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ABSTRACT 

The remaining useful life (RUL) prediction of bearings is 

crucial for the stable operation and effective maintenance. 

Conventional RUL prediction approaches extract the 

restricted features that would affect the prediction results, 

and the computational efficacy is often influenced by the 

redundancy of the features and domain knowledge. To 

address these problems, this paper proposes a RUL 

prediction approach mainly based on temporal sparse 

denoising autoencoders (TSDAE) for feature selecting, and 

Pathformer-temporal convolutional long short-term memory 

(Pathformer-TCLSTM) for predicting. Firstly, the original 

signal is denoised via wavelet thresholding. Subsequently, 

the denoised signal is decomposed using empirical mode 

decomposition (EMD) to extract the features of the time-

domain, frequency-domain, and time-frequency domain to 

resolve the problem of restricted features. Moreover, the 

TSDAE feature selection technique is implemented to 

eliminate redundant features and address the limitation of 

domain knowledge utilized in traditional feature selection. 

Finally, the Pathformer-TCLSTM model is adopted for 

RUL prediction, which captures the multi-scale global 

information, local information, and long-range dependency. 

The validation on the PHM2012 and XJTU-SY bearing 

datasets shows that the proposed model has satisfactory 

predictive performance. 

1. INTRODUCTION 

 The security of mechanical equipment is essential for the 

operation of industrial production. Rolling bearings are 

critical to the mechanical system and are utilized 

extensively in a variety of rotating equipment (Carlos & Gil, 

2022; Zhu et al., 2023). The bearings of mechanical 

equipment frequently operate in harsh working 

environments, and their operational states are affected by 

various factors and are prone to deterioration and failure. 

Therefore, accurately predicting the RUL can ensure the 

stable operation of mechanical systems (Dong et al., 2023). 

Additionally, RUL prediction of bearings can mitigate 

safety risks (Yang et al., 2025; Yu et al., 2021). 

Approaches to RUL prediction can be categorized into two 

groups: physical model-based approaches and data-driven 

approaches (Medjaher et al., 2012; Zhu et al., 2020). 

Approaches in the first group encompass the Lundberg-

Palmgren model (Paris & Erdogan, 1963) and the Ioannides-

Harris model (Ioannides & Harris, 1985). Their application 

in real engineering systems is a great challenge, as it 

depends on the complexity of real-world scenarios and 

extensive expert knowledge. 

In contrast, approaches in the second group do not consider 

the physical mechanisms, wear patterns, or progression of 

failure. Thus, the characteristics mentioned above have led 

to the development of data-driven techniques in mechanical 

RUL prediction. For example, Li et al. (2022) proposed an 

approach based on multi-support vector regression fusion 

and adaptive weight update for RUL prediction. Similarly, 

Alfarizi et al. (2022) proposed a RUL prediction approach 

that employed an optimized random forest model. However, 

these approaches heavily depend on manual feature 

selection, which might limit the accuracy of RUL 

prediction. 

Data-driven approaches based on deep learning have proven 

to be more effective in feature extraction and nonlinear 

computation (Barraza-Barraza et al., 2020; Najdi et al., 

2025; wahhab Lourari et al., 2024; Wang et al., 2020). Yao 

et al. (2021) proposed a RUL prediction approach for rolling 

bearings, which is based on an improved one-dimensional 

(1-D) convolutional neural networks (CNNs) and simple 

recurrent units. Guo et al. (2017) adopted a bearing RUL 

prediction technique based on recurrent neural networks. 

Zhang et al. (2020) proposed a long short-term memory 

(LSTM) network based on attention for rotatory machine 
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remaining useful life prediction; this approach overcame the 

limitations of traditional machine learning algorithms in 

dealing with complex nonlinear signals. Cao et al. (2021) 

proposed a novel temporal convolutional network with a 

residual self-attention mechanism for remaining useful life 

prediction of rolling bearings, this approach can learn both 

time-frequency and temporal information of signals. Gao et 

al. (2025) proposed a multiscale spatiotemporal attention 

network for remaining useful life prediction of mechanical 

systems. Ye et al. (2024) proposed an adaptive multi-

adaptive graph neural networks with temporal convolutional 

networks for bearings remaining useful life prediction. 

However, the gradient may vanish during the 

backpropagation process due to the long-range dependency 

problem throughout the training of RNNs; The temporal 

convolutional network (TCN) lacks the capacity to extract 

the global information embedded within time series; And 

the LSTM has limited extraction of local information within 

time series. Moreover, the extraction of single-domain 

features could not provide comprehensive information for 

RUL prediction, which may influence its accuracy.  

The Transformer is a popular data-driven deep learning 

approach, which has substantially contributed to the 

prediction of time series in recent years, and the model has 

been employed for RUL prediction. Ding & Jia (2022) 

proposed a convolutional Transformer for bearing RUL 

prediction. Peng et al. (2023) proposed a local enhancement 

Transformer RUL prediction approach based on the 

temporal convolutional attention mechanism. Chen et al. 

(2024) proposed multi-scale transformers with adaptive 

pathways for time series forecasting, it integrated both 

temporal resolution and temporal distance for multi-scale 

modeling. However, the Transformer model may struggle 

with capturing local information, which restricts their RUL 

prediction accuracy; The Pathformer lacks the ability to 

extract the long-range dependency and local information 

within time series, which may influence the accuracy of 

time series forecasting. 

Feature selection aims to identify the optimal subsets that 

are suitable for model training. This approach can reduce 

information loss and minimize the decline in learning 

performance, thereby enhancing the efficiency of RUL 

prediction (Li, 2017). Feature selection approaches could be 

categorized into three types (filter approach, wrapper 

approach, and embedded approach) (Atashgahi et al., 2022). 

Recently, many deep learning-based models have been 

developed to select features to improve the RUL prediction 

performance. Y. Wang et al. (2022) proposed a remaining 

useful life prediction of rolling bearings based on Pearson 

correlation-KPCA multi-feature fusion, it utilized the 

Pearson correlation analysis to select the features for RUL 

prediction. Atashgahi et al. (2022) proposed a sparse 

denoising autoencoder for feature selection, the sparsity 

utilized in sparse denoising autoencoder can reduce the 

complexity of the original data. However, techniques for 

computing the feature-target correlation might incur high 

computational complexity and inefficiency with the growth 

of feature dimensions; Additionally, the feature selection 

approaches mentioned above may rely on domain 

knowledge, which may influence the accuracy of RUL 

prediction; The sparse denoising autoencoder-based feature 

selection technique has neglected the long-range 

dependency of time series.  

Although the techniques mentioned above provide a 

potential solution to bearing RUL prediction, the available 

features for RUL prediction in existing research are 

restricted, which in turn affects the results of RUL 

prediction (Motahari-Nezhad & Jafari, 2021). Additionally, 

the predictive efficacy could be affected by the presence of 

redundancies within the feature sets (Li et al., 2019). 

Traditional feature selection works may rely on domain 

knowledge and have higher computational complexity. The 

transformer model has the advantage of capturing global 

information, but it disregards local details (Vaswani et al., 

2017). Furthermore, the inefficiency of 1-D CNNs to predict 

time series and the problem of gradient vanishing in RNNs 

could not be disregarded (Ren, Sun, Wang, et al., 2018). 

Moreover, the TCN cannot extract the global information 

within time series; The LSTM has limited extraction of local 

information within time series; The Pathformer cannot 

extract the long-range dependency and local information 

within time series. Finally, the sparse denoising 

autoencoder-based feature selection approach is unable to 

extract the long-range dependency within time series. 

