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ABSTRACT

Predicting the Remaining Useful Lifetime (RUL) of bear-
ings is crucial for the maintenance and reliability of rotat-
ing machinery. This paper presents a novel approach utiliz-
ing PRONOSTIA and XJTU-SY datasets for RUL predic-
tion. The proposed methodology leverages Synchrosqueez-
ing Wavelet Transform (SSWT) and Random Projection (RP)
to extract significant features from vibration signals. These
features are then fed into a Residual Network (ResNet) com-
bined with a temporal attention layer, followed by a Long
Short-Term Memory (LSTM) model, referred to as the Adap-
tive Residual Attention LSTM (ARAL), to assess the Health
Indicator (HI) of the bearings. Notably, an exponential data
labeling technique is employed instead of traditional linear
labeling, enhancing the robustness of the HI assessment. Fol-
lowing the HI estimation, the three-sigma method is applied
to identify the degradation starting point. Subsequently, Gaus-
sian Process Regression (GPR) is utilized to predict the RUL
from this point forward. The proposed method demonstrates
superior performance compared to existing techniques, pro-
viding more accurate and reliable RUL predictions. Experi-
mental results show that this integrated approach effectively
captures the complex degradation patterns of bearings, mak-
ing it a valuable tool for prognostics and health management
in industrial applications.

1. INTRODUCTION

Rolling bearings are critical components in mechanical equip-
ment, with their degradation directly impacting overall sta-
bility and safety. Degradation in bearings is often caused by
multiple mechanisms, including wear, fatigue, and microfrac-
tures in materials, which develop under fluctuating loads and
unstable operating conditions. These phenomena can com-
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pound over time, leading to more severe damage and even-
tual failure. Early fault detection and accurate prediction of
their RUL are essential for optimizing maintenance, prevent-
ing accidents, and enhancing efficiency. Manual monitoring
in such complex conditions is ineffective. With the rise of
artificial intelligence, Prognostics and Health Management
(PHM) has emerged as a vital field, yielding significant re-
search and practical applications (X. Li, Yu, Lei, Li, & Yang,
2024; Ding et al., 2023; Suh, Lukowicz, & Lee, 2022).

To estimate rolling bearing RUL, both model-based and data-
driven methods are commonly employed. Model-based meth-
ods aim to develop a physical model describing the degrada-
tion trend of the mechanical system or component (Londhe,
Arakere, & Subhash, 2017; Qin, Xiang, Chai, & Chen, 2020).
However, creating such models for complex equipment under
varying conditions is challenging and limits their applicabil-
ity. Conversely, data-driven methods use machine learning
and deep learning technologies to analyze measurement data
and uncover the dynamic characteristics of mechanical sys-
tems (Que & Xu, 2019).

Data-driven prognostics methods generally follow a three-
step framework: data acquisition, HI construction, and RUL
prediction (Lei et al., 2018). The HI in bearings serves as an
abstract measure of the overall health or degradation status of
the bearing. It is derived from features extracted from vibra-
tion signals that reflect the bearing’s condition. The accuracy
of RUL prediction is highly dependent on the HI construc-
tion phase, making the extraction of meaningful features from
measured signals a critical challenge. A well-constructed HI,
based on high-quality features, can efficiently track bearing
degradation (Zhang, Tang, Han, & Deng, 2017).

Historically, bearing fault diagnosis and RUL prediction have
relied on signal processing techniques such as Wavelet Packet
Decomposition (WPD) and Empirical Mode Decomposition
(EMD), which effectively extract features from vibration sig-
nals. However, these methods often struggle with non-stationary
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signals and noise, limiting their accuracy and applicability.

With advancements in sensing technology and computer sci-
ence, big data-driven deep learning has become a powerful
tool for autonomously extracting valuable features from ex-
tensive datasets. This approach has garnered significant at-
tention in rolling bearing RUL prediction. For instance, time-
frequency features, reduced in dimensionality, have been em-
ployed as inputs to multi-scale Convolutional Neural Net-
works (CNN) for assessing the remaining life of rolling bear-
ings (Zhu, Chen, & Peng, 2019a). Other studies have pro-
posed LSTM networks utilizing frequency domain features
for RUL prediction of gears (Yan, Qin, Xiang, Wang, & Chen,
2020). Additionally, multi-technique prognostic approaches
integrating multiple machine learning and deep learning mod-
els have been developed for RUL prediction (L. Li, Xu, & Li,
2023), while 2D Time-Scale (TS) images generated by Con-
tinuous Wavelet Transform (CWT) have been used as inputs
for 2D CNNs to develop health indicators for predicting the
remaining life of bearings (Yoo & Baek, 2018). Despite these
advancements, many deep learning models still struggle with
the vanishing gradient problem, which hampers the training
of deep networks and limits their ability to capture complex
patterns in the data.

Attention mechanisms (Vaswani et al., 2023), which can as-
sociate different parts of a sequence to create a distinctive rep-
resentation, have gained success in diverse applications such
as natural language processing, computer vision, and RUL
prediction (Deng et al., 2023). These mechanisms function
by establishing relationships between features from different
points in the sequence, assigning varying levels of importance
to these features, which helps to highlight critical information
while downplaying less relevant data. By integrating a tem-
poral attention mechanism, it becomes possible to effectively
extract significant degradation signals from sensor data, while
minimizing the impact of irrelevant information.

