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ABSTRACT 

A new innovation-based recursive measurement noise 

covariance estimation method is proposed. The presented 

algorithm is used for Kalman filter tuning, as a result, the 

robust Kalman filter (RKF) against measurement 

malfunctions is derived. The proposed innovation-based 

RKF with recursive estimation of measurement noise 

covariance is applied for the model of Unmanned Aerial 

Vehicle (UAV) dynamics. Algorithms are examined for two 

types of measurement fault scenarios; constant bias at 

measurements (additive sensor faults) and measurement 

noise increments (multiplicative sensor faults). The 

simulation results show that the proposed RKF can 

accurately estimate UAV dynamics in real time in the 

presence of various types of sensor faults. Estimation 

accuracies of the proposed RKF and conventional KF are 

investigated and compared. In all investigated sensor fault 

sceneries, the Root Mean Square (RMS) errors of the 

proposed RKF estimates are lower.  The conventional KF 

gives inaccurate estimation results in the presence of sensor 

faults. 

1. INTRODUCTION 

The Kalman Filter (KF) can be used to estimate the states of 

an Unmanned Aerial Vehicle (UAV). That is the preferred 

method because it is crucial to exactly know the 

characteristics, such as velocity, altitude, attitude, etc. 

Successful aircraft control can be attained when these UAV 

states are attained without any issues. However, that 

procedure is contingent on how accurate the measurements 

are. The filter produces erroneous findings and diverges 

over time if the measurements are unreliable due to any type 

of sensor faults. Due to the significance of obtaining fault 

tolerance  in  the  design  of  a  UAV  flight  control  system, 
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filters should be constructed robustly to overcome such 

issues.  

The Kalman filter method of state estimation is very 

sensitive to any faults in the measurement system. Changes 

at the measurement channels considerably reduce the 

performance of the estimating systems if the state of 

operation of the measurement system does not match the 

models employed in the synthesis of the filter. The possible 

errors can be recovered using adaptive Kalman filters. 

A variety of alternative strategies can be used to make the 

Kalman filter flexible and hence insensitive to a priori 

measurements or system uncertainties. Multiple-model-

based adaptive estimation (MMAE) (White et al., 1998; 

Maybeck, 1999), innovation-based adaptive estimation 

(IAE) (Mehra, 1970; Salychez, 1994; Hajiyev and Soken, 

2021), and residual-based adaptive estimation (RAE) 

(Hajiyev and Soken, 2021; Mohamed and Schwarz, 1999) 

are important approaches for tackling the adaptive Kalman 

filtering problem. The measurement and/or process noise 

covariance matrices are immediately adjusted based on 

changes to the innovation or residual sequences.  

 The MMAE approach can only be utilized in specific 

situations because it calls for a number of parallel Kalman 

filters, and the faults should be known. IAE and RAE 

methods must use the innovation vectors or residual vectors 

of m epochs in the moving window to estimate the 

covariance matrices. The number, kind, and distribution of 

the measurements for all epochs inside a window must be 

consistent for IAE and RAE estimators. If not, neither the 

innovation nor the residual vectors can be used to estimate 

the covariance matrices of the measurement noises. 

Another idea is to multiply the noise covariance matrix by a 

time-dependent variable to scale it. This algorithm is called 

adaptive fading Kalman filter (AFKF). One approach to 

creating such an algorithm is to multiply the process or 

measurement noise covariance matrices by a single adaptive 

factor (Ding et al., 2007; Jwo and Weng, 2008; Hajiyev, 

2007; Hajiyev and Soken, 2012). The AFKF technique can 

be used if there is a fault in the measurement system, and 
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the filter's insensitivity to present measurement faults can be 

ensured by multiplying the measurement noise scale factor 

by the measurement noise covariance matrix. As a result, by 

applying an adjustment to the filter gain, the filter's accurate 

estimating behavior will be protected from being affected by 

inaccurate measurements (Hajiyev, 2007). 

An adaptation method based oan the multiple fading factors 

is provided in (Hajiyev and Soken, 2012; Geng and Wang, 

2008; Hajiyev and Soken, 2013; Soken et al., 2014). The 

main justification for employing several fading factors is the 

variation in the impacts of the measurement noise 

covariance change on the estimation performance of each 

estimated state. It is important to carefully consider how 

changing the measurement noise covariance will affect each 

state, especially for complex multivariable systems, and to 

use a matrix made of multiple fading factors rather than a 

single factor (so that the adaptation is weighted differently 

for each state). 

