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ABSTRACT

Quantitative predictions of the time before the spall initia-
tion phase (origination of the first spall) in pristine ball bear-
ings running under an applied load is of great industrial rel-
evance, especially for systems that require high running ac-
curacy and/or high-speed performance. Currently there are

no available methodologies to predict the remaining life until

the first spalling event exclusively from vibration signals. We
present an end-to-end approach, based on deep learning (one-
dimensional convolutional layers combined with long short-
term memory units), that is able to quantify the time before
the origination of the first spall in ball bearings, having as
sole input vibration measurements. The method has been val-
idated on a set of bearings – run to failure on independent but
identical test rigs – which had not been considered during
training.

1. INTRODUCTION

Super-precision bearings are bearings produced to have a higher
standard precision level, smaller dimensional deviations, and
higher rotation accuracy. The requirements for their surface
shape and quality are stricter, and they often use materials
with superior properties. They are specially designed for pre-
cision applications including metal cutting machinery spin-
dles, precision ball screws, high-speed turbochargers, ma-
chine components for the semiconductor industry, and more.

For most bearing applications, the appearance of the first spall
does not necessarily indicate the failure of the bearing. Bear-
ings can still function with satisfactory performance for a
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considerable duration until the spall grows to an unacceptable
size. This is not the case for precision applications, where the
smallest spall in a bearing can render the functioning of the
containing application inadmissible.

Current methodologies for assessing bearing reliability fol-
low three main approaches. The first approach uses statistics-
based methods to determine the expected life of a bearing
population (Lundberg & Palmgren, 1947). The second ap-
proach uses more advanced non-destructive methodologies,
such as acoustic emissions (Lees, Quiney, Ganji, & Murray,
2011; Hase, 2020), for measuring the state of the subsur-
face of the bearing. The final approach uses deterministic
modelling to study the evolution of the microstructure and/or
the initiation and propagation of cracks in model systems
subjected to rolling contact fatigue (Jalalahmadi & Sadeghi,
2010; Fu & Rivera-Dı́az-del Castillo, 2018; Warhadpande,
Sadeghi, & Evans, 2013; Mahdavi, Poulios, Kadin, & Niord-
son, 2022; Ringsberg, 2001; Cheng, Cheng, Mura, & Keer,
1994).

The three mentioned approaches have some limitations. Statistics-
based methods work only for bearing populations, so they are
not able to predict the failure of individual bearings. Acous-
tic emission requires equipment that is not yet accessible for
mass implementation in regular bearing applications. Mod-
elling methodologies are usually developed to understand fail-
ure mechanisms, help with design guidelines, and, sometimes,
produce life approximations for a given set of working con-
ditions; but not for predicting failure of individual bearings
during use.

There is currently no method available in the literature ca-

pable of predicting the time to emergence of the first spall

of an individual bearing exclusively from vibration signals.
One of the reasons is that it was still not clear whether vibra-
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tion signals contain information about physical phenomena
occurring in the subsurface of bearings. The methodology
presented in this article is the first one able to quantitatively
predict the time to subsurface-initiated spalling. We note
here that while there are some methods in the literature that
aim to perform prognostics on individual bearings, they fo-
cus only on the degradation stage, which begins after the oc-
currence of the first spall (Tobon-Mejia, Medjaher, Zerhouni,
& Tripot, 2012; Medjaher, Tobon-Mejia, & Zerhouni, 2012;
Cui, Wang, Xu, Jiang, & Zhou, 2019; Habbouche, Benked-
jouh, & Zerhouni, 2021; Lourari, Benkedjouh, El Yousfi, &
Soualhi, 2024; Lu, Wang, Zhang, & Gu, 2024; Magadán,
Granda, & Suárez, 2024).

In the present work, we introduce an end-to-end deep learn-
ing model to predict the remaining time to the origination of a
first spall in bearing tests. We will refer to the time to the orig-
ination of the first spall as the Remaining Useful Life (RUL).
The model is fed exclusively with the raw vibration signal (no
feature engineering is performed), and its single output is the
RUL. We train and validate our model on a set of similarly
designed test rigs and bearings rather than just one test rig to
avoid any possibility for data leakage and ensure good gener-
alisation (Hendriks, Dumond, & Knox, 2022). In this manner,
we ensure that the model does not overfit to a specific test rig
or bearing.

The remainder of this article is organised as follows: In sec-
tion 2, we introduce the convolutional/recurrent architecture
of the neural network used for the end-to-end calculation of
the RUL. Subsequently, in Section 2.2, we explain the testing
methodology, and how the experimental signals were grouped.
In Section 3 we detail the training procedure and showcase
the performance of the network when evaluated on the vali-
dation dataset.