Building on these advancements, the SSWT and RP have
shown great promise in our previous research on bearing fault
diagnosis by capturing Time-Frequency (TF) information and
reducing feature dimensionality, leading to better accuracy
(Najdi, Benbrahim, & Kabbaj, 2024). SSWT (Daubechies,
Lu, & Wu, 2011) provides precise localization of signal fea-
tures, enhancing the detection of subtle changes. RP reduces
computational complexity while retaining essential informa-
tion from high-dimensional data (Achlioptas, 2003), address-
ing key limitations of traditional methods in non-stationary
environments.

To address existing deep learning limitations, this paper pro-
poses ARAL, a novel approach integrating a ResNet-based
CNN, a temporal attention layer, and an LSTM network. This
combination enhances feature extraction and improves RUL
prediction accuracy. ResNet CNNs mitigate the vanishing
gradient problem (Shah, Kadam, Shah, & Shinde, 2016), en-

abling deeper network training and complex feature extrac-
tion from vibration signals. The attention mechanism high-
lights the most relevant input data, and the LSTM network
captures temporal dependencies, effectively modeling the data’s
sequential nature.

The main contributions of this research are the following:

• Enhanced Feature Extraction: Leveraging SSWT and
RP to effectively capture and reduce the dimensionality
of significant features from vibration signals, addressing
key limitations of traditional methods.

• Novel Health Indicator: Introducing ARAL, combin-
ing a ResNet-based CNN, a temporal attention layer, and
an LSTM network to improve the accuracy of HI assess-
ments and RUL predictions by mitigating the vanishing
gradient problem and capturing complex temporal de-
pendencies.

• Exponential Data Labeling: Utilizing an exponential
data labeling technique for more robust HI assessment
and applying GPR following a three-sigma method to
predict RUL, demonstrating superior performance in cap-
turing complex degradation patterns and providing reli-
able RUL predictions.

The rest of the paper is structured as follows: Section 2 presents
the theoretical framework of the proposed RUL estimation
method. Section 3 details the experimental validation and re-
sults analysis using two bearing datasets. Finally, Section 4
provides the conclusion.

2. THE PROPOSED METHOD FOR RUL PREDICTION

2.1. The SSWT-RP Signal Transformation

The SSWT (Daubechies et al., 2011) is an advanced TF anal-
ysis method that enhances the concentration of a signal’s en-
ergy in the Time-Frequency plane while preserving the time
resolution. Given a signal s(t), the CWT of s(t) at scale a

and time t is defined as (Sadowsky, 1994):

Wωs(a, t) =
1→
a

∫ →

↑→
s(ω)ε↓

(
ω ↑ t

a

)
dω (1)

From the CWT, the instantaneous frequency (IF) ϑs(a, t) is
derived as:

ϑs(a, t) =
1

2ϖj

ϱ

ϱt
(lnWωs(a, t)) (2)

The SSWT then refines the CWT by reassigning its coeffi-
cients from the Time-Scale plane (t, a) to the Time-Frequency
plane (t,ϑs(a, t)), effectively mapping:
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SSWT s(t, ς) =

∫ →

0
Wωs(a, t)φ (ς ↑ ϑs(a, t))

da

a5/2
(3)

where ς represents the reassigned frequency. This process re-
sults in a TF matrix SSWT s(t, ς), which provides a clearer
and more concentrated representation of the signal’s energy
distribution over time and frequency.

Transforming big signals to TF can result in some redundancy
in the representation which will be cumbersome for process-
ing. To reduce the dimensionality of the TF matrix while
preserving its essential features, we apply RP. Let the TF rep-
resentation obtained from SSWT be X ↓ Rm↔n, where m is
the number of time points and n is the number of frequency
bins. In RP, the original high-dimensional data X is projected
into a lower-dimensional space using a randomly generated
matrix R ↓ Rk↔n, where k ↔ n:

Y = X ·RT (4)

Here, Y ↓ Rm↔k is the reduced-dimensionality represen-
tation of the TF matrix. The elements of R are chosen to
be independent and identically distributed (i.i.d.) and scaled
to unit length. This projection approximately preserves the
distances between the original data points, as guaranteed by
the Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss,
1984):

(1→ ω)↑Xi →Xj↑2 ↓ ↑Yi → Yj↑2 ↓ (1 + ω)↑Xi →Xj↑2 (5)

for any 0 < ↼ < 1 and for all pairs of data points Xi, Xj in
the original high-dimensional space.

The resulting matrix Y retains the most significant informa-
tion from the original TF representation but in a much lower-
dimensional space, making it suitable for subsequent process-
ing tasks such as classification or regression.

2.2. ARAL

The input matrix from the SSWT-RP method is denoted as
Y ↓ RH↔W , where H is the height and W is the width.
The convolutional layer applies a set of filters (kernels) to Y

to produce feature maps, as shown in Figure 1. Let K ↓
RkH↔kW↔F be the filter, where kH and kW are the height
and width of the filter, and F is the number of filters. The
output Y ↗ ↓ RH

→↔W
→↔F is computed as:

Y
↗
h→,w→,f =

kH∑

i=1

kW∑

j=1

Ki,j,f · Yh→+i↑1,w→+j↑1 (6)

where H
↗ and W

↗ are the height and width of the output
feature map from the convolutional layer, determined by the
strides and padding.

Figure 1. Convolution and pooling.

Next, Batch Normalization (BN) is applied to the output of
the convolutional layer to achieve zero mean and unit vari-
ance, followed by scaling and shifting. Let Ŷ be the normal-
ized output:

Ŷ
↗
h→,w→,f = ↽f



Y
↗
h→,w→,f ↑ µf√

⇀
2
f
+ ↼



+ ⇁f (7)

where µf and ⇀
2
f

are the mean and variance of the feature
map f , ↽f and ⇁f are learnable parameters, and ↼ is a small
constant added for numerical stability.