To address the problems mentioned above, this paper 

proposed a bearing RUL prediction approach based on 

TSDAE feature selection and Pathformer-TCLSTM. In 

response to the problem of restricted features, this paper 

applied EMD to the original dataset. Subsequently, the 

features of the time-domain, frequency-domain, and time-

frequency domain were extracted from EMD. To address 

feature redundancy, domain knowledge utilized in 

traditional feature selection, and computational complexity, 

the TSDAE feature selection strategy is adopted to select the 

extracted features and obtain the optimal feature subsets. To 

tackle the lack of local information and long-range 

dependency in Pathformer, the inefficiency of TCN in 

extracting the global information, and the limitation of 

LSTM in extracting the local information within time series, 

a parallel Pathformer-TCLSTM prediction model was 

implemented. This parallel model aims to capture multi-

scale global information, local information, and long-range 

dependency in time series. Finally, the proposed model was 

validated with the PHM2012 bearing degradation dataset 

and XJTU-SY bearing degradation dataset. The contribution 

of this paper can be summarized as follows: 

1) The time-domain, frequency-domain, and time-frequency 

domain features are extracted from the EMD as input 
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features, which can supply more features for model training 

to improve the accuracy of bearing RUL prediction. 

2) Temporal sparse denoising autoencoders (TSDAE) 

strategy is adopted for feature selection, which aims to 

select the optimal subsets and enhance computational 

efficiency. Previous feature selection works have often 

relied on domain knowledge and had higher computational 

complexity. Our module can autonomously learn intricate 

linear relationships between input features and targets, 

which can avoid parameter adjustment.   

3) The Pathformer-temporal convolutional long short-term 

memory (Pathformer-TCLSTM) parallel network is adopted 

to extract the complementary features and improve the 

accuracy of RUL prediction, where Pathformer extracts the 

multi-scale global features, temporal convolutional extracts 

the local features, and long short-term memory extracts the 

long-range dependency within time series. 

This paper can be divided into five sections: section 2 

presents the theoretical framework of the proposed model, 

section 3 introduces the concept and procedural steps of the 

methodology, section 4 validates the efficacy and 

superiority of the proposed model, and section 5 draws 

conclusions of this paper. 

2. THE PROPOSED METHOD FOR RUL PREDICTION 

2.1. Pathformer 

Pathformer is a multi-scale time series prediction model that 

incorporates a Transformer architecture (Chen et al., 2024). 

This model aims to improve the ability to model 

comprehensive multi-scale time series by incorporating 

temporal resolution and temporal distance from various 

perspectives. The principle necessitates the collaborative 

operation of a multi-scale router and an aggregator to 

adaptively extract dynamic characteristics from input time 

series, thereby accomplishing adaptive multi-scale 

modelling. The structure of the Pathformer and the multi-

scale router are illustrated in Figure 1. First of all, the multi-

scale router adaptively selects specific sizes of patch from 

time series, and allocates the specific weight to each patch. 

Then, the multi-scale division of different multi-scale 

Transformer blocks divides these patches to obtain new 

patches with different time resolutions. Meanwhile, the 

multi-scale Transformer block is performed over these new 

patches to extract features. After that, the multi-scale 

aggregator is utilized to integrate information from different 

paths. There are three cascading adaptive multi-scale blocks 

utilized in Pathformer to extract features. Finally, the 

predicted results are obtained from a predictor. 

 

Figure 1. The structure of Pathformer. 

2.2. LSTM 

Long short-term memory (LSTM) is a particular type of 

recurrent neural networks. It is notably well-suited for a 

variety of tasks, including language modelling, and is 

capable of effectively capturing long-range dependency (Ma 

& Mao, 2020). Furthermore, LSTM can solve the problem 

of gradient expansion in recurrent neural networks. The 

LSTM network diagram is shown in Figure 2. 

 

 

Figure 2. The structure of LSTM. 

The LSTM primarily comprises an input gate, a forget gate, 

an output gate, and a cell state (Saufi & Hassan, 2021). The 

forget gate determines whether to retain or discard 

information. Furthermore, the Sigmoid activation function is 

used to convey the current input information and the 

previous hidden state. The retention of information is 

determined by output values that are near 1, while the loss 

of information is indicated by output values that are near 0. 

The input gate determines the extent to which new 

information is incorporated into the current cell state. The 

output gate regulates the amount of cell state information 

transferred to the hidden state. The cell state serves as a 

long-term memory repository, selectively retaining and 

propagating critical historical information through 

sequential time steps. 
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2.3. TCN 

A temporal convolutional network (TCN) is a time series 

prediction model that typically captures latent temporal 

dependencies within the input time series (Bai et al., 2018). 

In contrast to RNNs, TCN models utilize causal convolution 

rather than recurrent connections, which allows for parallel 

data processing (Wang et al., 2023). Its architecture is 

shown in Figure 3. 

The input layer and output layer in 1-D fully convolutional 

networks are similar to 1-D convolution, while each hidden 

layer has the same time length as the input layer. 

The causal convolution is utilized in TCN, where the output 

at time 𝑡 convolves with elements at time 𝑡. However, an 

immense amount of computational complexity may be 

caused by the linear relationship between the acceptive field 

of output information and filter size, network depth. In order 

to capture the long-range historical relationships, it is 

imperative to augment the number of network layers. 

Consequently, the dilated convolution is employed to ensure 

that the receptive field of output information is proportional 

to the number of layers (Qiu et al., 2023). 

For a 1-D input sequence 𝑥 ∈ ℝ and a filter 𝑓: {0, … , 𝑘 −
1} → ℝ , the dilated convolution operation on 𝑠  can be 

defined as follows (Yang et al., 2020). 

 𝐹(𝑠) = (𝑥 ∗𝑑 𝑓)(𝑠) = ∑ 𝑓(𝑖) ∙ 𝑥𝑠−𝑑∙𝑖
𝑘−1
𝑖=1  (1) 

where 𝑑 represents the dilation factor, 𝑘 is the size of the 

filter, 𝑠 − 𝑑 ∙ 𝑖  denotes the direction in the past. As the 

number of layers increases, the degree of swelling also 

expands. The output at the top level in TCN can effectively 

broaden the input acceptance range of the convolution 

network, encompassing a wider spectrum of inputs. The 

significance of field perception in time series modelling is 

derived from its inherent limitation in capturing periodic 

characteristics within a specific layer. Figure 3 (a) depicts 

an extended causal convolution with an expansion factor 

𝑑 =  1,24, and filter size 𝑘 =  3. 

Residual connection is employed in TCN to address the 

problem of gradient vanishing. The structure of the residual 

block is shown in Figure 3 (b). The residual block of TCN 

utilizes the ReLU as the activation function, and it employs 

two extended causal convolutions and two nonlinear 

activation layers. Additionally, the weight normalization 

and dropout layer are implemented to expedite the model 

training process, achieving satisfactory generalization 

performance. Figure 3 (c) illustrates an instance of a 

residual connection within a TCN. The black line represents 

the filter function within the residual, while the orange line 

depicts the identity mapping. 

 

 

 (a) (b) (c) 

Figure 3. The structure of TCN. 

 

2.4. EMD 

(Empirical mode decomposition) EMD is an adaptive 

analytical approach that could accommodate non-linear and 

non-stationary signals. Compared with other methods (e.g., 

ensemble empirical mode decomposition and variational 

mode decomposition), EMD demonstrates a faster 

decomposition speed. EMD involves the decomposition of a 

non-stationary time series into a set of intrinsic mode 

function (IMF) and residual (Guo et al., 2021). Additionally, 

the original signal can be retrieved by aggregating the 

residual values and IMF. The various frequency components 

extracted via EMD represent distinct information within the 

signal. 

1) Calculate the average of the upper envelope and the 

lower envelope. 

 𝑚(𝑡) =
𝐸𝑚𝑎𝑥(𝑡)+𝐸𝑚𝑖𝑛(𝑡)

2
 (2) 

where 𝐸𝑚𝑎𝑥(𝑡) denotes the upper envelope of the original 

input data 𝑥(𝑡), 𝐸𝑚𝑖𝑛(𝑡) represents the lower envelope. 

