
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2025 

  
1 

Comparative Analysis of LSTM Variants for Fault Detection and 

Classification in Aircraft Control Surfaces  

Muhammad Fajar1, Teuku Mohd Ichwanul Hakim2, Adi Wirawan3, Prasetyo Ardi Probo Suseno4, Arifin Rasyadi 

Soemaryanto5, and Ardanto Mohamad Pramutadi6 

1,2,3,4,5,6Research Center for Aeronautics Technology, National Research and Innovation Agency, Bogor, Jawa Barat, 16350, 

Indonesia 

muha110@brin.go.id 

teuk003@brin.go.id 

adiw002@brin.go.id 
pras012@brin.go.id 

arif037@brin.go.id 

arda001@brin.go.id 

 
ABSTRACT 

Aircraft control surfaces play a critical role in ensuring safe 

and efficient flight. Faults in these surfaces could lead to 

catastrophic consequences. This paper investigates the 

application of Long Short-Term Memory (LSTM) networks 

for fault detection and classification in aircraft control 

surfaces. Four deep learning models: LSTM, Stacked-LSTM, 

Bi-LSTM, and Attention-based LSTM (ALSTM), were 

trained, validated, and tested to classify faults based on 

residual features. The methodology involved data generation, 

preprocessing, normalization, and training the models over 

200 epochs. Evaluation metrics, including confusion 

matrices, precision, recall, and F1-scores, were used to assess 

model performance. Results show that Bi-LSTM achieved 

the highest accuracy (98.93%) and lowest loss (0.0264), 

significantly outperforming other models in fault detection, 

particularly for challenging fault types such as hard-over and 

lock-in-place. ALSTM followed closely, with notable 

performance improvements over standard and stacked LSTM 

models.  

1. INTRODUCTION 

The rise of automation in flight control has enabled pilots to 

better control their aircraft. The automation that comes in the 

form of a flight control augmentation system supports the 

pilot by easing the workload. Flight augmentation system 

helps the pilot by taking over the mundane constant 

adjustment to the aircraft attitude, air speed, altitude, and 

other tasks so the pilot could then focus on flying the aircraft. 

On the other hand, flight automation with autonomous flight 

capability could take over the flying task from the pilot. The 

pilot could then focus on monitoring the aircraft after giving 

the system inputs of navigation waypoints.  

One of the most widely used applications of full autonomous 

flight systems today is in Unmanned Aerial Vehicle (UAV) 

or commonly referred to as drone. Emerging trends in UAV 

research (Mohsan et al., 2022; Telli et al., 2023) focused on 

improving endurance, expanding payload capabilities, and 

refining cooperative swarm behavior to execute tasks more 

efficiently. This evolution did not only expand the 

possibilities for UAV deployment but also highlights the 

importance of reliable and secure control systems, especially 

in environments where precision and safety are critical, such 

as autonomous delivery systems or military operations as has 

been shown (Telli et al., 2023). However, the growing 

reliance on UAV also emphasizes the need for reliable 

control systems, particularly in autonomous operations where 

failure in control surfaces, sensors, or actuators could lead to 

mission failure or severe safety risks. 

To further the research on UAV technology, BRIN 

(previously LAPAN) had developed the LSA-02. LSA-02 is 

a UAV technology demonstrator based on the S15, a two-

seater aircraft by Stemme AG, that would act as a research 

platform as depicted in Figure 1. It was developed to explore 

UAV technologies, including Flight Control Laws (FCL), 

sensor systems, and Flight Control Panel interfaces as 

defined by (Bahri, 2016). Operated with a safety pilot for 

testing, the aircraft’s control system remains mechanically 

based, using push rods and cables. An electronic flight 

control system (EFCS) supplements but does not replace this 

setup. When activated, the EFCS utilizes mechanical 

linkages to control flight controls surfaces via electro-
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mechanical actuators based on FCL commands as defined by 

(Hakim, 2016).  

 

Figure 1 Stemme S15 as basic aircraft for UAV Technology 

Demonstrator 

In autonomous flight operation mode, faults in the control 

system, particularly in control surfaces or actuators, could 

lead to loss of stability and potentially catastrophic failures. 

Therefore, ensuring safety during flight with EFCS 

operations is crucial. To address this, fault tolerant control 

strategies would be employed to manage and mitigate faults 

while ensuring safety in the presence of faults or failure in the 

system. The fault may arise from various sources, such as 

sensor malfunctions, actuator failures, communication losses, 

or software errors. By implementing robust fault detection 

and isolation techniques, the impact of these faults could be 

minimized, thereby enhancing the overall reliability and 

safety of the system as shown (Puchalski et al., 2022; 

Puchalski & Giernacki, 2022; Rudin et al., 2015). Early fault 

detection enables the system to implement mitigation 

measures such as switching to manual control, utilizing 

redundant controls, or adjusting automatic control algorithms 

to avoid complete failure. The inclusion of fault detection 

would enable the pilot to identify a potential issue and could 

prepare them to take over the aircraft control from the EFCS.  

Fault in the control system could be identified by means of 

comparison between the commanded value and the measured 

value. Such method was performed by Zolghadri et al. (2011) 

by comparing command channel and monitor channel signal 

and by Park et al. (2009) with similarity measure.  