The ReLU activation function introduces non-linearity:

Ỹ
↗
h→,w→,f = max(0, Ŷ ↗

h→,w→,f ) (8)

MaxPooling reduces the spatial dimensions (height and width)
of the feature maps by taking the maximum value over a pool-
ing window:

Ph→→,w→→,f = max
(i,j)↘pool window

Ỹ
↗
h→·sh+i,w→·sw+j,f

(9)

where h
↗↗ and w

↗↗ are the new height and width after pooling,
and sh and sw are the strides.

The output from the MaxPooling layer, P , is then fed into a
series of Residual Blocks (ResBlock), as illustrated in Figure
2. Each ResBlock consists of two convolutional layers with
an identity shortcut connection. For each block k:

Uk = Conv(P, Fk, (kH , kW ), stride) (10)

Uk = BatchNormalization(Uk) (11)

Uk = ReLU(Uk) (12)

Uk = Conv(Uk, Fk, (kH , kW ), (1, 1)) (13)

Uk = BatchNormalization(Uk) (14)

If the input dimensions differ from the output dimensions, we
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Figure 2. ResNet block.

perform a 1!1 convolution and BN on the identity mapping:

Xshortcut = Conv(P, Fk, (1, 1), stride) (15)

Xshortcut = BatchNormalization(Xshortcut) (16)

Add the shortcut:

Zk = ReLU(Uk +Xshortcut) (17)

The final output Zk, denoted as Zk ↓ RH↔W↔F , of the Res-
Block is then passed to the attention block, as illustrated in
Figure 3.

Figure 3. Temporal Attention block.

The attention mechanism starts by computing the attention
weights. First, the input tensor Zk is transposed and then
multiplied by the weight matrix Watt. The attention mecha-
nism assigns different weights to different time steps of the
input tensor. The softmax function is applied to obtain the
attention weights:

Aatt,h,f,w =
exp

(∑
j
(Zk)Th,j,f ·Watt,j,w

)

∑
k
exp

(∑
j
(Zk)Th,j,f ·Watt,j,k

) (18)

The final output of the attention layer is then calculated by
performing an element-wise multiplication between the orig-
inal input Zk and the attention weights:

Ratt = Zk ↗A
T

att (19)

Figure 4. The LSTM architecture.

The LSTM layer processes the sequence data returned by the
attention layer, capturing temporal dependencies, as repre-
sented in Figure 4. The LSTM equations are defined for each
time step t as follows:

• Input gate: it = ⇀(WiRatt,t +Uiht↑1 + bi)

• Forget gate: ft = ⇀(WfRatt,t +Ufht↑1 + bf )

• Cell state: ct = ft ↘ ct↑1 + it ↘ tanh(WcRatt,t +
Ucht↑1 + bc)

• Output gate: ot = ⇀(WoRatt,t +Uoht↑1 + bo)

where ⇀(z) = 1
1+e↑z is the sigmoid function.

Finally, the output of the LSTM layer is calculated as follows:

ht = ot ↘ tanh(ct) (20)

2.3. RUL prediction based on SSWT-RP-ARAL

In this section, we present the deep learning-based method-
ology for RUL prediction using SSWT, RP, and a combina-
tion of ResNets, Temporal Attention Block, and LSTM mod-
els. The procedure is shown in Figure 5 and comprises three
stages: data preparation, HI construction, and RUL estima-
tion. In the data preparation stage, vibration signals are trans-
formed into TF domain features using SSWT, then dimen-
sionality is reduced using RP. In the HI construction stage,
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these features build the training and testing datasets. ResNet
extracts deep features, the Temporal Attention Block enhances
relevant temporal information, and LSTM captures temporal
dependencies, training the model to estimate the HI values.
In the RUL estimation stage, the three-sigma rule identifies
the abnormal degradation point, and GPR predicts the future
HI and degradation trends. The RUL is then calculated as the
time difference between the HI reaching a threshold and the
current time.

2.3.1. Health indicator constructed by SSWT-RP-ARAL

(i) Architecture of the ARAL-HI model

The architecture of the ARAL-HI model, presented in the
Figure 6, consists of multiple stages that process the input
data to construct health indicators. The initial stages involve
the SSWT-RP transformed input Y , which is passed through
the convolutional and ResBlocks, followed by the attention
mechanism and LSTM layers. The final output of the LSTM
layers serves as the input to a series of dense layers designed
to further refine the health indicators.

After the LSTM layers, the output ht is fed into one or more
fully connected (dense) layers. These dense layers are equipp-
ed with dropout regularization to prevent overfitting. Let D
be the dropout rate, and Wd and bd be the weights and biases
of the dense layers, respectively. The dense layer operation
can be expressed as:

dt = Dropout(ReLU(Wdht + bd), D) (21)

Following the dense layers, a final dense layer with a sigmoid
activation function is applied to produce the HIs. The sigmoid
layer converts the output into a value between 0 and 1, indi-
cating the health state of the bearing. Let Ws and bs be the
weights and biases of the sigmoid layer. The health indicator
HIt is computed as:

HIt = ⇀(Wsdt + bs) (22)

The resulting HIt represents the normalized health state at
time step t, providing a comprehensive view of the bearing’s
condition over time.

