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ABSTRACT

In response to the growing challenges posed by climate
change and demographic shifts, industrial operations must
move beyond traditional productivity metrics such as Overall
Equipment Effectiveness (OEE). While OEE is a valuable
key performance indicator, it fails to account for the
ecological, social, and economic dimensions essential for
long-term sustainability. This paper introduces an Overall
Sustainable Equipment Effectiveness (OSEE) framework,
designed to integrate sustainability factors into operational
performance measurement, enabling a holistic assessment
and optimization approach. Key sustainability factors and
their interrelationships are identified through an extensive
literature review and subsequently validated by industry
experts to ensure practical relevance and applicability to real-
world operational settings. To address the complexity of
these interconnected factors, causal Al methods, in particular
Dynamic Bayesian Networks (DBN) are employed. DBN
allow a qualitative understanding of sustainability
interrelationships (cause-effects) and enable a quantitative
optimization of sustainability impacts on operational
efficiency. The proposed OSEE framework offers a
structured approach for balancing productivity with
environmental and social factors, equipping decision-makers
with insights for informed sustainable operational strategies.
This research contributes to the broader agenda of twin
transformation, aligning digitalization and sustainability, and
provides a foundation for building resilient, future-ready
industrial operations.
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1. INTRODUCTION

Manufacturing industries are responsible for approximately
30% of global emissions (World Economic Forum, 2023) and
are critical to limiting global warming to 1.5°C (Core Writing
Team, H. Lee and J. Romero (eds.), 2023). Simultaneously,
demographic changes and a growing shortage of skilled
workers present significant challenges to the industrial sector
(Acemoglu and Restrepo, 2018). In response to these
escalating challenges, global initiatives have been launched
to address them, including the United Nations Sustainable
Development Goals (United Nations, 2023) and regional
strategies such as the European Green Deal (European
Comission, 2019). In parallel, emerging concepts like the
twin transition, integrating digitalization and sustainability,
are gaining prominence (Fouquet and Hippe, 2022). At the
same time, manufacturing enterprises increasingly
implement corporate sustainability programs and engage in
green and sustainability-linked financing to accelerate
transformation efforts and align with global and regional
sustainability targets. Despite advances, environmental and
social  sustainability = considerations are frequently
underemphasized (Gdgoglu et al., 2025), particularly in the
context of current economic pressures. Operational-level
sustainability is therefore critical, as manufacturing processes
have a direct impact on emissions, energy use, and working
conditions. In manufacturing, a large proportion of the
workforce is employed in operational roles (i.e. blue collars),
highlighting the importance of this level for achieving
substantive sustainability gains. When operational activities
are overlooked, the effectiveness of corporate sustainability
strategies is reduced, and key opportunities to mitigate
environmental and social impacts are lost. Despite the
growing importance of sustainability, operational planning
and performance measurement in manufacturing continue to
rely primarily on economic indicators, such as Overall
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Equipment Effectiveness (OEE), which reflects equipment
availability, performance, and product quality (Nakajima,
1988). Environmental and social dimensions are either
typically excluded or not explicitly considered. As a result,
operational performance is often optimized in isolation,
without accounting for the interdependence of economic,
environmental, and social factors (Madreiter and Ansari,
2024). This fragmented approach constrains the potential for
integrated improvements that enhance resource efficiency,
lower environmental impact, and strengthen working
conditions at the operational level.

To enable measuring sustainability and assessing attainments
of corporate sustainability goals at the operational level, two
aspects are particularly relevant:
i. Integrating sustainability principles throughout all
operational activities, and
ii. Extending conventional indicators such as OEE to
encompass environmental and social dimensions

Yet, indicator expansion alone is not sufficient. Improving
sustainability outcomes at the operational level requires a
move from static reporting toward methods that support
ongoing management. This includes tools that represent
causal links between operational, environmental, and social
variables, and can simulate the effects of internal changes or
external disruptions over time. Such models allow
operational teams to examine trade-offs, identify potential
risks, and test interventions before implementation. A
structured approach of this kind is necessary to make
sustainability efforts more anticipatory and integrated. This
requires a clear understanding of how sustainability has been
addressed in operational contexts and how existing metrics,
such as OEE, have been extended to support broader
sustainability objectives. Operational sustainability in
manufacturing requires integrating economic, environmental,
and social objectives directly into production and
maintenance processes at the shop floor level.