2) Calculate the difference ℎ(𝑡) between the original input 

data 𝑥(𝑡) and the average envelope 𝑚(𝑡). 

 ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡) (3) 

3) Determine whether ℎ(𝑡)  satisfies the constraint 

conditions of IMF. 

If ℎ(𝑡) is not an IMF, 𝑥(𝑡) = ℎ(𝑡). Repeat 1) and 2) until 

the condition is satisfied. 

If ℎ(𝑡) is an IMF, ℎ(𝑡) will be the first component of IMF: 

 𝑐1(𝑡) = ℎ(𝑡) (4) 

4) Obtain the residual component 𝑟1(𝑡) of 𝑥(𝑡). 

 𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡) (5) 

5) The revised sequence of input is represented by 𝑟1(𝑡), 

then repeat the previously mentioned steps. Until emergence 

of the second IMF 𝑐2(𝑡), iterate the previously mentioned 

process 𝑛 times. This process can be depicted as: 

 𝑥(𝑡) = ∑ 𝑐i(𝑡)𝑛
𝑖 + 𝑟n(𝑡) (6) 
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where 𝑐i(𝑡)  represents the 𝑖 -th IMF, 𝑟n(𝑡)  denotes the 

residual. The updated representation of (13) is formulated as 

follows.  

 𝑥(𝑡) = ∑ 𝐼𝑀𝐹i(𝑡)𝑛
𝑖 + 𝑟n(𝑡) (7) 

2.5. Sparse auto-encoder 

The sparse auto-encoder (SAE) is the variant of (Auto-

encoder) AE, which adopts the sparsity constraint to reduce 

the complexity (Sun et al., 2019). The AE is an 

unsupervised neural network, and it consists of an encoder 

and a decoder (Yang et al., 2016).  

The main process of SDAE is as follows: 

1) Add noise to the original input data to generate corrupted 

input data. The purpose of adding noise to the raw input 

data is to enhance model robustness. 

2) The encoder extracts the information from corrupted 

input data to reduce the dimensional space.  

3) The decoder processes the hidden layer information to 

obtain the output data. The purpose of this stage is to 

reconstruct clean data from the learned feature 

representations, thereby effectively eliminating noise. 

4) Calculate the error between input data and output data to 

optimize model parameters. 

5) Incorporating sparse penalties into the reconstruction 

error minimizes neuronal activity. Introducing a penalty 

term serves to reduce overfitting while improving model 

generalization. 

2.6. RUL prediction based on TSDAE and Pathformer-

TCLSTM 

2.6.1. RUL prediction framework 

To deal with the problem of restricted features in RUL 

prediction of bearings, this paper applied EMD to extract 

features. In response to address feature redundancy, domain 

knowledge utilized in traditional feature selection, and 

computational complexity, this paper adopted the TSDAE 

approach to obtain the optimal feature subsets. To tackle the 

lack of local information and long-range dependency in 

Pathformer, the inefficiency of TCN in extracting the global 

information, the limitation of LSTM in extracting the local 

information within time series, the parallel Pathformer-

TCLSTM prediction model was employed. The proposed 

RUL prediction framework is illustrated in Figure 4. It can 

be divided into three parts: signal denoising, feature 

extraction and selection, and RUL prediction. In the first 

part, the original signal is denoised through wavelet 

threshold denoising. In the second part, the signal is 

decomposed using EMD. Additionally, the time-domain, 

frequency-domain, and time-frequency domain features are 

extracted from EMD. The TSDAE feature selection 

technique is subsequently implemented to evaluate the 

importance of the extracted features and to determine the 

appropriate subsets of features for each operating condition. 

In the last part, the optimal feature subsets will be selected, 

followed by data partitioning. Moreover, the sliding window 

method is utilized to extract fixed-length segments of input 

features, which are subsequently input into the model for 

training. Subsequently, the feature will be fed into the 

Pathformer-TCLSTM network for prediction. 

 

 

Figure 4. The framework of RUL prediction. 

2.6.2. Signal denoising 

The wavelet threshold denoising technique demonstrates 

characteristics of adaptability that can be applied in a wide 

range of fields. Firstly, the signal is decomposed into 

various frequency components using wavelet transform, 

followed by the application of a threshold. Then, the 

wavelet coefficients below the threshold are deemed as 

noise and assigned a value of zero, while these exceeding 

the threshold are preserved. Finally, the denoised signal is 

obtained by processing the wavelet coefficients and 

reconstructing them using the wavelet inverse transform 

(Aminou et al., 2023). 

 𝑆(𝑡) = 𝑍(𝑡) + 𝜎𝑛𝑁(𝑡) (8) 

where 𝑆(𝑡)  represents the noise signals, 𝑍(𝑡)  denotes the 

original signal, 𝜎𝑛  is the noise factor, 𝑁(𝑡)  denotes the 

standard normal distribution of noise characterized by a 

mean of 0 and variance of 1. The main stages of wavelet 

threshold denoising are depicted as follows： 

i) Sample the signal 𝑆(𝑡) at intervals of 𝑆(𝑖); 

ii) Conduct a discrete wavelet transformation on 𝑆(𝑖); 
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iii) Set the threshold for wavelet coefficients 𝜆 = √2𝜎𝑛
2𝑙𝑜𝑔𝑛, 

𝑛 represents the length of 𝑆(𝑖); 

iv) Compute the inverse discrete wavelet transform. 

A set of trials confirmed in this article suggest that the soft 

threshold approach should be used and the wavelet 

threshold should set at 0.05. 

2.6.3. Feature extraction 

Following the EMD decomposition of the samples, three 

types of feature extraction are implemented for IMF: time-

domain feature extraction, frequency-domain feature 

extraction, and time-frequency domain feature extraction. 

i) Time-domain feature extraction. Time-domain features 

can capture the fundamental signal shape, serving as a 

cornerstone for signal analysis. Moreover, twenty-one time-

domain features (Mean, variance, median, energy, root 

mean square, peak factor, kurtosis, inverse hyperbolic sine, 

arc tangent standard deviation, skewness, coefficient of 

skewness, gap factor, kurtosis factor, standard deviation, 

maximum value, minimum value, crest,peak-to-peak, 

inverse hyperbolic sine standard deviation, pulse factor, and 

absolute mean amplitude) utilized in this study. 

ii) Frequency-domain feature extraction. Frequency-domain 

features reveal the frequency components of the signal, 

which are essential for the analysis of periodic, vibrational, 

and other related issues. This paper implemented the Fourier 

transform on the original signal (Ren, Sun, Cui, et al., 2018; 

Zhao et al., 2021), thereby transforming it from the time-

domain to the frequency-domain. Subsequently, relevant 

features are computed within the frequency-domain. 

Moreover, eight frequency-domain features (Mean, kurtosis, 

ratio, coefficient of variation, standard deviation, center of 

gravity, skewness, root mean square in frequency-domain) 

are utilized in this paper. 

iii) Time-frequency domain feature extraction. Time-

frequency domain features can capture both temporal and 

spectral characteristics of a signal, providing significant 

utility in the analysis of non-stationary, transient, or multi-

component signals. Discrete wavelet transform is employed 

to convert the time-domain signal into the time-frequency 

domain representation. Subsequently, the corresponding 

time-frequency characteristics are obtained by computing 

the coefficients of each wavelet. Moreover, eight time-

frequency domain features (Energy, standard deviation, 

mean, maximum value, minimum value, variance, 

skewness, and median in the time-frequency domain) are 

utilized in this paper. 

The dimension of time-domain, frequency-domain, and 

time-frequency domain features extracted from the EMD is 

185. Thus, extracting features from various frequencies of 

the EMD facilitates the acquisition of comprehensive 

feature sets. 