(ii) Exponential Data labeling

Instead of using the conventional linear data labeling of the
run-to-failure data, an exponential function is used to reflect
the bearing defect progression over time. The exponential
labeling function is defined as:

HealthLabel(t) =
exp(α · x)↑ 1

exp(α)↑ 1
(23)

where x = t

T
, t is the current time step, T is the total time

steps until failure, and α is the scaling factor. An example
is shown in the Figure 7, where we construct the health la-
bel of the Bearing1 3. The scaling factor is chosen based on
the best RMSE value of the training, with the scaling fac-
tors of 1.3 and 1.5 being tested, and 1.3 yielding the best
results. Each time step t in the dataset is assigned a label
HealthLabel(t) using this exponential function, providing
a more realistic representation of the bearing’s degradation
process.

(iii) Model Training

The network is trained using the labeled dataset, with the ob-
jective of minimizing the difference between the predicted
health indicators and the true health labels. The training pro-
cess includes forward propagation through the convolutional,
residual, attention, LSTM, dense, and dropout layers, fol-
lowed by a sigmoid activation function to produce the final
HIs.

The loss function used to evaluate the model’s performance
is the RMSE, which is defined as:

RMSE =

√√√√ 1

N

N∑

i=1

(HIi ↑HIi)2 (24)

where HIi is the predicted health indicator, HIi is the true
health indicator, and N is the total number of samples. The
RMSE function measures the square root of the average squar-
ed differences between the predicted and true values.

The training process involves minimizing the RMSE by ad-
justing the model’s parameters through backpropagation and
Adam optimizer. This ensures that the predicted health indi-
cators closely match the true health indicators, improving the
model’s prediction accuracy.

2.4. RUL estimation

The calculation of the RUL involves several key steps, each
underpinned by important theoretical concepts:

2.4.1. Smoothing the HI Curve

Once the HI curve is obtained from the SSWT-RP-ARAL
model, we first apply a smoothing technique to reduce noise
and highlight the underlying degradation trend. The smooth-
ing is done using a Moving Average (MA), which helps to
smooth out short-term fluctuations and reveal the long-term
trend in the HI data. The moving average is defined as:

MA(t) =
1

2k + 1

k∑

i=↑k

HI(t+ i) (25)
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Figure 5. Framework of the proposed SSWT-RP-ARAL Method for RUL Prognosis.

Figure 6. Architecture of the ARAL health assessment model.
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Figure 7. Exponential Labeling vs Linear Labeling.

where MA(t) is the moving average at time t, and k is the
window size for the MA.

2.4.2. Detecting the Abnormal Point with 3-Sigma Method

To identify the point at which abnormal degradation starts,
we use the 3-Sigma method. This statistical method detects
points that deviate significantly from the mean of the smoothed
HI curve. The mean µ and standard deviation ⇀ of the smoothed
HI data are calculated, and any point HI(t) that satisfies the
condition:

|HI(t)↑ µ| > 3⇀ (26)

is considered an abnormal point. The time corresponding to
the first detected abnormal point is denoted as Ta. This point
marks the beginning of significant degradation, and subse-
quent analysis focuses on the HI data from this point onward.

2.4.3. GPR model

To predict the future degradation and estimate the RUL, we
fit a GPR model to the HI data from the abnormal point Ta

to the current observation time Ts. GPR is a non-parametric,
Bayesian approach that provides both a prediction and an un-
certainty estimate. The GPR model is defined by a mean
function m(t) and a covariance function k(t, t↗):

HI(t) ≃ GP(m(t), k(t, t↗)) (27)

A combination of long and short term trend kernels allows
the GPR model to capture various patterns and noise charac-
teristics in the HI data.

2.4.4. RUL calculation

To calculate the RUL, we extrapolate the GPR model to pre-
dict the HI values until the HI reaches a failure threshold
HIth. The predicted time Tf at which the HI curve inter-
sects the threshold is determined, and the RUL is calculated
as the difference between Tf and the current observation time
Ts:

RUL(Ts) = Tf ↑ Ts (28)

In practice, the RUL prediction process is detailed in Algo-
rithm 1:

3. THE EXPERIMENTAL VALIDATION

To demonstrate the effectiveness and advantages of the pro-
posed method for predicting the RUL of bearings, two renown-
ed public datasets were utilized: the PRONOSTIA dataset
(Nectoux et al., 2012) and the XJTU-SY dataset (Wang, Lei,
Li, & Li, 2020a). The PRONOSTIA dataset, consisting of
run-to-failure vibration signals from bearings, was employed
to evaluate the performance of our method against several
established techniques. Additionally, the XJTU-SY dataset,
which provides comprehensive data on bearing degradation
under varying operational conditions, was used to further val-
idate our method’s prediction capabilities. Benchmarking aga-
inst various state-of-the-art techniques highlight-ed the pre-
dictive accuracy and robustness of our approach.
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3.1. Case study 1: IEEE-PHM-2012-Challenge

3.1.1. Experimental setup and evaluation metrics

The PRONOSTIA dataset, part of the IEEE PHM 2012 Data
Challenge (Nectoux et al., 2012), is used to validate the pro-
posed RUL prediction method. This dataset comprises run-
to-failure tests on bearings under controlled conditions, simu-
lating real-world operational environments. Vibration signals
were collected at a sampling frequency of 25.6 kHz in inter-
vals of 0.1 seconds, recorded every 10 seconds. The dataset
includes both horizontal and vertical vibration signals, though
only horizontal signals were used in this study due to their
higher relevance for bearing degradation (Pichler, Ooijevaar,
Hesch, Kastl, & Hammer, 2020).

The dataset consists of 17 bearings tested under three differ-
ent operating conditions, characterized by varying loads and
rotational speeds. For instance, bearings under Condition 1
experienced a load of 4000 N and a speed of 1800 rpm. Table
1 provides a summary of the experimental setup.

