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ABSTRACT 

Understanding the limitations of incorporating conventional 

machine learning synergy led to the inclusion of physics 

knowledge. This study presents the potency of physics-

informed feature engineering for machine learning to 

enhance fault detection in gears, shafts, and bearings at three 

constant-speed running conditions. AI models such as 

Decision Tree (DT), Random Forest (RF), and Support 

Vector Machine-Radial Basis Function (SVM-RBF) are 

constructed to verify traditional statistical performance 

metric and physics-based signal descriptors. Additionally, 

time-frequency domain representation as spectrogram 

images is fed into the CNN-oriented ResNet-152 architecture 

to demonstrate the skillfulness of the model’s ability. Based 

on the results obtained, RF is observed to be supreme with 

98.42% upon applying physics-centric parameters when 

compared with statistical variables. To make an inference, 

further comparison of the best classification model’s 

accuracy using physics expertise when accounted with 

ResNet image-based categorization, physics-grounded RF 

models have premier achievements. Thus, it is concluded that 

physical laws are expedient in offering exceptional outcomes 

for identifying various defects in complex industrial rotary 

machines in different operating modes. 

Keywords: Fault diagnosis, Physics-informed machine 

learning, CNN-based ResNet, Rotational machinery 

1. INTRODUCTION 

With regard to reliable operations in rotational machines, 

effective fault diagnosis is perceived using AI techniques (R. 

Liu et al., 2018). The fault prediction of essential machine 

components such as bearings, gears, and shafts are 

distinctively performed by vibration analysis with the aid of 

AI-based condition monitoring (Y. Liu & Zhao, 2022). 

Undoubtedly, vibration signals are significantly proven in 

detecting the presence of component deformities in rotational 

machines (Praveen Kumar et al., 2024). A discovery of 

another perspective states that either a pure machine learning 

(ML) or pure physics-based method is inconvenient if there 

is a sparse dataset and a lack of mechanical failure 

knowledge. In this scenario, physics-informed machine 

learning (PIML) has evolved to address these issues and 

accurately predict faults (Deng et al., 2023). Though various 

existing deep learning (DL) techniques have gained optimal 

results, which are dependent on larger datasets, this fails to 

reproduce meaningful physics knowledge. This infused 

physics-informed concepts in the DL model for the open-

accessible bearing dataset are used to attain reasonable 

diagnostic performance (Shen et al., 2021). Thus, the 

implication of physics concepts in these AI models 

strengthens the failure analysis in complex industrial 

systems.  

The complexity in industrial environments, such as 

continuity of component degradation, the need for high 

maintenance, and changes in operational mode, enlarges and 

introduces challenges in identifying multi-component defects 

(Yang et al., 2022). In this concern, statistical features can be 

calculated for the divided samples of mechanical 

equipment’s time-domain vibration signals to distinguish 

healthy and abnormal machine health status (Shukla et al., 
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2016). To increase the benefits of attaining the expedient 

solution in the aforementioned industrial plant issues, Xing et 

al. (Xing et al., 2020) have explained that the multi-

component faults are detected effectively using Fast Iterative 

Filtering (FIF). This technique decomposes signals utilized 

from several components into intrinsic mode function (IMF) 

with the assistance of Fast Fourier Transform (FFT). A 

popularly known machine fault analysis, Time-Frequency 

representation (TFR) (Park et al., 2022), is utilized to extract 

valuable signal properties. Short-Time Fourier Transform 

(STFT) (Shi et al., 2016), Wavelet Transform (WT) (Park et 

al., 2019), Wigner-Ville Distribution, etc., serve to provide 

TFR. Zhang et al. (Zhang et al., 2021) have applied Wavelet 

Packet Transform (WPT) to the raw vibration signals of the 

wind-turbine gearbox and adopted improved residual 

network (ResNet) for TF feature extraction. This yields 

superior classification accuracy in recognizing five health 

states of bearings and four different faults in gears. Hertrampf 

et al. (Hertrampf & Oberst, 2024) have applied the integration 

of recurrence-based power spectra and machine learning to 

improve the identification of noise-contaminant non-linear 

signals by training its spectrogram images using ResNet-50. 

Thus, several elements’ mechanical failures are revealed 

through statistical-based and TFR-based approaches in a 

concise manner by planning systematically. Especially, 

ResNet has evidently proved that TFR images via transform 

methods can assess the failures in rotary machines prudently.  

Routinely discussed downfall in rotational machinery can be 

mitigated by inputting the signal’s features into the developed 

ML models (Rameshkumar et al., 2024). The contribution of 

individual features is justified through the classification 

algorithm, and this proves the feature’s efficacy (Parihar et 

al., 2024). For instance, statistical parameter values are 

extracted from vibration signals for the wind turbine blade, 

and further relevant attributes are selected to send as source 

input data into the decision tree to identify different faults in 

the blade which resulted in 91.67% accuracy (Joshuva. & 

Sugumaran., 2017). Tom et al. (Toma et al., 2020) have 

summarized that Decision Tree (DT) and Random Forest 

(RF) have gained 98% of fault classification accuracy by 

estimating statistical properties from motor current signals in 

bearings and selecting it using a Genetic Algorithm (GA). 