The measurement covariance matrix can be modified with 

the help of the fuzzy inference system (Sabzevari and 

Chatraei, 2021). The results showed that the proposed 

adaptive fuzzy extended Kalman filter is robust against 

disturbances and outliers. Although adaptive Kalman filter 

algorithms based on fuzzy logic work well in some 

situations, they are knowledge-based systems that function 

with linguistic variables and cannot be widely applied to 

critical systems like aircraft flight control systems since they 

are human experience-based. 

The paper (Zhang et al., 2021) presents a two-step robust 

adaptive filtering technique, which consists of two filtering 

steps: the first stage merely detects anomalous observations 

without taking into account the kinematic model 

information. Based on the first phase's filtering findings, the 

second step detects additional kinematic model disturbances 

and performs adaptive processing. 

The sequence orthogonal approach is used to create a 

preliminary robust correlation Kalman filter (RCKF) in 

(Chen et al., 2022). To increase its efficiency even more, a 

higher-order sigma variant of the RCKF is created using a 

new sigma point generating algorithm. This improved filter 

can collect the third and fourth central moment information 

from the system posteriori probability density function.  

This study (Wang, et al., 2023) proposes an adaptive 

Kalman filtering algorithm based on maximum likelihood 

estimation. It employs a window adaptive selection function 

and a weight function to adjust the innovation covariance at 

the kth moment, resulting in a superior measurement noise 

covariance.  

Because the noise estimator cannot be expressed in a 

recursive form and each previous state vector must be 

smoothed by the most recent measurements at each point in 

time, the algorithms in the studies mentioned cannot be used 

to directly estimate the measurement noise covariance in 

practical operations. In practical applications, especially in 

UAV dynamics, the indirect estimation of the measurement 

noise covariance under measurement faults leads to complex 

expressions, increases the estimation time and 

computational load, and may introduce singularity. This will 

be of vital importance for low-cost small UAVs where 

computational capabilities are limited. 

In this study, a robust Kalman filter with a recursive 

measurement noise covariance estimator is proposed and 

applied for the state estimation process of an UAV platform. 

The results of the proposed robust and conventional Kalman 

filter algorithms are compared for different types of 

measurement faults and recommendations about their 

utilization are given. 

The paper is presented as follows. An optimal Kalman filter 

for UAV state vector estimation is described in Section 2.  

Section 3 investigates the influence of sensor biases and 

measurement noise increment faults on Kalman filter 

innovation. In Section 4, a new recursive measurement 

noise covariance estimation approach is proposed for tuning 

the Kalman filter. In this section, a robust Kalman filter 

(RKF) against sensor faults is derived. In Section 5, the 

proposed RKF with recursive measurement noise 

covariance estimation algorithm is applied to the UAV 

dynamics model, and the performance of the proposed filter 

is tested through simulation for the UAV platform state 

estimation process. The conclusion and results are briefly 

summarized in the final section. 

2. PRELIMINARIES  

Consider the linear dynamic system represented by the state 

equation  

( 1) ( ) ( ) ( )x j Ax j Bu j Gw j+ = + +                (1)                                                                

and measurement equation 

( ) ( ) ( ) ( )z j H j x j V j= + ,                    (2)                                                             

where ( )x j is the system state; A is the system transition 

matrix; B is the control distribution matrix; ( )u j  is the 

control input; ( )w j  is the random system noise; G is the 

system noise transition matrix; ( )z j  is the measurement 

vector; ( )H j  is the measurement matrix; ( )V j  is a random 

measurement noise.  

Assume that ( )w j and ( )V j are Gaussian white noise random 

vectors. The following formulas provide their average 

values and covariances 

   ( ) 0; ( ) 0; ( ) ( )

( ) ( ); ( ) ( ) ( ) ( ).

T

T

E w j E V j E w j w k

Q j jk E V j V k R j jk 

 = =  

 = = 

   (3)                                                        
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where ( )δ jk  is the Kronecker delta symbol. Note that 

{ }( )w j  and { }( )V j  are assumed mutually uncorrelated. 