Existing work increasingly focuses on the comprehensive
incorporation of sustainability dimensions into operational
practices. Hoyos et al. (2023) propose a scoring system that
combines environmental, economic, physical, and social
criteria to evaluate welding processes for electric transport
components. Wadood et al., (2023) show that aligning Lean
and Sustainability Management produces stronger outcomes
across all three dimensions than applying them separately.
Afum et al. (2023) demonstrate that Lean Production
Systems improve social sustainability and green
competitiveness when mediated by green technology
adoption and green product innovation. Franciosi et al.
(2020) highlight that maintenance activities directly and
indirectly affect all sustainability pillars and propose a
framework linking maintenance processes to indicators
across organizational levels. Building on these holistic
approaches to  operational sustainability, further
developments have explored how key performance indicators

can be expanded to reflect environmental and social
objectives at the operational level.

In parallel, several studies have explored how OEE can be
extended toward sustainability by linking operational
performance with energy, resource efficiency, and broader
sustainability outcomes. Technology-based approaches
enhance OEE via machine learning, IoT monitoring, and
predictive diagnostics (Thiede, 2023; Da Costa et al., 2024;
Ademujimi and Prabhu, 2024). Conceptual extensions
integrate sustainability indicators into performance metrics,
e.g., Sustainable Overall Throughput Effectiveness (Duran et
al., 2018) and Overall Sustainable Equipment Effectiveness
(Madreiter and Ansari, 2024). Maintenance-focused
strategies further align reliability, energy efficiency, and
operational effectiveness, demonstrated in studies on
Industry 4.0-enabled maintenance frameworks and resource-
optimized material handling systems (Jena et al., 2024; Seyed
Hosseini et al., 2024; Ghafoorpoor Yazdi et al., 2018).
Finally, system-level and business-oriented models formalize
the integration of operational performance and sustainability
outcomes, particularly in automotive manufacturing and
lean-green compliance frameworks (Zehra et al, 2024
Abreu et al., 2024). Although significant progress has been
made, many of the existing approaches remain conceptual in
nature and are not yet fully integrated into operational
decision-making processes based on expanded sustainability
performance indicators.

While these contributions mark important progress, most
remain static and descriptive. They often fail to capture the
dynamic interdependencies between operational,
environmental, and social factors, and are not yet fully
integrated into operational decision-making. Consequently,
anticipatory, scenario-based management at the shop floor
level remains underdeveloped. This paper addresses this gap
by developing a dynamic causal model for operational
sustainability, building on an extended OEE framework.

The rest of the paper is structured as follows. Chapter 2
presents the theoretical foundations of causal Al. Chapter 3
outlines the methodology for causal modeling of operational
sustainability within the OSEE framework. Chapter 4 applies
the proposed model in a simulation study. Finally, Chapter 5
concludes the paper with a summary of key findings and
directions for future research.