Kannan V. et al. (Kannan et al., 2023) have chosen DT, SVM, 

and Artificial Neural Network (ANN) for discriminating 

multi-variate problems using statistical metrics with linear 

and quadratic discriminant analysis. Nair et al. (Nair et al., 

2024) have also adopted ML techniques such as SVM, DT 

and ANN in machining systems for machining process 

conditions. From the previously cited articles, classification 

achievement for the statistical-based derivations in 

categorizing multi-faults, DT, RF, and SVM models are 

involved. In this proposed research work, these three familiar 

models are utilized to check the proficiency of physics-based 

features in multicomponent fault recognition.  

Fault characteristic frequencies (FCF) (Hou et al., 2021)give 

detailed information on machine elements by valuating 

signals using FFT. This transforms time-domain to 

frequency-domain, where various FCFs can be achieved. In 

the fault diagnosis process, the variation in amplitude at a 

particular a fault characteristic frequency (FCF) indicates 

fault exists in the corresponding component. The FCF values 

depend on the geometry and rotational speed of the 

component, which are obtained from the physics-derived 

equation. Very few works are attempted to utilize these 

physics-based features to generate a prediction model in the 

bearing fault diagnosis. The physics-derived domains are 

combined with data-driven to generate adaptive solutions for 

fault diagnosis (Li et al., 2023). In general, FCFs are 

computed to detect component faults. Selecting sub-bands 

around these frequencies based on known physical 

characteristics of bearing faults ensures that features used for 

fault identification are grounded in the mechanical behavior 

of components (Shen et al., 2021). In the proposed work, the 

effectiveness of these physics-based features is extended to 

multi-component fault diagnosis and compared with data-

driven features. 

From the formerly stated review, it is concluded that physics-

informed feature engineering for ML techniques is 

proficiently resolving the constraints faced if statistical 

attributes are individually fed into classifiers such as DT, RF, 

and SVM for fault prediction. To emphasize this subject area, 

Convolution Neural Network (CNN)-based ResNet, as 

debated in the earlier topics, is also accounted for in the 

comparison. To promote the novelty in this current 

investigation, the comparative analysis of time and 

frequency-domain signal aspects is taken into consideration 

for showcasing mechanics-informed machine learning. This 

is taken forward with the TFR images using STFT into 

ResNet for reaffirming the proficiency of physics-based fault 

classification in this research aspect. 

Feature engineering is a primary step in machine learning that 

includes feature creation, transformation, and extraction for 

enhancing the model performance. In consideration of this 

point, the uniqueness and main contribution of the proposed 

work is to illuminate the physics knowledge in the input data 

by extracting the FCF information of multi-component 

rotational machines from the frequency-domain. This is 

implemented to inherit the need for physics-guided 

parameters for recognizing machine health. Further, the 

influence of the planned feature engineering (FE) strategy in 

enriching the fault identification rate through a well-suited 

prediction model is emphasized. In addition, this is 

empowered with the comparative results of the model for 

different classes. 

The research work methodology is explained in Section 2. 

Experimental setup and procedure are elaborated in Section 

3. Section 4 has transparently expounded the output of fault 

recognition using machine learning with the aid of traditional 
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and physics-grounded machine learning concepts. With this 

continuity, as a comparative methodology, image-focused 

CNN classification are elucidated in Section 5. Further, 

results of different domain knowledge themes are inferred in 

Section 6. Finally, the conclusions are drawn in Section 7. 

2. METHODOLOGY OF PROPOSED WORK 

The intended research work involves a well-planned structure 

of integrating different domain attributes, and it is referred to 

as physics-informed ML based on the signal characteristics. 

The flowchart of the application of physics-derived features 

for the ML model is clearly depicted in Figure 1, and further 

CNN-ResNet is leveraged using TFR images in Figure 2 for 

illuminating the excellence of the planned methodology. To 

begin with, vibration data are collected using an 

accelerometer under three different speeds during machinery 

operation. The collected signals are then subjected to a series 

of preprocessing steps to prepare them for feature extraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of implementation of Physics-informed 

feature engineering for machine learning technique with the 

comparison of statistically-derived fault diagnosis.   

In the feature extraction phase, statistical traits are derived 

from time-domain signals. These characteristics include 

mean, median, mode, minimum, maximum, sum, variance, 

standard deviation, skewness, and kurtosis. Simultaneously, 

the accrued signals are transformed from time to frequency 

domain using FFT. This conversion facilitates the extraction 

of amplitudes of fault frequencies such as Ball Spin 

Frequency (BSF), Ball Pass Frequency Outer Race (BPFO), 

Ball Pass Frequency Inner Race (BPFI), and Fundamental 

Train Frequency (FTF) along with shaft and gear fault 

frequency. The peak amplitude values at these FCF represent 

the physics-based information about the mechanical 

equipment’s failure. These peak values, when paired with the 

statistical characteristics, provide a rich dataset for training 

and testing the ML model classifiers. 

