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ABSTRACT 

The primary objective of this study was to investigate the 

dynamic relationship between oil temperature and the 

Bearing Gearbox Condition Indicator (BGCI) values of the 

Bell 407 helicopter. The study aims to simplify the fault 

diagnosis process by proposing a method that utilizes only 

one vibration sensor and one temperature sensor per 

bearing. To achieve this goal, we employ robust 

econometric tools, such as unit root tests, cointegration 

tests, and Autoregressive Distributed Lag (ARDL) models, 

for both long-run and short-run estimates. Our findings 

indicate that the variable temperature tends to converge to 

its long-run equilibrium path in response to changes in other 

variables. The results of the ARDL analysis confirmed that 

spectral kurtosis, inner race, cage, and ball energy 

significantly contributed to the increase in temperature. 

Furthermore, we utilized the Impulse Response Function 

(IRF) to trace the dynamic response paths of the shocks to 

the system. The identification of a cointegrating relationship 

between oil temperature and BGCI values suggests a 

practical and significant connection that can potentially be 

used to predict hazardous changes in oil temperature using 

BGCI values, which is an important implication for 

enhancing the safety and reliability of helicopter operations.  

The study presents a promising direction for condition 

monitoring (CM) in rotating machinery, emphasizing the 

potential of integrating temperature data to simplify the 

diagnostic process while still achieving reliable results. 

1. INTRODUCTION 

The oil temperature significantly affects the bearing 

performance, lubrication effectiveness, wear rate, and 

overall operational reliability. Effective thermal 

management is crucial for gas foil bearings (GFBs) in 

rotorcraft. High temperatures can lead to increased viscosity 

of lubricants, reducing their effectiveness and potentially 

causing bearing hardening and failure (Hechifa, Lakehal, 

Nanfak, Saidi, Labiod, Kelaiaia, & Ghoneim, 2024). 

Various studies have highlighted the critical relationship 

between temperature and bearing functionality, emphasizing 

the need for effective thermal management. Increased oil 

temperature reduces viscosity, leading to inadequate 

lubrication and higher friction between the mating surfaces, 

which can result in catastrophic failure, especially under 

extreme temperature conditions where material performance 

is critical (Chen, Guan, Cai & Li, 2022), (Soomro, 

Muhammad, Mokhtar, Saad, Lashari, Hussain, & Palli, 

2024), (Saidi, & Benbouzid, 2021). 

In rolling bearings, optimal temperature ranges (40°C-60°C) 

are crucial for effective tribofilm formation, which protects 

the bearing against wear (Zhao, Hou, Li, Zhang, & Zhu, 

2022), (Rosenkranz, Richter, Jacobs, Mikitisin, Mayer, 

Stratmann, & König, 2021), (Saidi, Ali, Bechhofer & 

Benbouzid, 2017). The shearing of an oil film generates 
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heat, which can elevate temperatures within the bearing 

system, adversely affecting the lubrication performance 

(Zhang, Tong, & Yin, 2020). A thermos-hydrodynamic 

lubrication model indicates that the temperature distribution 

is influenced by circumferential velocity and oil-film 

thickness, with higher temperatures occurring at minimum 

film thickness (Zhang, Tong, & Yin, 2020). 

The relationship between oil temperature and BGCI values 

is crucial for assessing the health of helicopter main 

gearboxes. Monitoring systems like Health Usage 

Monitoring Systems (HUMS), utilize vibration signatures to 

detect faults (Zhang, Tong, & Yin, 2020), (Zhang, Jiang, 

Wu, & Ying, 2012). Oil temperature is a key parameter that 

affects gearbox health (Bouhadra, & Forest, 2024). Data 

analysis and artificial intelligence tools are employed to 

monitor the lubrication and cooling systems of modern 

helicopters (Li, Li, & Yu, 2019). Additionally, the vibration 

signatures of damaged components, like bearings, are used 

as condition indicators, which can vary based on the system 

design and operating conditions (Koizumi, & Kogiso, 2024) 

and oil temperature. The use of advanced signal processing 

tools can help extract bearing fault signatures from vibration 

signals, thereby enhancing fault detection capability (Ismail, 

Saidi, Sayadi, & Benbouzid, 2020), (Dass, Gunakala, 

Comissiong, Azamathulla, Martin, & Ramachandran, 2024), 

(Babay, Saidi, Bechhofer, & Benbouzid, 2024), 

(Bechhoefer, Schlanbusch, & Waag, 2016), (Saidi, & 

Benbouzid, 2021). Overall, integrating oil temperature 

monitoring and bearing condition indicators can provide a 

comprehensive approach to ensuring the safety and 

reliability of helicopter gearboxes. 