Various research from 2016 to 2022 indicating that 57% of 

actuator fault diagnosis in UAVs is based on model-based 

approaches, while 43% relies on data-based techniques as has 

been shown (Puchalski et al., 2022). A model-based approach 

performs fault diagnosis using models. Simani et al. (2003) 

used this approach to define a comprehensive methodology 

for actuator, component and sensor fault detection and 

isolation using output estimation.  

Meanwhile, a data-based approach uses data to check if a 

fault has occurred in a system. This approach has been 

utilized for the stratospheric airship control system as shown 

(Hu et al., 2024). More recently, the method of residual 

measurement was commonly used to detect faults. The work 

of Boni et al. (2024) developed a data driven residual 

generation to detect jamming faults. Yu et al. (2024) 

developed a model-based and neural network residual 

generation for an early and robust oscillatory fault and 

Ossmann et al. (2023) incorporated multi-model fault 

detection also for the same case. Singh et al. (2023) 

developed a graph theoretic approach where the detection of 

fault-tree residual was done by Grubbs outlier detection. The 

isolation of the fault is done by adding power spectral density 

over fixed FFT windows under a parameter selected by 

particle swarm optimization (PSO). Venkataraman et al. 

(2019) performed a comparison of fault detection models 

which are based on linear time-invariant (LTI), observer-

based with robust linear parameter varying (LPV), and 

multiple model adaptive estimation framework (MMAE). 

The result was that each method should be used according to 

the needs: the second method used when it is sufficient that 

the needs is just to detect and isolate faults. While the third 

method should be used when the reconfigurable flight control 

requires fault magnitude estimate and performance 

deterioration. Regarding incipient fault, Wang et al. (2023) 

developed a residual observation comprising of sliding mode 

observer SMO and Luenberger observer.  

Another method to detect faults was also observed from the 

work of Reynoso-Meza et al. (2023) where a time stacking 

approach in a detection tree classifier was used to detect an 

oscillatory failure case. Data-driven fault detection based on 

Support Vector Machine (SVM) was developed by Grehan et 

al. (2023). Cieslak et al (2016) developed a fault detection 

and diagnosis method with differentiation schemes 

comparison between finite difference method combined with 

moving average filter, Levant sliding-mode differentiator, 

and uniform robust exact differentiator. Additionally, Pang et 

al. (2025) in their studies explored the impact of 

communication reliability metrics on system performance, 

which can be utilized to enhance fault detection methods by 

addressing communication loss and latency uncertainties.  

Transformer-style and Gated Recurrent Unit (GRU)-based 

methods are quite common as a method to detect faults in 

aerospace systems. Giral et al. (2024), Su et al. (2024), 

Ahmad et al. (2024), and Li et al. (2023) have used 

transformer-based method to monitor faults detection and 

condition monitoring citing improved fault detection, 

diagnostic, and robustness compared to other methods. While 

GRU-based method was cited to have strong performance 

particularly when dealing with limited data or computational 

power constraints. Peng et al. (2022) used GRU-based 

approach to diagnose electromechanical actuator faults. 

Masalimov et al. (2022) and Ma et al. (2021) combined GRU 

and Convolutional Neural Network (CNN) to improve 

condition monitoring for UAV components with high 

accuracy, speed, and robustness. Compared to transformers, 
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GRU-based method offers simpler architecture in modeling 

sequential dependencies.   

LSTM is another method in the detection of faults. Tao et al. 

(2023) developed a fault detection and isolation method 

based on SAE-BiLSTM model for electromechanical 

actuators. LSTM method (Lei et al., 2019) has been used to 

develop a fault diagnosis of wind turbine. The Stacked LSTM 

is an extension to the LSTM model that has multiple hidden 

LSTM layers where each layer contains multiple memory 

cells. Yu (2019) proposed a hierarchical algorithm for 

bearing fault diagnosis based on Stacked LSTM aiming to 

overcome shortcomings of shallow structures. A novel fault 

diagnosis method for chemical process based on Stacked 

LSTM has been explored by (Zhang et al., 2020). Their 

proposed method able to observe the temporal correlation in 

the sequential observation signals of the chemical process. 

Recent research on Bidirectional LSTM (Bi-LSTM) for fault 

detection has shown promising results in various 

applications, particularly in diagnosing faults in rotating 

machinery and electrical motors. Bi-LSTM can process input 

sequences in both forward and backward directions, this 

allows it to capture comprehensive temporal patterns, leading 

to improved fault diagnosis accuracy compared to traditional 

LSTM models. The Bi-LSTM's ability to analyze sequences 

from both directions enabled it to better understand the 

temporal dependencies and patterns that are critical for 

accurate fault diagnosis as shown (Bharatheedasan et al., 

2023).One study (Vanga et al., 2023) focused on the fault 

classification of three-phase induction motors using Bi-

LSTM networks. The research demonstrated that Bi-LSTM 

could effectively classify different types of motor faults 

based on current and voltage signatures. Another study 

applied Bi-LSTM to the fault diagnosis and remaining useful 

life prediction of rolling bearings. By combining a 

convolutional neural network with Bi-LSTM, the research 

achieved significant improvements in detecting and 

predicting faults in rolling bearings.  

