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ABSTRACT 

In response to the growing challenges posed by climate 
change and demographic shifts, industrial operations must 
move beyond traditional productivity metrics such as Overall 
Equipment Effectiveness (OEE). While OEE is a valuable 
key performance indicator, it fails to account for the 
ecological, social, and economic dimensions essential for 
long-term sustainability. This paper introduces an Overall 
Sustainable Equipment Effectiveness (OSEE) framework, 
designed to integrate sustainability factors into operational 
performance measurement, enabling a holistic assessment 
and optimization approach. Key sustainability factors and 
their interrelationships are identified through an extensive 
literature review and subsequently validated by industry 
experts to ensure practical relevance and applicability to real-
world operational settings. To address the complexity of 
these interconnected factors, causal AI methods, in particular 
Dynamic Bayesian Networks (DBN) are employed. DBN 
allow a qualitative understanding of sustainability 
interrelationships (cause-effects) and enable a quantitative 
optimization of sustainability impacts on operational 
efficiency. The proposed OSEE framework offers a 
structured approach for balancing productivity with 
environmental and social factors, equipping decision-makers 
with insights for informed sustainable operational strategies. 
This research contributes to the broader agenda of twin 
transformation, aligning digitalization and sustainability, and 
provides a foundation for building resilient, future-ready 
industrial operations. 

1. INTRODUCTION 

Manufacturing industries are responsible for approximately 
30% of global emissions (World Economic Forum, 2023) and 
are critical to limiting global warming to 1.5°C (Core Writing 
Team, H. Lee and J. Romero (eds.), 2023). Simultaneously, 
demographic changes and a growing shortage of skilled 
workers present significant challenges to the industrial sector 
(Acemoglu and Restrepo, 2018). In response to these 
escalating challenges, global initiatives have been launched 
to address them, including the United Nations Sustainable 
Development Goals (United Nations, 2023) and regional 
strategies such as the European Green Deal (European 
Comission, 2019). In parallel, emerging concepts like the 
twin transition, integrating digitalization and sustainability, 
are gaining prominence (Fouquet and Hippe, 2022). At the 
same time, manufacturing enterprises increasingly 
implement corporate sustainability programs and engage in 
green and sustainability-linked financing to accelerate 
transformation efforts and align with global and regional 
sustainability targets. Despite advances, environmental and 
social sustainability considerations are frequently 
underemphasized (Göçoğlu et al., 2025), particularly in the 
context of current economic pressures. Operational-level 
sustainability is therefore critical, as manufacturing processes 
have a direct impact on emissions, energy use, and working 
conditions. In manufacturing, a large proportion of the 
workforce is employed in operational roles (i.e. blue collars), 
highlighting the importance of this level for achieving 
substantive sustainability gains. When operational activities 
are overlooked, the effectiveness of corporate sustainability 
strategies is reduced, and key opportunities to mitigate 
environmental and social impacts are lost. Despite the 
growing importance of sustainability, operational planning 
and performance measurement in manufacturing continue to 
rely primarily on economic indicators, such as Overall 
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Equipment Effectiveness (OEE), which reflects equipment 
availability, performance, and product quality (Nakajima, 
1988). Environmental and social dimensions are either 
typically excluded or not explicitly considered. As a result, 
operational performance is often optimized in isolation, 
without accounting for the interdependence of economic, 
environmental, and social factors (Madreiter and Ansari, 
2024). This fragmented approach constrains the potential for 
integrated improvements that enhance resource efficiency, 
lower environmental impact, and strengthen working 
conditions at the operational level. 

To enable measuring sustainability and assessing attainments 
of corporate sustainability goals at the operational level, two 
aspects are particularly relevant: 

i. Integrating sustainability principles throughout all 
operational activities, and  

ii. Extending conventional indicators such as OEE to 
encompass environmental and social dimensions 

Yet, indicator expansion alone is not sufficient. Improving 
sustainability outcomes at the operational level requires a 
move from static reporting toward methods that support 
ongoing management. This includes tools that represent 
causal links between operational, environmental, and social 
variables, and can simulate the effects of internal changes or 
external disruptions over time. Such models allow 
operational teams to examine trade-offs, identify potential 
risks, and test interventions before implementation. A 
structured approach of this kind is necessary to make 
sustainability efforts more anticipatory and integrated. This 
requires a clear understanding of how sustainability has been 
addressed in operational contexts and how existing metrics, 
such as OEE, have been extended to support broader 
sustainability objectives. Operational sustainability in 
manufacturing requires integrating economic, environmental, 
and social objectives directly into production and 
maintenance processes at the shop floor level.  