The state vector (1) can be estimated via the optimal linear 

Kalman filter (LKF) (Kalman, 1960). Equations for the 

estimation value and gain matrix of the LKF respectively 

are: 

ˆ ˆ( / ) ( / 1) ( ) ( )x j j x j j K j j= − +                   (4)                                                              

1( ) ( / 1) ( )TK j P j j H j P−

= −                   (5)                                                           

where ˆ ˆ( / 1) ( 1/ 1) ( 1)x j j Ax j j Bu j− = − − + −  is the 

extrapolation value, ( )j  and ( )P j  are the innovation and 

innovation covariance respectively. The expressions for the 

( )j  and ( )P j  are: 

ˆ( ) ( ) ( ) ( / 1)j z j H j x j j = − −                (6)                                                          

( ) ( ) ( / 1) ( ) ( )TP j H j P j j H j R j = − +          (7)                                                              

Here ( / 1)P j j −  is the covariance matrix of the 

extrapolation error.  

The innovation sequence (6) will be white Gaussian noise 

with zero-mean and covariance (7) if the system is 

functioning normally (Mehra, 1970), i.e. ( )( ) ~ 0, ( )j N P j .  

On the other hand, when there are abnormal changes 

occurring in the system or measurement channels, it can be 

assumed that the innovation of faulty system 

( )( ) ~ ( ), ( )
ff j N j P j  , where either ( ) 0j   or 

( ) ( )
f

P j P j    or both. Note that faults that only result in 

( ) 0j   are generally called additive or bias type faults. 

They can be denoted as ( ) ( ) ( )f j j f j =  +   and satisfy 

( )( ) ~ ( ), ( )f j N j P j  , here  ( ) ( )E f j j= . Those 

faults that lead to changes in innovation covariance ( )P j  

are called multiplicative or noise increment type faults, 

which can be denoted as ( ) ( ) ( )f j F j j =   with 

( )( ) ~ 0, ( ) ( ) ( )T

f j N F j P j F j . 

3. THE INFLUENCE OF SENSOR FAULTS ON KALMAN 

FILTER INNOVATION  

The statistical properties of the Kalman filter innovation 

will alter as a result of measurement bias and sensor noise 

increase type sensor faults. This section examines the 

impact of these types of sensor faults on the Kalman filter's 

innovation sequence.       

3.1. Influence of Sensor Biases on the Kalman Filter 

Innovation 

Theorem 1: In the event that measurements are processed 

using LKF (4)–(7) and a measurement bias arises at an 

iteration step j = , then at iteration j = , the innovation 

bias will be equal to the measurement bias.     

Proof: At the step j =  where measurement error occurs, 

the extrapolation value is unbiased and can be expressed as   

ˆ ˆ( 1/ ) ( / ) ( ) ( )x j j Ax j j Bu j Gw j+ = + +      (8)                                                                     

Innovation of Kalman filter can be written in the form: 

( 1) ( 1) ( 1)

ˆ( 1) ( 1/ ) ( 1) ( 1)

b z

z

j z j b j

H j x j j j b j

 + = + + + −

+ + =  + + +
       (9)                                                      

Formula (9) confirms that the Theorem 1 is proven. 

Theorem 2: In the event that measurements are processed 

using LKF (4) – (7) and a measurement bias arises at an 

iteration step j = , then at all j   steps the innovation 

bias will be equal to the difference between the 

measurement bias and predicted observation bias.     

Proof: At the first step following the bias occurring at 

iteration j = , the extrapolation value can be expressed as 

ˆ ˆ( 1/ ) ( / ) ( ) ( )

ˆ ˆ( / ) ( / ) ( ) ( )

ˆ ˆ( 1/ ) ( 1/ )

b bx j j Ax j j Bu j Gw j

Ax j j A x j j Bu j Gw j

x j j x j j

+ = + +

= +  + +

= + +  +

        (10)         

where  ˆ ˆ( 1/ ) ( / )x j j A x j j + =  is the extrapolation 

value bias.  

Innovation of Kalman filter is 

ˆ( 1) ( 1) ( 1) ( 1) ( 1/ )

ˆ( 1) ( 1) ( 1/ ) ( 1)

ˆ( 1) ( 1/ ) ( 1) ( 1)

b z b

z

j z j b j H j x j j

z j H j x j j b j

H j x j j j j

 + = + + + − + +

= + − + + + + −

+  + =  + + +

    (11)                                          

where                                                        

ˆ( 1) ( 1) ( 1) ( 1/ )zj b j H j x j j + = + − +  +     (12)                                                                                                                  

is the innovation bias. 