The application of the hybrid CNN-LSTM attention-based 

model, combined with the use of quantile regression to 

capture uncertainties has been used to predict electrical 

machine failures as shown (Borré et al., 2023). A similar 

method by Sun et al (2024) is used for predicting faults in a 

marine diesel engine. While Qin (2017) introduce an 

integration of dual stage attention mechanism with a 

recurrent Neural Network (RNN) with the aim to improve 

time series forecasting task. 

One study (Lee et al., 2024) proposed a GCN-based LSTM 

auto-encoder combined with a self-attention mechanism to 

diagnose faults in bearing systems. This model was designed 

to handle multivariate time series data from multiple sensors, 

enhancing the model's ability to capture both long-term and 

short-term dependencies in the data. The addition of a self-

attention mechanism allowed the model to focus on the most 

critical features, leading to improved fault classification 

accuracy. Another study (Yoo et al., 2023) explored using a 

two-stage attention-based variational LSTM for fault 

detection in the electrolytic copper manufacturing process. 

This model also leveraged attention mechanisms to improve 

the identification of subtle faults by dynamically adjusting 

the model's focus based on the importance of different input 

features. 

Long Short-Term Memory (LSTM) is an advanced Recurrent 

Neural Networks (RNN) that can learn long-term 

dependencies between time steps in time series data. Huang 

et al. (2021) has used broad long short-term memory 

(BLSTM) to construct an adaptive finite time control 

structure for a UAV, citing preferable time memory 

characteristic and high learning speed. LSTM has better 

accuracy and stability to compensate for error due to noises, 

as verified by simulation (Mao et al., 2021). The model based 

on the LSTM was identified to have high operation efficiency 

and could meet real time requirements for compensation.  

LSTM can be applied to detect and classify faults in aircraft 

control surfaces, which are driven by actuators. Actuator 

faults classified as can be classified into lock-in-place, float, 

hard-over, and loss effectiveness as defined by (Alwi et al., 

2011; Bošković & Mehra, 2003). Lock failure occurs when 

an actuator becomes jammed and immovable, leaving it stuck 

in one position. Float failure involves the control surface 

moving freely without generating any force or affecting the 

aircraft's control. One of the most critical types of failure is a 

runaway or hard-over condition, where the control surface 

moves at its maximum rate limit until it reaches its maximum 

limit position. 

From the literature review, LSTM and its variant has the 

advantage of accuracy in time series modeling (Tao et al, 

2023, Huang et al., 2021). It is also noted that LSTM is 

uncomplicated to model short term and long-term 

dependencies (Lei et al., 2019, Lee et al., 2024). In 

comparison to GRU, LSTM provided more expressive 

memory mechanism which makes it better suited for 

capturing intricate fault patterns especially in safety-critical 

aerospace applications (Cho et al., 2014). While Transformer 

models are powerful, their need for large training data and 

computational intensity poses limitations for embedded or 

real-time fault detection (Vaswani et al., 2017). Aircraft 

actuators operate for a long period of time and need to be 

monitored constantly due to their critical control and safety 

function. For this case, LSTM approach offers its proven 

ability to capture long-term dependencies in sequential data, 

which is crucial for identifying gradual fault progression 

(Hochreiter and Schmidhuber, 1997). LSTM offers a 

practical balance of performance, interpretability, and 

resource efficiency, making it a suitable and reliable choice 

for fault detection (Gao et al., 2021). Therefore, the authors 

would like to explore LSTM and its variants for the purpose 

of fault detection and classification.   
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The motivation and contributions of this paper are twofold. 

First, the study focuses on evaluating different LSTM-based 

sequence classifiers—namely, standard LSTM, stacked-

LSTM, Bi-LSTM, and ALSTM—for the task of fault 

detection and classification in actuator systems. In this work, 

residual magnitude derived from command and sensor signal 

differences is used as the sole input feature, allowing a direct 

and isolated comparison of the sequence modeling 

capabilities of each LSTM variant. This approach shifts the 

emphasis from residual engineering to classifier architecture, 

highlighting the core novelty of the study: an in-depth 

comparison of LSTM variants in their ability to capture 

temporal patterns in residual signals for fault diagnosis. The 

objective is to determine which model most effectively 

identifies the presented fault types, which include hard-over 

fault, lock-in-place fault, float fault, and loss of effectiveness 

fault. Second, the study contributes to the broader literature 

by demonstrating the applicability and performance of 

advanced LSTM architectures in the context of aircraft 

actuator fault diagnosis, a domain where reliable real-time 

classification is critical for system safety and performance. 

2.  METHODOLOGY 

The methodology in this research is divided into three main 

phases. First, the data preparation phase, which involves 

generating data, calculating residuals, merging and labelling 

the data, normalizing and scaling, followed by splitting the 

datasets for training, validation, and testing. The second 

phase focuses on fault detection and classification, which 

includes training, validating, and testing different models 

such as LSTM, Stacked-LSTM, Bi-LSTM, and ALSTM. The 

final phase consists of plotting and evaluating the results. A 

flowchart illustrating this methodology is shown in Figure 2. 