2.6.4. TSDAE feature selection 

A feature selection approach of sparse denoising 

autoencoder is employed to measure the importance of 

features through the strength of neurons in a sparse neural 

network (Atashgahi et al., 2022). To address the deficiency 

of long-range dependency in sparse denoising autoencoder, 

this paper adopted TSDAE feature selection. TSDAE 

utilized the sparsity to selectively activate neurons in the 

hidden layer, thereby accelerating model training and 

enhancing its generalization capability. TSDAE can learn 

the relationship between input features and targets via 

model training, thereby addressing the reliance of traditional 

methods on domain-specific knowledge. 

This structure employs a temporal attention mechanism after 

the hidden layer to obtain long-range dependency 

relationships between time series. Furthermore, the 

ExtraTreesClassifier of the original evaluation technique in 

the sparse denoising autoencoder above is substituted by 

(Extreme Gradient Boosting) XGBoost for the regression 

prediction. Ultimately, the grid search technique is 

implemented to select the optimal subsets.  

At first, the raw features and target under a single bearing 

are input into the TSDAE module to learn the correlation 

between features and target. After that, the TSDAE outputs 

the importance ranking of features under a single bearing 

according to the strength of neurons in a sparse neural 

network. Moreover, the grid search and XGBoost are 

utilized to determine which combinations of output 

importance ranking features under single bearing are 

optimal. Next, the optimal features of all bearings under a 

single condition will be selected. Ultimately, we calculate 

the frequency of each raw feature among all the optimal 

features selected from the grid search and XGBoost, and 

each raw feature with high frequency is considered to be the 

best training feature. TSDAE can reduce the computational 

complexity and improve the efficiency of machine learning 

algorithms in RUL prediction. The structure of the TSDAE 

features selection is depicted in Figure 5. The 

implementation stages of TSDAE feature selection are as 

follows. 

 

Figure 5. The structure of the TSDAE feature selection. 

1) Initialize sparse connections between consecutive layers 

of neural networks to prevent overfitting. 

 𝑃(𝑊𝑖𝑗
𝑙 ) =

𝜖(𝑛𝑙−1+𝑛𝑙)

𝑛𝑙−1×𝑛𝑙  (9) 
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where 𝜖 is the parameter of sparse layer, 𝑛𝑙  represents the 

number of neural in 𝑙-th layer, 𝑊𝑖𝑗
𝑙  denotes the connection 

between neural 𝑖 in 𝑙 − 1-th layer and neural 𝑗 in 𝑙-th layer. 

And 𝑊𝑖𝑗
𝑙  stores in sparse weight matrix 𝑊𝒍. 

2) Add noise to the raw input data to enhance model 

robustness. 

 𝑥̃ = 𝑥 + 𝑛𝑓𝑁(𝜇, 𝜎2) (10) 

where 𝑥  is input data, 𝑛𝑓  represents the noise factor, 

𝑁(𝜇, 𝜎2) denotes the Gaussian noise.  

3) Reconstruct the output to obtain the preliminary results of 

model training. The reconstruction of output 𝑧 is utilized by 

the information of hidden layer.  

 ℎ = 𝑎(𝑊1𝑥̃ + 𝑏1) (11) 

 ℎ′ = 𝑇𝑒𝑚𝑝𝐴𝑡𝑡𝑒𝑛(ℎ) (12) 

 𝑧 = 𝑎(𝑊2ℎ′ + 𝑏2) (13) 

where 𝑊1  is the sparse weight of hidden layer, 𝑊2  is the 

sparse weight of the output layer, 𝑏1  and 𝑏2  are bias, 𝑎 

represents activation function, ℎ  denotes the output of 

hidden layer, ℎ′ is output of temporal attention, 𝑧 represents 

the output of the decoder. 

4) Calculate loss function to adjust the parameters of model 

training. The mean squared error is utilized as a loss 

function, which is used to determine the discrepancy 

between the original features and the reconstructed output. 

 𝐿𝑀𝑆𝐸 =∥ 𝑧 − 𝑥 ∥2
2 (14) 

5) Calculate the neural strength of input data. The relative 

strength of the input neurons observed from the 

model training determines the significance of features. The 

intensity of each neuron is subsequently approximated by 

calculating the total absolute weights of its outgoing 

connections. 

 𝑠𝑖 = ∑ |𝑊𝑖𝑗
1|𝑛1

𝑗=1  (15) 

where 𝑛1 denotes the number of neurons in the first hidden 

layer, 𝑊𝑖𝑗
1 represents the connection weights between input 

neural 𝑖  and hidden neural 𝑗 . 𝑠𝑖  is the strength of input 

feature. 

6) Feature selection under the single bearing. In this stage, 

we utilize XGBoost to assess  the predictive performance of 

various feature sets, and employ grid search to identify the 

feature combination with the lowest RMSE. 

The strength of all input neural under single bearing 

constitute a set 𝑆𝑖 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑛|𝑠𝑖 > 𝑠𝑗 , 𝑗 > 𝑖} . The 

feature set 𝐹𝑖 = {𝑓1, 𝑓2, ⋯ , 𝑓𝑛|𝑓𝑖 > 𝑓𝑗, 𝑗 > 𝑖}  corresponds to 

the input set 𝑆𝑖 , the label set corresponding to 𝐹𝑖  is 𝑌𝑖 =
{𝑦1, 𝑦2, ⋯ , 𝑦𝑛}. 𝐹𝑖𝑘 is defined as the set composed of the top 

𝑘 features in 𝐹𝑖. Input 𝐹𝑖𝑘 into XGBoost to evaluate: 

 𝑌𝑖𝑝𝑟𝑒
′ = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐹𝑖𝑘) (16) 

 𝑅𝑀𝑆𝐸𝑖𝑘 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖𝑝𝑟𝑒

′ )
2𝑛

𝑖=12  (17) 

 r = min {𝑅𝑀𝑆𝐸𝑖1, 𝑅𝑀𝑆𝐸𝑖2, ⋯ , 𝑅𝑀𝑆𝐸𝑖𝑘} (18) 

where 𝑌𝑖𝑝𝑟𝑒
′  denotes the prediction value of XGBoost, 

𝑅𝑀𝑆𝐸𝑖𝑘  represents the root mean square error, min ()  is 

operation of computing the minimum value, r represents the 

minimum value. One of the feature sets corresponding to r 

is defined as 𝐹𝑖𝑘
′ . 

7) Feature selection under single condition. Under each 

condition, we calculate the frequency of each original 

feature within the optimal combinations.  The higher the 

frequency, the more important the feature is considered. 

The set of all feature set 𝐹𝑖𝑘
′  under single condition 

constitute a set 𝑄 = ∑ 𝐹𝑖𝑘
′𝑛

𝑘=1 , each element is 𝑞𝑖. The set of 

all extracted features is 𝐷 = {𝑑1, 𝑑, ⋯ , 𝑑𝑛} . Count the 

frequency of 𝑑𝑖 in Q. 

 𝐼𝑑𝑖
(𝑞𝑖) = {

1, 𝑑𝑖 = 𝑞𝑖  
0,  𝑑𝑖 ≠ 𝑞𝑖

 (19) 

 𝑐𝑜𝑢𝑛𝑡 = ∑ 𝐼𝑑𝑖
(𝑞𝑖)𝑞𝑖∈𝑄  (20) 

where 𝐼𝑑𝑖
(𝑞𝑖)  denotes indicator function. If 𝑑𝑖 = 𝑞𝑖 , 

𝐼𝑑𝑖
(𝑞𝑖) = 1, if  𝑑𝑖 ≠ 𝑞𝑖, 𝐼𝑑𝑖

(𝑞𝑖) = 0. The count is the result 

of frequency of 𝑑𝑖  appears in Q. The set of all 𝑑𝑖 

corresponding to the 𝑐𝑜𝑢𝑛𝑡  is denoted as 𝐷′ =
{𝑑1, 𝑑2, ⋯ , 𝑑𝑘}. The number of elements in set 𝑀  can be 

defined as 𝐾: 

 𝐾 = 𝑐𝑎𝑟𝑑(𝐷′) (21) 

where 𝑐𝑎𝑟𝑑() denotes the operation of counting the number 

of elements in 𝐷′. 