(Tabrizi, Al-Bugharbee, Trendafilova, & Garibaldi, 2017) 

proposed a novel combined method for fault detection in 

rolling bearings based on cointegration for the development 

of fault features that are sensitive to the presence of defects 

but insensitive to changes in operational conditions. 

According to (Zhang, Jiang, Wu, & Ying, 2012), the root 

cause of high oil temperatures is improper selection of 

lubricating oil and serious solid particle pollution. Oil 

analysis techniques are also used to monitor oil working 

conditions, prevent mechanical failure, and extend the 

machine’s life. 

In (Bouhadra, & Forest, 2024), a new diagnostic method 

based on modulation signal bi-spectrum (MSB) analysis is 

proposed, which shows that the amplitudes coupled between 

the fault frequency and epicycle carrier frequency can 

provide more deterministic information regarding bearing 

vibrations. 

(Li, Li, & Yu, 2019) introduced a health indicator based on 

cointegration for the run-to-failure process that can depict 

different run-to-failure data in a unified manner. Through 

the cointegration test, the study found a certain degree of 

cointegration between energy and complexity features, 

leading to the development of a novel health indicator. The 

indicator exhibits "two-stage" characteristics, with a zero-

line stage followed by a quickly raising stage resembling an 

exponential function, making it more suitable for an 

exponential degradation model than the root mean square 

(RMS). 

(Koizumi, & Kogiso, 2024) proposed an improved deep 

deterministic policy gradient algorithm with a 

Convolutional Neural Network Long-Short Time Memory 

(CNN-LSTM) basic learner that can extract the complex 

relationship between oil temperature and working 

conditions. A multi-critic network structure was adopted to 

address inaccurate Q-value estimation. 

In (Wu, Kobayashi, Sun,, Jen, Sammut, Bird, & Mrad, 

2011), the effect of oil and grease on component 

performance and fault detection was examined in four 

different aircraft wetted-component case studies, which 

aimed to improve performance by examining the effect that 

oil and greases have on components. 

(Zhu, Yoon, He, Qu, & Bechhoefer, 2013) formed a study 

group to improve the maintenance strategy of the S61-A4 

helicopter fleet in the Malaysian Armed Forces (MAF). The 

strategy consisted of a structured approach for the 

reassessment and redefinition of suitable maintenance 

actions for the main rotor gearbox. In n (Xu, Li, Chen, 

Wang, Yang, & Yang, 2021), the influence of a dynamic 

wear model considering the tooth contact flash temperature 

on the dynamic characteristics of a gear-bearing system was 

studied, and the effects of the initial wear, friction factors, 

and damping ratio on the system response were studied. 

For CM and defect detection in electromechanical complex 

systems, cointegration, a methodological approach initially 

conceived within the domain of (Shafique, Azam, Rafiq, & 

Luo, 2021), (Ouni, & Ben Abdallah, 2024), has been 

appropriated for CM as a viable data-driven strategy to 

mitigate or adjust for pervasive long-term trends induced by 

the influences of environmental and operational variability 

present in the observed data. 

To overcome the high-temperature bearings problem, 

advanced materials, such as ceramic matrix composites, are 

being developed to withstand extreme temperatures without 

adverse effects, ensuring reliability in harsh conditions 

(Chen, Guan, Cai & Li, 2022), (Soomro, Muhammad, 

Mokhtar, Saad, Lashari, Hussain, & Palli, 2024), (Zhao, 

Hou, Li, Zhang, & Zhu, 2022). While advancements in 

lubrication systems and materials are promising, the 

inherent risks of inadequate lubrication remain a critical 

concern for helicopter safety, necessitating ongoing research 

and development in this area. 

Traditional vibration-based CM for rotating machines, 

especially those with multiple bearings like turbo-generator 

sets, is complex and requires extensive data collection. This 

complexity arises from needing multiple sensors at each  
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Figure 1.Oil temperature and BGCI values of the Bell 407 

helicopter, from top to bottom: Cage Energy (CE), Ball 

Energy (BE), Inner Race Energy (IRE), Outer Race Energy 

(ORE), 1/Rev (R), Whip (W), Spectral Kurtosis (SK), and 

Temperature (T) 

bearing location, making fault diagnosis challenging even 

for experienced analysts. The study aims to simplify the 

fault diagnosis process by proposing a method that utilizes 

only one vibration sensor and one temperature sensor per 

bearing. This approach is intended to reduce the data 

collection burden while maintaining effective monitoring 

capabilities. 

The present study investigates the dynamic relationship 

between oil temperature and BGCI in a Bell 407 helicopter. 