The innovation bias is equal to the difference between the 

measurement bias and predicted observation bias, as may be 

observed from expression (12), as shown. For all j 

steps, this situation applies. As a result, Theorem 2 is 

proven. Consequently, measurement bias type sensor faults 

will cause a bias in the innovation of the Kalman filter. 
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3.2. Influence of Measurement Noise Increment to the 

Innovation 

Let the measurements are processed by the LKF (4)-(7) and 

a measurement noise increment occurs at the iteration step 

j = . Measurement noise increment can be simulated by 

multiplying the measurement noise vector with the diagonal 

matrix ( )F j , which diagonal elements meet the following 

condition: ( ) 1ii j  ,  ( 1,i n= )  for j   . Here n is the 

dimension of the measurement vector. As it is clear, for the 

noise increment type sensor fault in the i th measurement 

channel, the appropriate diagonal element of ( )F j will be 

larger than 1, i.e. ( ) 1ii j   for j   and rest of the 

measurement channels become 1. Consequently, the 

diagonal elements of ( )F j  can be presented in the following 

form: 

1:  no measurement fault

>1: measurement fault
ii


= 


                (13) 

The measurement model in this case can be written in the 

form: 

( ) ( ) ( ) ( ) ( )z j H j x j F j V j= + ,               (14)                                                                                                                                        

where 

( )

( )

( ) ( )11 22

1 1 . . . 1 ,     for  j

( ) . . .  if  1, ,

 where  1 for  j

nn

ii

diag F j i n



  

 




=  


 

 (15)                                                            

Theorem 3:  In the event that measurements are processed 

using LKF (4)–(7) and a measurement noise increment 

occurs at an iteration j = , then at all j   steps the 

measurement noise increment leads to increment in the 

innovation covariance (7). 

 Proof.  The innovation covariance at the iteration steps 

j   can be expressed as 

( ) ( ) ( / 1) ( ) ( ) ( ) ( )
ni

T TP j H j P j j H j F j R j F j = − +     (16)                                                                 

The innovation covariance increment is 

( ) ( ) ( ) ( ) ( )
ni

TP j F j R j F j R j = −         (17)                                                                     

Since the matrices ( )F j and ( )R j  are assumed to be 

diagonal, the expression (17) can be rewritten in the following 

form: 

    2 2
( ) ( ) ( ) ( ) ( ) ( )

ni
P j F j R j R j F j I R j = − = −        (18)                                                            

where I  is the n n  identity matrix. Because ( )R j and 

( )F j  are positive definite diagonal matrices and ( )F j has 

diagonal elements ( ) 1ii j  ,  ( 1,i s= )  for  j  , then 

the matrix   2
( ) ( )F j I R j− is also positive definite. Since 

the innovation covariance increment is a positive definite 

matrix, the Theorem 3 is valid.   

4. RECURSIVE MEASUREMENT NOISE COVARIANCE 

ESTIMATOR 

The statistical properties of the Kalman filter innovation will 

change as a result of measurement bias and measurement 

noise increment. Therefore, the innovation (6) can be chosen 

as the monitoring statistic for the measurement fault 

compensation purpose. For the compensation of measurement 

bias or measurement noise increment, the real and theoretical 

values of the innovation covariance matrices must be compared.  

In the absence of measurement fault in the estimation system, 

the real innovation covariance ( )C j  is equal to the theoretical 

one  

( ) ( ) ( / 1) ( ) ( )TC j H j P j j H j R j= − +              (19)                                                               

The real covariance matrix of ( )j  is an average of 

( ) ( )Tk k  within a moving window M    

1

1
( ) ( ) ( )

1

j
T

k j M

C j k k
M = − +

=  
−

                  (20)                                                               

Substituting Eq. (20) into (19) we have 

1

1
( ) ( ) ( ) ( / 1) ( ) ( )

1

j
T T

k j M

k k H j P j j H j R j
M = − +

  = − +
−

       (21)                                                 

The real innovation covariance matrix ( )C j can be 

estimated by ( ) ( )Tj j  at the current epoch in order to 

avoid the smoothness of the average of ( ) ( )Tj j   within 

M epochs, which does not adequately reflect the 

uncertainty of the model errors at the current step 

( ) ( ) ( )TC j j j=                         (22)                                                                          

Taking into account (19) and (22), the expressions for the 

measurement noise covariances for 1j +  and  j  iterations 

can be written in the following form 

( 1) ( 1) ( 1) ( 1) ( 1/ ) ( 1)T TR j j j H j P j j H j+ = +  + − + + +    (23)                                                      