In contrast to the above innovative methodology, implying 

CNN uplifts the noteworthiness of physics-based model 

classification in a transparent perception. Figure 2 exhibits 

the transformation of vibration signals to spectrogram images 

that represent the signals in the time-frequency domain. This 

is then further processed using ResNet architecture for 

image-based fault diagnosis. 

 

 

 

 

 

 

Figure 2. Time-frequency representation image classification 

using ResNet model 

The interpretability of the significance of ML classification 

using physics-dependent features is deliberately explained 

through fault diagnostic accuracy by comparing it with the 

robust CNN model to ensure the safeguarded machine 

functions under various conditions. 

3. EXPERIMENTAL SET-UP AND PROCEDURE 

This sections describes the experimental arrangement to run 

the machine as per the operational settings. For 16 mixed 

defect combinations of bearings, gears, and shaft, vibration 

signals are acquired using accelerometer. Machine fault 

simulator with vibration sensor and other several critical 

components are enlisted in this experimental set up as shown 

in Fig 3.  

Figure 3. Fault Simulator Setup 

The overall procedure begins with the rotational machinery 

running at a constant speed condition of 500, 750, and 1000 

Acquisition of 

machinery vibration 

Statistical Feature 

Extraction 
Physics-based 

feature extraction 

using FFT 

Machine learning 

classifiers for training 

and testing data 

Model-based 

classification accuracy 

Acquisition of 

vibration data 

Pre-

processing 
Spectrogram 

image using 

STFT 

Image classification using 

ResNet to train and validate 
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rpm to acquire vibration signals at the sampling rate of 8192 

Hz for 100 seconds. This extensive dataset of different fault 

conditions is then divided into one hundred segments, with 

each segment containing 8192 data points. Relevant signal 

characteristics retrieval from each of the signal segments is 

executed. 

The primary components considered for labeling include 

shaft, bearing, and gear-pinion configurations.  

In each of the components, different health states are as listed 

below: 

a) Good gears (GG) and Faulty gears (FG) 

b) Bearings with normal (GB), Inner Race Fault 

(IRFB), Outer Race Fault (ORFB) and combined 

inner race with outer race faults (BOTHFB) as four 

bearing health status 

c) Shaft are of balanced (BS) and unbalanced state 

(UNBS) 

The equipment health is portrayed in Figure 4, and it is 

combined in a varied mixture that is collectively totaled as 

sixteen fault conditions.  

 

Figure 4. (a) 

 

Figure 4. (b) 

 

Figure 4. (c) 

Figure 4. Different fault states of (a) Gears (b) Bearings and 

(c) shaft 

Following this, well-suited signal behaviours are 

asceratained from the sensor-accumulated data in different 

domains and debated in the following sections to enlighten 

the vital objective of the investigative problem. This can be 

expressed differently as domain-centric features, which are 

retrieved from the signals acquired via sensors and fed into 

the ML and CNN classifiers for focusing on the impact of 

physics-centric parameters.  

4. MACHINE LEARNING BASED FAULT DIAGNOSIS 

The theory of machine learning centralizes the diagnostic 

model learning of correlation between features and system 

health states. This enhances the fault diagnostic accuracy by 

adaptive learning through experience without requiring 

manual expert knowledge (Lei et al., 2020). By utilizing this 

algorithm, domain-focused statistical features are fed to 

SVM, RF, and DT to verify the model performance as well 

as the efficacy of input features. Moreover, conceptual PIML 

technique is majorly given attention to prove its primacy over 

data-driven ML concepts.   

4.1. Statistical feature-based ML classification 

Statistical features (SF) of time series represent the 

underlying details of original data, thereby rendering reliable 

classification results (Ge & Ge, 2016). Therefore, the 

following attributes are quantified for sourcing into the 

persistently noted ML classifier models.  

1) Mean is the most common measure of central 

tendency, which indicates the sum of all the values in 

a dataset divided by the number of values. 

𝑀𝑒𝑎𝑛 =  
∑ 𝑓𝑥

𝑁
                            (1) 

2) Median is a measure of central tendency that is less 

affected by outliers and is termed median. It is a mid-

value in a dataset that is sorted in ascending order. 

𝑀𝑒𝑑𝑖𝑎𝑛 = 𝐿𝑚 + (
𝑛

2
−𝐹

𝑓𝑚
) 𝑖  (2) 
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3) Mode is the frequently appearing value in datapoints. 

In the case of signal processing, this is denoted as the 

most common amplitude or frequency component. 

𝑀𝑜𝑑𝑒 = 𝐿 + ℎ
(𝑓𝑚−𝑓1)

(𝑓𝑚−𝑓1)+(𝑓𝑚−𝑓2)
  (3) 

4) Sum is defined as the total values of the dataset that 

signify the overall magnitude or energy of the signal. 