2.6.5. Pathformer-TCLSTM 

To tackle the lack of local information and long-range 

dependency in Pathformer, the inefficiency of TCN in 

extracting the global information, and the limitation of 

LSTM in extracting the local information within time series, 

a parallel Pathformer-TCLSTM network is proposed. The 

Pathformer can extract the multi-scale global information, 

which can solve the deficiency of TCN and LSTM in global 

information extraction; The TCN can extract the local 

information, which can address the limitation of Pathformer 

and LSTM in local information extraction; The LSTM can 

extract the long-range dependency information, which can 

address the deficiency of Pathformer in long-range 

dependency information extraction. The Pathformer-

TCLSTM model can be divided into two modules, the first 

module Pathformer aims at extracting the multi-scale global 

information, the second module TCLSTM aims at extracting 

the local information and long-range dependency. The 

features extracted from the TCN are then passed through the 
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LSTM, which is capable of capturing long-range 

dependencies within the local information. 

The construction of Pathformer-TCLSTM is depicted in 

Figure 6, and the parameter of network is shown in Table 1. 

(i) The first module is Pathformer. It aims to extract global 

multiscale information from time series data. Firstly, the 

input sequence is divided into several scales, and the scale-

specific information is extracted by adaptive multi-scale 

blocks. Subsequently, global information is obtained from 

three cascaded adaptive multi-scale blocks. The advantage 

of this module lies in obtaining multi-scale global details. 

(ii) The second module is a cascade of TCN and LSTM. It 

aims to capture local information and long-range 

dependency. First of all, the input sequence is fed into 

dilated causal convolution; Then, the normalized results are 

passed through a layer of ReLU activation function. 

Additionally, to reduce the parameters of the model, we set 

the parameter Dropout to 0.2. Then, the information is input 

into a dilated causal convolution, followed by layer 

normalization, and subsequently passed through a ReLU 

activation function, with the Dropout layer also being 

applied. At this stage, the original data is incrementally 

integrated with the extracted information via residual 

connections on an element-by-element basis. Subsequently, 

the information extracted from TCN is fed into an LSTM to 

capture long-range dependency. Finally, the attention 

mechanism is adopted to focus on the most important 

information in extracted features. 

In the last stage, the information extracted from Pathformer 

is integrated with the information obtained from TCLSTM 

along the first dimension, then the result of RUL prediction 

is obtained from a linear layer. 

 

Figure 6. The framework of Pathformer-TCLSTM. 

Table 1. Parameters in Pathformer-TCLSTM. 

Layer Output size 
Activation 

function 
Dropout LN 

Input (b,91,96) — — N 

Pathformer 

block 
(b,91,1536) — 

— 
N 

Linear (b,1,96) — — N 

TCN (b,16,96) ReLU 0.2 Y 

LSTM (b,16,1) — — N 

Self- (b,16,1) — — N 

attention 

Fusion (b,107) — — N 

Linear (b,1) — — N 

 

3. THE EXPERIMENTAL VALIDATION 

To validate the generalizability and efficacy of the proposed 

model for RUL prediction, two experiments were conducted 

in the PHM2012 bearing dataset and the XJTU-SY bearing 

dataset via Pytorch 1.11 and run on ubuntu20.04 with an 

Intel (R) Xeon (R) Platinum 8457C CPU, 100GB RAM, and 

L20 48GB GPU. 

3.1. Case study 1: IEEE-PHM-2012-Challenge 

3.1.1. Dataset description 

The degradation vibration data utilized in this investigation 

is collected from the experimental platform of the FEMMO-

ST institute (Nectoux et al., 2012). This platform is 

illustrated in Figure 7. Horizontal and vertical acceleration 

sensors accumulate data throughout the experiment. 

Moreover, this data is collected every 10 seconds with a 

sampling frequency of 25.6 kHz, which results in the 

accumulation of 2,560 data points per sample. Furthermore, 

the dataset comprises the conditions of 17 bearings under 

three distinct scenarios (1800 rpm and 4000 N, 1650 rpm 

and 4200 N, and 1500 rpm and 5000 N). The effectiveness 

of the proposed model is verified in the horizontal direction 

under condition 1 and condition 2. The data of condition 1 

and condition 2 are utilized in this paper. The PHM2012 

degradation data for the bearings under condition 1 and 

condition 2 are summarized in Table 2. 

 

 

Figure 7. The FEMTO rolling bearing experimental 

platform. 

Table 2. The information of PHM2012 degradation data. 

Operating 

conditions 

Radial 

force (N) 

Speed 

(rpm) 
Bearings 
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1 4000 1800 

Learning: 1_1, 1_2 

Testing: 1_3, 1_4, 

1_5, 1_6, 1_7 

2 4200 1650 

Learning: 2_1, 2_2 

Testing: 2_3, 2_4, 

2_5, 2_6, 2_7 

 

3.1.2. Normalization 

The degradation data of PHM2012 bearings demonstrates 

the variability that occurs under various operating 

conditions. Additionally, we normalized the input data to 

reduce the difficulty of model training. The process of data 

normalization is depicted in Eq. (22). 

 𝑋𝑡
̅̅ ̅ =

𝑋𝑡−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (22) 

where 𝑋𝑡  is the data at time 𝑡, 𝑋𝑚𝑖𝑛  denotes the minimum 

value in 𝑋𝑡, 𝑋𝑚𝑎𝑥  represents the maximum value in 𝑋𝑡 . 

The RUL values of bearings under various operating 

conditions are also normalized to simplify the model and 

mitigate overfitting whose process is depicted in Eq. (23) 

and Eq. (24). 

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑈𝐿𝑡 = 𝑇𝑜𝑡𝑎𝑙_𝐿𝑖𝑓𝑒 − 𝑡 (23) 

 𝑁𝑜𝑟𝑚_𝑅𝑈𝐿𝑡 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑈𝐿𝑡

𝑇𝑜𝑡𝑎𝑙_𝐿𝑖𝑓𝑒
 (24) 

where 𝑇𝑜𝑡𝑎𝑙_𝐿𝑖𝑓𝑒  represents the total RUL of single 

bearing, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑈𝐿𝑡  denotes the bearing RUL at time 𝑡, 
𝑁𝑜𝑟𝑚_𝑅𝑈𝐿𝑡  is the RUL of normalization, its value ranges 

from 0 to 1. 

3.1.3. Evaluation metrics 

The root mean square error (RMSE) and mean absolute 

error (MAE) are employed as metrics to evaluate the 

performance of RUL prediction. The RMSE is particularly 

sensitive to larger errors, whereas the MAE assigns equal 

weight to each error (Wang & Lu, 2018). 

  𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌̂𝑖 − 𝑌𝑖)

2𝑛
𝑖=1  (25) 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌̂𝑖 − 𝑌𝑖|

𝑛
𝑖=1  (26) 

where 𝑌𝑖 represents the actual RUL, 𝑌̂𝑖 is predicted RUL. 

3.1.4. Sliding window 

This paper utilizes a sliding window approach to process the 

data. It employs diverse window sizes to extract a segment 

of features preceding the current moment. The different 

window sizes represent the information acquired over 

distinct future time intervals. Moreover, it can capture the 

changing trends of RUL within the same window size, 

thereby enhancing the accuracy of RUL prediction (H. 

Wang et al., 2022). The structure of sliding window is 

illustrated in Figure 8. 

 

 

Figure 8. The structure of sliding window. 