To achieve this goal, we employ robust econometric tools, 

such as unit root tests, cointegration tests, and ARDL 

models, for both long- and short-run estimates. We utilized 

the Dumitrescu Hurlin (Dumitrescu, & Hurlin, 2012) panel 

causality tests to confirm the causal relationships between 

the variables. In summary, the contributions of this paper lie 

in its innovative approach to simplifying fault diagnosis, 

integrating temperature data, applying cointegration tests, 

and ARDL models for enhanced analysis, providing 

experimental validation, and offering practical solutions for 

industrial applications. These contributions collectively 

advance the field of CM for rotating machinery. 

This paper’s remaining structure is outlined as follows: 

Section 2 describes the data collection. Section 3 presents 

the methodology. Section 4 shows the results. Finally, 

Section 5 concludes this paper. 

2. HUMS DATA COLLECTION  

The HUMS was developed to provide a holistic measure of 

aircraft health by providing automated flight data 

monitoring, rotor track and balance, engine performance 

monitoring, and drivetrain diagnostics/prognostics. The 

system incorporates ten smart accelerometers to collect and 

process vibration data into condition indicators. The 

accessory drive sensor monitors this study’s duplex bearing. 

This bearing supports the accessory drive’s hydraulic pump, 

which operates at 4450 RPM. The sensor’s sample rate was 

46875 samples per second (sps) for 2 s. The sensor 

performed an envelope (Abboud, Antoni, Sieg-Zieba, & 

Eltabach, 2017) in a window from 9 to 13 kHz. The system 

was designed to acquire data every four minutes depending 

on the aircraft regime. That is, after four minutes, if the 

aircraft is relatively straight and level, the data are captured. 

If the aircraft is manoeuvring, the acquisition is delayed 

until the aircraft is again straight and level. 

The criteria for determining when the aircraft is considered 

straight and level are based on the aircraft’s pitch and roll 

angles, which are monitored using onboard sensors. 

Specifically, we define "straight and level" as maintaining a 

pitch angle within ±2 degrees and a roll angle within ±3 

degrees of the horizontal plane. This ensures that the aircraft 

is in a stable flight condition, minimizing the effects of 

maneuvers on the data collected. Furthermore, the data 

acquisition system is programmed to delay data capture if 

the aircraft exceeds these thresholds, ensuring that only 

stable flight conditions are recorded. 

Figures 1 show the oil temperature and BGCI of the Bell 

407 helicopter. Here is important information. The gearbox 

oil was replaced in 2020, on December 22. It was 

hypothesized that the oil was contaminated with wear debris 

from the gearbox, which was causing the ball energy to 

increase (Fig.2). The CI energy then went down. However, 

we can see that from April 6, 2021, the fault started to 

propagate. The bearing was replaced on June 11, 2021. 

While the figures 1, and 2 may not explicitly show the dates, 

they illustrate trends in oil temperature and BGCI values. 

The increase in ball energy can be inferred from the data 

trends leading up to the replacement date. The figures likely 

depict the changes in these indicators over time, allowing 

readers to visualize the relationship between the fault 

conditions and the timing of the bearing replacement. 

The other way to look at this is the “peak” energy only seen 

at the start of a flight, so on the ground. That would be 

another avenue of research is to look at the regime in which 

the analysis was taken. 

3. METHODOLOGY 

This study aimed to analyze the dynamic effects of cage, 

ball, inner, and outer race energy, 1/Rev, whip, and spectral 

kurtosis on the temperature. 

The general form of the empirical equation is as follows: 

(C ,B , IR ,OR ,R , W ,SK )t Et Et Et Et t t tT f=                    (1) 

Here, T is the temperature, CE is the Cage Energy, BE 

denotes Ball Energy, IRE represents Inner Race Energy, ORE  
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Figure 2.Regression of the CI data based on temperature 

against ball energy. 

represents Outer Race Energy, R represents 1/Rev, W 

represents whip, SK represents Spectral Kurtosis, and t 

denotes acquisition time. 

The BGCI serves as a vital, integrative metric for assessing 

the health and operational performance of bearing gearbox. 

In this study, BGCI is meticulously constructed from key 

parameters, including temperature, CE, BE, IRE, ORE, R, W 

and SK, as outlined in Equation 1. Together, these variables 

capture the intricate dynamics and condition of the bearing 

gearbox components, delivering a holistic perspective on 

system integrity. By incorporating BGCI into advanced 

econometric modeling frameworks, this study significantly 

enhances the reliability and safety of helicopter operations. 

This innovative integration not only refines maintenance 

strategies but also sets a benchmark for the application of 

condition-monitoring metrics in high-stakes aerospace 

systems. 

