise 

overview of key research gaps, their current limitations, and 

promising future directions. 

Current 

Limitations 
Possible Research Directions 

Most studies overlook 

sensor deterioration's 

effect on RUL. 

Develop sensor-aware prognostics 

frameworks; dynamically adjust to 

varying sensor reliability. 

Focus on simple 
systems; complex 

multi-sensor systems 

Develop adaptive algorithms for 

complex multi-sensor systems 
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and MRSs 

underexplored. 

(interactions, individual degradation); 

robust fusion for MRSs. 

 

Advanced data-driven 

algorithms are “black 

boxes”. 

Integrate XAI to provide insights into 

predictions and degradation causes. 

Effective sensor health 

data are often scarce; 

extensive monitoring is 

needed. 

Develop techniques for data-

constrained conditions; combine 

limited data with expert insights 

(fuzzy evaluation); data 

augmentation, transfer learning, 

synthetic data. 

Emerging integration; 

full potential not yet 

realized. 

Integrate digital twins for enhanced 

PdM; assimilate real-time sensor 

data, incorporate degradation models 

for timely interventions, RUL 

prediction. 

Need for benchmark 

datasets and bridging 

theory/practice. 

Create benchmark datasets with 

controlled degradation; conduct 
cross-domain/industry case studies; 

collaborate with industry; long-term 

monitoring projects. 

Table 11. Research Opportunities in Managing Impacts of 

Sensor Degradation in Prognostics 

7.3. Managing Impacts of Sensor Degradation in 

Maintenance Decision-Making 

Future research could delve deeper into how variations in 

data quality resulting from sensor degradation, influence 

maintenance decision-making processes. A promising 

direction is the study of frameworks that more effectively 

incorporate uncertainty quantification due to sensor 

degradation. This includes understanding how operators 

perceive and react to uncertain data, how trust in the system 

evolves, and how cognitive biases might affect maintenance 

prioritization under uncertain conditions. A CBM framework 

accounting for sensor degradation presents research 

opportunities. There is a need to investigate the integration of 

sensor degradation models into the framework that capture 

sensor abnormal behaviours, and failure patterns of sensors. 

The integration of adaptive filtering and sensor fusion 

techniques to mitigate the impact of degraded or faulty 

sensors on data reliability represents a critical area for 

exploration. The development of a robust PdM decision-

making framework with deeper utilization of prognostics 

under the influence of sensor degradation also introduces 

numerous research opportunities. A significant area of focus 

could be the integration of advanced prognostics models that 

can explicitly incorporate sensor degradation parameters into 

the RUL predictions, ensuring more reliable forecasts despite 

noisy or incomplete data. Another promising opportunity is 

the development of predictive analytics capable of 

distinguishing between actual system degradation and 

erroneous sensor readings. Additionally, integrating 

proactive sensor health monitoring into the PdM framework 

could help ensure the reliability of predictive models over 

time. Research into decision-making algorithms considering 

multi-objective optimization that balances maintenance 

costs, downtime, and the risk of uncertainty from sensor 

degradation using techniques such as robust optimization, 

Bayesian inference, or reinforcement learning can improve 

maintenance decision-making. 

Maintenance policies considering sensor degradation can 

also be introduced. For example, research can focus on 

developing dynamic maintenance policies that incorporate 

sensor recalibration and adjustment to mitigate the effects of 

sensor degradation (van Oosterom et al., 2017). In addition, 

when the true state of a system is considered unknown due to 

sensor degradation, the maintenance decision-making 

process can rely on a combination of indirect indicators, 

probabilistic models, and historical data to assess risks and 

prioritize actions. The policies can involve observable 

parameters (e.g., vibration, temperature, or performance 

metrics), using predictive algorithms to infer the system's 

condition, and leveraging Failure Modes, Effects, and 

Criticality Analysis (FMECA) to estimate the likelihood and 

impacts of potential issues. Maintenance cost analysis can 

also be conducted to provide more details on the trade-offs. 

Another innovative approach is the integration of self-healing 

mechanisms in sensors, enabling automated repairs or 

calibrations when degradation is detected. The use of digital 

twins to simulate sensor performance and anticipate 

degradation scenarios can also enhance maintenance 

planning by creating adaptive maintenance policies capable 

of dynamically revising plans based on sensor performance. 

Additionally, implementing redundancy in critical systems 

by deploying backup sensors or adaptive algorithms that 

compensate for faulty readings can significantly improve 

system reliability in the face of sensor wear and tear. 

