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ABSTRACT 

This paper reports diagnostics and prognostics study of boiler 

in power plant using actual boiler operating data. This study 

aims to early detect anomalies that occur in the boiler and to 

predict the remaining useful life (RUL) after anomalies are 

detected. The proposed method utilizes machine learning 

techniques through support vector machine (SVM) and 

random forest algorithm (RFA) for anomaly detection and 

similarity-based method of dynamic time warping (DTW) for 

RUL prediction. The developed method is validated by 

testing the prediction models using real operating data 

acquired from three boilers in power plant. The results show 

that some anomalies are successfully detected by prediction 

model even though there are anomalies that give low 

accuracies in predictions. RUL prediction also provides fair 

results given the limitations of the real data used in building 

prediction models. Overall, the results of this study have 

potential to be applied in real system as an auxiliary tool in 

the boiler condition monitoring to support boiler maintenance 

programs. 

1. INTRODUCTION 

Boiler is one of the important equipment in thermal power 

plant to generate electricity. Boiler converts chemical energy 

from fuel into thermal energy for steam generation (Dzikuć 

et al., 2020). The steam is then used to rotate steam turbine 

that drives electric generator to generate electricity that is sent 

to the network through the main transformer. Boiler consists 

of thousands of heat exchanger tubes that transfer heat from 

combustion fuel to feedwater in the tubes and change phase 

into superheated steam or steam to drive steam turbine. As 

important equipment, boiler must have high level of 

reliability and equipment availability. To keep the boiler 

system operating with good performance, maintenance 

strategy must be chosen properly. Preventive maintenance 

through periodic inspection is usually provided, but this will 

be expensive because of many technical interests and labor 

involved in preventive maintenance. Another method, 

namely condition-based maintenance (CBM), provides a 

maintenance strategy that involves installing many sensors 

including temperature and pressure sensors in many positions 

of the boiler system (Mushiri et al., 2018). In addition, the 

position of the water level in the drum is also an important 

parameter for boiler monitoring. Much data can be collected 

through sensors that represent the actual condition of the 

boiler. Further data analysis is then carried out on sensor 

variables including data interpretation to obtain parameters 

that are useful for boiler operation. In practice, boiler 

maintenance is usually carried out with a combination of 

preventive maintenance and condition-based maintenance to 

obtain a more beneficial and reliable maintenance system. 

Furthermore, CBM applied in boiler maintenance strategy 

should have the function of fault diagnostic and boiler health 

prognostic. Fault diagnostic means detection of some 

anomalies and isolation of fault symptoms based on 

parameters from sensor data. When fault symptoms appear 

for the first time at the early stage, it means an anomaly 

occurs, the CBM monitoring system will notify the operator 

through an alert indicating that the boiler has some problems. 

Prognostic means predicting how much time is left after the 

fault is first detected through the fault diagnostic task in the 
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CBM system. Prognostic is intended to predict the remaining 

useful life (RUL) based on historical data and actual 

degradation trends observed from condition monitoring 

information (Do et al., 2015). When the RUL is predicted, the 

decision maker can set a schedule for the boiler maintenance 

actions as well. 

Machine fault diagnostics and prognostics are interesting 

research topics in the field of engineering maintenance. The 

development of machine fault diagnostics and prognostics 

methods has attracted researchers' interest for many years. 

Montero Jimenez et al. (2020) reported based on a literature 

survey on the developed fault diagnostics and prognostics 

methods applied in predictive maintenance (Montero 

Jimenez et al., 2020). In this survey, he showed that there has 

been a significant increase in the number of publications on 

machine diagnostics and prognostics studies over the 25 

years to 2019. Other reviews also present similar results that 

a large number of research works related to prognostics have 

been carried out. And many literatures have provided a very 

good overview of the process in predicting machine RUL 

(Lei et al., 2018; Dalzochio et al., 2020; Diez-Olivan et al., 

2019). 

Basically, the methods applied in prognostics can be 

classified into two approaches: model-based and data-based. 

In model-based methods, prognostics is performed using the 

development of models of potential failure mechanisms and 

identification of locations in the system. Model-based 

prognostics involves the derivation of mathematical 

equations that represent the system in both normal and faulty 

conditions (Hong-feng, 2012; Lin & Ghoneim, 2016). 

Modeling of mechanical systems is sometimes not easy 

because of their very complex structures and different 

operating conditions of the system. In addition, determining 

a model that can represent the degradation status under 

various operating conditions and dynamic physical failure 

models is not an easy task. 

Therefore, another data-driven approach is needed to predict 

machine health, which is capable of detecting anomalies and 

predicting future machine status (Madrigal-Espinosa et al., 

2017; Duong et al., 2019; Sohaib & Kim, 2019). Data-driven 

approach is to utilize huge data to enable knowledge 

discovery in data and proper decision making with the help 

of certain methods such as statistical analysis or artificial 

intelligence. Statistical models in prediction build predictive 

models by fitting available observations into random variable 

models or stochastic models with probabilistic methods 

without relying on any physics and principles. Random 

variance is generally introduced into the variable model to 

describe the uncertainty caused by various types of source 

variability, such as temporal variability, unit-to-unit 

variability, and measurement variability. Therefore, 

statistical approaches are effective in describing the 

uncertainty of the degradation process and its impact on RUL 

prediction (Wang et al., 2016). Artificial intelligence 

methods are used for data-driven prediction by imitating the 

human brain that tries to learn the machine degradation 

pattern from historical data observations. The degradation 

process of mechanical systems is sometimes too difficult to 

be associated with physical or statistical approaches. 

Therefore, many researchers have proposed methods that 

treat and analyze such mechanical systems as black boxes. 

This means that the behavior of the system will be analyzed 

through the responses measured by sensors. The degradation 

patterns are then extracted from the sensor data where 

artificial intelligence can learn the dynamics of the patterns. 