 

 

 

 

Figure 2 Flowchart of research methodology

2.1. Data Preparation 

Datasets used in this research are synthetic time series data 

which are generated as command signal and sensor signal. A 

sinusoidal command signal in 𝑇 time steps is generated and 

shifted for each sample of 𝑖  as shown in Eq. 1 to capture 

every position of command signal within range. The signal 

was then scaled to represent the range of ±30°  actuator 

deflection angle as in Eq. 2. The number of samples signal 

generated are ten thousand samples. Figure 3 depicts ten 

samples of command signal generated from sample 0 to 

sample 450 with interval 50 to show the shape of the 

generated signals. 
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𝑥𝑖(𝑡) = sin (
𝜋𝑡

𝑇
+ 𝑖

𝜋

𝑇
) (1) 

𝑐𝑖(𝑡) = 30(𝑥𝑖(𝑡)) − 30 (2) 

𝑠𝑖(𝑡) = 𝑥𝑖(𝑡 − 𝑑𝑒𝑙𝑎𝑦) + 𝑁(0, 𝜎
2) (3) 

Figure 3 Sample of generated command signals 

 

The sensor signal was created by adding a Gaussian noise of 

𝑁(0, 𝜎2). Due to the sensor response time, delayed response 

of the sensor was also added. The final sensor signal can be 

expressed in Eq. 3. The sensor signal would be modified to 

simulate various faults, as performed by Alwi et al. (2011) 

and Bošković et al. (2003), where they classified four fault 

types. The first is a hard-over fault, where the sensor signal 

abruptly jumps to either the minimum or maximum value 

±30° from the fault start time. The second is a lock-in-place 

fault, where the sensor signal becomes fixed at a specific 

value when the fault occurs. The third is a float fault, in which 

random deviation values 𝑑𝑗, within the range of ±30°, were 

added to the sensor signal starting from the fault initiation. 

Finally, there is the loss of effectiveness fault, where the 

sensor signal is scaled by a factor of 𝑖 after the fault start 

point, simulating reduced sensor responsiveness. As a result, 

the sensor signal is altered according to Eq. 4 in the event of 

a fault. The visualization of faulty sensor signal presented in 

Figure 4. The time when faults occur are the same for every 

sample, in order to capture the variations of faulty signal. 

Figure 5 depicts the sensor signal generated for lock-in-place 

faults. 

si(t)

=

{
 

 
(si)min or (si)max, for t ≥ tfault, hard − over
si(tfault), for t ≥ tfault, lock in place
si(t) + dj, for interval j, float

εisi(t), for t ≥ tfault, loss effectiveness

 
(4) 

 

Figure 4 Visualization of faulty sensor signal 

Figure 5 Sample of sensor signals of lock-in-place fault 

Faults are detected using residual data which was gathered 

from the differences between command signal and sensor 

signal as performed by Ossmann (2023). The residuals data 

was then changed to an absolute value as in Eq. 5. Sample of 

residual signal of lock-in-place are illustrated in Figure 6. All 

residuals from nominal condition and fault condition were 

combined and then labeled according to the type of fault. The 

data were labeled as follows: 

0 : normal condition 

1 : hardover 

2 : lock-in-place 

3 : float 

4 : loss effectiveness  

Dataset was split into 60% data training, 20% for validation, 

and 20% for testing. The dataset is publicly shared in 

https://www.kaggle.com/datasets/muhammadfjr/simulated-

actuator-fault.  

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑡) = |𝑠𝑖(𝑡) − 𝑐𝑖(𝑡)| (5) 

https://www.kaggle.com/datasets/muhammadfjr/simulated-actuator-fault
https://www.kaggle.com/datasets/muhammadfjr/simulated-actuator-fault
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Figure 6 Sample of residual signals of lock-in-place 

2.2. Fault Detection and Classification 

This section outlines the fault detection and classification 

process using four different models: LSTM, Stacked-LSTM, 

Bi-LSTM, and ALSTM. Fault detection is performed by 

classifying residuals, which are computed as the difference 

between the command and sensor signals.  These residuals 

quantify deviations caused by faults and serve as fixed input 

features across all model variants. The overall process is 

illustrated in Figure 7. 

The model begins with an input layer that receives the time-

series residual data. This is followed by the LSTM variant 

layer, which may implement one of the four architectures: 

LSTM, Stacked-LSTM, Bi-LSTM, or ALSTM. Each variant 

consists of one or more LSTM cells that process input data 

sequentially. These cells retain and update their internal 

memory at each time step, enabling the model to learn both 

short- and long-term dependencies essential for 

distinguishing among different fault types. 

 

 

Figure 7 Fault detection and classification process  

To improve generalization and mitigate overfitting, a dropout 

layer is applied after each LSTM cell across all variants. 

During training, dropuout randomly deactivates a subset of 

neurons by setting their values to zero, ensuring that the 

model does not overly rely on specific neurons. However, 

during inference, all neurons are used without dropout to 

maximize prediction accuracy.  

The final layer is the classification layer, where the model 

assigns probabilities to each of the five fault classes using the 

softmax activation function. Softmax transforms raw output 

scores (logits) into a probability distribution, ensuring that 

each output value lies between 0 and 1 and that the sum of all 

class probabilities equals 1. For a 5-class classification 

problem, the softmax function is defined as shown in Eq. 6: 

 

𝑝𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗5
𝑗=1

 (6) 

 

Where pi represents the probability of class i, and zi is the raw 

output score (logit) before applying softmax. The class with 

the highest probability is selected as the final prediction. 