Table 1. Summary of the PRONOSTIA dataset.

Condition Load (N) Speed (rpm) Bearings

1 4000 1800 Learning: 1-1, 1-2, 2-1, 2-2, 3-1, 3-2
Testing: 1-3, 1-4, 1-5, 1-6, 1-7

2 4200 1650 Learning: 2-1, 2-2
Testing: 2-3, 2-4, 2-5, 2-6, 2-7

3 5000 1500 Learning: 3-1, 3-2
Testing: 3-3

To assess the effectiveness of our proposed method for RUL
prediction, we evaluated its performance using testing bear-
ings and compared the results with other studies. The evalua-
tion metrics included the score metric, accuracy, and percent
error. These metrics are those used in the IEEE PHM 2012
Prognostic Challenge.

The percent error for the i-th bearing is calculated as follows:

Eri = 100⇐ ActRULi ↑ ˆRULi

ActRULi

(29)

where ActRULi represents the actual RUL, and ˆRULi denotes
the predicted RUL of the i-th testing bearing.

A distinct scoring function to handle overestimations and un-
derestimations differently is used. The scoring function is
defined as:

Acci =


exp


↑ ln(0.5)⇐ Eri

5


if Eri ⇒ 0

exp

+ ln(0.5)⇐ Eri

20


if Eri > 0

(30)

In this function, a perfect prediction (i.e., zero percent error)
yields a score of 1. As the percent error increases, the score
decreases. Notably, predictions that are later than the actual
failure time (i.e., Eri ⇒ 0) result in a more significant penalty

compared to early predictions.

The overall performance of the RUL prediction is represented
by the average score across all testing bearings, calculated as:

Score =
1

11

11∑

i=1

Acci (31)

3.1.2. Analysis and results

(i) Data preparation and processing

Each sample from the PRONOSTIA dataset, consisting of
2,560 data points, undergoes a transformative process to pre-
pare it for input into the ARAL-HI model. Initially, the data is
normalized and converted into a 2560 ⇐ 128 time-frequency
image using the SSWT, capturing intricate signal details. To
reduce computational complexity, these high-dimensional im-
ages are then compressed into 128⇐ 128 images through RP,
preserving essential features. These processed images are
subsequently fed into the ARAL-HI model, which performs
regression based on the exponential labeling strategy to accu-
rately assess the degradation of the bearings. Bearing1 3 is
taken as an example in Figure 8 to show the transformations
of the time signal through his full life cycle.

(ii) Configuration of the ARAL-HI model

The proposed HI model in this study was implemented us-
ing Python 3.11 and TensorFlow 2.0, and trained on a high-
performance computation server with 2 Tesla V100s-PCI 32Gb
GPUs. Extensive hyperparameter tuning and optimization
were performed using grid search to ensure optimal perfor-
mance. The model was trained over 100 epochs with a batch
size of 256, using the Adam optimizer with a learning rate
of 3.8e-4, striking a balance between convergence speed and
stability, and resulting in high accuracy for health assessment
tasks. The details of the configuration are presented in Table
2

Table 2. The ARAL model configuration.

Layer Type Filter Activation Output
No. Size Shape
1 InputLayer - - (128, 128, 1)
2 Conv2D (7, 7) ReLU (64, 64, 32)
3 MaxPooling2D (3, 3) - (32, 32, 32)
4 ResBlock (3, 3) ReLU (32, 32, 64)
5 ResBlock (3, 3) ReLU (32, 32, 64)
6 ResBlock (3, 3) ReLU (16, 16, 128)
7 ResBlock (3, 3) ReLU (16, 16, 128)
8 ResBlock (3, 3) ReLU (8, 8, 256)
9 ResBlock (3, 3) ReLU (8, 8, 256)

10 Reshape - - (8, 2048)
11 Attention Mechanism - Softmax (8, 2048)
12 LSTM 256 units - (256)
13 Flatten - - 256
14 Dense - ReLU 2560
15 Dropout - - 2560
16 Dense - ReLU 512
17 Dropout - - 512
18 Dense - Sigmoid 1

8
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Figure 8. Snapshots of the fault progression of bearing1 3.

(iii) The Influence of the Data labeling

Figure 9 illustrates a comparison of RMSE values for the lin-
ear and exponential labeling approaches across the three con-
ditions.

Figure 9. RMSE values for Linear and Exponential Labeling
across three conditions.

To assess the impact of different labeling strategies on the pre-
diction performance, we conducted ablation studies focusing
on the influence of exponential labeling versus conventional
linear labeling of the run-to-failure data. In the conventional
linear labeling approach, the HI decreases linearly as the bear-
ing progresses towards failure. Conversely, in the exponential
labeling approach, the HI follows an exponential decay pat-

tern, which is designed to provide a more sensitive response
to early-stage degradation. We tested these approaches un-
der the three different conditions of the PRONOSTIA dataset.
The results indicated that the exponential labeling approach
significantly improved the RMSE of the predictions compared
to the linear labeling method. Specifically, the exponential
model yielded lower RMSE values across all three conditions,
facilitating the model’s training process and better reflecting
the degradation process of the bearing.

(iv) Number of ResBlocks Selection

We investigated the effect of varying the number of ResBlocks
on the model’s performance. Specifically, we tested configu-
rations with 2, 4, 6, 8, and 10 ResBlocks. The results, mea-
sured in terms of RMSE, indicated that the optimal number
of ResBlocks was 6, which yielded the lowest RMSE value.
This suggests that having 6 ResBlocks balances model com-
plexity and performance, effectively capturing the necessary
features without overfitting.