In addition, using trained artificial intelligence, target 

parameters will be predicted to determine the RUL. The 

results of artificial intelligence approaches are actually 

difficult to explain due to the lack of transparency (Świercz 

& Mroczkowska, 2019). In addition, there are also many 

creative ideas proposed by some researchers that utilize 

hybrid methods that try to integrate the advantages of 

different approaches through some adjustments. Several 

papers report the use of hybrid methods in data-driven 

prognostics, for example by Liao and Köttig (2014), 

Sbarufatti et al. (2016) and (Acuña & Orchard, 2017). 

Boiler fault diagnostic studies are still an interesting research 

field because boilers are critical equipment in industry. 

Quasi-linear parameter variants (quasi-LPV) representing the 

dynamics of more critical variables including turbine 

pressure, drum pressure, and electric power are studied for 

the detection and isolation of boiler-turbine system faults 

(Madrigal-Espinosa et al., 2017). In their study, the proposed 

method contributes a reliable fault diagnostic system to detect 

sensor faults in a wide operating range of boilers. Duong 

studied boiler leak detection based on acoustic emission (AE) 

signals and deep learning methods used as an intelligence tool 

for leak detection (Duong et al., 2019). The proposed system 

idea uses the capability of AE sensors that are able to capture 

high amplitude impulses generated by the interaction 

between coal fuel flow and boiler tubes through signal shape 

information. However, this work was tested in a laboratory 

testbed scale or not in a real industrial environment. The use 

of AE sensors for boiler condition monitoring is still rare in 

real industrial applications due to the high-cost requirements 

for AE sensors and data acquisition units. Another study 

using AE sensors for boiler diagnostics was reported by 

Sohaib and Kim (2019). The following researchers also 

contributed some techniques for boiler diagnostics using their 

own adapted methods such as Wang et al., (2016), Swiercz 

and Mroczkowska (2019), Cui et al. (2020) and Panday et al. 

(2021). 

In addition to fault diagnostic methods, there are some studies 

reporting prognostics for boiler RUL. Khan studied the 

prognostics of steam generators (or boilers) in nuclear power 

plants based on Eddy current inspection data and particle 

filter (PF) method (Khan et al., 2011). The purpose of their 

study was to assess the condition of boiler tubes through RUL 

prediction to ensure corrective actions before tube leakage 
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that may cause accidents. The data used in their work were 

inspection data which means the steam generator was out of 

service. Nguyen et al. (2018) also worked on a data-driven 

method to predict boiler RUL. They used a time series 

analysis method namely autoregressive integrated moving 

average (ARIMA) on chemical plugging data on tube support 

plates (TSP) to predict boiler RUL. Similar to the previous 

study by Khan et al. (2011), the boiler condition was also out 

of service. 

This paper presents a study on boiler fault diagnostics and 

prognostics based on real industrial data. The data used in 

this study inline with the data used for boiler performance 

forecasting and monitoring reported by Jia et al. (2022), 

Hong et al. (2022) and Xu et al. (2024). The contribution of 

this study is that the data used for fault diagnostics and 

prognostics are acquired while the boiler is still in operation. 

There is no interruption to the steam generation process at all 

while the data are acquired. The data are collected by a 

supervisory control and data acquisition (SCADA) system 

streamed online from several sensors installed on the boiler 

and stored into a hard disk for further analysis. This is in stark 

contrast to some published papers that only use data from 

laboratory test benches or inspection data when the boiler is 

shut down. A machine leaning approach through support 

vector machine (SVM) and random forest algorithms (RFA) 

are applied as tools for automatic boiler detection and RUL 

prediction is performed using dynamics time warping 

(DTW). 

SVM is a very popular method in machine learning, 

introduced by Vapnik (2013), which is implemented in 

classification and regression for various fields of study in 

industrial applications. Alegeh et al. (2019) used SVM in the 

area of product service systems to monitor the degradation of 

a 5-axis gantry machine and used the results to offer 

maintenance services. Li et al. (2019) developed tool wear 

detection based on audio signal processing and data 

compression using PCA. In their work, SVM was used to 

detect tool conditions based on classification techniques. A 

recent paper presents a comprehensive review of machine 

learning, including SVM, in industrial applications has been 

reported by Bertolini et al. (2021). However, observing the 

publications related to boiler diagnostics, the use of SVM in 

this field is relatively few, for example the papers published 

by Chen et al. (2011), Berahman et al. (2013) and Khalid et 

al. (2020). In addition, RFA applied in boiler diagnostics was 

contributed by Shohet et al. (2019, 2020) but their work was 

for boilers in building systems rather than in power plants. 

The rest of this paper is organized as follows: Section 2 

describes an overview of boilers in power plants, Section 3 

presents the proposed framework for boiler fault diagnostics 

and prognostics including the presentation of the algorithms 

used in this study. Section 4 illustrates the experimental work 

including the results and discussion of the approach. Finally, 

the paper concludes with the research conclusions and some 

perspectives in Section 5. 

2. OVERVIEW BOILER IN POWER PLANT 

The target of the proposed method is a boiler that supplies 

steam to drive a 600 MW steam turbine-generator system. 

Figure 1 shows a simplified schematic diagram of the target 

boiler system. Basically, the boiler generates steam by 

boiling feedwater using thermal energy converted from fossil 

fuels. In the process of generating steam, first, the feedwater 

is preheated by extracting steam from the turbine in a device 

called feedwater heater. The preheated feedwater is pumped 

to the economizer for reheating with flue gas and then fed to 

the boiler drum. The feedwater and saturated water in the 

drum are transported to the evaporator through the 

downcomer and become saturated steam by absorbing radiant 

heat from the furnace. The saturated water and steam are 

separated in the drum. The primary steam from the drum is 

converted into high-purity superheated steam by the 

superheater and fed to the high-pressure (HP) turbine. After 

being fed to the HP turbine, the primary steam is reheated by 

the reheater and fed to the intermediate-pressure (IP) turbine 

and the low-pressure (LP) turbine. The primary steam leaving 

the LP turbine is then condensed into condensate water and 

pushed back as feedwater by the boiler feed pump to the 

feedwater heater for preheating before being fed back to the 

boiler again. For more details on steam generation, see Kitto 

and Stultz (Babcock & Company, 1923) and Sarkar (2015). 