2. THEORETICAL FOUNDATIONS: CAUSAL Al AND
PROBABILISTIC MODELING

2.1. Structural Causal Models and Dynamic Bayesian
Networks

Causal Artificial Intelligence (Causal Al) focuses on finding
and understanding cause-and-effect relationships between
system variables. Unlike traditional statistical methods that
describe associations, Causal Al provides tools to model
interventions, dependencies, and hypothetical alternatives
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(Pearl, 2010, 2009). At the core of causal reasoning is the
Structural Causal Model (SCM), which describes how
variables relate to each other using structural equations and
directed acyclic graphs (DAGs) (Pearl, 2010). In these
graphs, each node represents a variable, and the arrows
represent direct causal influences. Together, the structural
equations and the graph structure encode the system’s
behavior (Pearl, 2010). SCMs allow to answer three types of
questions: (i) associational questions about correlations, (ii)
interventional questions about the effects of actions, and (iii)
counterfactual questions about what might have happened
under different circumstances (Pearl, 2009). Bayesian
Networks (BNs) are one way to apply these ideas in practice.
A BN is a graphical model where nodes represent random
variables, and edges represent conditional dependencies
between them (Ben - Gal, 2007). Each variable's probability
depends only on its parent nodes, which makes it possible to
express the full joint probability distribution in a compact
way (Ben - Gal, 2007). When the structure of a BN is based
on causal assumptions, it can be used to reason about cause
and effect (Pearl, 2009). However, many real-world systems
change over time, and static models are not enough to capture
their dynamics. To handle this, Dynamic Bayesian Networks
(DBNs) extend BNs by repeating the network structure over
multiple time steps, allowing both current and future
dependencies to be modeled (Koller and Friedman, 2009). A
DBN typically consists of an initial model that describes the
system at time =0, and a two-slice temporal model that
defines how the system evolves from one time step to the next
(Koller and Friedman, 2009). DBNs generally assume a first-
order Markov property, meaning the state at time ¢+/
depends only on the state at time ¢ (Koller and Friedman,
2009).

2.2. Applications of Causal AI Models in Sustainability
and Manufacturing

Recent work has applied Causal Al methods to sustainability
challenges in manufacturing. This section reviews how BNs
and DBNs are used for energy efficiency, predictive
maintenance, and decision-making under uncertainty.
Nannapaneni et al. (2016) apply BNs to aggregate uncertainty
from manufacturing processes for robust energy consumption
predictions. Nannapaneni et al. (2020) extend this to real-
time monitoring and control in cyber-physical manufacturing
systems, integrating sensor and computational uncertainties
to support energy-efficient decision-making. Building on
this, applications of DBNs have emerged. Han et al. (2022)
combine fuzzy Quality State Task Networks with DBNs to
predict Remaining Useful Life at the system level, improving
maintenance and resource efficiency. (Ansari et al., 2020)
propose a prescriptive maintenance model for CPPS that
integrates multimodal data using DBNSs to support predictive
decision-making and optimal maintenance planning.
Nannapaneni et al. (2020) apply DBNs for sequential
decision-making under uncertainty in cyber-physical

systems, while Chang et al. (2023) highlight DBNs' broader
potential for modeling dynamic environmental impacts.

3. MODELING OPERATIONAL SUSTAINABILITY USING THE
OSEE-DBN

The shop floor constitutes a system where social,
environmental, and economic factors interact closely with
operational processes (Zackrisson et al., 2017). Managing
these interdependencies requires integrated approaches that
balance production efficiency with environmental and social
objectives, a central challenge in sustainable operations
management. To support integrated prescriptive decision-
making, the OSEE framework extends the traditional OEE by
including environmental and social indicators relevant to the
shop floor level. To bridge this gap Madreiter and Ansari
(2024) proposed the OSEE framework as an extension to
prescriptive maintenance (Prima) framework (Ansari ef al.,
2019).

Economic
Sustainability

Social
Sustainability

Environmental
Sustainability

Figure 1: Sustainability Pillars in the OSEE Framework

The OSEE (see Figure 1) extends the classical OEE concept
by incorporating environmental and social performance
indicators into operational assessments (cf. Table 1), thereby
offering a more holistic view of equipment effectiveness. The
framework is modular in structure, allowing for the selection
and adaptation of relevant indicators across different industry
contexts. Although the OSEE framework establishes a
comprehensive set of sustainability indicators at the
operational level, it does not capture the causal
interdependence between economic, environmental, and
social performance dimensions.

To address this limitation, a Dynamic Bayesian Network
(DBN) is developed to enable causal reasoning and scenario-
based simulation. Figure 2 outlines the modeling process,
from indicator selection to causal structure and DBN
implementation. The following sections explain each step.