2.2.1. LSTM 

LSTM networks, introduced by Hochreiter and Schmidhuber 

(1997) are a type of recurrent neural network (RNN) 

specifically designed to address the vanishing and exploding 

gradient problems that traditional RNNs face. LSTMs are 

particularly useful for time series data where long-term 

dependencies need to be captured, which is critical in fault 

detection as faults may not manifest immediately after they 

occur.  

The LSTM cell, as shown in Figure 8, contains several key 

components that control the flow of information: the forget 

gate, input gate, and output gate. These gates regulate how 

much information is retained or discarded over time. In fault 

detection, this is especially important as the model must 

remember both the normal operating conditions and the 

points where faults begin to emerge in the time series data. 

 

Figure 8 LSTM networks 

The equations for LSTM cell operations include: 

• Forget Gate (𝑓𝑡): This gate determines what information 

to discard from the cell state. It is computed as in Eq. 7. 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (7) 

where 𝑊𝑓  is the weight matrix for the forget gate, 𝑏𝑓 is 

the bias, ℎ𝑡−1 is the previous hidden state, and 𝑥𝑡 is the 
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current input. The output of the forget gate is a value 

between 0 and 1, indicating how much of the past 

information to retain. 

• Input Gate (𝑖𝑡): This gate decides what new information 

to add to the cell state. It is computed as shown in Eq. 8: 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖 (8) 

Additionally, candidate values (𝑐�̃�) to be added to the 

cell state are generated as shown in Eq. 9: 

𝑐�̃� = tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑐 (9) 

where 𝑊𝑖 and 𝑊𝑐  are weight matrices, and 𝑏𝑖  and 𝑏𝑐 are 

biases for the input gate and candidate values, 

respectively. 

• Cell State Update (𝑐𝑡 ): The cell state is updated by 

combining the old state modulated by the forget gate and 

the new candidate values modulated by the input gate, as 

shown in Eq. 10: 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × �̃�𝑡 (10) 

• Output Gate (𝑜𝑡): This gate determines which part of the 

cell state to output as the hidden state. It is computed as 

shown in Eq. 11: 

𝑜𝑡 = 𝜎(𝑊0[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑜 (11) 

Finally, the hidden state (ℎ𝑡) is calculated as shown in 

Eq. 12: 

ℎ𝑡 = 𝑜𝑡 × tanh(𝑐𝑡) (12) 

2.2.2. Stacked-LSTM 

Stacked LSTM refers to an architecture in which multiple 

LSTM layers are placed on top of one another. This deepens 

the network, enabling it to learn more intricate patterns in 

sequential data. By stacking multiple LSTM layers, the 

model can capture hierarchical temporal representations, 

where each layer abstracts different levels of features from 

the sequence. This structure allows the model to gain a more 

comprehensive understanding of the data, which is 

particularly useful when working with complex sequences. 

In a standard single-layer LSTM, the output from the LSTM 

layer is usually passed directly to a dense (fully connected) 

layer or another type of processing layer. In contrast, the 

stacked LSTM architecture, as depicted in Figure 9, involves 

multiple LSTM layers. Here, the output of each LSTM layer 

is used as the input for the next layer in the stack. Each LSTM 

layer processes the input sequence sequentially, passing its 

hidden state to the following layer. This design enables the 

network to learn increasingly abstract and higher-level 

features as it moves through the layers. The additional LSTM 

layers increase the model's capacity to learn and represent 

complex patterns, which is especially advantageous when 

working with large, complicated datasets. 

 

Figure 9 Stacked-LSTM  

A typical stacked LSTM architecture begins with an input 

layer that provides the input sequence data to the first LSTM 

layer. The first LSTM layer processes this input and produces 

a hidden state sequence, which is then fed into the subsequent 

LSTM layers. Each layer in the stack generates a new hidden 

state sequence based on the input from the previous layer. 

After the final LSTM layer, the resulting output is typically 

passed to a dense layer or other types of layers to generate the 

final prediction. 

2.2.3. Bidirectional-LSTM 

Bidirectional LSTM (Bi-LSTM) was introduced by Schuster 

and Pawali (1997) in their paper, "Bidirectional Recurrent 

Neural Networks." Unlike standard LSTM networks, which 

process data sequentially in one direction (typically from the 

first to the last time step), Bi-LSTM processes data in both 

forward and backward directions. This enables the model to 

capture patterns from both past and future time steps 

simultaneously, providing a more holistic understanding of 

the sequence data. In certain tasks, predictions at a specific 

time step can benefit from information about both preceding 

and succeeding time steps, making Bi-LSTM particularly 

advantageous. 

The architecture of a Bidirectional LSTM, as depicted in 

Figure 10, enhances traditional LSTM by employing two 

separate layers: first that processes the input sequence in the 

forward direction (from first to last) and second that 

processes it in reverse (from last to first). At each time step, 

the outputs of these forward and backward layers are 

combined, usually through concatenation, to form a final 

output that contains information from both temporal 

directions. This combined output is more robust and 

informative than using a single direction, making it highly 

useful in tasks that require comprehensive sequence 

modeling. After concatenation, the outputs are passed to a 

dense layer or other processing layers to generate the final 

prediction. 
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Figure 10 Bidirectional LSTM  

2.2.4. Attention-LSTM 

Attention-based LSTM (ALSTM) combines the long-term 

memory capabilities of LSTM with an attention mechanism 

that enables the model to focus on the most relevant parts of 

the input sequence. The attention mechanism, first introduced 

by (Bahdanau, 2014), computes relevance scores for each 

time step in the sequence, allowing the model to weigh 

certain time steps more heavily than others when making 

predictions.  