Due to the continuous operation of boilers in power plants, 

some faults are inevitable to occur in their components. With 

the variation of operating conditions, the causes, types, and 

mechanisms of faults to boilers are also different. Therefore, 

boiler condition monitoring is needed which allows a real-

time monitoring system. Process monitoring data which is 

historical data from many variables operating with different 

output power, can be used to assess the boiler operating 

conditions and detect whether the boiler is faults or still 

normal (Indrawan et al., 2021). 

 

Figure 1. A simplified schematic diagram of boiler 
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3. PROPOSED APPROACH 

3.1. Framework 

This paper proposes a method for boiler diagnostics and 

prognostics based on condition monitoring data using a 

framework as shown in Figure 2. The proposed framework 

mainly consists of the following: 

1. Data acquisition and processing 

The boiler has been equipped with a SCADA system for 

remote monitoring which includes a data acquisition unit 

and data storage. Predictive models for diagnostics are 

developed using offline data, namely historical data 

available in the database system. The data used in 

developing the predictive model is operational data that 

includes normal and anomalous conditions. Data 

processing is carried out to improve data quality and to 

adapt the machine learning work environment used. The 

selection of sensor variables is intended to select sensor 

variables that are sensitive to anomalies (Khan et al., 

2023). When the sensor variables are selected, the process 

continues with the extraction of several statistical 

features, and the remaining sensor variables will not be 

used. Due to the varying working conditions of the boiler, 

data normalization is also included in the data processing 

to eliminate the influence of the order of magnitude (Sola 

& Sevilla, 1997; Orrù et al., 2020). After normalizing the 

data, labels are added to the data according to the data 

source originating from normal or fault conditions. In this 

work, labels are intended for multiclassification 

algorithms in supervised learning to detect more than two 

types of faults in the boiler. 

2. Module for boiler diagnostics 

This module is developed by training SVM and RFA with 

a portion of the input data set of sensor variables obtained 

in data processing. The prediction model is then tested by 

another portion of the input data set where this data has 

never been used for the training process. When good 

testing accuracy is achieved, the tested model will be 

considered as a prediction model for boiler diagnostics. 

The process of building a prediction model as described 

above is done offline. In addition, boiler fault diagnostics 

are performed based on an online process by recognizing 

some anomalous patterns contained in the sensor variable 

data. Once these patterns match the prediction model, the 

boiler condition is determined as well as anomaly 

detection. 

3. Module for RUL boiler prognostics 

The sensor variable containing patterns anomalies are 

monitored continuously and tend to follow degradation of 

boiler condition. In fact, there is a degradation period of 

the boiler from the time an anomaly is detected to system 

failure. RUL can be predicted using a method based on 

the similarity between online degradation of sensor 

variable and historical degradation using DTW. The 

historical degradation data is decomposed into several 

windows of a certain length and the RUL is estimated for 

each window. Finally, RUL of system is predicted 

according to the period in the historical case in which the 

data characteristics are the most similar to those in the 

current period. 

3.2. Anomaly Detection 

The purpose of fault diagnostics is to monitor the operating 

conditions and isolate the sensor variables that represent the 

actual condition of the monitored equipment, whether it is 

normal or faulty. Due to the large number of sensor variables 

that need to be assessed, the main tasks of fault diagnostics 

include the selection of sensor variables and anomaly 

detection methods. Sensor variables are also known as 

temporal variables. The selection of sensor variables must be 

done because not all variables contain information that is 

 

Figure 2. The framework of the proposed method 
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closely related to anomalies. Dealing with all sensor variables 

is subject to high complexity and a lot of computation time. 

Therefore, the proposed method involves the selection of 

sensor variables that produce important features for SVM and 

RFA training. 

SVM is included in the supervised learning method, namely 

a discriminative algorithm that separates examples of 

different class labels using a hyperplane. The solution is to 

find the optimal hyperplane that separates data that lies in 

opposite class labels so that it produces the maximum 

separation margin. SVM tries to place a linear boundary 

between two different classes, and orients it in such a way 

that the margin is maximized. In other words, SVM tries to 

find a boundary such that the distance between the boundary 

and the nearest data point in each class is maximized. Figure 

3 shows the SVM hyperplane placed in the middle of the 

margin between two points. 

Given the data D = {(Xi, yi)}, yi{-1, +1}, i = 1,…l where Xi 

is input samples and yi is output labels. These samples are 

assumed have two classes that is positive class and negative 

class. SVM aims to separate D by defining a hyperplane such 

that all data inputs in same class are on the same sides while 

maximizing the distance between two classes and separating 

hyperplane. The optimal separating hyperplane is presented 

by linear classifier as follows: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛{∑ 𝜆𝑖
𝑙
𝑖=1 𝑦𝑖  𝑋𝑇𝑋𝑖 + 𝑏}, i = 1, …, l (1) 

 

where sign(*) is the sign function and the Lagrange 

coefficients i is the solution of the following quadratic 

programming problem 

 

Maximize: 

𝑊(𝜆) = − ∑ 𝜆𝑖 +
1

2

𝑙
𝑖=1 ∑ 𝜆𝑖  𝜆𝑗  𝑦𝑖  𝑦𝑗  𝑋𝑖  𝑋𝑗

𝑙
𝑖=1   

 

(2) 

Subject to: 

           ∑ 𝜆𝑖𝑦𝑖 = 0𝑙
𝑖=1  

 

(3) 

           𝜆𝑖 ≥ 0  (4) 

 

In real industrial applications, classification problems usually 

involve data that can only be separated by nonlinear decision 

solutions. Therefore, the input data needs to be transformed 

into a high-dimensional space using a kernel function so that 

the nonlinear problem becomes linearly separable for the 

SVM classifier solution as presented in the following 

equation. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 {∑ 𝜆𝑖𝑦𝑖𝐾(𝑋, 𝑋𝑖) + 𝑏
𝑙

𝑖=1
} (5) 

The kernel functions applied to high-dimensional feature 

space is presented in Table 1 where, d is the degree of the 

polynomial, r is constant parameter and  is the kernel width 

parameter. 