5) Maximum is the highest value, which indicates peaks 

or extreme values in the signal. 

6) Minimum is the lowest value indicating the troughs 

or lowest points in the signal. 

7) Variance is the square of the standard deviation. It 

quantifies the amount of variation or dispersion in the 

dataset. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑ 𝑥2−(∑ 𝑥)2

𝑛(𝑛−1)
  (4) 

8) Standard deviation measures the dispersion or 

spread of the values around the mean. A low standard 

deviation implies that the values are close to the mean, 

while a high standard deviation means values are 

more spread out. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
∑ 𝑥2−(∑ 𝑥)2

𝑛(𝑛−1)
  (5) 

9) Skewness measures the asymmetry of the probability 

distribution of a real-valued random variable about its 

mean. Positive skewness indicates that the right tail of 

the distribution is longer or fatter than the left tail, 

while negative skewness indicates the opposite. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑛

(𝑛−1)
∑ (

𝑥𝑖−�̅�

𝑆
)

3

  (6) 

10) Kurtosis measures the tailedness of the probability 

distribution of a real-valued random variable. High 

kurtosis indicates that the distribution has a sharper 

peak and heavier tails than a normal distribution, 

while low kurtosis indicates the opposite. 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = {
𝑛(𝑛+1)

(𝑛−1)(𝑛−2)(𝑛−3)
∑ (

𝑥𝑖−�̅�

𝑆
)

4

} −
3(𝑛−1)2

(𝑛−2)(𝑛−3)
 (7) 

The above attributes are chosen to provide a detailed 

summary of data's distribution and variability to disclose the 

important properties that are associated with normal and fault 

modes of mechanical elements. In most of the research, these 

input parameters are fed to ML models such as DT, RF, and 

SVM that result in optimal end results. Thus, to prove the 

efficacy of the proposed research, the above-mentioned 

metrics and algorithms are chosen for further evaluation. 

4.1.1. Verification of ML classifiers using Statistical 

Features 

In this section, the exploitation of SF into recurrently pointed 

DT, RF, and SVM models is evaluated to recognize which of 

the models outperforms in fault classification. With the ten-

fold cross-validation method for training and testing, better 

differentiation between multiple fault states is explicitly seen. 

Maleki et al. (Maleki et al., 2020) have clearly stated that the 

aim of cross-validation is to yield impartial estimation for 

better reproducibility and minimum generalization error. 

Having k-fold cross-validation, the model can be trained and 

tested k times, which eventually reduces the performance 

measure’s variance and improves model reliability. So, 10-

fold cross-validation is carried out in the current work to 

verify the model evaluation.  

The intuitive structure, interpretability, and decision-making 

of DT make them the best choice in yielding higher labeling 

precision. Popular algorithms such as Iterative Dichotomiser 

3 (ID3) and C4.5, which apply different splitting criteria, are 

favorable for building DT to determine the optimal way to 

partition data (Abolhosseini et al., 2024). An important 

metric, information gain (IG), is measured to select the best 

attribute in the ID3 algorithm. Pruning improves the model’s 

generalization ability by reducing the redundant tree sections. 

But without pruning, ID3 results in ineffective data handling. 

So C4.5, an improved version of ID3, uses gain ratio to 

handle missing values, overfitting, and reducing bias in 

multivariate attributes (Sun & Hu, 2017). The root node 

denotes higher-ranked features in the tree structure. In the 

research study, based on the above key considerations, the 

DT model opted to affirm its capability in harnessing 

statistics-derived parameters as input data with 16 labeled 

responses at different operating speed modes. The mean 

classification accuracy of 3 constant speeds has evidenced the 

model’s efficiency in categorizing faults using SF as 

expressed in Table 1. 

Classification accuracy (%) at each 

speed 

Mean 

classification 

accuracy (%) 

500 rpm 750 rpm 1000 rpm 
89.27 

89.0625 89.375 89.375 

Table 1. Fault identification accuracy of DT model at three 

speed states 

Random Forest is an ensemble learning technique of decision 

trees that is used for classification as well as regression tasks 

(Vakharia et al., 2016). Each tree makes a binary decision, 

and the model response is predicted by the voting committee. 

This improves the model’s generalization and robustness by 

employing the combined decision-making of multiple trees. 

From Table 2, this is proved by the input of SF into the RF 

algorithm through mean fault classification results.  

Classification accuracy (%) at each 

speed 

Mean 

classification 

accuracy (%) 

500 rpm 750 rpm 1000 rpm 
92.875 

91.125 94.0625 93.4375 

Table 2. Fault identification accuracy of RF model at three 

speed modes 

Support vector machine is most popular among other 

algorithms, where it is also employed for classification and 

regression applications (Y. Liu et al., 2019) as the same as 
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RF. The main concern in this technique is to find the 

hyperplane and maximize the margin for error reduction to 

separate binary classes (Peng et al., 2021). In the case of non-

linear data separation, higher-dimensional mapping 

(Martínez-Morales et al., 2018) is enabled with a kernel 

function to solve multi-class problems (Y. Liu et al., 2019). 