2. MATERIALS AND METHODS

2.1. Network architecture

The architecture of the deep learning network developed in
this work is presented in figure 1. It consists of three comple-
mentary parts. First, there is a set of successive convolutional,
batch normalisation, and max pooling layers. These layers
are followed by a set of recurrent layers, and, at the end, a
dense layer. In total, the network has 57 077 trainable and
422 non-trainable parameters. The Keras (Chollet & Others,
2015) deep learning framework with the Tensorflow (Abadi
et al., 2016) back-end is used for the generation and training
of the network, as follows:

1. Convolutional, batch normalisation, and max pooling
layers:
As a first step, a batch normalisation operation is applied
the input signal vector. We then use one-dimensional
convolution filters, (additional) batch normalisation, and

max pooling layers to extract features from the raw sig-
nal and to reduce the size of the input signal. This size
reduction is a crucial step necessary to train the network
using reasonable resources within a reasonable amount
of time.
A sequence of five stacked convolutional, batch normal-
isation and max pooling layers was found to be adequate
for this problem (this topology is the result of a thorough
exploration). We used 25, 35, 45, 50 and 55 filters with
kernel sizes of 11, 9, 7, 5 and 3 for the convolutional
layers, respectively. The ReLu activation function was
used for the convolutions. Each of the three max pooling
layers has windows of size 3. Batch normalisation opera-
tions are applied after each convolution (before applying
the activation function).

2. Recurrent layers:
The output of the convolutional layers is fed to a set of
recurrent layers composed of Long Short-Term Memory
(LSTM) units. The idea of using recurrent layers is that
they are able to capture the chronological dependence of
time sequences, such as the vibration signal that is cap-
tured from the tests.
We found that using three LSTM layers gave adequate
results for this problem. The first two layers contain 30
units each, and the last one contains a single unit. The
first two LSTM layers return their sequences to the next
layer, while the third layer does not (in order to reduce
dimensionality).

3. Dense layer:
After the recurrent layers, the output is finally fed to a
fully connected single rectified linear unit (ReLu) that
gives the prediction of the time remaining until the next
bearing failure. Having a ReLu unit at the end allows the
network to produce any positive real number.

2.2. Data

The data used in this work comes from bearing endurance
tests performed on our premises using standard SKF R2 test
rigs (Gabelli & Morales-Espejel, 2019; Harris & Kotzalas,
2006; Wan, Amerongen, & Lankamp, 1992), see Figure 2. A
set of ACBB 7209 single-row angular contact ball bearings
were tested until nine sub-surface initiated failures in the in-
ner ring were obtained. The tests were performed in different
test rigs (of the same type) to prevent the model from learn-
ing test rig related features (Hendriks et al., 2022). This also
ensures that the model learns the bearing’s behaviour under
the common properties of the class of machines used.

The tests were conducted while maintaining a constant an-
gular velocity of 6000 rpm, a temperature of 75

→
C and an

axial load of 50 kN (corresponding to a contact pressure of
3030MPa). A constant value of the viscosity ratio ω = 2.7
was fixed to keep the bearing in a mixed lubrication regime
and to avoid running in a boundary lubrication regime.
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Figure 1. Architecture of the convolutional/LSTM network

Accelerometers

Figure 2. Isometric view of an SKF-R2 test rig. The arrows
indicate the position of the accelerometers.

Figure 3. Example of a typical sub-surface initiated spall used
to end the endurance tests. Their origination define the mo-
ment of failure of a bearing.

Failure was defined as the moment when the first spall ap-
pears in the bearing. This event will be used as the reference
to (retrospectively) measure the remaining life of each indi-
vidual bearing (as detected using the vibration sensors). Note
that we only selected bearings whose inner ring was the first
component to fail, and only the ones that failed due to sub-
surface fatigue.

The vibration data was collected using accelerometers located
on the housing that contains the bearings to be tested (see Fig-
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ure 2) at a sampling rate of 49 152 kHz. To keep the amount
of data at a manageable size, only snapshots of a duration of
6 s are stored every hour.

We use vibration data from ten independent bearing tests to
avoid picking up test rig-specific signal changes that might
not have a physical relation to the defect (Liefstingh, Taal,
Echeverri Restrepo, & Azarfar, 2021). We use a classical di-
vision of such data into a training set, a validation set, and a
test set. To avoid capturing features belonging to individual
setups, all the tests were conducted on identical but indepen-
dent test rigs (of the type SKF R2). We chose to separate the
sets in the following manner: six bearings for the training set,
three for the validation set, and one for the test set.

Due to the large amount of data, it is not practical (or possible
on average computers) to have a static dataset with all the
input signals. To solve this shortcoming, we sample the data
dynamically as the network is trained. Every epoch, a batch
of 1000 segments, each containing a section of the vibration
signal of 10 000 points or individual measurements, is fed into
the network. This corresponds to approximately 20 rotations,
which is sufficient to capture the periodicity of the signal. The
segment is selected in the following manner:

• A bearing is randomly selected from a uniform distribu-
tion containing the six bearings available in the training
data. The idea is to avoid the network overfitting to the
bearings with a longer time to failure by receiving more
training samples due to unbalanced data. We want the
network to be trained using the same number of segments
from each bearing.

• Once the bearing is selected, a segment (i.e. 10 000 con-
secutive entries/points of the vibration signal) is randomly
chosen together with its corresponding time to failure.

• The calculation of the validation error is performed using
batches of 1000 segments extracted from the validation
set following the same strategy utilised for the selection
of the training samples.