3.1.5. Results 

During model training, we set the learning rate to 0.001; 

The patience is set to 5. The learning rate decay strategy is 

adopted, and the minimum learning rate is set to 0.00001. 

The Adam optimizer is utilized to train the model. L1 

regularization was used in the experiment to prevent model 

overfitting. Epoch is set to 50, batch is set to 128. The 

window size is set to 10. 

To eliminate irrelevant features and improve the accuracy of 

RUL prediction, TSDAE is employed to select the features 

extracted from the PHM2012 dataset. The raw features and 

targets under single bearing are input into the TSDAE to 

obtain the importance ranking of features, the XGBoost and 

grid search are utilized to determine which sub feature 

dimensions are optimal. The optimal sub features results 

under different bearings on PHM2012 dataset are presented 

in Figure 9, which (a) represents the condition 1 and (b) 

represents the condition 2. 

Figure 9 reveals that the feature sets exhibit variability 

across different bearings, it also denotes that XGBoost and 

grid search can determine which sub feature dimensions are 

optimal under different bearings. Subsequently, we calculate 

the frequency of each raw feature among all the sub optimal 

features, and each raw feature with high frequency is 

considered to be the best feature for model training. We 

integrate the highly frequent features to form the optimal 

feature set under a single operating condition.  

To identify the most influential features, we calculated the 

proportions of time-domain, frequency-domain, and time-

frequency domain features among the top 30 features.  

Under condition 1, time-domain features constituted 66.67% 

of the top features, including crest, absolute mean 

amplitude, inverse hyperbolic sine, arc tangent standard 

deviation, inverse hyperbolic sine standard deviation, 

maximum value, mean, median, minimum value, root mean 

square, gap factor, standard deviation, and variance. 

Frequency-domain features accounted for 13.33%, 

specifically, spectral centroid, coefficient of variation, 

kurtosis, and root mean square in frequency-domain. Time-
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frequency domain features represented 20%, comprising: 

mean, minimum, and standard deviation in time-frequency 

domain.  

Under condition 2, time-domain features constituted 60% of 

the top features, including coefficient of skewness, pulse 

factor, inverse hyperbolic sine standard deviation, kurtosis 

factor, maximum value, mean, median, minimum value, 

root mean square, gap factor, skewness, and variance. 

Frequency-domain features accounted for 23.33%, 

specifically,center of gravity, coefficient of variation, 

kurtosis, root mean square, and ratio in frequency-domain. 

Time-frequency domain features represented 16.67%, 

comprising maximum value, median, minimum value, and 

variance in time-frequency domain. 

In the PHM dataset, the optimal feature set primarily 

consists of time-domain features, while frequency-domain 

and time-frequency features constitute a significantly 

smaller portion. 

 

 

 (a) (b) 

Figure 9. The optimal sub features result under different 

bearings on PHM2012 dataset. 

 

 

The split of the training set and the testing set on PHM2012 

dataset is shown in Table 3. 

Table 3. The split of the training set and the testing set on 

PHM2012 dataset. 

Operating conditions Bearings 

1 Training: 1_1, 1_2 

Testing: 1_3, 1_4, 1_5, 1_6 

2 Training: 2_1, 2_2, 2_3 

Testing: 2_4, 2_5, 2_6 

 

In each condition, we select three optimal feature 

combinations and input them into the model for verification. 

The feature selection results on PHM2012 are presented in 

Table 4. 

 

According to the results in Table 4, when the dimension is 

91 under condition 1, the model has the lowest RMSE and 

MAE. Moreover, the performance of dimension 185, which 

represents the model without TSDAE, has higher RMSE 

and MAE. When the dimension is 96 under condition 2, the 

model has the lowest RMSE and MAE. The results of the 

model without TSDAE are less satisfactory than the 

proposed model. It also denotes that the TSDAE feature 

selection proposed in this paper has better feature selection 

effect. Ultimately, the optimal dimension under condition 1 

is 91, and the optimal dimension under condition 2 is 96. 

Table 4. The feature selection results on the PHM2012 

dataset. 

Operating 

conditions 
Dimension RMSE MAE 

1 

142 0.0719 0.05574 

91 0.0419 0.0313 

29 0.1002 0.0736 

185 0.0884 0.0718 

    

2 

142 0.1268 0.1050 

96 0.0966 0.0783 

64 0.1231 0.1026 

185 0.1113 0.0937 

 

The results of bearing RUL prediction on PHM2012 dataset 

are presented in Table 5 and depicted in Figure 10. Figure 

10 reveals that the RMSE and MAE under each bearing 

mainly are concentrated around 0. 

 

 

 

 

Table 5. The results of bearing RUL prediction on 

PHM2012 dataset. 

Bearings RMSE MAE 

Bearing1_3 0.0419 0.0313 

Bearing1_4 0.0861 0.0643 

Bearing1_5 0.1520 0.1213 

Bearing1_6 0.1371 0.1095 

Bearing2_4 0.0966 0.0783 

Bearing2_5 0.2149 0.1892 

Bearing2_6 0.0985 0.0809 

  
(a) (b) 
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(c) (d) 

Figure 10. The partial visualization results of RUL 

prediction on PHM2012 dataset, (a) bearing 1_3, (b) bearing 

1_4, (c) bearing 2_4, (d) bearing 2_6. 

3.1.6. Comparative analysis 

To demonstrate the performance of the proposed model in 

the PHM2012 dataset, it is benchmarked against six other 

models: CNNs, LSTM, GRU, Transformer, TCN, and 

Pathformer. The CNNs model incorporates two 

convolutional layers with three kernels and two max pooling 

layers with two kernels. The LSTM model includes two 

LSTM layers with 32 hidden units and 64 hidden units. The 

GRU model includes two GRU layer with 32 hidden units 

and 64 hidden units. The Transformer model contains two 

encoder layers with 128 hidden dimensions and an average 

pooling layer. The structure of the Pathformer and TCN 

model is adopted from this article. To guarantee the 

reliability of validation, each algorithm is executed for five 

times, with the average value serving as the ultimate 

predictive result. The comparative results of different 

algorithms on PHM2012 dataset are presented in Table 6, 

and the bar chart of comparative results of different models 

on PHM2012 dataset are illustrated in Figure 11. 

Table 6 reveals that the RMSE and MAE of the proposed 

model reach 0.0419 and 0.0313 under Bearing1_3, 

outperforming the comparison models. Moreover, the 

average RMSE and MAE of the proposed model under 

condition 1 and condition 2 are lower than the comparison 

model, it denotes that the proposed model has stable 

performance under various conditions. In comparison with 

single model (LSTM, TCN, and Pathformer), the proposed 

model has better RUL prediction results under various 

conditions, it also denotes that the proposed parallel 

Pathformer-TCLSTM model can address the limitation of 

the Pathformer, TCN, and LSTM models. Except for the 

Bearing1_1, Bearing1_5, Bearing1_6, and Bearing2_5, the 

RMSE and MAE of the comparison models are all above 

0.10, it also denotes that the RUL prediction results of these 

models should be improved. Compared with the 

Transformer and Pathformer, the proposed model has better 

RUL prediction results under various bearings. Additionally, 

the features extracted from the time-domain, frequency-

domain, and time-frequency domain, which are obtained 

from EMD, can provide effective training set for model 

training under various conditions. Ultimately, the proposed 

model can achieve satisfactory RUL prediction results on 

PHM2012 dataset. 

 

 

Table 6. The comparative results of different algorithm on PHM2012 dataset. 