Radial Basis Function (RBF) is chosen for the result 

endorsement in the SVM model using habitually addressed 

data-driven features.  

Gaussian-RBF kernel function is expressed as 

𝐾(𝑥𝑖 − 𝑥𝑗) = 𝑒𝑥𝑝(−
‖𝑥𝑖−𝑥𝑗‖

2𝜎2 ) to design SVM classification  

where xi, xj reveals input feature vectors 
‖. ‖ is a Euclidean norm, and 𝜎 conveys free parameter for 

determining dispersion of support vectors(Martínez-Morales 

et al., 2018).  

Accuracy (%) at each speed 

Mean 

classification 

accuracy (%) 

500 rpm 750 rpm 1000 rpm 
83.33 

86.88 84.06 79.06 

Table 3. Fault grouping analysis results of SVM-RBF under 

three speed scenarios 

As validated results obtained using DT and RF in Tables 1 

and 2, the acclaimed SVM is also endorsed to show its 

computational ability in discerning varied machine 

operational states as illustrated in Table 3. As inferred from 

Tables 1, 2, and 3, the mean fault detection accuracy of RF is 

92.875%, which is superior to DT and SVM. 

Although SVM is effective in classifying multiple classes 

using RBF, its performance declines when statistical features 

of vibration signals are used as input. This shortcoming 

motivated efforts to enhance the results of standard 

classification algorithms by integrating physical principles, 

emphasizing the importance of the key objective discussed in 

the next section. 

4.2. Physics-Informed Feature Engineering for ML 

classification 

The imperative physics knowledge is the fundamental of the 

ML technique followed by physics-validated metrics, which 

spotlights the system failure processes and quantifies 

algebraic and governing equations from physics law. Thus, 

by establishing a physics-guided evaluation model requiring 

prior knowledge, it offers an advantageous effect in 

identifying complex system health in condition monitoring 

(Deng et al., 2023). This prompts us to decide which of the 

component’s characteristic frequencies are assessed.  

Bearing Fault Characteristics Frequency (FCF) is formulated 

in accord with shaft speed (rpm) with the specifications such 

as ball/roller diameter (𝑑)  in mm, number of balls (𝑁𝑏 ), 

bearing pitch diameter (𝐷𝑚), contact angle (𝜃)in degrees as 

listed in the equations below: 

Ball pass frequency outer (BPFO) =𝑅𝑃𝑀
𝑁𝑏

2
(1 +

d

𝐷𝑚
𝑐𝑜𝑠𝜃) 

Ball Pass Frequency Inner (BPFI) = 𝑅𝑃𝑀
𝑁𝑏

2
(1 − 

d

𝐷𝑚
𝑐𝑜𝑠𝜃) 

Ball Spin Frequency (BSF) = 𝑅𝑃𝑀 
𝐷𝑚

𝑑
[1 − (

d

𝐷𝑚
𝑐𝑜𝑠𝜃)

2

] 

Fundamental Train Frequency (FTF) = 𝑃𝑀 
1

2
[1 −

d

𝐷𝑚
𝑐𝑜𝑠𝜃] 

 

Figure 5. Bearing fault characteristic frequencies in 

frequency zone 2 of spectrum plot (Attoui et al., 2017) 

This is realizable by transforming raw time-domain to 

frequency-domain representation, where it gives a detailed 

description of fault existence. These faulty bearing elements 

are revealed in zone 2, which contains bearing fault 

characteristic frequencies (Attoui et al., 2017). In this 

context, fault presence in bearings is deliberately depicted as 

shown in Figure 5. 

Component fault 

frequencies 

Frequency in Hz 

500 rpm 750 rpm 1000 rpm 

FTF 3.3 5 6.6 

BSF 19.2 28.9 38.6 

BPFO 29.6 44.6 59.6 

BPFI 45.1 67.9 90.7 

SHAFT 8.33 12.5 16.7 

GEAR 4.16 6.25 8.33 

PINION 5.833 8.75 11.66 

GEAR MESH 145.6 218.75 291.55 

Table 4. Defect frequencies of machinery components at each speed 
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In addition to bearings, the calculations for shaft, gear, 

pinions, and gear mesh frequencies derived from FFT at 500, 

750, and 1000 RPM are enumerated in Table 4. Considering 

these FCFs of vibration signals, the features with labels are 

provided as an input to the ML models. The results will be 

detailed in the following subsection. 

4.2.1. Verification of ML technique using physics-rooted 

features 

An inspection of model potentiality is clearly rendered in this 

section by incorporating physics-guided attributes and 

validating the impact of the proposed approach. Machine 

learning classifier models using SF, as discussed in the 

previous section, show slightly lower performance in DT and 

SVM compared to RF. To empower the model effect, 

physics-grounded parameters are valued in this context. The 

exceptional results are obtained for all the strategized models, 

as witnessed in Table 5. 