( ) ( ) ( ) ( ) ( / 1) ( )T TR j j j H j P j j H j=  − −                    (24)                                                                                                                    

Therefore ( 1)R j +  minus  ( )R j equals: 
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( 1) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1/ ) ( 1)

( ) ( / 1) ( )

T

T T

T

R j R j j j

j j H j P j j H j

H j P j j H j

+ − =  +  + −

  − + + +

+ −

         (25)                                                                          

The equation (25) can be written as 

( 1) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1/ ) ( 1)

( ) ( / 1) ( )

T

T T

T

R j R j j j

j j H j P j j H j

H j P j j H j

+ = + +  + −

  − + + +

+ −

     (26)                                          

If measurements are linear, than ( 1) ( )H j H j+ = and the 

expression (23) can be written in simple form as 

 

( 1) ( ) ( 1) ( 1) ( ) ( )

( / 1) ( 1/ )

T T

T

R j R j j j j j

H P j j P j j H

+ = +  +  + − 

+ − − +
         (27)                           

The resulting expression (27) makes it possible to 

recursively estimate the measurement noise covariance for 

the Kalman filter tuning. Below the RKF with recursive 

estimation of measurement noise covariance is applied for 

the UAV dynamics model.  

If a measurement bias occurs at the iteration step j = , 

and the biased innovation sequence is denoted by ( )b j , 

then the biased innovation   is defined as, 

( ) ( )b j j =                                   j=1,2,... -1              (28)                               (17)                     

( 1) ( 1) ( 1)b zj j b j + = + + +      j=                       (29)                                                                                          

( 1) ( 1) ( 1)b j j j + =  + + +      j=+1,+2,…            (30)                                                                         

When j<, the mathematical expectation of the real 

innovation covariance matrix (22) can be determined by the 

following equation  

 ( ) ( ) ( ) ( / 1) ( ) ( )TE C j P k H j P j j H j R j= = − +         (31)                                            

In the case of j , in the sample innovation covariance a 

biased values ( 1) ( 1) ( 1)b j j j + =  + + + is used instead 

of an unbiased value ( 1)j + , where ( 1)j + is the 

innovation bias  

( ) ( ) ( )T

b b bC j j j=                       (32)                                                                               

Remark. Note that the expected value of the innovation 

( )b j in this case is not zero, therefore the formula (32) is 

not a real covariance. This is the square of innovation. Bias 

type measurement fault may be converted to the square of 

innovation and such type of faults can be compensated using 

the covariance matching techniques. 

Statement. For iteration steps j  , measurement bias 

leads to an increase in the mathematical expectation of the 

square of innovation. 

Proof.  It is proven in Theorem 2 that the measurement bias 

will cause bias in the innovation of the Kalman filter. 

The mathematical expectation of the square of innovation 

(32) for j  can be written as 

     ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

TT

b b b

T T T T

E C j E j j E j j j j

E j j j j j j j j

 

   

 =   =  +  + 

 =   + +  + 

                                                      (33) 

Taking into account  ( ) 0E j = , and the absence of 

correlation between the parameters ( )j  and ( )j , we have 

   ( ) ( ) ( ) ( )T

bE C j E C j E j j  = +                (34)                                                                 

Expressions (12) and (34) prove the Statement. 

Consequently, the measurement bias will increase the 

mathematical expectation of the square of innovation.  

It can be seen from the Theorem 2 and the Statement above 

that the measurement bias is transferred to the innovation bias 

and changes the mathematical expectation of the square of 

innovation (22). As a result, the measurement bias is 

transferred to the mathematical expectation of the square of 

innovation. Thus, the square of innovation can be used to 

compensate of   measurement bias. Therefore, the 

measurement bias will increase the mathematical expectation 

of the square of innovation (22). As a result, according to 

formulas (24) and (27), the expected value of the 

measurement noise covariance matrix R  will generally 

increase, resulting in a smaller Kalman gain, which will 

reduce the influence of measurements on the state update 

process and increase the influence of the mathematical model 

of the system. As a result, the filter's resilience against the 

measurement bias fault is ensured, while the degradation of 

the estimate method induced by the measurement bias fault is 

avoided. 

 

5.   RESULTS OF SIMULATION 

Proposed innovation-based adaptive KF algorithm is applied 

to the UAV platform dynamics model. As the experimental 

platform, the ZAGI UAV was selected, and Kalman filter 

applications were carried out while taking into consideration 

its dynamics and characteristics (Matthews, 2006). The 

Appendix-B presents a mathematical model of the combined 

longitudinal and lateral dynamics of the UAV. The LKF 

(4)–(7) is utilized to estimate the UAV state vector. 