 

Kernel K(X, Xi) 

Linear X T X i 

Polynomial (X T X i + r)d  

Gaussian RBF exp(–  X – X i2 /2 2) 

Sigmoid tanh(X T X i + r) 

Table 1. Formulation of the kernel functions: K(X,Xi) 

Another classification technique used for the proposed 

method is the random forest algorithm (RFA). RFA is an 

ensemble learning method that can be used for classification 

tasks based on the construction of a multitude of decision 

trees. RFA was created by Ho (Tin Kam, 1995) and an 

extension of this algorithm was developed by Breiman 

(Breiman, 1996, Breiman, 2001) which combines bagging 

and random feature selection methods to build a collection of 

decision trees controlled by variance. 

Given k random vectors k independent of the previous 

random vectors 1, 2, …, k-1 but with the same distribution to 

build a tree between RF. The corresponding individual 

classifiers are denoted by C(X, k), where X is the input 

vector. In the bagging process, random vectors k for 

observation number N are randomly drawn proportionally 

from the entire training data. This is referred to as random 

forest (RF) by Breiman (1996, 2001). 

RF deals with an ensemble of classifiers series C1(X), C2(X), 

…, Ck (X) and with the training process of a random data set 

from the distribution of random vectors Y, X, the margin is 

defined as 

 

𝑚𝑔(𝐗, 𝑌) = 𝑎𝑣𝑘𝐼(𝐶𝑘(𝐗) = 𝑌)  −
                        𝑚𝑎𝑥𝑗≠𝑌𝑎𝑣𝑘𝐼(𝐶𝑘(𝐗) = 𝑗)  

(6) 

where Y, 𝑎𝑣𝑘 and I() are the corresponding vector for class, 

the averages number of votes at X and the indicator function, 

respectively. In this case, the larger the margin, the more 

 

Figure 3. Classification in SVM using 

hyperplane 
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accurate the classification. In addition, RF generalization 

errors are given by 

 

𝑃𝐸′ = 𝑃𝑋,𝑌(𝑚𝑔(𝑋, 𝑌) < 0) (7) 

where PE’ is the probability that X, Y space is exceeded.  

 

In addition, one of the advantages of RF is that it is less likely 

to overfit when the number of trees increases. As the number 

of trees increases for almost all orders of k, PE’ converges 

to the following form: 

 

𝑃𝑋,𝑌(𝑃𝜃(𝐶(𝑋, 𝜃) = 𝑌) − 𝑚𝑎𝑥𝑗≠𝑌𝑃𝜃(𝐶(𝑋, 𝜃) =

𝑗) < 0)  
(8) 

RF does not experience overfitting when more trees are added 

while it produces limited generalization error values. 

In this paper, SVM and RFA are trained using input vectors 

selected from available sensor variables in the boiler 

monitoring process. The trained SVM and RFA are then used 

to predict class labels from new sensor variable data obtained 

from online process monitoring to detect the actual boiler 

condition. The predicted label outputs mean diagnostics of 

the actual condition as well as detection of boiler anomalies. 

3.3. Prediction of RUL 

RUL prediction is performed using a similarity-based method 

through two-variable DTW, namely historical degradation 

and online sensor variable degradation. In the RUL prediction 

study, DTW was reported by Barr' who applied health 

prognostics to electric vehicle batteries (Barr et al., 2014). 

Tao, et al. applied the similarity recognition method of online 

charging and discharging data curves using spatial DTW to 

estimate the capacity of lithium-ion batteries (Tao et al., 

2015). Que and Xu (2019) used DTW for steam turbine RUL 

prediction based on generator output power data because it 

has a good degradation tendency. 

Given two data sequences of time series 𝑃 =
 {𝑝1, 𝑝2, . . . , 𝑝𝑁} and 𝑄 =  {𝑞1, 𝑞2, . . . , 𝑞𝑀} the time warping 

distance between P and Q is defined recursively as follows 

 

𝐷𝑑𝑡𝑤(𝑃, 𝑄) = 𝑑(𝑀, 𝑁) (9) 

𝑑(𝑖, 𝑗) = (𝑞𝑖 − 𝑝𝑗)
2

+ 𝑚𝑖𝑛 {

𝑑(𝑖, 𝑗 − 1)
𝑑(𝑖 − 1, 𝑗)

𝑑(𝑖 − 1, 𝑗 − 1)
 (10) 

𝑑(0,0) = 0, 𝑑(𝑖, 0) = 0, 𝑑(0, 𝑗) = ∞, (𝑖
= 1, . . . , 𝑁;  𝑗 =  1, . . . , 𝑀) 

(11) 

 

where d(i,j) is the optimal distance between the first i and the 

first j elements of two time series P and Q. 

Assume that P is historian time series of sensor variables 

in the database with length LP, and Q is a new time series of 

same sensor variables coming from online with length LQ. 