Existing work increasingly focuses on the comprehensive 
incorporation of sustainability dimensions into operational 
practices. Hoyos et al. (2023) propose a scoring system that 
combines environmental, economic, physical, and social 
criteria to evaluate welding processes for electric transport 
components. Wadood et al., (2023) show that aligning Lean 
and Sustainability Management produces stronger outcomes 
across all three dimensions than applying them separately. 
Afum et al. (2023) demonstrate that Lean Production 
Systems improve social sustainability and green 
competitiveness when mediated by green technology 
adoption and green product innovation. Franciosi et al. 
(2020) highlight that maintenance activities directly and 
indirectly affect all sustainability pillars and propose a 
framework linking maintenance processes to indicators 
across organizational levels. Building on these holistic 
approaches to operational sustainability, further 
developments have explored how key performance indicators 

can be expanded to reflect environmental and social 
objectives at the operational level. 

In parallel, several studies have explored how OEE can be 
extended toward sustainability by linking operational 
performance with energy, resource efficiency, and broader 
sustainability outcomes. Technology-based approaches 
enhance OEE via machine learning, IoT monitoring, and 
predictive diagnostics (Thiede, 2023; Da Costa et al., 2024; 
Ademujimi and Prabhu, 2024). Conceptual extensions 
integrate sustainability indicators into performance metrics, 
e.g., Sustainable Overall Throughput Effectiveness (Durán et 
al., 2018) and Overall Sustainable Equipment Effectiveness 
(Madreiter and Ansari, 2024). Maintenance-focused 
strategies further align reliability, energy efficiency, and 
operational effectiveness, demonstrated in studies on 
Industry 4.0-enabled maintenance frameworks and resource-
optimized material handling systems (Jena et al., 2024; Seyed 
Hosseini et al., 2024; Ghafoorpoor Yazdi et al., 2018). 
Finally, system-level and business-oriented models formalize 
the integration of operational performance and sustainability 
outcomes, particularly in automotive manufacturing and 
lean-green compliance frameworks (Zehra et al., 2024; 
Abreu et al., 2024). Although significant progress has been 
made, many of the existing approaches remain conceptual in 
nature and are not yet fully integrated into operational 
decision-making processes based on expanded sustainability 
performance indicators. 

While these contributions mark important progress, most 
remain static and descriptive. They often fail to capture the 
dynamic interdependencies between operational, 
environmental, and social factors, and are not yet fully 
integrated into operational decision-making. Consequently, 
anticipatory, scenario-based management at the shop floor 
level remains underdeveloped. This paper addresses this gap 
by developing a dynamic causal model for operational 
sustainability, building on an extended OEE framework. 

The rest of the paper is structured as follows. Chapter 2 
presents the theoretical foundations of causal AI. Chapter 3 
outlines the methodology for causal modeling of operational 
sustainability within the OSEE framework. Chapter 4 applies 
the proposed model in a simulation study. Finally, Chapter 5 
concludes the paper with a summary of key findings and 
directions for future research. 

2. THEORETICAL FOUNDATIONS: CAUSAL AI AND 
PROBABILISTIC MODELING 

2.1. Structural Causal Models and Dynamic Bayesian 
Networks 

Causal Artificial Intelligence (Causal AI) focuses on finding 
and understanding cause-and-effect relationships between 
system variables. Unlike traditional statistical methods that 
describe associations, Causal AI provides tools to model 
interventions, dependencies, and hypothetical alternatives 
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(Pearl, 2010, 2009). At the core of causal reasoning is the 
Structural Causal Model (SCM), which describes how 
variables relate to each other using structural equations and 
directed acyclic graphs (DAGs) (Pearl, 2010). In these 
graphs, each node represents a variable, and the arrows 
represent direct causal influences. Together, the structural 
equations and the graph structure encode the system’s 
behavior (Pearl, 2010). SCMs allow to answer three types of 
questions: (i) associational questions about correlations, (ii) 
interventional questions about the effects of actions, and (iii) 
counterfactual questions about what might have happened 
under different circumstances (Pearl, 2009). Bayesian 
Networks (BNs) are one way to apply these ideas in practice. 
A BN is a graphical model where nodes represent random 
variables, and edges represent conditional dependencies 
between them (Ben‐Gal, 2007). Each variable's probability 
depends only on its parent nodes, which makes it possible to 
express the full joint probability distribution in a compact 
way (Ben‐Gal, 2007). When the structure of a BN is based 
on causal assumptions, it can be used to reason about cause 
and effect (Pearl, 2009). However, many real-world systems 
change over time, and static models are not enough to capture 
their dynamics. To handle this, Dynamic Bayesian Networks 
(DBNs) extend BNs by repeating the network structure over 
multiple time steps, allowing both current and future 
dependencies to be modeled (Koller and Friedman, 2009). A 
DBN typically consists of an initial model that describes the 
system at time t=0, and a two-slice temporal model that 
defines how the system evolves from one time step to the next 
(Koller and Friedman, 2009). DBNs generally assume a first-
order Markov property, meaning the state at time t+1 
depends only on the state at time t (Koller and Friedman, 
2009).  