Figure 10 illustrates the RMSE values for different numbers
of ResBlocks.

(v) Effects of fitting interval selection

When using the full HI data to train and fit our GPR model,
it frequently fails to converge due to an abnormal large step
phenomenon present in the data. The step-like nature of the
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Figure 10. RMSE values for different numbers of ResBlocks.

HI curve leads to significant errors, making accurate RUL es-
timation challenging and, in many cases, causing the model
to never converge to the RUL threshold. However, by in-
corporating the start fitting point using the 3-sigma method,
the model is able to converge and estimate the RUL of the
bearing. This improvement is illustrated in Figure 11, which
demonstrates the effect using Bearing 1 4 and 2 3 as exam-
ples.

(vi) RUL results

Table 3 presents the RUL prediction results, indicating the er-
ror and the accuracy for each bearing. These results are used
to benchmark the proposed method against other state-of-the-
art techniques. Figure 12 illustrates the RUL prediction pro-
cess for several test bearings.

Table 3. RUL prediction results of ARAL on PRONOSTIA
dataset.

Bearing
Number

Current
Time (s)

Actual
RUL (s)

Predicted
RUL (s) Error Accuracy

1 3 18010 5730 5610 2.0942 0.9300
1 4 11380 339 320 5.6047 0.8235
1 5 23010 1610 1290 19.8758 0.5022
1 6 23010 1460 1510 -3.4247 0.9336
1 7 15010 7570 7430 1.8494 0.9379
2 3 12010 7530 7880 -4.6481 0.9063
2 4 6110 1390 1390 0.0000 1.0000
2 5 20010 3090 2640 14.5631 0.6037
2 6 5710 1290 1290 0.0000 1.0000
2 7 1710 580 600 -3.4483 0.9333
3 3 3510 820 760 7.3171 0.7760

3.1.3. Comparison and Analysis of RUL Prediction Meth-
ods

This section presents a comparative analysis between the pro-
posed method and seven leading techniques to highlight its
effectiveness and superiority. The results of the experiments,
illustrated by the box plots in Figure 13 and detailed in Ta-
ble 4, provide a comprehensive summary of the performance
of the eight RUL prediction methods on the PRONOSTIA

dataset.

Among the seven comparative methods:

1. (Liu, Song, Yang, Hao, & Peng, 2018) utilized health in-
dicators derived from the Hilbert–Huang transform (HHT)
to predict the RUL of bearings;

2. (Wang, Lei, Li, & Li, 2020b) introduced an approach
combining an exponential degradation model with a rel-
evance vector machine (RVM) to estimate the RUL, re-
ferred to as EMD-RVM;

3. (She & Jia, 2021) developed a bidirectional gated recur-
rent unit (Bi-GRU) model, enhanced with bootstrap tech-
niques, for RUL prediction;

4. (L. Li et al., 2023) proposed a multi-technique fusion
method for health prognostics, integrating relevance vec-
tor machine with a deep separable convolutional gated
recurrent network (DSGGRN);

5. (Zhuang, Jia, Cao, & Zhao, 2022) implemented a semi-
supervised approach, utilizing a double attention guided
assessment method (SDAGA), for estimating the RUL;

6. (Hong, Zhou, Zio, & Hong, 2014) employed wavelet
packet-empirical mode decomposition (WP-EMD) for fea-
ture extraction, followed by self-organizing mapping (SOM)
for assessing performance degradation, named WP-EMD-
SOM;

7. (Chen, Jin, Kong, Wang, & Xu, 2023) introduced a Global
and Local Information Integrated Network (GLIIN) for
predicting the remaining useful life of bearings.

Based on the error (Er) formula, if Er < 0, it means the
predicted RUL is longer than the actual RUL, which is detri-
mental to equipment safety. The proposed method has three
cases of negative errors, similar to HHT and DSGGRN. In
contrast, methods like Bi-GRU and GLIIN exhibit a higher
frequency of negative errors, with 4-6 occurrences. This sug-
gests that the proposed method matches the safety assurance
levels of the top-performing methods, and maintains a lower
rate of unsafe predictions.

The box plot of errors indicates the distribution and spread
of the error percentages for each method. The reference line
at Error = 0 signifies the ideal scenario where predicted RUL
matches the actual RUL perfectly. Methods like HHT, EDM-
RVM, Bi-GRU, show a wide spread in error distribution, indi-
cating variability in their predictions. DSGGRN and SDAGA
display more compact error distributions, suggesting higher
consistency and accuracy. WD-EMD and GLIIN have sig-
nificant error spreads, demonstrating occasional large devia-
tions from the actual RUL. The proposed method exhibits a
relatively narrow error distribution, with most errors close to
zero, indicating high accuracy and consistency.

The box plot of accuracies indicates the distribution and spre-
ad of the accuracy scores for each method. The reference

10



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 11. Effect of fitting interval selection

Table 4. State-of-art methods’ results comparison with the proposed method.