It is distinctly reconfirmed that RF is performing way better 

than other models, achieving an accuracy of 98.42%. 

Notably, DT and SVM-RBF also show significant 

improvement, reaching accuracies above 94% compared to 

the results using SF. At 1000 rpm, the RF model attains an 

exemplary result of 99.69%. To closely analyze the 

individual fault classes, the confusion matrices of these 3 ML 

models using physics-based features are generated at this 

speed, as shown in Tables 6, 7, and 8.

Model 
Frequency in Hz Mean classification 

accuracy (%) 500 rpm 750 rpm 1000 rpm 

DT 93.125 93.125 96.5625 94.27 

RF 96.8125 98.75 99.6875 98.42 

SVM-RBF 95.62 97.19 90.94 94.58 

Table 5. Fault identification accuracy using physics-oriented features at three different speed modes 

T
r
u

e
 C

la
ss

 

FGBSBOTHFB 100                

FGBSGB  92.3               

FGBSIRFB   92.3              

FGBSORFB    100    19         

FGUNBSBOTHFB     77.1            

FGUNBSGB  7.7    100           

FGUNBSIRFB   7.7    100          

FGUNBSORFB     22.9   91         

GGBSBOTHFB         100        

GGBSGB          100       

GGBSIRFB           100      

GGBSORFB            100     

GGUNBSBOTHFB

B 

            100   7.7 

GGUNBSGB              100   

GGUNBSIRFB               100  

GGUNBSORFB                92.33 

  
                

 
PPV 100 92.3 92.3 100 77.1 100 100 91 100 100 100 100 100 100 100 92.3 

 
FDR  7.7 7.7  22.9   19        7.7 
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Table 6. Confusion matrix of DT algorithm under 1000 rpm 

Table 7 clearly shows that RF achieves the best results for all 

machine health conditions in the speed operational mode at 

1000 rpm, regardless of overall accuracy. Therefore, this 

prediction table is used for result comparison. Though SVM-

RBF has furnished a good classification accuracy of 90.94%, 

the positive prediction value (PPV) for FGBSBOTHFB, 

FGUNBSIRFB, FGUNBSORFB, GGBSBOTHFB, 

GGBSGB, and GGUNBSBOTHFB is below 90% as featured 

in Table 8. Among these six fault states, GGUNBSBOTHFB 

representing a combined health state of an unbalanced shaft 

with both an inner race and an outer race faulty bearing, along 

with a good gear has the lowest PPV at 77.95%. This 

expresses the issue of class imbalance, indicating the model’s 

difficulty in generalizing specific fault states effectively. The 
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lowest PPV value in DT confusion matrix is 77.1% for the 

fault state ‘fault gear unbalanced shaft both inner race and 

outer fault bearing’ (FGUNBSBOTHFB), as noticed in Table 

6. However, in the case of SVM-RBF and RF, this fault state 

is correctly classified with 97.5%, and 91.35%, as stated in 

Table 7 and Table 8, respectively. This intricate observation 

further revalidates the effectiveness of RF, which leverages 

physics-centric feature engineering, over other ML 

algorithms. 

T
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la
ss

 

FGBSBOTHFB 100                

FGBSGB  100               

FGBSIRFB   100              

FGBSORFB    100             

FGUNBSBOTHFB     97.5            

FGUNBSGB      100           

FGUNBSIRFB       100          

FGUNBSORFB     2.5   100         

GGBSBOTHFB         100        

GGBSGB          100       

GGBSIRFB           100      

GGBSORFB            100     

GGUNBSBOTHFB             100   2.5 

GGUNBSGB              100   

GGUNBSIRFB               100  

GGUNBSORFB                97.5 
  

                
 

PPV 100 100 100 100 97.5 100 100 100 100 100 100 100 100 100 100 97.5 

 
FDR     2.5           2.5 
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Table 7. Confusion matrix of RF algorithm under 1000 rpm 
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FGBSBOTHFB 87.4   2.5 2.4   2.3         

FGBSGB 3.4 95.25    6.55           

FGBSIRFB   100    10          

FGBSORFB 2.4   91.45 1.45   2.3         

FGUNBSBOTHFB 3.4   2.5 91.35  4.55 4.75         

FGUNBSGB  4.75  3.55 2.4 90.45  3.5         

FGUNBSIRFB       85.45          

FGUNBSORFB 3.4    2.4 3  88.3         

GGBSBOTHFB         81.05    10.55   5.05 

GGBSGB          81       

GGBSIRFB          4.2 100      

GGBSORFB          8.3  100     

GGUNBSBOTHF

B 

        11.1    77.95    

GGUNBSGB          2.3    100   

GGUNBSIRFB          4.2     92.65  

GGUNBSORFB         9.95    11.5   94.95 

  
                

 
PPV 87.4 95.25 100 91.45 91.35 90.45 85.45 88.3 78.95 81 100 100 77.95 100 92.65 94.95 

 
FDR 12.6 4.75  8.55 8.65 9.55 14.55 11.7 21.05 19   22.05  7.35 5.05 
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Table 8. Confusion matrix of SVM-RBF algorithm under 1000 rpm  
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This can be intriguing to corroborate the essence of entailing 

the physics-driven perspective by evaluating it against other 

noted strategies, image-based classification using powerful 

CNN architecture. 