2.2. Applications of Causal AI Models in Sustainability 
and Manufacturing 

Recent work has applied Causal AI methods to sustainability 
challenges in manufacturing. This section reviews how BNs 
and DBNs are used for energy efficiency, predictive 
maintenance, and decision-making under uncertainty. 
Nannapaneni et al. (2016) apply BNs to aggregate uncertainty 
from manufacturing processes for robust energy consumption 
predictions. Nannapaneni et al. (2020) extend this to real-
time monitoring and control in cyber-physical manufacturing 
systems, integrating sensor and computational uncertainties 
to support energy-efficient decision-making. Building on 
this, applications of DBNs have emerged. Han et al. (2022) 
combine fuzzy Quality State Task Networks with DBNs to 
predict Remaining Useful Life at the system level, improving 
maintenance and resource efficiency. (Ansari et al., 2020) 
propose a prescriptive maintenance model for CPPS that 
integrates multimodal data using DBNs to support predictive 
decision-making and optimal maintenance planning. 
Nannapaneni et al. (2020) apply DBNs for sequential 
decision-making under uncertainty in cyber-physical 

systems, while Chang et al. (2023) highlight DBNs' broader 
potential for modeling dynamic environmental impacts. 

3. MODELING OPERATIONAL SUSTAINABILITY USING THE 
OSEE-DBN 

The shop floor constitutes a system where social, 
environmental, and economic factors interact closely with 
operational processes (Zackrisson et al., 2017). Managing 
these interdependencies requires integrated approaches that 
balance production efficiency with environmental and social 
objectives, a central challenge in sustainable operations 
management. To support integrated prescriptive decision-
making, the OSEE framework extends the traditional OEE by 
including environmental and social indicators relevant to the 
shop floor level. To bridge this gap Madreiter and Ansari 
(2024) proposed the OSEE framework as an extension to 
prescriptive maintenance (Prima) framework (Ansari et al., 
2019).  

The OSEE (see Figure 1) extends the classical OEE concept 
by incorporating environmental and social performance 
indicators into operational assessments (cf. Table 1), thereby 
offering a more holistic view of equipment effectiveness. The 
framework is modular in structure, allowing for the selection 
and adaptation of relevant indicators across different industry 
contexts. Although the OSEE framework establishes a 
comprehensive set of sustainability indicators at the 
operational level, it does not capture the causal 
interdependence between economic, environmental, and 
social performance dimensions. 
To address this limitation, a Dynamic Bayesian Network 
(DBN) is developed to enable causal reasoning and scenario-
based simulation. Figure 2 outlines the modeling process, 
from indicator selection to causal structure and DBN 
implementation. The following sections explain each step. 

3.1. Deriving the Causal Structure 

To enable causal inference and scenario-based simulation, a 
directed acyclic graph structure representing hypothesized 
causal relations between the sustainability indicators of the 
OSEE is derived. This structure serves as the foundation for 
the DBN described in the following section. 

Figure 1: Sustainability Pillars in the OSEE Framework 
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Table 1: OSEE Factors (Madreiter and Ansari, 2024) 

Indicators Description 

O
E

E
 

Availability A 
The proportion of planned 
production time during which the 
equipment is actually running 

Performance P The ratio of actual output speed to 
the maximum possible speed 

Quality Q The proportion of good units 
produced out of the total units 

E
nv

ir
on

m
en

ta
l (

E
nv

.) 
 