3. RESULTS

3.1. Training

The parameters of the network were optimised to minimise
the Mean Absolute Error (MAE) of the predictions of the time
to bearing failure. The parameters of all the layers where ini-
tialised using the default Glorot (Glorot & Bengio, 2010) uni-
form method, except for the last (dense/output) layer, which
was initialised using values of the same order of magnitude
as the duration of the longest test.

The optimisation was performed using the Adam algorithm
(Kingma & Ba, 2014) with a learning rate of 5.1 → 10

↑4.
The network was trained on an Intel Xeon Processor E5-2650
v4 CPU. The training process was left to run overnight un-
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Figure 4. Convergence of the loss (MAE) for the training and
validation data. The values are normalised with the total life
of training bearing 6.

til completion of 20 000 epochs. Figure 4 shows the conver-
gence of loss during training, for the training and validation
data.

The set of parameters that minimises the loss (MAE) of the
validation set was selected. As shown in Figure 4, such value
is found after 8917 training epochs. The obtained MAE, nor-
malised by the total life of the longest running training bear-
ing (bearing 6), for the training set is 13%; for the validation
set it is 10%. The values of the MAE are normalised due to
confidentiality reasons.

For each of the training bearings we calculated the MAE of
the predictions, normalised by its total life. We obtained nor-
malised MAE values of 23%, 22%, 12%, 13%, 17%, 7% for
training bearings 1, 2, 3, 4, 5 and 6, respectively.

3.2. Validation and Test

As mentioned earlier, three bearings were separated for the
validation, and one for the test of the predictive power of the
network. The results of the predictions of the remaining life
in the validation set are presented in Figure 6, as individual
points, together with the true remaining life (thin continuous
lines). Similarly, the results for the test bearing are presented
in Figure 7. To facilitate the visualisation of the results, we in-
clude a spline interpolation of the predictions (thick continu-
ous line) with their corresponding standard deviation (dashed
lines). Note that the plots are normalised by the total life of
the bearing of the training set with the longest life (bearing
6), while the training of the algorithm was done using the raw
(un-normalised) times to failure.

For each of the validation bearings we calculated the MAE
of the predictions, normalised by its total life. We obtained
normalised MAE values of 23%, 26% and 18% for valida-
tion bearings 1, 2 and 3, respectively. Similarly, we obtain a
normalised MAE value of 25% for the test bearing.
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Figure 5. Remaining useful life plots for the six bearings in
the training. The thick lines show the values predicted by
the neural network, with their corresponding standard devi-
ation (dashed lines). The thin lines show the true values of
the remaining life. The values are relative to the total life of
training bearing 6.
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Figure 6. Remaining useful life plots for the three bearings in
the validation set. The thick lines show the values predicted
by the neural network, with their corresponding standard de-
viation (dashed lines). The thin lines show the true values of
the remaining life. The values are relative to the total life of
training bearing 6.
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Figure 7. Remaining useful life plots for the bearing in the
test set. The thick lines show the values predicted by the
neural network with their corresponding standard deviation
(dashed lines). The thin lines show the true values of the re-
maining useful life. The values are relative to the total life of
training bearing 6.

4. DISCUSSION AND CONCLUSIONS

In the present work, we have developed an algorithm capable
of giving a quantitative prediction of the remaining useful life
(defined as the time to the origination of the first spall, or as
the beginning of the spall initiation phase) for ball bearings
under test conditions.

The algorithm consists of a deep neural network composed of
convolutional layers and LSTM units. It receives as input a
raw segment of the vibration signal produced by the bearing,
and outputs the remaining time before the beginning of the
spall initiation phase.

The performance of the algorithm is verified by using the
classic division of the data into a training, a validation, and a
test set. To avoid any data leakage between the data sets, and
to exclude any test rig-specific effect, each bearing is tested
on an independent test rig (of the same type). We obtain mean
absolute errors relative to the time to failure of 23%, 26% and
18% for each of the three bearings used in the validation set,
and an error of 25% for the bearing in the test set. The algo-
rithm is able to give an indication of the RUL even from the
beginning of the test; it is able to differentiate between bear-
ings that will be short- an long-runners. It also captures the
decreasing trend of the RUL of the bearings, with respect to
running time.

The presented methodology proves that vibration signals of
undamaged bearings contain information about the remain-
ing time before the beginning of the spall initiation phase
(origination of the first spall). Although identifying the fea-
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ture(s) or physical phenomena that evolve over time during
the bearing tests, and that are captured by the proposed deep
neural network, is beyond the scope of this work, we note
that there is extensive literature showing that the subsurface
of a bearing is constantly evolving during rolling contact fa-
tigue (Voskamp, 1997; Echeverri Restrepo et al., 2021). The
identification of the specific information that is being used by
the network to make the predictions remains a topic for future
investigations.

The present work opens the door to the development of novel
methodologies for early failure prediction, especially for sys-
tems that are sensitive to the effect of small defects, and that
require high running accuracy and/or high-speed performance.

Since it is still not clear what physical phenomena are being
captured by the algorithm to make the predictions of the re-
maining life, we recommend to study the process of material
decay that leads to the origination of spalls in the surface.
This will allow us to understand the inner workings of the
deep learning algorithm.
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