Simulations are carried out in 1000 steps over a time frame 

of 100 seconds with a sampling time of 0.1 seconds. Two 

different types of measurement fault scenarios—constant 

bias in measurements and measurement noise increment—

are taken into consideration during simulations to test the 

proposed innovation-based robust Kalman filter with 

recursive estimate of measurement noise covariance. 
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5.1.  Constant Bias in Measurements 

A constant bias term is added to the measurements of pitch 

angle gyro after the 30th second of simulation 

( ) ( ) ( ) 0.5z j z j v j  = + + , ( 300)j              (35)                                                        

The innovation-based RKF with recursive estimation of 

measurement noise covariance results for the pitch angle in 

the presence of pitch angle gyro bias are presented in Fig. 1. 

The findings of the RKF's state estimation are compared to 

the actual values in the first section of the figure. The 

estimation error based on the actual values of the UAV 

states is depicted in the second portion of the picture. The 

estimation error variance is shown in the final section. 

Fig. 1 shows that the proposed innovtion-based RKF with 

recursive estimation of measurement noise covariance 

achieves estimation of the states accurately in the presence 

of bias at the pitch angle gyro. In this case RKF gives 

sufficiently good estimation results  by totally eliminating 

the estimation error caused by the bias in the pitch angle 

gyro. 

Fig. 2 displays the results of the conventional KF estimation 

for this case. As can be seen, the conventional KF estimates 

shift after the 30th second of simulation (after the pitch 

angle gyroscope fails), and the estimation results are 

erroneous. 

 

Figure 1. RKF pitch angle estimation results in the presence 

of bias at the pitch angle gyro 

 

Figure 2. The conventional KF's pitch angle estimation 

results in the presence of bias at the pitch angle gyro 
 

Forward velocity estimation results via  RKF with recursive 

estimation of measurement noise covariance and 

conventional KF in the presence of bias at the pitch angle 

gyro are given in Fig.3 and Fig.4 respectively. The 

presented graphs show that conventional KF estimates after 

the 30th second of simulation are biased (see Fig. 4), but the 

proposed RKF with recursive estimation of measurement 

noise covariance gives fairly accurate estimation results 

throughout the entire estimation interval (Fig. 3).  

 

 
 

Figure 3. RKF forward velocity estimation results in the 

presence of bias at the pitch angle gyro 
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Figure 4.The conventional KF's forward velocity estimation 

results in the presence of bias at the pitch angle gyro 

Similar results were obtained for other state parameters. 

5.2.  Measurement Noise Increment 

In the second measurement malfunction scenario, the 

measurement fault is defined as the pitch angle gyro 

measurement noise's standard deviation multiplied by a 

constant term after the 30th second  

( ) ( ) ( ) 3z j z j v j  = +  , ( 300)j  .         (36)                                                           

The proposed innovation-based RKF with recursive 

estimation of measurement noise covariance results for this 

case are presented in Fig.5.  

 
Figure 5.  RKF pitch angle estimation results in the presence 

of noise increment at the pitch angle gyro measurements  

As seen from the graphs presented in Fig.5, the proposed 

innovtion-based RKF with recursive estimation of 

measurement noise covariance gives sufficiently good 

estimation results in the presence of measurement noise 

increment at the pitch angle gyro. 

Fig. 6 displays the results of the conventional KF estimation 

for the pitch angle. As seen, the accuracy of conventional 

KF estimates deteriorates after the 30th second of 

simulation (after the pitch angle gyroscope fails). 

     

 

Figure 6. The conventional KF's pitch angle estimation 

results in the presence of noise increment at the pitch 

angle gyro measurements 
 

Forward velocity estimation results via  RKF with recursive 

estimation of measurement noise covariance and 

conventional KF in the case of noise increment at the pitch 

angle gyro measurements are shown in Fig.7 and Fig.8 

respectively.  

The presented graphs show that the accuracy of 

conventional KF estimates increases after the 30th second of 

simulation (See Fig. 8), however, the proposed RKF with 

recursive estimation of measurement noise covariance gives 

fairly good estimation results over the entire estimation 

interval (Fig. 7).  
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Figure 7. RKF forward velocity estimation results in the 

presence of noise increment at the pitch angle gyro 

measurements  

 

Figure 8. The conventional KF's forward velocity estimation 

results in the presence of noise increment at the pitch 

angle gyro measurements 

In all investigated sensor fault scenarios, the proposed 

recursive RKF estimation results outperform those of the 

conventional KF. 