The similarity of both time series is measured by introducing 

a size of LP-by-LQ matrix called SM. The SMi,j stands for the 

distance between points pa and qb in the series as follows 

 

𝑆𝑀𝑎,𝑏 = (𝑞𝑏 − 𝑝𝑎)2 (12) 

where a = 1,2, …, LQ and b = 1, 2, …, LP. Figure 4(a) shows 

the example of matrix SM that measures distances between 

P and Q as formulated in Eq. (10) with P = {1, 3, 5, 6, 9, 11, 

12, 13} and Q = {2, 4, 6, 8, 10, 12}. The optimal distance 

which is regarded as warping time path is calculated using 

Eq. (10) as shown in Figure 4(b). 

 

The RUL prediction method starts with the decomposition of 

the historical degradation time series P into m closed 

windows of fixed length Lm such that P = {P1, P2, …, Pm}. 

This decomposition allows some overlap between the 

decomposed windows as depicted in Figure 5. Let Ln be the 

length of the time series during the degradation period, then 

the RUL for each decomposed window is determined as 

follows. 

𝑅𝑈𝐿𝑃𝑘
= 𝑡(𝐿𝑛 − 𝑘𝐿𝑚) (13) 

 
(a) 

 

 
(b) 

Figure 4. Illustration of DTW with LP = 8 and 

LQ = 6: (a) Matrix SM for distances between pa 

and pb; (b) optimal distance of warping time 

path 
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where k = 1, 2, …, m and t is sampling interval of time series. 

 

In the online monitoring process, new data is sampled at time 

tnew and a new window is constructed as Qnew. The window 

length of Qnew is Lq which can be different from Lm. DTW is 

used to calculate the similarity of Pk and Qnew. The shortest 

distance between Pk and Qnew is considered as PSim which 

means the data series that is most similar to Pk in the new 

series Qnew. After PSim is determined, the boiler RUL is 

calculated using Eq. (13). 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed method is applied for boiler diagnostics in a 

power plant using a real data set collected from a SCADA 

system. The data set consists of 37 sensor variables recorded 

every minute using a SCADA system. The data set was 

obtained from three boilers namely SLA5, SLA6, and SLA7 

which are considered as similar boilers in the power plant. 

Table 2 shows the sensor variables used in the experimental 

work and the data presentation is presented in Figure 6.  

Machine learning (ML) training was conducted using ground 

truth data obtained from faulty boilers. The ground truth data 

includes 8 (eight) types of faults recorded with varying 

durations from September 2019 to May 2020. In addition, a 

set of boiler data under normal operating conditions was also 

added to the training data. As an example of ground truth 

data, the presentation of data when a boiler leak occurs in the 

superheater and in the header drain is depicted in Figure 7. 

 

Figure 5. Decomposition windows of historical time series 

degradation for case learning 
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Figure 6. Presentation of 37 sensor variables of boiler SLA5 

in single frame line plot 

 

No Sensor variable data No Sensor variable data 

1 Auxiliary Steam Header Pressure   20 Primary Air Duct Pressure   

2 Boiler Feed Pump T A: Feedwater Outlet 

Temperature   

21 PAH B: inlet Air Temperature   

3 Boiler Feed Pump-Turbine (BFPT) B: Feedwater 

Outlet Temperature   

22 PAH B: Outlet Air Temperature   

4 Boiler Total Air Flow   23 PAH B: Outlet Flue Gas Temperature   

5 Boiler Steam Drum Pressure    24 Riser To Steam Drum Side A Water Temperature   

6 Boiler Total Coal Flow   25 Riser To Steam Drum Side B Water Temperature   

7 Booster BFPT A: Outlet Pressure    26 Secondary Air Heater (SAH) A Differential Pressure    

8 Booster BFPT B: Outlet Pressure   27 SAH A: Outlet Pressure   

9 Economizer Outlet Feedwater Side B Temperature   28 SAH B: Differential Pressure    

10 Economizer Outlet Flue Gas Temperature   29 SAH B Outlet Pressure   

11 Generator Gross Capacity    30 Secondary Super Heater (SSH) Inlet Steam Side A: 

Temperature   

12 Primary Air Heater (PAH) A: Differential Pressure   31 SSH Inlet Steam Side B: Temperature   

13 PAH A: Outlet Pressure    32 Secondary Air Duct Pressure   

14 PAH B: Differential Pressure   33 SAH A: Inlet Air Temperature   

15 PAH B: Outlet Pressure    34 SAH B: Inlet Air Temperature   

16 Primary Super Heater (PSH) Inlet Steam Side A 

Temperature   

35 SAH B: Outlet Flue Gas Temperature   

17 PSH Inlet Steam Side B Temperature   36 Soot Blower Steam Side A Pressure   

18 PSH Outlet Steam Side A Temperature   37 Soot Blower Steam Side B Pressure  

19 PSH Outlet Steam Side B Temperature     

Table 2. The sensor variables acquired by SCADA system 
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The figure shows a comparison of sensor variable data when 

the boiler is in normal condition and leaking. Table 3 shows 

the class and composition of training data to build a 

prediction model. Considering Table 3, the training process 

for ML must be carried out using a multiclassification 

strategy so that learning can capture all features of the boiler 

condition. Before the training process is carried out, the data 

needs to be preprocessed to get the best training performance. 

First, exploratory data analysis (EDA) is conducted to assess 

data quality and extract meaningful insights. This step 

involves removing noise and outliers, as well as imputing 

missing values in the dataset. Second, data normalization is 

applied using a scaling method to rescale the sensor data 

values to a range of 0-1. This is necessary due to the 

significant differences in the magnitude of the sensor data 

values. 

 

 

Class Condition remarks 
# of 

data  

c0 Normal condition 1508 

c1 Leak in superheater  419 

c2 Leak at convection pass wall 

(CPW) 

244 

c3 Leak on header drain HCP-PSH 207 

c4 Noise in secondary superheater 176 

c5 Leaks (unspecified) 164 

c6 Leak in secondary superheater 105 

c7 Leaks at sootblower 103 

c8 Leak in primary superheater 82 

Table 3 Class and composition of training data 

Next, feature extraction is performed to transform the data 

from the original time series into a certain form that has 

minimum noise and can represent the data trend. In this study, 

five statistical features, namely mean, median, variance, 

skewness and kurtosis, were extracted from the sensor 

variable data. In total, there were 185 features extracted from 

37 sensor variables. The extracted features were then 

normalized using the min-max formula to eliminate the order 

of magnitude between the data. 