Test 
CNN LSTM GRU Transformer TCN Pathformer Proposed 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

B1_3 0.0895 0.0734 0.0647 0.0506 0.0810 0.0671 0.1317 0.1044 0.0861 0.0651 0.0949 0.0730 0.0419 0.0313 

B1_4 0.1056 0.0875 0.1476 0.1191 0.1494 0.1120 0.2122 0.1818 0.1085 0.0918 0.1345 0.1144 0.0861 0.0643 

B1_5 0.2534 0.2183 0.2008 0.1604 0.1898 0.1525 0.3562 0.3071 0.2863 0.2485 0.2338 0.1990 0.1520 0.1213 

B1_6 0.2268 0.1906 0.1705 0.1357 0.1686 0.1300 0.2887 0.2343 0.2695 0.2300 0.2203 0.1703 0.1371 0.1095 

Average 0.1688 0.14245 0.1459 0.1164 0.1472 0.1154 0.2472 0.2069 0.1876 0.1588 0.1708 0.1391 0.1042 0.0816 

               

B2_4 0.1809 0.1433 0.1918 0.1556 0.1442 0.1113 0.2283 0.1913 0.2445 0.2113 0.1841 0.1494 0.0966 0.0783 

B2_5 0.2153 0.1895 0.2822 0.2346 0.3033 0.2602 0.1962 0.1626 0.2544 0.2190 0.2817 0.2389 0.2149 0.1892 

B2_6 0.1370 0.1082 0.1457 0.1194 0.1232 0.0993 0.1460 0.1138 0.1746 0.1518 0.1235 0.1030 0.0985 0.0809 

Average 0.1777 0.1470 0.2065 0.1698 0.1902 0.1569 0.1901 0.1559 0.2245 0.1940 0.1964 0.1637 0.1366 0.1161 

 

  
(a) (b) 
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Figure 11. The bar chart of comparative results of different models on PHM2012 dataset, (a) RMSE, (b) MAE. 

 

3.2. Case study 2: XJTU-SY Bearing Dataset 

3.2.1. Dataset description 

The experimental platform of XJTU-SY (Wang et al., 2018) 

is depicted in Figure 12. It collects data from 15 bearings 

across three operational conditions, capturing bearing data 

from normal operation to failure. Vibration signals are 

acquired from both horizontal and vertical acceleration 

sensors. Furthermore, the signal is sampled at a frequency of 

25.6 kHz, with a sampling interval of one minute. 

Additionally, each signal sample comprises 32,768 data 

points, and the sampling interval is set at 1.28 seconds. The 

information from the degradation data of XJTU-SY is 

summarized in Table 7. 

 

Figure 12. The experimental platform of XJTU-SY. 

Table 7. The information of XJTU-SY degradation data. 

Operating 

conditions 

Radial 

force (N) 

Speed 

(rpm) 
Bearings 

1 12000 2100 
Learning: 1_1, 1_2, 

1_3, 1_4 Testing:1_5 

2 11000 2250 
Learning: 2_1, 2_2, 

2_3, 2_4 Testing: 2_5 

3 10000 2400 

Learning: 3_1, 3_2, 

3_3, 3_4 

Testing: 3_5 

3.2.2. Results 

The TSDAE approach is utilized to select the features 

extracted from XJTU-SY bearing degradation, and the 

optimal sub features results under different bearings on 

XJTU-SY dataset are illustrated in Figure 13, where (a) 

represents the condition 1, (b) represents the condition 2, (c) 

represents the condition 3. 

Figure 13 reveals that the feature sets exhibit variability 

across different bearings, it also denotes that XGBoost and 

grid search has the ability to determine which sub feature 

dimensions are optimal under different bearings. 

Furthermore, the frequency of each raw feature among all 

the sub optimal features will be calculated. In each 

condition, we select three optimal feature combinations and 

input them into the model for verification.  

Moreover, we calculated the proportions of time-domain, 

frequency-domain, and time-frequency domain features 

among the top 30 features.  

Under condition 1, time-domain features constituted 63.33% 

of the top features, including: kurtosis, absolute mean 

amplitude, deviation, skewness, energy, inverse hyperbolic 

sine standard deviation, kurtosis factor, maximum value, 

median, minimum value, gap factor, skewness, kurtosis 

factor, and standard deviation. 

Frequency-domain features accounted for 23.33%, center of 

gravity, skurtosis, ratio, root mean square and standard 

deviation in frequency-domain. 

Time-frequency domain features represented 13.33%, 

comprising: energy, median, minimum value and skewness 

in time-frequency domain. 

Under condition 2, time-domain features constituted 90% of 

the top features, including: crest, kurtosis, inverse 

hyperbolic sine, arc tangent standard deviation, coefficient 

of skewness, energy, pulse factor, inverse hyperbolic sine 

standard deviation, mean, median, root mean square, 

skewness, kurtosis factor, standard deviation, and variance. 

Frequency-domain features accounted for 6%, specifically: 

Mean, and standard deviation in frequency-domain. 

Time-frequency domain features represented 4%, 

comprising: energy and median in time-frequency domain. 

Under condition 3, time-domain features constituted 93.33% 

of the top features, including: Crest, kurtosis, inverse 

hyperbolic sine, energy, kurtosis factor, maximum value, 

mean, minimum value, peak-to-peak, root mean square, 

skewness, coefficient of skewness, and standard deviation, 

variance. 

Frequency-domain features accounted for 6.67%, 

specifically: ratio and standard deviation in frequency-

domain. Time-frequency domain features represented 4%, 

comprising: energy and median in time-frequency domain 

In the XJTU-SY dataset, time-domain features predominate, 

with frequency-domain features being secondary. 

In each condition, four bearings are designated for the 

training set, while the remaining one is reserved for the 

testing set. 
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(a) (b) (c) 
Figure 13. The optimal sub features result under different bearings on XJTU-SY dataset. 

 

The feature selection results on XJTU-SY dataset are 

presented in Table 8. As seen from Table 8, when the 

dimension is 137, 135, and 72 under condition 1, condition 

2, and condition 3, the model has the lowest RMSE and 

MAE. Moreover, the performance of dimension 185, which 

represents the model without TSDAE, has higher RMSE 

and MAE under each condition. It also denotes that the 

TSDAE feature selection proposed in this paper has better 

feature selection effect 

Table 8. The feature selection results of XJTU-SY dataset. 

Operating 

conditions 
Dimension RMSE MAE 

1 

137 0.0957 0.0763 

53 0.1280 0.1082 

12 0.1420 0.0900 

185 0.1287 0.1059 

    

   2 

171 0.1178 0.0960 

135 0.0947 0.0760 

83 0.1226 0.0953 

185 0.1295 0.1002 

3 

   

178 0.1697 0.1436 

145 0.1540 0.1257 

72 0.1060 0.0820 

185 0.2360 0.1980 

The results of bearing RUL prediction on XJTU-SY dataset 

are presented in Table 9. Table 9 reveals that the RMSE and 

MAE under Bearing1_1 are 0.0920, 0.0773. Remarkably, 

the RSME and MAE under the bearing1_3 and Bearing2_2 

are less than 0.1. Moreover, the RMSE and MAE under 

Bearing1_2, Bearing1_4, Bearing2_3, Bearing2_5, 

Bearing3_4, Beaing3_5 are less than 0.15. The proposed 

model in this paper achieves satisfactory RUL prediction 

results under different conditions on PHM2012 dataset. 

Furthermore, the partial visualization results of RUL 

prediction on XJTU-SY dataset are illustrated in Figure 14. 

In Figure 14, the predicted results are smoothed by the 

exponential smoothing, and the RMSE of each data point is 

calculated. 

Table 9. The results of bearing RUL prediction on XJTU-

SY dataset. 