5.3. RMS Errors of the RKF and Conventional KF 

Root Mean Square (RMS) errors of the innovation-based 

RKF with recursive estimation of measurement noise 

covariance and conventional KF estimates in the presence of 

pitch angle gyro bias are presented in Table 1. As can be 

seen from the results presented in Table 1, the proposed 

RKF is superior for both longitudinal and lateral parameters 

in the presence of pitch angle gyro bias. RMS errors of 

conventional KF are sufficiently greater than the RMS 

errors of the proposed robust filter. 

RMS errors of the proposed RKF and conventional KF 

estimates in the presence of measurement noise increment at 

the pitch angle gyro are presented in Table 2. 

 

Method RKF Conv.KF 

u  0.0795 0.5309 

w  0.0176 0.1738 

q  0.0137 0.0651 

  0.0105 0.1357 
h  0.1074 0.3068 
  0.0098 0.0286 
p  0.0059 0.0386 

r  0.0091 0.0285 
  0.0124 0.0475 

 

Table 1. RMS errors of the proposed RKF and conventional 

KF estimates in the presence of pitch angle gyro bias 

 

Method RKF Conv.KF 

u  0.0811 0.1782 

w  0.0172 0.0847 

q  0.0133 0.0648 

  0.0129 0.0749 
h  0.0869 0.1523 
  0.0108 0.0289 
p  0.0076 0.0413 

r  0.0104 0.0284 
  0.0150 0.0497 

 

Table 2. RMS errors of the proposed RKF and conventional 

KF estimates in the presence of measurement noise 

increment at the pitch angle gyro 

The presented in Table 2 results show that, the RKF gives 

better results for both longitudinal and lateral parameters in 

the presence of measurement noise increment at the pitch 

angle gyro. The RMSE results of conventional KF are worst 

compared to the robust filter. 

In all investigated sensor fault scenarios, the proposed RKF 

gives better estimation results then the conventional KF. 

6. CONCLUSION 

This study proposes a novel recursive method for estimating 

measurement noise covariance for Kalman filter tuning. 

Based on the presented innovation approach to recursively 

estimate the measurement noise covariance, a robust 

Kalman filter against sensor faults is presented. The sensor 

fault compensation in this filter is accomplished with a 

simple change to the conventional KF.  
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The proposed RKF with recursive estimation of 

measurement noise covariance is applied for the UAV 

dynamics model. Two alternative scenarios of measurement 

error are evaluated on algorithms; constant bias at 

measurements (additive sensor faults) and measurement 

noise increments (multiplicative sensor faults). The 

simulation results show that the proposed innovation-based 

RKF with recursive estimation of measurement noise 

covariance can accurately estimate the UAV dynamics in 

real time in the presence of various types of sensor faults.  

Estimation accuracies of the proposed RKF and 

conventional KF are compared. In all investigated sensor 

fault sceneries, the estimation accuracy of the proposed 

RKF is superior.  The conventional KF gives inaccurate 

estimation results in the presence of sensor faults. 

The innovation-based RKF with recursive estimation of 

measurement noise covariance can be recommended as the 

reliable UAV state estimator in the flight control system in 

the presence of sensor faults. 

Further research will be aimed at developing RKF with 

recursive estimation of process noise covariance and its 

application to the UAV dynamics model. 
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APPENDIX-A 

RKF With Recursive Measurement Noise 

Covariance Estimation 

The proposed RKF with recursive measurement noise 

covariance estimation includes the following operations: 

1) One step further prediction of the value 

(determination of the extrapolation value)  
 

ˆ ˆ( 1/ ) ( / ) ( )x j j Ax j j Bu j+ = +             (A-1) 

 

2) Determination of the difference of the 

measurement and the extrapolation value 

(innovation sequence) 
 

ˆ( 1) ( 1) ( 1/ )j z j Hx j j + = + − +           (A-2) 
 

3) Calculation of the covariance matrix of 

extrapolation error 

( 1/ ) ( / ) ( ) ( )T T T

uP j j AP j j A BD j B GQ j G+ = + +
        (A-3) 

where ( )uD j  is the covariance matrix of control inputs. 
 