In fault detection, the attention mechanism is particularly 

useful because not all-time steps contribute equally to 

identifying a fault. For instance, the time steps immediately 

before and after a fault occurs are often more informative 

than earlier or later steps. By using attention, the ALSTM 

model can focus on these critical time steps, improving its 

ability to detect faults. 

 

Figure 11 Attention-LSTM  

As illustrated in Figure 11, the ALSTM architecture consists 

of an LSTM layer that processes the input sequence to 

generate hidden states, followed by an attention layer that 

computes a relevance score for each hidden state. These 

scores are used to compute a weighted sum of the hidden 

states, which emphasizes the most relevant time steps. The 

context vector generated by this process is then used to make 

the final prediction. 

2.3. Model evaluation 

All models were trained for 200 epochs with a batch size of 

64, striking a balance between extensive learning and 

computational efficiency. Each model's layers consist of 50 

units, ensuring consistent architecture across all approaches. 

Dropout layers with a dropout rate of 0.25 are included to 

mitigate overfitting by randomly deactivating a fraction of 

neurons during training. The Adam optimizer is employed for 

efficient and adaptive weight updates, enhancing 

convergence. Categorical cross-entropy loss is used as the 

objective function to quantify the discrepancy between 

predicted and true class labels. The output layer in each 

model utilizes the Softmax activation function, enabling 

multi-class classification across the five predefined fault 

categories. 

2.3.1. Categorical Cross-Entropy Loss 

The categorical cross-entropy loss is widely used for multi-

class classification problems, where the target variable can 

belong to one of several classes. In this context, each class is 

assigned a one-hot encoded vector, where the true class is 

represented as 1, and all other classes are 0. The categorical 

cross-entropy loss for a given training example is written in 

Eq. 13, where 𝐶 is the number of classes. 𝑦𝑖 is the true label, 

which is 1 for the correct class and 0 for others (one-hot 

encoded). 

𝐿𝑜𝑠𝑠 = −∑𝑦𝑖

𝐶

𝑖=1

log(𝑝𝑖) (13) 

In the context of fault classification, as applied in this work, 

five classes are defined: normal, hard-over, lock-in-place, 

float, and loss-effectiveness. The model outputs a probability 

distribution for each class using Softmax, and categorical 

cross-entropy loss ensures that the highest probability is 

assigned to the correct class.  

2.3.2. Accuracy Metric 

The accuracy metric measures the proportion of correct 

predictions the model makes over the entire datasets. It's a 

very intuitive way to evaluate the performance of a classifier, 

though it might not always tell the full story, especially with 

imbalanced datasets. Accuracy is calculated as in Eq. 14. For 

a multi-class classification problem, accuracy simply counts 

how many times the predicted class matches the true class. If 

the predicted class matches the true class, that is counted as a 

correct prediction.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (14) 
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2.3.3. Confusion matrix 

A confusion matrix is a fundamental tool in machine learning 

for evaluating the performance of classification models. It 

provides a detailed breakdown of the model's predictions 

compared to the actual outcomes, allowing for the 

computation of various performance metrics. The confusion 

matrix comprises four elements: true positive (TP) means the 

model correctly predicts the positive class. True negative 

(TN) means the model correctly predicts the negative class. 

False positive (FP) means the model incorrectly predicts the 

positive class. False negative (FN) means the model 

incorrectly predicts the negative class. The confusion matrix 

is depicted in Figure 12. 

 

Figure 12 Confusion matrix 

 

As mentioned earlier, the confusion matrix can be used to 

calculate various performance metrics such as Precision, 

Recall, and F1-Score. Precision is the ratio of correctly 

predicted positive observations to the total predicted positive 

observations, as shown in Eq. 15. Recall is the ratio of 

correctly predicted positive observations to all actual positive 

observations, as shown in Eq. 16. Lastly, the F1-Score is the 

harmonic mean of Precision and Recall, as shown in Eq. 17.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (16) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 

3. RESULTS AND DISCUSSION 

The models were trained using a computer with the following 

specifications: a 13th Gen Intel(R) Core™ i7-13700 

processor clocked at 2.10 GHz, 64.0 GB of RAM, and a 64-

bit operating system. Four different LSTM variants were 

trained, and the corresponding training times are summarized 

in Table 1. The models were trained and validated for a total 

of 200 epochs. 

For the basic LSTM model, the total training time was 20,537 

seconds, with a mean epoch time of 103 seconds. The 

Stacked LSTM model required a total of 127,530 seconds to 

complete training, resulting in a mean epoch time of 638 

seconds. The Bi-LSTM model, known for its capability to 

capture both past and future context, exhibited the longest 

training duration, requiring 237,628 seconds to finish 

training, with a mean epoch time of 1,188 seconds. This 

indicates that the Bi-LSTM model took more than ten times 

longer to train compared to the basic LSTM model, likely due 

to its doubled parameter size and complexity. Finally, the 

ALSTM model took 139,118 seconds to complete training, 

with a mean epoch time of 696 seconds. 