3.1. Deriving the Causal Structure

To enable causal inference and scenario-based simulation, a
directed acyclic graph structure representing hypothesized
causal relations between the sustainability indicators of the
OSEE is derived. This structure serves as the foundation for
the DBN described in the following section.
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Table 1: OSEE Factors (Madreiter and Ansari, 2024)

Indicators Description
The  proportion of  planned
Availability A | production time during which the
= equipment is actually running
= -
3 | Performance p The ratio of actual' output speed to
the maximum possible speed
. The proportion of good units
Quality Q produced out of the total units
The resource efficiency compares
Resource RE targeted and actual resource
Efficiency consumption across energy, water
and materials
= The recycling share incorporates
é Recycling RS the Percentage of water, materials,
~ | Share and waste that is successfully
‘é recycled or reused
g The emission efficiency compares
§ Emission EE targeted and actual emissions,
2 | Efficiency covering Greenhouse gases, NOX,
5 SOx, and total air emissions
Waste efficiency compares the ratio
Waste WE between the target and actual
Efficiency percentages of hazardous/harmful
waste generated
Workers with positive workplace
Employee X .
. . ES | satisfaction as a percentage of
Satisfaction
workforce
Employee ED Percentage of gender balance in the
_ | Diversity workforce to a defined target value
< T
S | Employee Percentage.of completed training
< .. ET | hours against planned training
— | Training
s hours
123
=] Percentage of time or operations
%)
Employee S completed without work-related
Safety D -
injuries or incidents
Employee Percentage of scheduled hours
ploy EH | worked without any unintended
Health
employee absences

1) Definition of

Selection of OSEE Indicators

3) Development

Sustainability
g Indicators Y, Indicator State Categorization ]
Identification of Causal Links from Literature
VT 7 TS
2 Idte‘:r(ljtlﬁca;lon Validation of Links Through Expert Input )
ot t-ausa Construction of the Causal Graph )
\ Structure )

Development of Pillar-Specific OOBNs )

Integration of OOBNS into a Unified Model |

NN M —

5) Simulation and
Evaluation

Application of Intervention Scenarios

of the DBN
Architecture Extension to a 2TBN
—__archiecture  J
(" 4) Specification ) ( Assignment of Prior Probabilities )
of Probabilistic ( Definition of CPTs using Fuzzy Logic )
& Parameters ) ( Application of Expert Weights )
S ( Initialization with Baseline Conditions )|
( )
( )

Analysis of Sustainability Outcomes

Figure 2: Overview of the modeling and parameterization
steps for the OSEE-DBN

The derivation follows a four-stage process, 1) identification
of candidate causal relations via structured literature review,
ii) expert-based evaluation of relevance and influence
strength, 1iii) operationalization of OSEE indicators into
model variables with discrete state definitions, and iv) graph
construction based on validated relationships. In the literature
review, targeted searches were conducted in manufacturing,
maintenance, and sustainability domains to extract recurring
interdependencies. Qualitative content analysis was applied
to identify cause-effect linkages through co-occurrence and
contextual discussion of OSEE-aligned constructions. This
yielded a preliminary set of unidirectional relations between
indicator pairs. To assess the causal relations among OSEE
indicators, expert elicitation was conducted with a balanced
group of domain specialists, including industry practitioners
and academic researchers with expertise in production,
manufacturing, and sustainability. The group represented
multiple companies and sectors to reduce bias and avoid
company-specific ~ perspectives. Drawing on their
professional experience, they rated the strength and relevance
of potential links in a structured questionnaire complemented
by semi-structured interviews, using a Likert scale. The
aggregated results were used to validate the causal structure
and to parameterize the DBN. Respondent ratings were
normalized to a [0,1] scale and served two purposes: they
determined which relations to include in the causal graph and
provided quantitative influence weights for probabilistic
modeling. The resulting validated interrelations were then
represented as a directed graph, in which each node
corresponds to a discretized OSEE indicator and each edge
represents a confirmed causal influence.

Constructing the OSEE-Dynamic Bayesian Network

Building on the causal graph structure, a knowledge-based
DBN was developed to represent the temporal and
probabilistic dependencies among OSEE indicators. The
DBN enables the evaluation of sustainability trajectories over
time and supports scenario-based analysis of operational
interventions. To manage the complexity of the full system
while preserving the distinct characteristics of each
sustainability pillar, the model construction followed a
modular, three-stage approach (illustrated in Figure 3):

1. Object-Oriented Bayesian Networks (OOBNs) were
developed for each of the three sustainability pillars:
economic (OEE indicators), environmental, and social.
Each OOBN encapsulated the relevant indicators defined
within the OSEE framework, reducing overall network
complexity =~ while  preserving  domain-specific
characteristics.