Resource  
Efficiency RE 

The resource efficiency compares 
targeted and actual resource 
consumption across energy, water 
and materials 

Recycling  
Share RS 

The recycling share incorporates 
the Percentage of water, materials, 
and waste that is successfully 
recycled or reused 

Emission 
Efficiency EE 

The emission efficiency compares 
targeted and actual emissions, 
covering Greenhouse gases, NOx, 
SOx, and total air emissions 

Waste 
Efficiency WE 

Waste efficiency compares the ratio 
between the target and actual 
percentages of hazardous/harmful 
waste generated 

So
ci

al
 (S

oc
.) 

 

Employee 
Satisfaction ES 

Workers with positive workplace 
satisfaction as a percentage of 
workforce 

Employee 
Diversity ED Percentage of gender balance in the 

workforce to a defined target value 

Employee  
Training ET 

Percentage of completed training 
hours against planned training 
hours 

Employee  
Safety S 

Percentage of time or operations 
completed without work-related 
injuries or incidents 

Employee  
Health EH 

Percentage of scheduled hours 
worked without any unintended 
employee absences 

 

The derivation follows a four-stage process, i) identification 
of candidate causal relations via structured literature review, 
ii) expert-based evaluation of relevance and influence 
strength, iii) operationalization of OSEE indicators into 
model variables with discrete state definitions, and iv) graph 
construction based on validated relationships. In the literature 
review, targeted searches were conducted in manufacturing, 
maintenance, and sustainability domains to extract recurring 
interdependencies. Qualitative content analysis was applied 
to identify cause-effect linkages through co-occurrence and 
contextual discussion of OSEE-aligned constructions. This 
yielded a preliminary set of unidirectional relations between 
indicator pairs. To assess the causal relations among OSEE 
indicators, expert elicitation was conducted with a balanced 
group of domain specialists, including industry practitioners 
and academic researchers with expertise in production, 
manufacturing, and sustainability. The group represented 
multiple companies and sectors to reduce bias and avoid 
company-specific perspectives. Drawing on their 
professional experience, they rated the strength and relevance 
of potential links in a structured questionnaire complemented 
by semi-structured interviews, using a Likert scale. The 
aggregated results were used to validate the causal structure 
and to parameterize the DBN. Respondent ratings were 
normalized to a [0,1] scale and served two purposes: they 
determined which relations to include in the causal graph and 
provided quantitative influence weights for probabilistic 
modeling. The resulting validated interrelations were then 
represented as a directed graph, in which each node 
corresponds to a discretized OSEE indicator and each edge 
represents a confirmed causal influence. 

Constructing the OSEE-Dynamic Bayesian Network 
Building on the causal graph structure, a knowledge-based 
DBN was developed to represent the temporal and 
probabilistic dependencies among OSEE indicators. The 
DBN enables the evaluation of sustainability trajectories over 
time and supports scenario-based analysis of operational 
interventions. To manage the complexity of the full system 
while preserving the distinct characteristics of each 
sustainability pillar, the model construction followed a 
modular, three-stage approach (illustrated in Figure 3): 
1. Object-Oriented Bayesian Networks (OOBNs) were 

developed for each of the three sustainability pillars: 
economic (OEE indicators), environmental, and social. 
Each OOBN encapsulated the relevant indicators defined 
within the OSEE framework, reducing overall network 
complexity while preserving domain-specific 
characteristics. 

2. The pillar-specific models were integrated into a unified 
BN by identifying interface nodes that connect the 
different sustainability dimensions. For example, the 
social indicator "Employee Training" was linked to the 
operational indicator "Availability," highlighting how 
workforce development can influence equipment 
utilization and system performance. 

Figure 2: Overview of the modeling and parameterization 
steps for the OSEE-DBN 
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3. The unified BN was extended into a two-slice DBN 
(2TBN) to model indicator evolution between 
consecutive time steps. This temporal extension allows 
the evaluation of sustainability trajectories over time and 
the simulation of operational interventions. 

Following the construction of the network structure, the 
conditional probability tables (CPTs) were specified to 
quantify the probabilistic dependencies between variables, as 
described in the next section.  