Algorithm 
Training time 

Mean epoch (s) Total (s) 

LSTM 103 20,537 

Stacked-LSTM 638  127,530 

Bi-LSTM 1,188 237,628 

ALSTM 696  139,118 

Table 1. Summary of total training time and mean epoch 

time for different LSTM variants. 

3.1. Model loss and accuracy 

The model accuracy and loss comparisons for LSTM, 

stacked-LSTM, Bi-LSTM, and ALSTM models across 200 

epochs are depicted in Figures 13 and 14. These figures 

illustrate the learning process and convergence behavior of 

each model. In Figure 13, which presents model accuracy, all 

models show significant improvement over the initial epochs, 

with varying levels of oscillation before stabilizing. The Bi-

LSTM model achieves the highest overall accuracy for both 

training and validation data, followed closely by the ALSTM 

and stacked-LSTM models. The LSTM model demonstrates 

comparatively lower performance, showing less smooth 

learning behavior and slower convergence, particularly in the 

early stages of training. 

In Figure 14, which presents the loss curves, the Bi-LSTM 

again shows the best performance, achieving the lowest loss 

for both training and validation data. The model converges 

more rapidly compared to the others, with minimal oscillation 

beyond the 50th epoch. The stacked LSTM and ALSTM 

models also perform well, with loss values that decrease 

steadily over time, although they experience occasional 

spikes, particularly in validation loss. The LSTM model, 

however, exhibits the highest loss among the four, suggesting 

that it struggles more with the generalization of the data and 

experiences greater difficulty in minimizing errors as training 

progresses. 
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Figure 13 Model accuracy 

 

Figure 14 Model loss 

The final model accuracy and loss values are summarized in 

Table 2. The Bi-LSTM model achieved the highest validation 

accuracy at 98.66% with a corresponding validation loss of 

0.0304, outperforming the other models in both accuracy and 

loss metrics. The ALSTM model follows closely with a 

validation accuracy of 97.43% and a validation loss of 

0.0621, indicating strong performance, particularly in fault 

detection and classification tasks. The stacked LSTM model 

also demonstrates good results, achieving a validation 

accuracy of 96.71% and a validation loss of 0.0665. The 

LSTM model, while functional, has the lowest performance 

metrics with a validation accuracy of 96.03% and a validation 

loss of 0.0940. 

Algorithm 

Accuracy Loss 

Train 
Valida

-tion 
Train 

Valida

-tion 

LSTM 0.9602 0.9603 0.0990 0.0940 

Stacked-LSTM 0.9731 0.9671 0.0526 0.0665 

Bi-LSTM 0.9813 0.9866 0.0382 0.0304 

ALSTM 0.9749 0.9743 0.0619 0.0621 

Table 2. Model accuracy and loss during training and 

validation 
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3.2. Test evaluation 

To evaluate the performance of each algorithm, a confusion 

matrix was employed to assess the classification outcomes 

for fault detection. The experiments were conducted on a 

dataset containing 10,000 samples evenly distributed across 

four fault classes: normal, loss-effectiveness, hard-over, and 

float. Each class had approximately 2,000 samples.  The test 

results for each model, including test loss and accuracy, are 

detailed below. 

The results for the LSTM model are presented in Figure 15, 

where the LSTM achieved a test loss of 0.0841 and a test 

accuracy of 96.64%, correctly predicted 9,664 out of 10,000 

test samples. The model achieved perfect accuracy for normal 

and loss-effectiveness conditions, with no false predictions. 

For hard-over faults, out of 1,993 test samples, 1,692 were 

correctly classified, while 301 were misclassified as lock-in-

place faults. In the case of lock-in-place faults, 1,987 out of 

2,016 test samples were correctly predicted, with 29 

misclassified as hard-over. For float faults, 1,992 out of 1,998 

samples were correctly identified, with 6 misclassifications, 

1 as hard-over and 5 as lock-in-place.  

 

Figure 15 Confusion Matrix of LSTM 

The results of the stacked-LSTM model are illustrated in 

Figure 16, showing an improvement over the standard LSTM 

model, with a test loss of 0.0549 and a test accuracy of 

97.32%. The stacked-LSTM correctly predicted 9,732 out of 

10,000 samples. This model achieved perfect accuracy in 

predicting normal, lock-in-place, and loss-effectiveness 

conditions. However, for hard-over faults, 1,737 out of 1,993 

test samples were correctly identified, while 256 were 

misclassified as lock-in-place. In the float faults category, 

1,986 out of 1,998 samples were correctly predicted, with 12 

misclassified as hard-over.  

 

Figure 16 Confusion Matrix of Stacked-LSTM 

In Figure 17, the results of the Bi-LSTM model demonstrate 

superior performance compared to the standard LSTM and 

stacked-LSTM models. The Bi-LSTM achieved a test loss of 

0.0264 and a test accuracy of 98.93%, accurately predicting 

9,893 out of 10,000 test samples. It achieved perfect accuracy 

in predicting normal, float, and loss-effectiveness conditions. 

For hard-over faults, 1,887 out of 1,993 test samples were 

correctly classified, with 106 misclassified as lock-in-place. 