2. The pillar-specific models were integrated into a unified
BN by identifying interface nodes that connect the
different sustainability dimensions. For example, the
social indicator "Employee Training" was linked to the
operational indicator "Availability," highlighting how
workforce development can influence equipment
utilization and system performance.
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3. The unified BN was extended into a two-slice DBN
(2TBN) to model indicator evolution between
consecutive time steps. This temporal extension allows
the evaluation of sustainability trajectories over time and
the simulation of operational interventions.

Following the construction of the network structure, the
conditional probability tables (CPTs) were specified to
quantify the probabilistic dependencies between variables, as
described in the next section.

3.2. Defining Conditional Probabilities for the Model

While the causal structure was developed in Section 3.1,
based on literature and expert validation of directional
relationships, the present section focuses on quantifying
those relationships using conditional probabilities and fuzzy
logic. Each node in the BN is characterized by a probability
distribution over discrete states. Together, all individual
distributions form the joint probability distribution of the
network. To develop the conditional probability tables
(CPTs) for the OSEE framework, all possible states of each
indicator were considered. Indicators were defined based on
the OSEE framework and categorized into three qualitative
states: High, Medium, and Low.

This discretization was selected to maintain a low model
complexity while ensuring sufficient expressiveness of the
sustainability dimensions. The use of three states for each
indicator limits the exponential growth of CPTs and ensures
practical interpretability, especially when the model is
applied in operational settings. Thresholds for state
classification were aligned with OEE industry standards, with
values above 85% classified as High, 60-85% as Medium,
and below 60% as Low. These thresholds were adapted
consistently across operational, environmental, and social
indicators to maintain coherence with typical industrial
benchmarks. For variables without parent nodes, prior
marginal distributions were assigned uniformly across the

(@)

Social

three states, each initialized at a probability of 33%. Given
the limited availability of large-scale empirical Given the
limited availability of large-scale empirical datasets in the
context of operational sustainability, a qualitative and
literature-based approach supported by expert input and
fuzzy logic techniques was applied to define the conditional
probabilities.

Fuzzy logic provides a mathematical framework for dealing
with uncertainty and vagueness, and is particularly suited for
scenarios where precise numerical data is lacking, and expert
judgments or qualitative assessments are predominant
(Zimmermann, 2010). System states were represented by
degrees of membership in the categories High, Medium, and
Low. The fuzzification process mapped normalized indicator
values to a continuous membership scale between 0 and 1,
allowing smooth transitions between qualitative states. To
define the membership functions, symmetric triangular
shapes were employed, which are commonly used in fuzzy
modeling due to their interpretability and suitability for
expert-based systems. Each input variable was normalized
over the interval [0,1], and the sum of membership degrees
across all categories was constrained to equal 1, maintaining
internal consistency.

For nodes with multiple parents, conditional probability
tables were constructed using a weighted aggregation
approach based on both literature-derived and expert-
validated relationships. Where strong and unambiguous
causal relations were identified in the literature, these were
directly encoded into the model. For other interdependencies
not clearly established, expert assessments were used to
evaluate the relative influence strength of each parent on its
child indicator. These scores were normalized and combined
with fuzzy membership degrees of the parent variable states
to compute the conditional probability distributions for the
child nodes. The causal links from the three pillar nodes
(OEE, Environmental Sustainability, Social Sustainability) to

M)

Child
Nodes Sustainability / T \ / T \
Recycl‘mg I — ‘
Share Employee f x f X
Emission / Employee DI Env. Sus. Soc. Sus. Env. Sus. Soc. Sus.
Efficiency Resqurce Health Nodes Nodes Nodes Nodes
Efficiency Availability IEiiilonics \ E;\Io'dsus o \ Eco.Sus. -~
Parent o o \ Satisfaction odes Nodes
Nodes -
Efficiency )
Performance & Ewmployee
Safety
\ J\ J Time ¢ Time t+1