4.1. Diagnostics Prediction Model 

4.1.1. SVM Prediction Model 

The SVM model predictions are generated by training the 

SVM using 70% of the data features and the remaining 30% 

of the data features are used to validate the trained model. The 

training process includes the selection of the kernel function 

and hyperparameters of the kernel function used in the SVM. 

The selection of hyperparameters (also known as tuning) is 

very important in SVM learning because it affects the 

accuracy of the prediction model. In training, four kernel 

functions as presented in Table 1 are used and several ranges 

of hyperparameter values are investigated regarding the 

training accuracy. The target hyperparameter ranges are 

shown in Table 4.  

If gamma_range = ‘scale’ is passed then it uses 

1/(n_features*X.var) as the gamma value, where n_features 

and X.var are the number of features and their variances 

respectively. The selection of appropriate hyperparameters 

involved 48 combinations performed using the random 

search cross-validation method with 5 folds and 100 

iterations. 

Hyperparameters Options 

C  0.1, 0.2, 0.5, 0.8, 1, 2, 5, 10 

Gamma 0.00001, 0.0001, 0.001, 0.01, 0,1, ‘scale’ 

Kernel linear, sigmoid, rbf, poly 

Table 4. Hyperparameter options for SVM training 

 

The results of the SVM training are summarized in Table 5. 

The best SVM model obtained from this training used the 

RBF kernel function with hyperparameters C and Gamma of 

0.8 and 0.1, respectively. 

 

Kernel 

functions 
C Gamma 

Validation 

accuracy 

(%) 

Test 

accuracy 

(%) 

Linear 0.2 0.00001 92.10 91.93 

Sigmoid 5 0.01 90.40 88.85 

Gaussian RBF 0.8 0.1 95.50 94.51 

Polynomial 0.5 0.1 93.50 94.17 

Table 5. Results of SVM training 

In addition, this study also utilizes principal component 

analysis (PCA) to reduce features from the original dataset 

 
(a) 

 
(b) 

Figure 7. Sensor variable data of boiler: (a) Leak at 

superheater (c1); (b) Leak on header drain (c3) 
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while retaining as much information as possible from the 

original data (Świercz & Mroczkowska, 2019; Khan et al., 

2023). Another benefit of using PCA is that it is very reliable 

in small datasets (Martinez & Kak, 2001). The feature 

reduction scenario is included in the SVM training to find the 

best feature set shown in Table 6. There are 384 combination 

pairs that have been calculated in finding the proper 

hyperparameters using random search with 5-fold cross 

validation and 100 iterations. The results of SVM training 

with PCA feature reduction are presented in Table 7. The 

SVM model using the RBF kernel function with C = 0.8 and 

Gamma = ‘scale’ is the best model obtained through training 

with 150 principal components (PC). 

 

Hyperparameters Options 

C  0.1, 0.2, 0.5, 0.8, 1, 2, 5, 10 

Gamma 0.00001, 0.0001, 0.001, 0.01, 0,1, ‘scale’ 

Kernel linear, sigmoid, rbf, poly 

#PC 5, 10, 15, 20, 25, 50, 100, 150 

Table 6. Hyperparameter options for SVM and PCA 

Kernel 

functions 
# PC C Gamma 

Validation 

accuracy 

(%) 

Test 

accuracy 

(%) 

Linear 150 0.2 0.01 94.70 95.69 

Sigmoid 150 10 0.01 94.30 95.69 

Gaussian 

RBF 

150 0.8 ‘scale’ 96.40 95.81 

Polynomial 150 10 0.1 95.90 95.14 

Table 7. Results of SVM training with PCA 

4.1.2. RFA Prediction Model 

RFA training involves fine-tuning the hyperparameters to 

obtain the best RFA model. The hyperparameters in RFA are 

tuned within the following ranges as shown in Table 8. 

Hyperparameters Options 

Estimators 500, 666, 833, 1000, 1166, 1333, 1500, 

1666, 1833, 2000 

max_features log2, sqrt 

max_depths 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 

min_samples_split 2, 7, 12, 18, 23, 28, 34, 39, 44, 50 

min_samples_leaf 2, 7, 12, 18, 23, 28, 34, 39, 44, 50 

Table 8. Hyperparameter options for RFA 

Hyperparameter tuning was performed using the random 

search cross-validation method with 5 folds and 100 

iterations. There are 30,000 pairs of hyperparameter 

combinations that have the potential to be the best parameter 

candidates. The selected ‘sqrt’ means the number of features 

used for splitting nodes is the square root of the total number 

of features. The rationale behind this setting is to introduce 

randomness in the decision-making process of each tree, 

helping to prevent overfitting and ensuring that the trees in 

the forest are diverse. This randomness makes the model 

more robust and often leads to better generalization on unseen 

data. After tuning, the best hyperparameter pairs are obtained 

as summarized in Table 9. These parameters yield excellent 

training performance, achieving 97.20% accuracy on the 

validation set and 98.30% on the testing set for the best RFA 

model. 

Hyperparameters Options 

Estimators 500 

max_features sqrt 

max_depths 9 

min_samples_split 7 

min_samples_leaf 2 

Table 9. Selected hyperparameter options for RFA training 

4.1.3. Boiler Diagnostics 

Boiler anomaly detection and diagnostics are performed by 

testing the trained SVM and RFA models using new sensor 

variable data collected from boilers SLA5, SLA6, and SLA7 

from July 20 to September 10, 2020. These data are processed 

using a method similar to the training data as described 

previously. The anomaly detection prediction accuracy for all 

boilers is summarized in Table 10. 