To examine long-run linkages between variables, we 

employed the following equation derived from Eq. (1): 

0 1 2 3 4

5 6 7

C B IR OR

R W SK

t Et Et Et Et

t t t t

T     

   

= + + + +

+ + + +
             (2) 

The estimated econometric model presented above is not in 

linear form, does not present consistent results, and is not 

helpful to the decision-making process. To address this 

issue, we transformed all variables into natural logarithms to 

analyze the relationships between the dependent and 

independent variables. Using a log-linear specification 

model offers several advantages in terms of achieving 

consistent and robust empirical findings (Shafique, Azam, 

Rafiq, & Luo, 2021), (Ouni, & Ben Abdallah, 2024). 

Therefore, the log-linear form is given by Eq. (3): 

0 1 2 3

4 5 6

7

LnC LnB LnIR

LnOR LnR LnW

LnSK

t Et Et Et

Et t t

t t

LnT    

  

 

= + + +

+ + +

+ +

                (3) 
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Figure 3.Flowchart of analytical techniques used in the 

study 

Where LnT is the natural logarithm of temperature, LnCEt is 

the natural logarithm of the CE, LnBEt is the natural 

logarithm of BE, LnIREt is the natural logarithm of IRE, 

LnOREt is the natural logarithm of ORE, LnRt is the natural 

logarithm of Rev, LnWt is the natural logarithm of whip, and 

LnSKt is the natural logarithm of SK. α0 represents the 

constant term. α1, α2, α3, α4, α5, α6, and α7 are the slope 

coefficients of the explanatory variables. εt represents the 

error term. 

Note that applying log transformation to variables that may 

take on zero or negative values can lead to undefined 

results. In our study, we took this concern into account by 

implementing a careful pre-processing step for the BGCI 

values. Specifically, we ensured that all BGCI values were 

positive before applying the log transformation. 

To achieve this, we utilized a small constant (e.g., adding 1) 

to all BGCI values to shift the entire dataset into the positive  

range. This adjustment allows us to maintain the integrity of 

the data while still benefiting from the linearization 

properties of the log transformation. Additionally, we 

conducted sensitivity analyses to confirm that this 

transformation did not significantly alter the relationships 

we aimed to study. 

A cointegration-based computation procedure, consisting of 

three stages, was developed for this purpose. The 

methodology presented in the paper is described in a general 

manner in Figure 3, with specific steps outlined for the 

application of econometric tools such as ARDL models, 

cointegration tests, and IRF. Indeed, in the first stage, a 
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cointegration model of the monitored bearing gearbox is 

established using a set of condition indicator values. This 

model has the role of a bearing oil temperature monitoring 

model. In the second stage, the stationarity test was carried 

out. In the third stage, the cointegration procedure is 

deployed. The next stage used the ARDL model to examine 

the long and short-term relationships between the 

explanatory variables and the temperature. The correlation 

and causality tests were carried out in the fourth stage. In 

the last stage, we employed the IRF to measure the effects 

of shocks from independent variables on the dependent 

variable. 

3.1. Estimation Procedures 

The first step in our analysis was to employ unit root tests to 

verify the stationarity of all variables. We utilized the 

standard unit root tests such as the Augmented Dickey-

Fuller (ADF) test (Ouni, & Ben Abdallah, 2024) and the 

Phillips-Perron (PP) test (Phillips, 1988), (Dickey, & Fuller, 

1979). These tests support the null hypothesis that a series 

possesses a unit root (indicating non-stationarity), while the 

alternative hypothesis suggests stationarity. The ADF unit 

root test was used to assess the presence of autocorrelation 

in the series, and the PP unit root test was used to examine 

heteroscedasticity in the time series. A time series is 

considered non-stationary if one or more of its moments 

(mean, variance, or covariance) are not time-independent. A 

non-stationary series with a stochastic unit root must be 

differenced once to achieve stationarity. Before exploring 

cointegration analysis, it is imperative to empirically 

establish the integration process. 

The empirical equation for the ADF unit root test is given 

by Eq. (4): 

0 1

1

m

t t i t m t

i

Y Y d Y − −

=

 = + +  +                                    (4) 

Where ∆ represents the first difference operator, μt denotes 

the error term, β0 is the intercept term associated with the 

equations, m indicates the number of lags of the specific 

variable in the model, and t represents the time measure. 

The empirical equation for the PP unit root test can be 

expressed in Eq. (5): 

1t t tY Y  − = +  +                                                     (5) 

The long-term relationships among temperature, cage, bull 

energy, inner race energy, outer race energy, Rev, whip, and 

spectral kurtosis are investigated using the ARDL and 

Johansen-Juselius cointegration tests. 