Y Y

Environmental Object Economic Object Social Object

Bayesian Network

Dynamic Bayesian Network

Figure 3: (a) BN consisting of OOBNSs for the three sustainability pillars. (b) DBN with two-slice temporal links (t, t+1)
showing dependencies across time
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the OSEE node are assigned equal weight. This reflects the
conceptual basis of the Triple Bottom Line (Elkington John,
1996), in which the economic, environmental, and social
dimensions are considered equally important for
sustainability performance. Equal weighting at this
aggregation level ensures balanced representation of the three
pillars, while all intra-pillar dependencies retain the weighted
structure derived from literature and expert scoring. To derive
the conditional probability distributions, the fuzzy
membership degrees of parent variable states were combined
with influence weights from expert assessments or literature.
The probability of the child variable assuming a given state
Sj was calculated using a weighted aggregation of these
inputs as in equation (1), where wyis the normalized influence
weight of parent 7(from literature and expert scoring) and g; ;
is the fuzzy membership degree of parent /to state /.

n
Dimg Wi *
n
er i=1 Wi * Uijs

P(S) = )
This dual-sourcing approach ensured that CPTs reflect both
established scientific knowledge and practice-informed
insights, enabling a transparent and context-sensitive

modeling of sustainability interdependencies in the OSEE-
DBN.

4. SIMULATION STUDY: EVALUATING SUSTAINABILITY
INTERVENTIONS

A simulation study was conducted using the OSEE-DBN to
evaluate how an operational intervention influences
sustainability performance over time. The scenario involved
implementing a revised maintenance strategy aimed at
improving equipment availability and employee training.
These two factors were expected to have a direct effect on
OEE and to influence environmental and social outcomes
through the modeled dependencies in the network. This
simulation represents a level 2 causal inference in Pearl’s

t=0
WE A ET ED

hierarchy, approximating P(Y / do(X)) by explicitly setting
selected node states and propagating their effects through the
DBN structure.

The model was initialized with industry data for the OEE-
related indicators. Environmental and social variables were
populated with synthetic values that reflect realistic operating
conditions. All variables were discretized into three
qualitative states: High, Medium, and Low, based on the
threshold definitions used in the model. At the baseline (t =
0), when the strategy was inactive, the probability of
achieving a high OSEE score was 58%. The probabilities for
medium and low scores were 31% and 11%, respectively. At
t=1, an exogenous variable (“New maintenance strategy”) is
set to True, fixing the indicators Availability and Employee
Training to the “High” state. This intervention represents a
maintenance-oriented operational adjustment, and its effects
are transmitted through the validated, weighted causal
dependencies described in Sections 3.1 and 3.3, with weights
derived from literature evidence and expert scoring. As a
result, the probability of a high OSEE score increases to 64%,
while medium and low scores decline to 29% and 7%. By t =
2, the probability of a high OSEE rises further to 66%, with
medium and low probabilities reduced to 28% and 6%. The
changes over time reflect the lagged response of
environmental and social indicators compared to the
immediate operational effects. Figure 4, visualizes how the
“New maintenance strategy” affects the three sustainability
pillars and the aggregated OSEE score over the simulation
period, comparing baseline and intervention results. A
sensitivity analysis was carried out for OSEE: = High (t =1,
after the intervention) using the DBN’s conditional
probability structure. In each scenario, specific variables or
combinations were fixed to defined states, while the
remainder stayed at baseline. The resulting probability ranges
for the target were compared, and configurations were
ordered by their net influence relative to the baseline value of