4) Calculation of the measurement noise covariances 

for 1j +  iteration 
 

 

( 1) ( ) ( 1) ( 1) ( ) ( )

( / 1) ( 1/ )

T T

T

R j R j j j j j

H P j j P j j H

+ = +  +  + − 

+ − − +
   (A-4) 

 

5) Determining the innovation covariance 
 

( 1) ( 1/ ) ( 1)TP j HP j j H R j + = + + +           (A-5) 
 

6) Calculation of the Kalman gain 
 

1( 1) ( 1/ ) ( 1)TK j P j j H P j−

+ = + + +        (A-6) 
 

7)  Determining the estimated value  

 

                     ˆ ˆ( 1/ 1) ( 1/ ) ( 1) ( 1)x j j x j j K j j+ + = + + +  +    (A-7) 
 

8) Calculation of the covariance matrix of estimation 

error 

( 1/ 1 ( 1/ ) ( 1) ( 1/ )P j j P j j K j HP j j+ + = + − + +
 (A-8) 

 

9) Storage of values ( 1)R j + , ˆ( / )x j j , ( 1/ 1)P j j+ +  

and repetition of the loop. 

 

 

 

 

 

 

APPENDIX-B 

 

Mathematical Model of the UAV Flight Dynamics 

The dynamic characteristic of an UAV must be known in 

order to build a Kalman filter for the state estimation. In 

general, equation derivation process for an UAV may be 

examined in two steps; derivation of the rigid body 

equations of motion and the linearization (Yechout et al., 

2003).  

In general, the equations are considered in two phases; 

longitudinal and lateral. These nonlinear equations can be 

linearized by using the small perturbation theory. Hereafter, 

the term (.) is used for representing the perturbed state. 

Consequently, the linearized longitudinal equations of 

motion of UAV in the state space form is, 

 

       ( 1) ( ) ( )lon lon lon lon lonx j A x j B u j+ = +                      (B-1)                     

where 

 

 

0

0

0

( ) ;

0 0

0 0

0 0 ;

0 0 1 0 0

0 1 0 0

; ( ) .

0 0

0 0

Tlon

j

u w

u w

lon
u w u w w w q w

e T

e T
elon lon

e w e T w T
T j

x j u w q h

X X g

Z Z u

M M Z M M Z M M uA

u

X X

Z Z

B u jM M Z M M Z

 

 

   







=     

− 
 
 
 + + +=
 
 
 − 

 
 
   
 = =+ +  

   
 
 
 

(B-2) 

  

and the linearized lateral equations of motion of UAV in the 

state space form is,  

                  ( 1) ( ) ( )lat lat lat lat latx j A x j B u j+ = +           (B-3)                                                      

 

where 
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 

( )00

0 0 0 0

0

( ) ;

cos

0 ;

0

0 1 0 0

0

; ( ) .

0 0

Tlat

j

p r

lat
p r

p r

r

alat lat
a r

r j
a r

x j p r

YY gu Y

u u u u

L L LA

N N N

Y

u

B u jL L

N N









 

 

 







=    

 −
− 

 
 =
 
 
 
  

 
 
   
 = =  

   
 
        (B-4) 

 

Here, u , w  are the velocity components , ,p q r  

are the angular rates,  ,e a  and r  are the elevator, 

aileron and the rudder deflections, T is the change in the 

thrust,  is the pitch angle about y  axis,   is the roll 

angle about x  axis,   is the sideslip angle, h is the 

height, 0  and 0u are the values of related terms in the 

steady state flight, g is the gravity constant and ,uX  ,wX  

,eX  ,TX  ,uZ  ,wZ  ,eZ  ,TZ  ,uM  ,wM  ,qM  

,wM  ,rY  ,pY  ,Y  ,rY  ,L  ,pL  ,rL  ,aL  ,rL  

,eM  ,TM  ,aN  ,rN  ,N  ,pN  rN  are the stability 

derivatives, their values can be found in (Matthews, 2006). 

     Integrating the longitudinal and lateral equations of UAV 

results in the equations as (Hajiyev and Soken, 2012) 

( 1) ( ) ( ) ( )

( 1) ( 1) ( 1)

x j Ax j Bu j Gw j

z j Hx j V j

+ = + +

+ = + + +
            (B-5)  

where  

 ( )
T

j
x j u w q h p r  =           

 ( )
T

e T a r j
u j    =      

               

0 0
,

0 0

lon lon

lat lat

A B
A B

A B

   
= =   
     

 
 