Table 10 shows that the prediction of SLA5 boiler conditions 

is dominated by normal conditions (c0) with prediction 

accuracies of 81.30%, 83.42% and 99.92% for SVM, SVM-

PCA and RFA, respectively. Another condition predicted by 

the model is noise in the secondary superheater (c4). 

However, the prediction accuracy of c4 is relatively low, only 

reaching a maximum of 18.70%, 16.58% and 0.08% for the 

SVM, SVM-PCA and RFA models, respectively. This means 

that noise in the secondary superheater does not occur in the 

SLA5 boiler. In addition, other class patterns such as c1, c2, 

c3, c6 and c8 are not captured by the model because there are 

no features related to these conditions in the sensor variables. 

Boiler 
Class predicted (accuracy in %) 

SVM SVM-PCA RFA 

SLA5 c0 (81.30) c0 (83.42) c0 (99.92) 

c4 (18.70) c4 (16.58) c4 (0.08) 

SLA6 c0 (77.77) c0 (80.60) c0 (100.00) 

c4 (22.23) c4 (19.40)  

SLA7 c0 (90.49) c0 (88.61) c0 (93.56) 

c2 (0.08) c2 (0.08) c4 (0.24) 

c3 (0.08) c4 (1.96) c5 (1.41) 

c4 (1.65) c5 (4.32) c6 (0.55) 

c5 (4.24) c7 (4.79) c7 (0.08) 

c7 (3.22) c8 (0.24) c8 (4.16) 

c8 (0.24) - - 

Table 10. Anomaly detection prediction accuracy for all 

boilers 
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The prediction of the SLA6 boiler condition gives a normal 

condition (c0) of 77.77% and 80.60% for the SVM and SVM-

PCA models, respectively. The noise condition in the 

secondary superheater is also captured by the SVM and 

SVM-PCA models with prediction accuracies of 22.23% and 

19.40%, respectively. This accuracy is relatively low and it is 

difficult to consider the actual condition of the SLA6 boiler. 

The RFA prediction model only captures the normal 

condition (c0) with an accuracy of 100%. This experiment 

concludes that the condition of the SLA6 boiler is normal. 

The condition of the SLA7 boiler is normal (c0) based on 

predictions from all models with accuracies of 90.49%, 

88.61% and 93.56% for the SVM, SVM-PCA and RFA 

models, respectively. All prediction models agree that the 

condition of the SLA7 boiler is normal even though there are 

other conditions that are also captured but the accuracy is 

relatively low. The highest prediction accuracy for abnormal 

conditions is only 4.79% for leaks in the sootblower (c7) and 

the others are lower.  

By observing Table 10, the prediction results are consistent 

for all model predictions. The boiler condition is predicted 

under normal operating conditions based on the test data. In 

this work, the use of PCA for dimensionality reduction does 

not provide significant improvement in SVM accuracy. As 

presented in the training, the best selection of the number of 

principal components results in 150 principal components for 

the best SVM prediction model. SVM with PCA provides 

better accuracy than the SVM prediction model in detecting 

normal conditions for SLA5 and SLA6 boilers although only 

slightly different. In the prediction of anomalies such as noise 

in the secondary superheater (c4) SVM is better than SVM-

PCA in prediction accuracy but also only slightly different. 

The difference in prediction accuracy is not more than 3% 

concluding that the two models are similar. In addition, the 

prediction of the SLA7 boiler condition provides normal 

conditions with 90.49% and 88.61% for the SVM and SVM-

PCA prediction models, respectively. There is a slight 

difference in prediction accuracy which is less than 2% 

indicating that the models are similar. In addition, the 

prediction model can capture and recognize features derived 

from other anomalies as summarized in Table 10. At least 

five anomalies were successfully detected by the prediction 

model but the accuracy was very low. This happened to both 

the SVM and SVM-PCA prediction models and both gave 

little difference. 

The performance of RFA prediction model outperforms 

SVM and SVM-PCA prediction models as shown in Table 

10. In the case of RFA performance, Han et al. (2018) also 

reported similar results that RFA outperforms SVM in terms 

of recognition accuracy in a study of intelligent diagnosis of 

rotating machinery. Another paper reviewing the application 

of ML in predictive maintenance has mentioned the 

performance of RFA outperforming other ML techniques 

(Çınar et al., 2020). In the condition prediction of SLA5 and 

SLA6 boilers, the RFA prediction model has almost 100% 

accuracy in predicting the normal conditions of these boilers. 

Meanwhile, the normal condition prediction of SLA7 boiler 

using RFA also gives better accuracy than SVM. The RFA 

prediction model can recognize other anomalies in SLA7 

boiler, but its accuracy is low. 

The performance of the prediction model in this work 

certainly cannot be applied generally to all boilers. Machine 

learning has special characteristics in terms of building 

predictive models and depends on the data used in training. 

The prediction target must come from the system where the 

prediction model is built. In addition, the architecture of the 

prediction model is also an important phase as well as the 

design of the classification rules. Basically, the more 

examples for ML training, the better the performance of the 

prediction model will be obtained. 

4.2. RUL Prediction Model 

The use of machine learning techniques, specifically SVM 

and RFA methods, for boiler diagnostics has been thoroughly 

explored with the goal of identifying the root cause of 

malfunctions. In this section, boiler prognostics based on 

DTW will be discussed, with the aim of predicting the RUL 

of the boiler before failure occurs. Similarity-based DTW is 

constructed to build a prediction model for RUL prediction 

as discussed in Section 3.3. The selection of sensor variables 

for prediction input purpose is done by training SVM and 

RFA independently to find the most influential sensor 

variables in the prediction model for anomaly detection. The 

top five selected sensor variables with the highest scores are 

as follows: Generator gross capacity, Booster BFPT A: 

Outlet pressure, Booster BFPT B: Outlet pressure, Riser to 

steam drum side B: Water temperature, and Boiler steam 

drum pressure. 