3.2. Defining Conditional Probabilities for the Model 

While the causal structure was developed in Section 3.1, 
based on literature and expert validation of directional 
relationships, the present section focuses on quantifying 
those relationships using conditional probabilities and fuzzy 
logic. Each node in the BN is characterized by a probability 
distribution over discrete states. Together, all individual 
distributions form the joint probability distribution of the 
network. To develop the conditional probability tables 
(CPTs) for the OSEE framework, all possible states of each 
indicator were considered. Indicators were defined based on 
the OSEE framework and categorized into three qualitative 
states: High, Medium, and Low.  
This discretization was selected to maintain a low model 
complexity while ensuring sufficient expressiveness of the 
sustainability dimensions. The use of three states for each 
indicator limits the exponential growth of CPTs and ensures 
practical interpretability, especially when the model is 
applied in operational settings. Thresholds for state 
classification were aligned with OEE industry standards, with 
values above 85% classified as High, 60–85% as Medium, 
and below 60% as Low. These thresholds were adapted 
consistently across operational, environmental, and social 
indicators to maintain coherence with typical industrial 
benchmarks. For variables without parent nodes, prior 
marginal distributions were assigned uniformly across the 

three states, each initialized at a probability of 33%. Given 
the limited availability of large-scale empirical Given the 
limited availability of large-scale empirical datasets in the 
context of operational sustainability, a qualitative and 
literature-based approach supported by expert input and 
fuzzy logic techniques was applied to define the conditional 
probabilities. 
Fuzzy logic provides a mathematical framework for dealing 
with uncertainty and vagueness, and is particularly suited for 
scenarios where precise numerical data is lacking, and expert 
judgments or qualitative assessments are predominant 
(Zimmermann, 2010). System states were represented by 
degrees of membership in the categories High, Medium, and 
Low. The fuzzification process mapped normalized indicator 
values to a continuous membership scale between 0 and 1, 
allowing smooth transitions between qualitative states. To 
define the membership functions, symmetric triangular 
shapes were employed, which are commonly used in fuzzy 
modeling due to their interpretability and suitability for 
expert-based systems. Each input variable was normalized 
over the interval [0,1], and the sum of membership degrees 
across all categories was constrained to equal 1, maintaining 
internal consistency. 

For nodes with multiple parents, conditional probability 
tables were constructed using a weighted aggregation 
approach based on both literature-derived and expert-
validated relationships. Where strong and unambiguous 
causal relations were identified in the literature, these were 
directly encoded into the model. For other interdependencies 
not clearly established, expert assessments were used to 
evaluate the relative influence strength of each parent on its 
child indicator. These scores were normalized and combined 
with fuzzy membership degrees of the parent variable states 
to compute the conditional probability distributions for the 
child nodes. The causal links from the three pillar nodes 
(OEE, Environmental Sustainability, Social Sustainability) to 

Figure 3: (a) BN consisting of OOBNs for the three sustainability pillars. (b) DBN with two-slice temporal links (t, t+1) 
showing dependencies across time   



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

6 

the OSEE node are assigned equal weight. This reflects the 
conceptual basis of the Triple Bottom Line (Elkington John, 
1996), in which the economic, environmental, and social 
dimensions are considered equally important for 
sustainability performance. Equal weighting at this 
aggregation level ensures balanced representation of the three 
pillars, while all intra-pillar dependencies retain the weighted 
structure derived from literature and expert scoring. To derive 
the conditional probability distributions, the fuzzy 
membership degrees of parent variable states were combined 
with influence weights from expert assessments or literature. 
The probability of the child variable assuming a given state 
Sj was calculated using a weighted aggregation of these 
inputs as in equation (1), where wj is the normalized influence 
weight of parent i (from literature and expert scoring) and 𝜇𝜇𝑖𝑖,𝑗𝑗 
is the fuzzy membership degree of parent i to state j. 

𝑃𝑃(𝑆𝑆𝑗𝑗)  =  
∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗  𝜇𝜇𝑖𝑖,𝑗𝑗

∑ ∑ 𝑤𝑤𝑖𝑖  ∗  𝜇𝜇𝑖𝑖,𝑗𝑗′𝑛𝑛
𝑖𝑖=1𝑗𝑗′

  (1) 

This dual-sourcing approach ensured that CPTs reflect both 
established scientific knowledge and practice-informed 
insights, enabling a transparent and context-sensitive 
modeling of sustainability interdependencies in the OSEE-
DBN.  

4. SIMULATION STUDY: EVALUATING SUSTAINABILITY 
INTERVENTIONS 

A simulation study was conducted using the OSEE-DBN to 
evaluate how an operational intervention influences 
sustainability performance over time. The scenario involved 
implementing a revised maintenance strategy aimed at 
improving equipment availability and employee training. 
These two factors were expected to have a direct effect on 
OEE and to influence environmental and social outcomes 
through the modeled dependencies in the network. This 
simulation represents a level 2 causal inference in Pearl’s 

hierarchy, approximating P(Y | do(X)) by explicitly setting 
selected node states and propagating their effects through the 
DBN structure.  