The Johansen-Juselius (Johansen, & Juselius, 1990) 

cointegration approach is employed to examine long-run 

relationships among variables. The Johansen-Juselius 

cointegration technique is constructed on λtrace and λmax 

statistics. Trace statistics investigates the null hypothesis of 

cointegrating relations against the alternative of N 

cointegrating relations and is computed as: 

1

log(1 )
n

trace i

i r

N 
= +

= −                                                   (6) 

Where N is the number of observations. 

The maximum eigenvalue statistics test the null hypothesis 

of r cointegrating relations with: 

max log(1 1)rN = − +                                                     (7) 

The ARDL model introduced by (Pesaran, Shin, & Smith, 

2001) examines the existence of long-run and short-run 

relationships between the variables under examination. This 

method offers several advantages over traditional 

cointegration tests. Firstly, it addresses endogeneity issues 

by accommodating appropriate variable lag lengths for both 

independent and dependent (Narayan, 2005). Second, it can 

handle a mixture of stationary variables such as I(0) and I(1) 

but not I(2) (Pesaran, Shin, & Smith, 2001). Third, the 

ARDL bound testing approach demonstrated improved 

efficiency and robustness, effectively mitigating issues 

related to autocorrelation. Moreover, the ARDL model 

allows for varying lag lengths, thereby enhancing its 

flexibility and enabling the estimation of both long-term and 

short-term dynamics through an error correction model 

(ECM). The ARDL model is defined as follows: 
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After obtaining long-run coefficients from Eq. (8), we use 

the ECM described in Eq. (9) to analyze short-term 

relationships.  
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Where the difference operator is defined by ∆, the optimal 

lag length of the variables is denoted by n, the error 

correction term ECMt-1 coefficient is indicated by γ, and the 

residual error term is presented by εt. Under the ARDL 

framework, the null hypothesis of no cointegration; H0= δ1= 

δ2= δ3= δ4= δ5= δ6= δ7= δ8= 0 against the alternative 

hypothesis of cointegration H1≠ δ1≠ δ2≠ δ3≠ δ4≠ δ5≠ δ6≠ δ7≠ 

δ8≠ 0  is tested by taking the F-statistics used by Narayan 

(2005) (Narayan, 2005).  

When the computed F-value exceeds the upper bound, 

cointegration is indicated; conversely, when the computed 

F-value is below the lower bound, no cointegration is 

indicated. However, if the F-value falls between the upper 

and lower critical values, the decision of cointegration is 

inconclusive. Additionally, a significant error correction 

term suggests a long-term relationship between variables. 

Then, we examined the causal relationship between 

temperature and other variables using the Dumitrescu and 

Hurlin test (Dumitrescu, & Hurlin, 2012), which is a 

simplified version of Granger’s (Granger, 2001) non-

causality test. We chose this test because it considers two 

different types of heterogeneity: one in the regression model 

used to evaluate Granger causality and another in the 

causality relationship itself. In our analysis, we employed 

the linear model shown in Eq. (10): 

( ) ( )

1 1

k k
k k

it i i it k i it k it

i i

Y a Y X  − −

= =

= + + +                    (10) 

Where γi represents the slope coefficients, ai represents the 

cross-sectional unit, and k represents the lag length. In this 

context, the null hypothesis suggests that there is no causal 

relationship in at least one cross-sectional unit. To test this 

null hypothesis, we used the Z-bar statistics ( Z ) and W-bar 

statistic (W ) tests, which can be computed as follows: 

1

1 N

i

i

W W
N =

=                                                           (11) 

( )
2

N
Z W K

K
= −                                                  (12) 

Innovation accounting is employed to analyze the 

relationship between selected variables in a given dataset. 

This method uses the IRF to visually demonstrate how 

shocks in one variable affect others, altering their 

magnitudes over time. The IRF highlights the impacts of 

these shocks on both current and future values of the 

variables involved. Specifically, a standard error shock in 

one variable during the period 't+s' may positively, 

negatively, or bidirectionally influence another variable 'j' at 

period 't'. This relationship can be mathematically expressed 

as follows in Eq. (13): 

,

,

i t s

s

j t

Y




+
=                                                                  (13) 

Where Y represents the dependent variables, and μ is the 

forecast error term. 

4. RESULTS 

4.1. Unit root analysis 

To study the relationship between temperature, cage, ball 

energy, inner race energy, outer race energy, Rev, whip, and 

spectral kurtosis, we verified the presence of unit roots in 

the variables using ADF and PP tests. Table 1 presents the 

outcomes of the ADF and PP tests. This indicates that all 

variables (LnT, LnCE, LnBE, LnORE, LnR, LnW, LnSK) are 

stationary at this level, except the variable LnIRE, which is 

stationary at the first difference. Therefore, some variables 

are I(0) and others are I(1). It is concluded that the variables 

used in this study have a mixed order of integration, as 

evidenced by both the ADF and PP unit root tests. 