Dataset HHT
(Er%)

EDM-RVM
(Er%)

Bi-GRU
(Er%)

DSGGRN
(Er%)

SDAGA
(Er%)

WP-EMD-SOM
(Er%)

GLIIN
(Er%)

Proposed
(Er%)

Bearing 1 3 2.58 -1.05 -4.36 6.32 3.66 -1.04 0.87 2.09
Bearing 1 4 -9.14 -17.99 70.50 -7.67 2.65 -20.94 -131.91 5.60
Bearing 1 5 -0.99 21.74 6.21 14.90 -4.35 -278.26 -109.29 19.88
Bearing 1 6 6.03 6.16 -4.11 13.42 -0.68 19.18 5.27 -3.42
Bearing 1 7 -0.70 7.79 18.63 -0.96 10.57 -7.13 -10.31 1.85
Bearing 2 3 55.44 43.03 17.40 19.31 0.93 10.49 47.97 -4.65
Bearing 2 4 15.56 1.44 -1.44 4.53 -5.76 51.80 4.24 0.00
Bearing 2 5 49.19 18.77 5.18 -2.69 -2.27 28.80 0.88 14.56
Bearing 2 6 38.53 2.33 16.25 3.02 -5.43 -20.93 2.34 0.00
Bearing 2 7 5.17 -3.45 10.34 2.24 56.90 44.83 -138.40 -3.45
Bearing 3 3 2.56 13.41 6.10 -14.15 2.44 -3.66 0.98 7.32

Score 0.6101 0.5941 0.6190 0.6832 0.6928 0.3550 0.5413 0.7582

line at Accuracy = 0.6 marks the threshold for good pre-
diction performance. HHT, EDM-RVM, and Bi-GRU show
wide distributions around this threshold. For instance, the in-
terquartile range (IQR) for HHT spans from approximately
0.4 to 0.75, suggesting variability in performance. The me-
dian accuracy for these methods is near or above 0.6, but the
spread indicates that their predictions are not consistently re-
liable. DSGGRN and SDAGA have more compact distribu-
tions, with the majority of their accuracy scores above 0.6.
The IQR for DSGGRN is approximately 0.55 to 0.85, and for
SDAGA, it is about 0.65 to 0.85. These narrow IQRs reflect
higher consistency and reliability in their predictions. WD-
EMD and GLIIN exhibit significant variability, with fewer ac-
curacy scores consistently exceeding 0.6. The IQR for WD-

EMD is wide, from approximately 0.3 to 0.75, indicating
less reliable performance. Similarly, GLIIN has a broad IQR
ranging from about 0.4 to 0.7, suggesting variability and oc-
casional poor predictions. The proposed method demonstrates
a consistently high performance, with a compact distribu-
tion well above the 0.6 threshold. The IQR for the proposed
method spans from approximately 0.75 to 0.85, and the me-
dian accuracy is around 0.8. This indicates superior stabil-
ity and effectiveness. Over 75% of the cases achieve a score
above 0.6, underscoring the method’s robustness and reliabil-
ity.

Among the eight methods, the proposed method has the low-
est number of cases where the predicted RUL is larger than
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Figure 12. RUL prediction for some bearings

the actual RUL, which is crucial for ensuring equipment safety.
The score of the proposed method is 0.7582, higher than the
other methods. This improvement in score highlights the su-
perior overall prediction performance of the proposed method.
The box plots further illustrate the proposed method’s stabil-
ity and accuracy, with the least variability in errors and the
highest consistency in achieving good accuracy scores. The
proposed method demonstrates the best balance between low
prediction errors and high accuracy, making it the most reli-
able method among those compared.

However, despite its strong overall performance, it is impor-
tant to acknowledge certain limitations. A more detailed anal-
ysis reveals that for bearings with RULs under 1000 seconds
(such as bearings 1 4, 2 7, and 3 3), the SDAGA method out-
performs the proposed method in 2 out of the 3 instances.
This indicates that in cases of shorter RUL predictions, our
method may exhibit slight underperformance compared to
SDAGA. While our method provides higher overall accuracy
and stability, these observations suggest that further refine-
ment might be needed to handle fast-degrading components
more effectively.

This insight is critical for future users to understand the spe-
cific contexts in which the proposed method is most effec-
tive and where alternative methods may be more appropriate.
Despite this limitation, the proposed method remains highly
effective for general use, offering the best balance between
low prediction errors and high accuracy across a wide range
of bearings, as shown by the overall results.

3.2. Case study 2: XJTU-SY datasets

3.2.1. Experimental setup and evaluation metrics

The XJTU-SY rolling bearing dataset, developed by (Wang
et al., 2020a), provides comprehensive vibration data for 15
rolling element bearings (model LDK UER204) under accel-
erated degradation conditions. The testbed consists of an AC
induction motor, speed controller, support shaft, hydraulic
loading system, and two heavy-duty roller bearings. Vibra-
tion signals are collected using two PCB352C33 accelerome-
ters in both vertical and horizontal directions with a sampling
frequency of 25.6 kHz, a sampling interval of 1 minute, and
a duration of 1.28 seconds per sample. The dataset captures
the full life cycle of the bearings across three operating con-
ditions, with five bearings tested under each condition. These
conditions involve varying radial forces and rotational speeds,
simulating different stress levels on the bearings, as detailed
in Table 5. The dataset documents two primary degradation
trends—slow and abrupt—providing valuable data for train-
ing and testing predictive maintenance models.

For the assessment of predictive performance on this dataset,
we use two key metrics: RMSE and Score (Saxena, Goebel,
Simon, & Eklund, 2008), defined as:

RMSE =

√√√√ 1

Q

Q∑

i=1

d
2
i

(32)

where Q is the number of testing samples, and di = PreRULi↑
ActRULi represents the error between the predicted RUL and
the actual RUL for the i-th sample.
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Figure 13. Distribution of RUL prediction errors and accuracies for the compared methods.

Score =
Q∑

i=1


exp


↑ di

13


↑ 1 if di < 0

exp

di

10


↑ 1 if di ⇑ 0

(33)

where di is as defined above.

Table 5. Operating conditions and corresponding bearing
datasets of XJTU-SY.