The model was initialized with industry data for the OEE-
related indicators. Environmental and social variables were 
populated with synthetic values that reflect realistic operating 
conditions. All variables were discretized into three 
qualitative states: High, Medium, and Low, based on the 
threshold definitions used in the model. At the baseline (t = 
0), when the strategy was inactive, the probability of 
achieving a high OSEE score was 58%. The probabilities for 
medium and low scores were 31% and 11%, respectively. At 
t = 1, an exogenous variable (“New maintenance strategy”) is 
set to True, fixing the indicators Availability and Employee 
Training to the “High” state. This intervention represents a 
maintenance-oriented operational adjustment, and its effects 
are transmitted through the validated, weighted causal 
dependencies described in Sections 3.1 and 3.3, with weights 
derived from literature evidence and expert scoring. As a 
result, the probability of a high OSEE score increases to 64%, 
while medium and low scores decline to 29% and 7%. By t = 
2, the probability of a high OSEE rises further to 66%, with 
medium and low probabilities reduced to 28% and 6%. The 
changes over time reflect the lagged response of 
environmental and social indicators compared to the 
immediate operational effects. Figure 4, visualizes how the 
“New maintenance strategy” affects the three sustainability 
pillars and the aggregated OSEE score over the simulation 
period, comparing baseline and intervention results. A 
sensitivity analysis was carried out for OSEE₁ = High (t = 1, 
after the intervention) using the DBN’s conditional 
probability structure. In each scenario, specific variables or 
combinations were fixed to defined states, while the 
remainder stayed at baseline. The resulting probability ranges 
for the target were compared, and configurations were 
ordered by their net influence relative to the baseline value of 

Figure 4: Simulation Results: Effects of Maintenance Strategy on Sustainability Performance 
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0.643 (range 0.634–0.652). In Figure 5, the green segment of 
each bar indicates the share of the range above baseline, the 
red segment the share below. The highest-ranked 
configuration sets Env., OEE, and Soc. to High along with 
OSEE₀ High, producing the largest positive shift but still 
allowing for some outcomes below baseline due to unfixed 
variables. In contrast, a configuration limited to 
environmental subfactors (WE, RE, EE, RS High) ranks 
lowest, showing only modest gains when operational and 
social factors remain unimproved. Intermediate ranks 
illustrate how partial or uneven improvements in the three 
pillars affect the probability of achieving OSEE₁ = High. In 
the context of the OSEE simulation, these results indicate that 
sustained and simultaneous improvements in all three pillars, 
supported by strong prior performance, have the greatest 
impact on future sustainability outcomes. 

5. CONCLUSION AND OUTLOOK 

This paper developed a causal modeling approach for 
operational sustainability by extending the OSEE framework 
using DBNs. While existing OEE extensions incorporate 
environmental and social indicators, they typically treat these 
domains independently. The OSEE-DBN addresses this 
limitation by modeling causal relationships among 
operational, environmental, and social indicators. This 
enables scenario-based simulations and supports forward-
looking prescriptive decision-making at the shop floor level. 
By providing an evidence-based approach, it helps decision-
makers identify and prioritise high-impact interventions, test 

alternative strategies through what-if simulations, and 
integrate operational, environmental, and social 
considerations into a single sustainability perspective. The 
model explicitly accounts for time-dependent effects and 
cross-domain interactions, fac ilitating more anticipatory and 
coordinated management. Future research will focus on 
advancing the model and demonstrating its applicability in 
industrial practice. Empirical validation in real 
manufacturing environments is essential to test the 
plausibility of the assumed relationships and to assess the 
model’s predictive performance. The current specification of 
conditional probability tables, derived from expert judgment 
and literature, should be complemented with actual 
operational, environmental, and workforce data to support a 
robust, data-driven formulation. Furthermore, the model’s 
scalability should be systematically evaluated across a range 
of manufacturing contexts and organizational settings to 
assess its generalizability and practical relevance. The OSEE-
DBN provides a structured and causally grounded method for 
integrating sustainability into operational decision-making. 
By modeling the dynamic interactions among sustainability 
indicators, it enables systematic evaluation of interventions 
and supports sustainability-aligned planning at the shop floor 
level. Continued empirical development and broader 
application are essential to establish its utility in industrial 
contexts. 
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