4.2. Cointegration tests 

After confirming the integration order of the variables, this 

study employs the ARDL bounds model and the Johansen-

Juselius cointegration test to investigate cointegration 

among the variables under examination. The results of the 

ARDL bound testing are presented in Table 2. When we 

analyzed the ARDL model with LnT as the dependent 

variable, we found evidence of cointegration in the series 

under consideration. This conclusion was drawn by 

observing that both the upper and lower bound critical 

values were well below the estimated F-statistic (5.534). 

Thus, we reject the null hypothesis of no cointegration, 

suggesting the presence of a long-term relationship between 

variables. 

The results of the Johansen cointegration test, as shown in 

Table 3, indicate that both the maximum eigenvalue and 

trace tests reject the null hypothesis of no cointegration. 

Specifically, at a 5% significance level, the tests reveal eight 

cointegrating equations. 

4.3. Long-run and short-run analysis 

Before applying the ARDL model, it is crucial to select the 

optimal lag length. Various criteria, such as the Akaike 

Information Criterion (AIC), Hannan-Quinn (HQ) 

Information Criterion, and Schwarz-Bayesian Criterion 

(SBC), help determine the optimal lag length. In this study, 

the optimal lag length was determined using the AIC 

criteria. Table 4 presents the results of long- and short-run 

analysis using the ARDL model. 

The speed of ECMt-1 of the model satisfies the expected 

condition of a negative and significant value that corrects 

the previous period’s disequilibrium in the coming period (-

0.811). The results show that the variable whip significantly 

decreases with temperature in both the long and short run. 

This implies that in the long term (short run), a 1% increase  
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Variables ADF  PP  

Level ∆ Level ∆ 

LnT -8.460*** -32.875*** -17.104*** -29.324*** 

LnCE -3.619*** -32.923*** -10.094*** -38.303*** 

LnBE -5.725*** -30.881*** -8.831*** -45.706*** 

LnIRE -0.703 -35.604*** -1.153 -37.367*** 

LnORE -4.548*** -30.650*** -19.252*** -43.162*** 

LnR -5.801*** -30.347*** -12.187*** -29.177*** 

LnW -5.146*** -25.347*** -17.309*** -36.076*** 

LnSK -3.817*** -34.203*** -12.572*** -31.278*** 

Note:  *** indicates a 1% level of significance, ∆ denotes the first difference 

Table 1. Results of unit root tests 

in the whip results in a significant decrease in temperature 

of 0.215% (0.248%).  

The direct influence of whip on oil temperature can be 

attributed to several physical processes: 

- Increased Friction: As whip increases, it may lead to 

greater oscillations and vibrations within the helicopter's 

components. This can result in increased friction between 

moving parts, which generates additional heat. The heat 

generated can subsequently raise the oil temperature. 

- Viscosity Changes: Higher temperatures can reduce the 

viscosity of the oil, leading to less effective lubrication. This 

can create a feedback loop where increased whip leads to 

higher temperatures, which in turn affects lubrication 

efficiency and further exacerbates the heating. 

- Intermediate Variables: While the study primarily focuses 

on the relationship between whip and oil temperature, it is 

essential to consider potential intermediate variables that 

could mediate this relationship; namely the condition of 

bearings can be influenced by both whip and temperature. 

Increased whip may lead to wear and tear on bearings, 

which can affect their performance and generate additional 

heat. In addition, the operational load on the helicopter can 

also play a role. Under higher loads, the effects of whip may 

be more pronounced, leading to greater temperature 

increases. 

To provide quantifiable information about how temperature 

converges to its equilibrium path, we can refer to the results 

obtained from the ARDL model analysis. Specifically, the 

ECMt-1 demonstrated a significant negative coefficient of -

0.811, indicating a strong adjustment mechanism in the 

model. This value suggests that approximately 81.1% of the 

disequilibrium from the previous period is corrected in the 

current period. This suggests a strong tendency for the 

temperature variable to return to its long-run equilibrium 

following shocks from other variables. Additionally, the 

analysis revealed that a 1% increase in the variable "whip" 

leads to a significant decrease in temperature by 0.215% in 

the long run and 0.811% in the short run, further illustrating 

the dynamic relationship and responsiveness of temperature 

to changes in other influencing factors. A coefficient of -

0.811 suggests that if there is a shock to the system, it will 

take less than a year (approximately 1.23 periods, given the  

Estimated model F-statistics 

LnTt=f(LnCEt, LnBEt, LnIREt, 

 LnOREt, LnRt, LnWt, LnSKt) 

5.534* 

 Lower bound Upper bound 

Significance level   

1% 3.09 3.86 

5% 2.93 3.83 

10% 2.101 3.869 

Note:  * indicates a 10% level of significance. 