In the case of lock-in-place faults, only 1 sample out of 2,016 

was incorrectly classified as hard-over. These results 

highlight the Bi-LSTM's superior predictive accuracy over 

the LSTM and stacked-LSTM models.  

The ALSTM model's performance, presented in Figure 18, 

indicates 9,759 correct predictions out of 10,000 samples, 

with a test loss of 0.0613 and a test accuracy of 97.59%. The 

ALSTM performing better than both LSTM and stacked-

LSTM models but slightly underperforming compared to the 

Bi-LSTM. The ALSTM achieved perfect accuracy for 

normal, lock-in-place, and loss-effectiveness conditions. For 

hard-over faults, 1,754 out of 1,993 test samples were 

correctly identified, with 239 misclassified as lock-in-place. 

In the float faults category, 1,996 out of 1,998 samples were 

correctly predicted, with only 2 samples misclassified as 

hard-over.  
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Figure 17 Confusion Matrix of Bidirectional LSTM 

 

Figure 18 Confusion Matrix of Attention-LSTM 

From the results discussed above, it is evident that all models, 

including LSTM, stacked-LSTM, Bi-LSTM, and ALSTM, 

are capable of accurately predicting faults and distinguishing 

between normal and fault conditions. Each model 

successfully captured most test samples across the five 

classes: normal, lock-in-place, hard-over, float, and loss-

effectiveness. However, a recurring challenge across all 

models was the misclassification of hard-over faults. 

Specifically, hard-over faults were frequently misclassified 

as lock-in-place, indicating that the models struggled to 

distinguish between these two fault types. This 

misclassification pattern suggests that the feature 

characteristics of hard-over and lock-in-place faults may 

share some similarities in the dataset, causing confusion for 

the models.  

Despite this challenge, all models demonstrated strong 

performance in correctly predicting the other fault categories, 

particularly lock-in-place, float, and loss-effectiveness 

conditions. The Bi-LSTM model showed the highest 

accuracy, with significantly fewer misclassifications 

compared to the other models, especially in the hard-over and 

float fault categories. This highlights the Bi-LSTM’s ability 

to capture more nuanced temporal dependencies in the data, 

allowing it to differentiate between fault types with greater 

precision.  

To further evaluate the models, performance metrics such as 

precision, recall, and F1-score were calculated based on the 

correct (TP, TN) and incorrect predictions (FP, FN) for each 

fault type: normal (N), hard-over (H), lock-in-place (LP), 

float (F), and loss-effectiveness (LE). The results of these 

metrics are shown in Table 3, and they are visually 

represented in the bar charts (Figures 19, 20, and 21). The 

precision values, depicted in Figure 19, show that all models 

perform well in classifying normal, float, and loss-

effectiveness faults, achieving perfect scores. However, the 

lock-in-place categories present a challenge, with precision 

dropping in these categories. The Bi-LSTM model exhibits 

the highest precision across all fault types, outperforming the 

other models, especially in the lock-in-place category. 

 

 

Model 

Precision Recall F1-score 

N H LP F LE N H LP F LE N H LP F LE 

LSTM 1.00 0.98 0.87            1.00 1.00 1.00 0.85 0.99  1.00 1.00 1.00 0.91 0.92 1.00 1.00 

Stacked-LSTM 1.00 0.99 0.89 1.00 1.00 1.00 0.87 1.00  0.99 1.00 1.00 0.93 0.94 1.00 1.00 

Bi-LSTM 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.97 0.97 1.00 1.00 

ALSTM 1.00 1.00 0.89 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 0.94 0.94 1.00 1.00 

Table 3. Summary of model precision, recall, and F1-score for each model. 

The recall values similarly indicate high performance across 

all models for the normal, float, and loss-effectiveness fault 

types as shown in Figure 20. The recall for hard-over faults 

demonstrates a notable difference between models, with the 

Bi-LSTM model again outperforming the others. The F1-

scores as presented in Figure 21, reflect a balance between 
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precision and recall, confirming that the Bi-LSTM model 

provides the best overall performance across all fault types. 

In contrast, the LSTM and stacked-LSTM models exhibit 

weaker performance, particularly for hard-over and lock-in-

place faults, where their F1-scores are significantly lower. 

 

Figure 19 Precision comparison across models 

 

Figure 20 Recall comparison across models 

 

Figure 21 F1-score comparison across models 

4. CONCLUSION 

This study demonstrated the effectiveness of LSTM-based 

models in detecting and classifying actuator faults in time-

series format. Among the tested models, the Bi-LSTM model 

demonstrated highest performance, achieving a test accuracy 

of 98.93% with minimal misclassification across various 

fault types. Its superior ability to capture temporal 

dependencies allowed for precise differentiation between 

challenging faults, such as hard-over and lock-in-place. 

However, Bi-LSTM also exhibited the longest computation 

time, which should be considered for real-time deployment. 

The ALSTM model also performed well, with the accuracy 

of 97.59% with slightly higher test loss, followed by Stacked-

LSTM and the standard LSTM model. Overall, all models 

exhibit strong fault detection performance, particularly for 

normal, float, and loss-of-effectiveness conditions, though 

distinguishing between hard-over and lock-in-place faults 

remain a recurring challenge.  
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