New
Maintenance
Strategy

New
Maintenance
Strategy

,,,,,,, > oo
——————— > WE A ET ED ., wWE A ET ED
RS RS RS
——————— > T
RE EE Q g RE EE Q s EH ) RE EE Q s EH
P temporal P temporal P
ES dependencies ES dependencies ES
@ OSEE [ New Maintenance S © OSEE®1) [ Neow Waintenance S (O OSEE(=2) O New Maintenance S
IFigh 5% [JR] High  64%[E] High — 66%| IR
— " —_—> — B —
IMedium 319%| [frue 0% [Medium 29% True 100% [ | IMedium 28% [ True 100% |
llow  11%]f [Ealse 100%) Low 79%|] = Faise 0% Low 6%|] = False 0%
?nﬁ"v'::g"‘m‘ St HOn SZ%OEE [© _Social [© Envionmental Sust | [ OEE (=1) [© Social Sustainabilty [© Envionmentaisust | [ OEE (=2) [ Social Sustainabilty.
M'agdmm el = Mfdum w;@ = :f:mm ?:’: = High — 58% IR High — 73% [ [High  39% High  56%|[lE] High  73% [ High — 44%| I
Low  12%8 o Jow  swli lLow  27% | R Medium 21% IMedium 36% Medium 35% Medium 21% IMedium 30%
/l f’ \\ ff \\ 1 Low _8%[l & |ow %] & |Low  25% Low 9%l & [Low %]l & [Low  25%|1
M X LI Pz i % i % Yy

Figure 4: Simulation Results: Effects of Maintenance Strategy on Sustainability Performance
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0.643 (range 0.634-0.652). In Figure 5, the green segment of
each bar indicates the share of the range above baseline, the
red segment the share below. The highest-ranked
configuration sets Env., OEE, and Soc. to High along with
OSEEo High, producing the largest positive shift but still
allowing for some outcomes below baseline due to unfixed
variables. In contrast, a configuration limited to
environmental subfactors (WE, RE, EE, RS High) ranks
lowest, showing only modest gains when operational and
social factors remain unimproved. Intermediate ranks
illustrate how partial or uneven improvements in the three
pillars affect the probability of achieving OSEE: = High. In
the context of the OSEE simulation, these results indicate that
sustained and simultaneous improvements in all three pillars,
supported by strong prior performance, have the greatest
impact on future sustainability outcomes.

Sensitivity Analysis for OSEE, = High
0,63 0,64 0,65 0,66

Rank1

ranks A Qi P |
Rank 4 Env. m}n@
|

Rank 5 Env. High, OEE High. Soc. High. OSEEo Med.

Rank 6 Env. Hiﬂm‘EEo High

Rank 7 ET High. Em]. ED Low

Rank 8 A Bigh Q High P Med

Rank 9 Env. Med.. OEE High. Soc. Med.. OSEEo High
[

Rank 10 WE High. RE Hiﬁ}l. EE Hiﬁ}l. lRS High

Legend:

Green outline = probability above baseline (0.643)
Red outline = probability below baseline (0.643)

Figure 5: Sensitivity analysis results for OSEE: =
High at t =1 after intervention

5. CONCLUSION AND OUTLOOK

This paper developed a causal modeling approach for
operational sustainability by extending the OSEE framework
using DBNs. While existing OEE extensions incorporate
environmental and social indicators, they typically treat these
domains independently. The OSEE-DBN addresses this
limitation by modeling causal relationships among
operational, environmental, and social indicators. This
enables scenario-based simulations and supports forward-
looking prescriptive decision-making at the shop floor level.
By providing an evidence-based approach, it helps decision-
makers identify and prioritise high-impact interventions, test

alternative strategies through what-if simulations, and
integrate  operational,  environmental, and  social
considerations into a single sustainability perspective. The
model explicitly accounts for time-dependent effects and
cross-domain interactions, fac ilitating more anticipatory and
coordinated management. Future research will focus on
advancing the model and demonstrating its applicability in
industrial  practice. Empirical validation in real
manufacturing environments is essential to test the
plausibility of the assumed relationships and to assess the
model’s predictive performance. The current specification of
conditional probability tables, derived from expert judgment
and literature, should be complemented with actual
operational, environmental, and workforce data to support a
robust, data-driven formulation. Furthermore, the model’s
scalability should be systematically evaluated across a range
of manufacturing contexts and organizational settings to
assess its generalizability and practical relevance. The OSEE-
DBN provides a structured and causally grounded method for
integrating sustainability into operational decision-making.
By modeling the dynamic interactions among sustainability
indicators, it enables systematic evaluation of interventions
and supports sustainability-aligned planning at the shop floor
level. Continued empirical development and broader
application are essential to establish its utility in industrial
contexts.
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