Bearings RMSE MAE 

Bearing1_1 0.0920 0.0773 

Bearing1_2 0.1063 0.0884 

Bearing1_3 0.0957 0.0763 

Bearing1_4 0.1200 0.0937 

Bearing2_1 0.2276 0.1993 

Bearing2_2 0.0929 0.0687 

Bearing2_3 0.1068 0.0870 

Bearing2_5 0.0947 0.0760 

Bearing3_1 0.2217 0.1819 

Bearing3_2 0.1532 0.1526 

Bearing3_3 0.2021 0.2054 

Bearing3_4 0.1060 0.0820 

Bearing3_5 0.1335 0.1138 

 

 

  
(a) (b) 
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(c) (d) 

Figure 14. The partial visualization results of RUL prediction on XJTU-SY dataset, (a) bearing 1_1, (b) bearing 1_2, (c) 

bearing 2_5, (d) bearing 3_4. 

 

3.2.3. Comparative analysis 

To demonstrate the performance of the proposed model in 

the XJTU-SY dataset, it is benchmarked against six other 

models: CNNs, LSTM, GRU, Transformer, TCN, and 

Pathformer. To guarantee the reliability of validation, each 

algorithm is executed for five times, with the average value 

serving as the ultimate predictive result. The comparative 

results of different algorithms on XJTU-SY dataset are 

presented in Table 10, and the bar chart of comparative 

results of different models on XJTU-SY dataset are 

illustrated in Figure 15. 

Table 10 shows that for Bearing1_1, the proposed model 

has RMSE and MAE of 0.0920 and 0.0773, and for 

Bearing2_5, the RMSE and MAE are 0.0947 and 0.0760, 

and for Bearing3_4, the RMSE and MAE are 0.1060 and 

0.0820, outperforming the comparison models. 

Additionally, the average RMSE and MAE of the proposed 

model under condition 1, condition 2, and condition 3 are 

lower than the comparison models, it denotes that the 

proposed model has stable performance under various 

conditions. Compared with the single model (LSTM, TCN, 

and Pathformer), the proposed parallel Pathformer-

TCLSTM model has lower RMSE and MAE under different 

bearings, it also denotes that the proposed model can 

address the limitations of the single model (LSTM, TCN, 

and Pathformer). Compared with the Transformer and 

Pathformer, the proposed model has better RUL prediction 

under various bearings. The performance of the proposed 

model under various bearings indicates that the features 

extracted from time-domain, frequency-domain, and time-

frequency domain, which are obtained from EMD, are 

effective for the model training. Consequently, the proposed 

model can achieve satisfactory RUL prediction results on 

XJTU-SY dataset. 

 

 

Table 10. The comparative results of different algorithm on XJTU-SY dataset. 

Test 
CNN LSTM GRU Transformer TCN Pathformer Proposed 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

B1_1 0.1440 0.1262 0.1215 0.0979 0.1269 0.1061 0.1616 0.1345 0.2008 0.1762 0.1117 0.0904 0.0920 0.0773 

B1_2 0.1102 0.0935 0.1175 0.0966 0.1120 0.0896 0.1315 0.0943 0.2002 0.1736 0.1341 0.1014 0.1063 0.0884 

B1_3 0.1505 0.1335 0.1521 0.1258 0.1736 0.1491 0.1344 0.1079 0.2149 0.1825 0.1381 0.1198 0.0957 0.0763 

B1_4 0.2242 0.1806 0.1820 0.1320 0.1633 0.1335 0.1728 0.1417 0.2304 0.1973 0.1372 0.1023 0.1200 0.0937 

Average 0.1572 0.1334 0.1432 0.1130 0.1439 0.1195 0.1500 0.1196 0.2115 0.1824 0.1302 0.1034 0.1035 0.0839 

               

B2_1 0.2617 0.2252 0.2307 0.1995 0.2617 0.2232 0.2523 0.2147 0.2771 0.2410 0.2771 0.2389 0.2276 0.1993 

B2_2 0.1060 0.0830 0.1184 0.0952 0.0970 0.0804 0.1540 0.1258 0.1194 0.0936 0.1318 0.1280 0.0929 0.0687 

B2_3 0.1762 0.1568 0.1521 0.1218 0.1494 0.1212 0.1760 0.1364 0.1531 0.1282 0.1391 0.1090 0.1068 0.0870 

B2_5 0.2393 0.2011 0.1323 0.1060 0.1138 0.0929 0.1679 0.1338 0.1633 0.1341 0.1346 0.1125 0.0947 0.0760 

Average 0.1958 0.1665 0.1583 0.1306 0.1554 0.1294 0.1875 0.1526 0.1782 0.1492 0.1706 0.1471 0.1305 0.1077 

               

B3_1 0.2699 0.2329 0.2723 0.2377 0.2720 0.2319 0.2384 0.2009 0.2483 0.2131 0.2919 0.2492 0.2217 0.1819 

B3_2 0.2411 0.2092 0.1802 0.1601 0.1643 0.1534 0.2711 0.2002 0.1589 0.1540 0.2806 0.2452 0.1532 0.1526 

B3_3 0.2163 0.2292 0.2144 0.2036 0.2401 0.2098 0.2626 0.2280 0.2204 0.2024 0.2720 0.2349 0.2021 0.2054 

B3_4 0.2670 0.2292 0.2344 0.1985 0.2703 0.2321 0.2886 0.2270 0.2661 0.2299 0.2743 0.2344 0.1060 0.0820 

B3_5 0.2159 0.1766 0.2132 0.1676 0.2687 0.2169 0.1368 0.1340 0.2124 0.1698 0.1342 0.1209 0.1335 0.1138 

Average 0.2420 0.2154 0.2229 0.1935 0.2430 0.2088 0.2395 0.1980 0.2212 0.1938 0.2506 0.2169 0.1633 0.1471 
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(a) (b) 

Figure 15. The bar chart of comparative results of different models on XJTU-SY dataset, (a) RMSE, (b) MAE. 
 

4. CONCLUSION & FUTURE WORK 

This paper introduces an approach for RUL prediction of 

bearings, combining TSDAE feature selection and 

Pathformer-TCLSTM. (i) To address the problem of 

restricted features in RUL prediction, the features of the 

time-domain, frequency-domain, and time-frequency 

domain are extracted from EMD; (ii) To deal with the 

redundancy in extracted features and the limitation of 

domain knowledge utilized in traditional feature selection, 

TSDAE feature selection technique is adopted to select the 

optimal features under various conditions for model 

training; (iii) To tackle the lack of local information and 

long-range dependency in Pathformer, the inefficiency of 

TCN in extracting the global information, the limitation of 

LSTM in extracting the local information within time series, 

a parallel Pathformer-TCLSTM prediction model is 

implemented. 

In the proposed RUL prediction model based on TSDAE 

feature selection and Pathformer-TCLSTM, (i) Features 

extracted from time-domain, frequency-domain, and time-

frequency domain, which are obtained from EMD, can 

provide more beneficial features for model training and 

achieve lower RMSE and MAE under various bearings in 

experiment; (ii) TSADE feature selection adopted in this 

paper can select the optimal features under various 

conditions, these optimal features can assist the model to 

achieve better RUL prediction results under various 

bearings in experiment. Moreover, TSDAE can learn the 

relationship between input features and targets via model 

training, thereby avoiding parameter adjustment and 

enhancing computational efficiency for RUL prediction; 

(iii) The proposed parallel Pathformer-TCLSTM model can 

extracts multi-scale global features while also incorporating 

local features and long-range dependencies to improve RUL 

prediction. Compared with the single model in experiment, 

the proposed model can extract complementary features and 

achieve better RUL prediction results on PHM2012 dataset 

and XJTU-SY dataset. 

Although the proposed model in this paper can extract the 

complementary features to improve the accuracy of bearing 

remaining useful life prediction, the Pathformer adopted in 

this article is complex. Therefore, future enhancements to 

the proposed model will focus on adopting a lightweight 

Pathformer architecture to reduce model complexity and 

improve efficiency. In addition, the performance of the 

proposed model under various bearings is fluctuating. 

Consequently, adopting the transfer learning approach to 

predict the RUL under various operating conditions of 

bearings to improve generalization performance will be the 

main direction in the feature. 
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