Table 2: ARDL Bound tests for cointegration 

 

 Eigenvalue Trace 

Statistic 

Critical value 

0.05 

Prob** 

None * 0.149 3380.233 159.529 0.000 

At most 1 * 0.135 2507.699 125.615 0.000 

At most 2 * 0.110 1721.344 95.753 0.000 

At most 3 * 0.087 1090.921 69.818 0.000 

At most 4 * 0.056 596.760 47.856 0.000 

At most 5 * 0.025 286.123 29.797 0.000 

At most 6 * 0.022 147.548 15.494 0.000 

At most 7 * 0.004 23.174 3.841 0.000 

Note: Trace test indicates 8 cointegrating eqn(s) at the 0.05 level. Further, 

“*” denotes rejection of the hypothesis at the 0.05 level. 

Table 3. Johansen cointegration test. 

quarterly data) for the system to return to equilibrium. This 

rapid adjustment is particularly important in applications 

such as helicopter maintenance, where timely responses to 

changes in oil temperature can prevent potential failures. 

These metrics provide a clearer understanding of how 

temperature converges to its equilibrium path in response to 

variations in other variables. 

The variable Rev has a negative and significant impact on 

temperature in both the long- and short-term. According to 

these results, a 1% increase in Rev decreased the 

temperature by 0.219% (0.277%) eventually (short run). 

The analysis reveals a statistically significant positive 

relationship between ball energy and oil temperature. 

Specifically, a 1% increase in ball energy leads to an 

estimated increase in oil temperature by 0.112% in the long 

term and 0.155% in the short term. This indicates that 

fluctuations in ball energy have an immediate and slightly 

greater impact on temperature in the short term compared to 

the long term, underscoring the dynamic influence of ball 

energy on the thermal state of the system. Such findings 

highlight the importance of monitoring ball energy as a key 

condition indicator in predictive maintenance strategies, as 

sustained increases could contribute to overheating and 

reduced system efficiency. 

Table 4 presents the diagnostic test results of the proposed 

model. An R2 value of 0.85 indicates a strong fit of the 

estimated model. Additionally, tests for serial correlation, 

heteroscedasticity, Ramsey tests, and normality confirm that  
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Regressors Coefficient t-statistics Prob 

Long-run analysis 

LnW -0.215 -8.773 0.000*** 

LnR -0.219 -6.621 0.000*** 

LnORE -0.178 -4.398 0.000*** 

LnSK 0.025 0.636 0.524 

LnIRE 0.193 4.197 0.000*** 

LnCE 0.035 0.823 0.410 

LnBE 0.112 3.557 0.000*** 

Short-run analysis 

ECMt-1 -0.811 -1.470 0.000*** 

Δ(LnW) -0.248 -7.787 0.000*** 

Δ(LnR) -0.277 -5.673 0.000*** 

Δ(LnORE)  -0.233 -3.477 0.000*** 

Δ(LnSK) 0.030 0.433 0.664 

Δ(LnIRE) 0.292 3.656 0.000*** 

Δ(LnCE)  -0.015 -0.202 0.839 

Δ(LnBE) 0.155 3.772 0.000*** 

Constant 4.281 0.069 0.000*** 

Diagnostic tests 

R² 0.85 

X² ARCH 0.388 (0.960) 

X² Ramsey 2.839 (0.213) 

X² LM 0.352 (0.399) 

X² Normality 0.144 (0.930) 

Note:  *** indicates a 1% significance level. 

Table 4. Results of ARDL estimation (LnT is a dependent 

variable) 

LnCE

LnT

LnBE

LnW

LnR

LnORE

LnIRE

LnSK

(+) 

(+) 

 

Figure 4. Summary of empirical results 

our model is correctly specified and follows normality. 

Furthermore, these tests confirmed the absence of serial 

correlation and heteroscedasticity. 

Figure 4 presents a summary of empirical results, 

illustrating the relationships between LnT and several 

influencing variables. LnBE, LnIRE, and LnSK positively 

impact LnT, suggesting that an increase in these factors 

leads to its growth, while LnW, LnR, and LnORE have a 

negative effect, indicating that their increase hinders LnT. 

LnCE has a mixed influence, implying a complex 

relationship. The diagram effectively visualizes the 

directional impact of these variables, highlighting key 

drivers and inhibitors of LnT. 