The online data used to test the RUL prediction was recorded 

from July 30-31, 2020. Figure 8 shows the anomaly detection 

prediction based on the generator gross capacity sensor 

variable degradation. The left and right axes represent the 

generator gross capacity and the class (or anomaly) condition 

of the SLA7 boiler, respectively. Initially, the boiler 

condition was still in normal operation until condition c5 was 

detected. However, the detection of c5 was in a very short 

 
Figure 8. Anomaly detection of SLA7 boilers based on 

generator gross capacity degradation 
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duration at the initial stage and then changed to condition c0 

otherwise but still in a short time. Condition c4 was also 

detected but only for a few minutes before the final 

degradation. Finally, condition c5 was detected again until 

the final degradation based on the generator gross capacity 

sensor variable. 

Once the anomaly is detected, the prediction system starts 

working to execute the RUL prediction model based on the 

similarity between the degradation patterns contained in the 

online data and in the historical database through DTW. The 

RUL prediction results are presented in Figure 9. In the early 

stages, the RUL prediction using DTW for time data 0 - 70 

minutes remains relatively constant, as the data closely 

resembles normal conditions, with the RUL around 191 

minutes.. Then for time data 71 - 140 minutes, the RUL 

prediction results vary and are unstable because there is only 

a little degradation in the data sensor. The RUL prediction 

produces a relatively constant value for time data 141 - 225 

minutes because the sensor variables also tend to be constant 

values and do not show degradation. After the 226th minute, 

the RUL sharply declines from 170 to approximately 80 

minutes, following a substantial reduction in the generator 

gross capacity. Finally, the RUL decreases from around 80 

minutes to the end of life for time data 226 - 344 minutes and 

the generator's gross capacity has reached zero. 

 

It can be found that from Figure 9, the predicted RUL is 

relatively far from the actual RUL at the beginning prediction 

stage until reaches time data around 140 minutes. This is 

because the decline rate of degradation of the sensor 

generator gross capacity also very small. At above time 

range, the historical degradation data Psim cannot truly 

approach the path of degradation tendency of Qnew from 

online data. The predicted RUL is improved and get near to 

the actual RUL for time data 140 – 200 minutes but after that 

tends to away again from actual RUL until reaches time data 

around 226 minutes. The RUL prediction improves after the 

226th minute and continues to closely align with the actual 

RUL in the final stages, as shown in Figure 9. Overall, the 

prediction errors are 73.47 for RMSE and 56.36 for MAE.  

 

In the RUL prediction, the degradation information from the 

sensor variables is important parameter as well as 

degradation trend that produce an obvious gradually trend. 

When the decline rate of degradation is gradually accelerated 

as depicted in the final period of RUL, the result of prediction 

can be improved. This means that the historical degradation 

data Psim can well approach the path of the degradation 

tendency of Qnew obtained from online system. Besides that, 

Figure 10-12 show the predicted RUL based on selected 

sensor variables used in the RUL prediction training. The 

selected sensor variables report similar trends when the boiler 

experiences anomalies and suffers degradation conditions. In 

this work, the results of RUL prediction around 191 minutes 

based on real system data seems unreliable but this fact 

cannot be avoided because of the real system can only 

provide very limited degradation data from boiler operating 

data for training. The proposed system can capture the 

degradation presented in the sensor variable with respect to 

 
Figure 9. RUL prediction of boiler 

 

 
Figure 10. Predicted RUL according to generator gross 

capacity 

 

 
Figure 11. Predicted RUL according to booster BFPT A: 

outlet pressure 

 

 
Figure 12. Predicted RUL according to booster BFPT B: 

outlet pressure 
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predicted RUL especially starting from 226th minutes and 

showing consistency for top five selected sensor variables. 

5. CONCLUSIONS 

This paper presents a study on boiler diagnostics and 

prognostics based on real data obtained from an industrial 

power plant. Boiler diagnostics are performed using 

multiclass classification methods through SVM and RFA. 

The proposed method demonstrates that anomaly detection is 

effective and can be used for the early identification of boiler 

conditions, particularly those associated with common fault 

types such as leakage. Predictive models for diagnostics and 

anomaly detection are developed using ground truth data 

obtained when the boiler experiences some anomalies. The 

quality of ground truth data is very important and determines 

the quality of the prediction model obtained from ML 

training. Ground truth data with prominent fault features and 

sufficient in size and time duration will produce good 

prediction models for diagnostics and prognostics. In this 

work, the proposed method successfully detects the boiler 

condition when new sensor variables are introduced into the 

system. Therefore, it can be applied in boiler condition 

monitoring and can help operators or operation managers to 

know the boiler status early or to make decisions in case of 

undesirable conditions. In addition, the prognostic task is also 

confirmed through boiler RUL prediction using similarity-

based DTW utilizing historical and current degradation data. 

In this work, historical degradation data serves as a reference 

to determine new paths of degradation conditions related to 

RUL prediction. Once historical degradation data is recorded 

at a gradual decline rate, it can serve as a good reference for 

RUL prediction based on the similarity method. 

It should be noted that in the presented study, all 

characteristics in the data and operating conditions cannot be 

involved, which causes difficulties and some limitations as 

follows: 

1. The exact time when the boiler starts to experience 

anomalies is difficult to measure precisely. Training 

data for anomaly detection is collected from the 

database in the power plant based on operator reports. 

2. In real systems, the dynamics of degradation that 

change over time cannot be captured in the overall 

situation, therefore the prediction model for RUL 

prediction still has limitations and produces relatively 

short predictions. 

3. Operating conditions in power plants can change in a 

relatively short period, i.e., the load so that operating 

data becomes temporary while anomaly detection is 

developed based on training steady-state data, so this is 

a real challenge in fault detection studies. 
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