Condition Radial Force (kN) Shaft Speed (rpm) Bearings

1 12 2100
Learning: 1 1, 1 2

1 3, 1 4
Testing: 1 5

2 11 2250
Learning: 2 1, 2 2

2 3, 2 4
Testing: 2 5

3 10 2400
Learning: 3 1, 3 2

3 3, 3 4
Testing: 3 5

3.2.2. Analysis and results

(i) Data preparation and processing

For the XJTU-SY dataset, each file contains 32400 data points,
from which 2560 data points are randomly selected for sim-
plicity. The selected data is then processed similarly to the
PRONOSTIA dataset, undergoing normalization, transforma-
tion into 2560⇐128 TF images via SSWT, and dimensionality
reduction to 128⇐ 128 images through RP. These images are
subsequently fed into the ARAL-HI model for regression us-
ing the exponential labeling strategy to assess bearing degra-
dation. The same model configuration for ARAL, presented
in Table 2, is used in this experiment for model training and
HI construction.

(ii) Experiment results

To ensure the robustness of our RUL predictions and reduce
the impact of randomness, each experiment was repeated 20

times for the test bearings. We specifically focused on calcu-
lating the score and RMSE from the midpoint to the end of
each bearing’s lifetime, as predictions during this period are
more reliable and meaningful due to the clearer degradation
patterns (Singleton, Strangas, & Aviyente, 2015). By aver-
aging the results over these 10 repetitions, we were able to
obtain stable and accurate assessments of the model’s perfor-
mance, reflecting its true predictive capability during the crit-
ical later stages of bearing life. The RUL prediction results
are presented in Table 6.

3.2.3. Comparison and Analysis of RUL Prediction Meth-
ods

The Figure 14 provides a comparative analysis of various
methods for predicting the RUL of bearings 1 5, 2 5, and
3 5, using both RMSE and SCORE metrics. Both metrics as-
sess prediction accuracy, but with different emphases: RMSE
maintains consistency across early and late predictions, while
SCORE imposes tougher penalties on late predictions, as sho-
wn in the histograms. The methods compared include DBN
(Deutsch & He, 2018), MCNN (Zhu, Chen, & Peng, 2019b),
CLSTM (Zhao, Yan, Wang, & Mao, 2017), DSCN (Wang,
Lei, Li, & Yan, 2019), CNN-BiLSTM (Cheng, Hu, Wu, Zhu,
& Shao, 2021), DSCGRN (L. Li et al., 2023), and the Pro-
posed Method.

For Bearing 1 5, the Proposed Method exhibits the lowest
RMSE (1.02 ± 0.50) and SCORE (22.23 ± 3.10), indicat-
ing superior prediction accuracy. In contrast, for Bearing
2 5, DSCGRN outperforms the Proposed Method, achieving
a lower RMSE (8.13 ± 1.64) and SCORE (116.29 ± 25.45).
This suggests that DSCGRN is better at managing late predic-
tion errors, which are more heavily penalized by the SCORE
metric.

The results for Bearing 3 5 further emphasize the strength
of the Proposed Method, which again achieves the lowest
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Table 6. RUL prediction results for bearings 1 5, 2 5, and 3 5.

Bearing Number Full Lifetime (min) Starting Time (min) RMSE (mean ± std) Score (mean ± std)
1 5 52 26 1.02 ± 0.50 22.23 ± 3.10
2 5 339 170 9.15 ± 0.34 149.02 ± 15.50
3 5 114 57 8.14 ± 0.96 230.97 ± 30.20

Figure 14. Performance comparison of different prognosis methods on the XJTU-SY dataset.

RMSE (8.14 ± 0.96) and SCORE (230.97 ± 30.20). Over-
all, the Proposed Method demonstrates robust performance
across different bearings, excelling particularly in minimizing
prediction errors. However, the slightly better performance
of DSCGRN in Bearing 2 5 highlights that certain methods
may be more effective under specific conditions, particularly
in avoiding late RUL predictions.

4. CONCLUSION & FUTURE WORK

This paper introduced ARAL, an advanced method for pre-
dicting the RUL of rolling bearings by integrating SSWT, RP,
ResNet, a Temporal Attention Mechanism, and LSTM mod-
els. The method effectively captures critical time-frequency
features, addressing challenges like the vanishing gradient
problem and enhancing prediction accuracy. Experimental
results on the PRONOSTIA and XJTU-SY datasets demon-
strate that ARAL outperforms existing techniques in terms of
accuracy and reliability, achieving lower RMSE and higher
prediction scores across various test cases. The use of expo-
nential data labeling and GPR further improves RUL predic-
tions, particularly in accurately capturing degradation trends
and reducing prediction errors, making ARAL a robust tool
for industrial prognostics and health management.

While ARAL shows strong overall performance, there are
some limitations related to its real-time application. The pri-
mary challenge lies in the execution time required during the
GPR fitting phase, particularly when processing long HI curves.
This step can significantly slow down the prediction process,
which could impact ARAL’s usability in time-sensitive in-
dustrial environments. Optimizing the GPR process through
model simplification or faster approximation techniques will
be a key focus for future work to ensure that ARAL meets
real-time performance requirements without compromising
accuracy.

Additionally, ARAL demonstrates slight underperformance
in predicting rapidly degrading components, such as bearings
with shorter RULs. Addressing this limitation through further
model refinements will also be explored. Future work will in-
volve extending ARAL to other machinery types, integrating
additional data sources, and improving the method’s robust-
ness and computational efficiency for broader industrial ap-
plicability.
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