5. TIME-FREQUENCY REPRESENTATION IMAGE-BASED 

FAULT DIAGNOSIS USING CNN  

In this study, raw time-domain vibration signals are 

transformed to TFR using STFT and fed into a wisely chosen 

CNN structure. But initially, systematically segmented 

vibration data with 8192 Hz for each second are formulated 

using this transform method. Further labeling 100 

spectrogram images and giving whole 16-class image folders 

into the ResNet architecture, it organizes the diverse fault 

conditions. This can be illustrated for a good gear balanced 

shaft good bearing (GGBSGB) at 500 rpm in Figure 6.  

The primary reason for choosing ResNet is because of its 

residual learning ability using residual blocks. These blocks 

allow the network to bypass one or more layers using shortcut 

connections, which helps in mitigating the vanishing gradient 

problem. This improvement enables the training of much 

deeper networks, up to 152 layers, without the degradation 

issues that typically arise in very deep architectures. As a 

result, ResNet can learn more complex features and 

hierarchical representations, leading to better performance on 

tasks like image classification and object detection. This 

ResNet-152 performance is appreciated for improved 

generalization capabilities, making ResNet more robust to 

overfitting and better suited for handling diverse datasets. 

 

Figure 6. Spectrogram image of GGBSGB at speed of 500 

rpm  

The validation accuracy for vibration data at different speed 

using ResNet are observed in Table 9. 

 Frequency in Hz Mean classification 

accuracy (%) 500 rpm 750 rpm 1000 rpm 

91.46 86.88 87.5 88.61 

Table 9. Fault identification accuracy of ResNet under three speed condition 

T
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FGBSBOTHFB 84.88                

FGBSGB  92.73    6.26           

FGBSIRFB   100              

FGBSORFB    94.45             

FGUNBSBOTHFB    5.55 100 4.70 18.92          

FGUNBSGB      74.78 18.85          

FGUNBSIRFB      14.25 62.23          

FGUNBSORFB 15.12 7.27      100         

GGBSBOTHFB         100       7.24 

GGBSGB          100       

GGBSIRFB           90.83      

GGBSORFB            100   27.52  

GGUNBSBOTHFB             77   32 

GGUNBSGB           9.17   90   

GGUNBSIRFB              10 72.48  

GGUNBSORFB             23   60.76 

  
                

 
PPV 84.88 92.73 100 94.45 100 74.78 62.23 100 100 100 90.83 100 77 90 72.48 60.76 

 
FDR 15.12 7.27  5.55  25.22 37.77    9.17  23 10 27.52 39.24 
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Table 10. Confusion matrix of CNN-ResNet under 1000 rpm 
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Compared with the other two speed conditions, fault 

recognition accuracy at 500 rpm is estimated to be 91.46% 

using CNN-ResNet. But overall accuracy is determined with 

88.61% fault identification, which is reasonable. 

The outstanding results of RF at a consistently referred speed 

rate of 1000 rpm are factored in comparison with other 

feasible algorithms. In this view, the contingency matrix of 

ResNet is robustly analyzed for the same operating condition 

to concisely examine each health state, which is exhibited in 

Table 10. 

Across all the domain-reliant features and image-dependent 

differentiating the multi-class fault modes, comparative 

scrutinization is required to check the dominance of the PIML 

technique. Thus, this is presented concisely in the following 

section.  

6. RESULTS AND DISCUSSION 

From the previous sections, results of each domain-centric 

feature and image-focused anomaly classification are 

discussed to highlight the significance of the ML approach in 

accordance with physical knowledge. The inclusion of 

domain knowledge markedly improved the performance of 

all classifiers. Specifically, the physics-enabled ML models 

are recognized as having a higher mean classification 

accuracy of all three classifiers than the diagnostic result of 

utilizing statistics-constrained machine learning, as 

illustrated in Figure 7.  

 

Figure 7. Comparison of Fault identification accuracy using 

statistical and physics-based features 

Indeed, the best classifying model is found to be RF, which 

seems to be superior to other models in terms of both the 

features. Remarkably, this model has drastically 

accomplished 98.42% when physics-driven features are 

deployed as input attributes. Also, SVM-RBF has earned 

94.58% better prediction ability when physical knowledge is 

included, which is slightly higher than DT. This seems to be 

rapid improvement in classification accuracy when compared 

with the data-driven statistical features. In this aspect, the 

physics-integrated ML basis is substantially agreed to be 

influential.  