Null hypothesis  F-statistic Prob 

LnW does not Granger cause LnT 

LnT does not Granger cause LnW 

8.935 

9.945 

0.0000*** 

5.E-05*** 

LnR does not Granger cause LnT 

LnT does not Granger cause LnR 

3.223 

5.953 

0.039** 

0.002*** 

LnORE does not Granger cause LnT 

LnT does not Granger cause LnORE 

0.841 

5.985 

0.431 

0.002*** 

LnSK does not Granger cause LnT 

LnT does not Granger cause LnSK 

0.317 

6.083 

0.727 

0.002*** 

LnIRE does not Granger cause LnT 

LnT does not Granger cause LnIRE 

1.154 

5.189 

0.315 

0.005*** 

LnCE does not Granger cause LnT 

LnT does not Granger cause LnCE 

0.672 

3.791 

0.510 

0.022** 

LnBE does not Granger cause LnT 

LnT does not Granger cause LnBE 

4.412 

4.853 

0.012** 

0.007*** 

Note: *, **, and *** indicate 1%, 5%, and 10% levels of significance, 

respectively. 

Table 5. Pairwise Granger causality analysis 

LnCE

LnT

LnBE

LnW

LnR

LnORE

LnIRE

LnSK

Bidirectional causality
Unidirectional causality

 

Figure 5.Granger causality results 

4.4. Pairwise Granger causality analysis 

The relationship between the variables suggests the presence 

of Granger causality, as determined by the F-statistic. The 

summary of pairwise Granger causality is provided in Table 

5 and Figure 5, which includes the direction of causality 

between the variables. The results of the pairwise Granger 

causality tests indicate a unidirectional causality relationship 

from temperature to outer race energy, spectral kurtosis, 

inner race energy, and cage. Our findings suggest a 

bidirectional causal relationship between whip and 

temperature, Rev and temperature, as well as temperature 

and ball energy. 

4.5. Impulse response function  

Understanding the dynamic response of a system to various 

shocks is a critical aspect of many electromechanical  
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Figure 6.IRFs of the temperature model 

 
process analyses. The IRF is a powerful tool for tracing the 

temporal evolution of these dynamic responses 

(GomezGonzalez, Hirs-Garzon, & Uribe Gil, 2020), (Koop, 

Pesaran, & Potter, 1996). In other words, the IRF plays a 

crucial role in measuring the impact of shocks from 

independent variables on the dependent variable. This 

method allows us to analyze the dynamic interactions 

among the variables in our model and helps us quantify the 

effects of these shocks. Figure 6 illustrates the IRFs of the 

temperature model. 

From a theoretical perspective, the long-term effects of 

demand shocks have been a subject of debate. While 

traditional approaches suggest that demand shocks may 

have transitory effects, endogenous growth models suggest 

that they can have persistent, either positive or negative, 

impacts in the long run. 

5. CONCLUSION 

The conclusions drawn from this paper highlight the 

effectiveness and practicality of the proposed CM method. 

In this context, the integration of oil temperature monitoring 

and cointegration analysis offers a promising approach for 

diagnosing helicopter bearings under varying operational 

conditions. This method enhances the reliability of health 

monitoring systems by combining vibration data with oil 

temperature metrics, leading to improved safety capabilities. 

Indeed, this paper employs econometric tools, such as 

ARDL models and cointegration analysis, to assess both 

long-run and short-run dynamics in this relationship. The 

study introduces a novel application of these econometric 

methods in the field of CM and aims to enhance predictive 

maintenance strategies for helicopter gearboxes. The paper 

stands out by applying econometric models, which are not 

commonly used in the CM community, to analyze rotating 

machinery data. This approach offers a fresh perspective 

and could inspire new avenues of research within the field. 

The findings have potential practical applications, 

particularly in improving predictive maintenance and 

monitoring of helicopter gearboxes. The identification of a 

cointegrated relationship between oil temperature and BGCI 

values could lead to more effective health monitoring 

systems. 

While the results are promising, one of the challenges noted 

in the study is the potential overlap between different fault 

conditions. The study focused on commonly encountered 

gearbox bearing faults, but it may not encompass all 

possible fault scenarios that could occur in rotating 
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machinery in rotorcraft. This limitation could affect the 

robustness of the proposed diagnostic methods when 

applied to less common or more complex fault conditions. 

These factors highlight areas for future research and 

improvement in the proposed diagnostic methods. 

Moreover, the authors suggest that further experimentation 

on different rigs and with various fault types is necessary to 

fully validate the method’s effectiveness and explore its 

potential for broader industrial applications. 
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