The development of standards and guidelines for managing 

sensor-related uncertainties is also a pressing need. Research 

can contribute to standards for uncertainty quantification and 

propose maintenance guidelines for robust systems that 

account for sensor degradation. For example, there is a gap in 

the research on quantifying how much sensor degradation can 

be tolerated while still ensuring reliable prognostics and 

maintenance decisions. By establishing clear metrics and 

classification schemes, researchers can lay the groundwork 

for standardized uncertainty management practices. Another 

vital area for exploration is the integration of these standards 

into sensor design and maintenance strategies. Research 

could focus on embedding sensor uncertainty management 

principles into the lifecycle of sensor systems, from design 

and manufacturing to deployment and maintenance. For 

instance, guidelines could specify calibration routines, 

validation techniques, and redundancy strategies to mitigate 

uncertainty in sensor data. Furthermore, collaboration 

between academia, industry, and regulatory bodies would be 

essential to ensure that these standards are practical, widely 
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applicable, and capable of addressing the diverse needs of 

industries relying on sensors in safety-critical applications. 

To summarize the current limitations and highlight the 

avenues for future research in managing the impacts of sensor 

degradation on maintenance decision-making, Table 12 

provides a concise overview of key research gaps, their 

current limitations, and promising future directions. 

Current Limitations Possible Research Directions 

Data quality variations 

from degradation 

influence decisions; 
operator perception of 

uncertain data, trust, and 

cognitive biases 

underexplored. 

Develop frameworks for 

comprehensive uncertainty 

quantification; understand 
operator response to uncertain 

data, system trust evolution, and 

cognitive biases in maintenance 

prioritization. 

CBM lacks integrated 

models for sensor 
abnormal 

behaviours/failure 

patterns. 

Integrate sensor degradation 

models; incorporate adaptive 
filtering and sensor fusion to 

mitigate degraded/faulty sensors. 

Challenges in integrating 

explicit sensor degradation 
into RUL; distinguishing 

system degradation from 

erroneous readings. 

Integrate advanced prognostics 

models with degradation 

parameters; develop predictive 
analytics to distinguish system vs. 

sensor degradation; integrate 

proactive sensor health 

monitoring. 

Balancing maintenance 

costs, downtime, and 

degradation risk is 

complex. 

Research decision-making 

algorithms using multi-objective 
optimization (costs, downtime, 

uncertainty risk) via robust 

optimization, Bayesian inference, 

or reinforcement learning. 

Policies often lack 

dynamic 
recalibration/adjustment; 

maintenance for unknown 

system states is 

challenging. 

Develop dynamic policies 

(recalibration, adjustment); rely 
on indirect indicators, 

probabilistic models, historical 

data; utilize FMECA; conduct 

cost analysis. 

Limited self-healing 

mechanisms or advanced 

redundancy strategies. 

Integrate self-healing sensors; use 

digital twins for adaptive 
maintenance planning; implement 

redundancy (backup sensors, 

adaptive algorithms). 

Lack of clear standards for 

managing sensor 

uncertainties; need to 
quantify tolerable 

degradation. 

Develop standards for uncertainty 

quantification; propose 

maintenance guidelines for robust 
systems; establish 

metrics/classification schemes. 

Insufficient integration of 

uncertainty management 

principles across sensor 

lifecycle (design, 
manufacturing, 

deployment, maintenance). 

 

Embed uncertainty management 

principles into sensor 
design/maintenance (calibration, 

validation, redundancy); foster 

academia/industry/regulatory 

collaboration. 

Table 12. Research Opportunities in Managing Impacts of 

Sensor Degradation in Maintenance Decision-Making 

8. CONCLUSION  

This article provided a comprehensive review of the impact 

of sensor degradation on measurement uncertainty and its 

implications for prognostics and maintenance decision-

making. A structured methodology was adopted, 

encompassing the identification of relevant studies, 

classification of key themes, and synthesis of critical 

findings. The literature review focused on sensor degradation 

mechanisms, their influence on measurement uncertainty, 

and how this uncertainty propagates through prognostics and 

maintenance strategies. The review highlighted that sensor 

degradation significantly affects measurement reliability, 

potentially compromising the accuracy of fault detection, 

remaining useful life estimation, and maintenance 

optimization. Various modelling techniques have been 

employed to address these challenges, ranging from 

empirical models based on experimental data to advanced 

filtering methods within state estimation frameworks. 

Additionally, theoretical and data-driven approaches, 

including statistical, probabilistic, and machine learning-

based methods, offer deeper insights into degradation 

patterns and their impact on system performance. 

Incorporating measurement uncertainty into prognostics and 

maintenance frameworks has become a crucial strategy for 

improving system health predictions and optimizing 

maintenance decisions. Effective solutions have emerged, 

integrating sensor degradation into predictive maintenance 

and condition-based maintenance frameworks. These 

approaches often utilize expert knowledge, physical 

degradation models, and data-driven or hybrid methods to 

enhance generalization across diverse applications. 

Furthermore, mitigation strategies such as state estimation, 

filtering techniques, and revised maintenance policies have 

been developed to account for sensor degradation and sustain 

system reliability. Many of these approaches leverage 

optimization algorithms to enhance decision-making 

efficiency, ensuring that both sensor maintenance and overall 

system performance are effectively managed. 

In addition, the research opportunities underscore the need 

for ongoing exploration of methodologies to quantify sensor 

degradation-related uncertainties and develop robust 

prognostics and uncertainty-aware maintenance decision-

making frameworks. 
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