 

Figure 8. Comparative review of physics-embedded RF 

algorithm vs CNN-reliant ResNet image categorization 

results 

In other comparative cases, physics-involved fault 

classification using RF techniques vs. CNN-based ResNet 

image classifier results are envisioned in Figure 8. This is 

clearly outspoken that the physics-assisted RF algorithm 

excels at different constant speed rates. The overall mean 

accuracy of physics-dependent RF is admirably domineering 

when judged with the results of CNN-ResNet.  

To spotlight the essentiality of inheriting physical knowledge 

to classify multiple faults, minor misclassification results of 

the RF model are taken into account for reaffirmation. In this 

regard, two classes, such as FGUNBSBOTHFB and good 

gear with an unbalanced shaft and outer race faulty bearing 

(GGUNBSORFB) health state, are found to be yielding a 

PPV of 97.5%, where the remaining fault states have scored 

100%. Thus, the values of FGUNBSBOTHFB and 

GGUNBSORFB in RF are compared against DT, SVM-RBF, 

and CNN-ResNet as spotted in Table 11. 

Model 
Positive predicted value (PPV)% 

FGUNBSBOTHFB GGUNBSORFB 

RF 97.5 97.5 

DT 77.1 92.3 

SVM-RBF 91.35 94.95 

CNN-ResNet 100 60.76 

Table 11. Comparison of RF with DT, SVM-RBF and CNN-

ResNet based on two specific fault class. 
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Though PPV of ResNet for FGUNBSBOTHFB attains 100%, 

it yields poor results for GGUNBSORFB. But with further 

comparison of these two classes for other models, RF is 

recognized to be producing remarkable results with 97.5%. 

Balanced consistency across classes is highly indicative in 

the physics-involved RF model, which combines predictions 

from multiple decision trees. This ML technique captures 

feature nuances that DT or SVM-RBF might miss. CNN-

ResNet’s performance disparity is due to overfitting issues 

and potential data imbalance.  

Thus, the conceptual physics-rooted predictive model is 

reliably acknowledged by comparatively analyzing it with 

data-derived statistical concepts and image-focused CNN 

perception. This re-establishment of well-planned research 

work upholds its standardization in entailing physics for 

elevating the model’s performance to discern multi-

component faults of rotational machines. 

7. CONCLUSION 

The core research of diagnosing the multi-fault classes of 

rotational machinery under three different speed operating 

scenarios is successfully attained by unveiling the 

exceptional effect of the physics-informed model concept. 

This is featured in a succinct path, where statistically enabled 

derivative models are considered to prove the benchmarking 

quality of physics-involved ML models. In addition, the 

efficiency of CNN-enabled ResNet using TFR image datasets 

is assessed against this ideal technique.  

In this cognition, primarily, data-derived statistical aspects 

are evaluated for the models such as DT, RF, and SVM-RBF, 

where RF models are discovered to be higher ranked with 

92.875% accuracy. Further, the involvement of physics-

oriented features in these ML algorithms is also verified, 

which delivers promising output for all the classifiers. Here 

again, RF is remarkably effective, rendering an accuracy of 

98.42%, a result higher than DT and SVM-RBF. To ensure 

the capability of this physics-validated feature engineering 

for machine learning, the TFR image-based CNN ResNet 

classifier is opted to validate the end results. This again 

reaffirms that physics-guided metrics in ML concepts are 

feasibly top-scoring in all aspects. Rigorous inspection of 

each health state of rotational machinery reveals how well a 

model categorizes. In this aspect, RF at 1000 rpm is regarded 

to be outranked, and its supremacy is conveyed through the 

prediction matrix compared with SVM-RBF and DT.  

Besides the overview of all the quantitative results, chart-

based comparison and contrast fosters a profound 

understanding of the novel approach. Thus, differentiating 

multi-component fault classes using statistical descriptors 

and physical law-augmented learning is taken into account 

for emphasizing the model as well as domain-based 

implications. In this context, the satisfactory result of the 

physics-driven RF model makes it superior to the traditional 

ML process. This is taken forward with the analysis of the 

image classifier, ResNet of CNN, which is found to be less 

effective than physics-involved model classification. Further, 

FGUNBSBOTHFB and GGUNBSORFB of exceptional RF 

model’s performance for the constant speed rate of 1000 rpm 

are keenly observed to be slightly misclassified. When this is 

compared with ResNet-152 in accordance with the 

contingency table, the superiority of physics-modeled 

attributes for fault discernment using RF is evident.  

In various research outlooks, the proficiency of planned 

research work in the physics domain of knowledge is 

admiringly proven. Thus, the prediction of multi-component 

defects is factored into this mechanics-guided AI scenario 

and successfully verified under three running conditions of 

constant speeds in a rotational machine. Future studies can be 

explored in this subject area in complex environmental 

settings such as varying speed and load in complex industrial 

machines. 
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