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ABSTRACT

The aim of predictive maintenance within the field of Prog-
nostics and Health Management (PHM) is to identify and
anticipate potential issues in equipment before they become
serious. Deep learning models, such as deep convolutional
neural networks (CNNs), long short-term memory (LSTM)
networks, and transformers, have been widely adopted for
this task, achieving significant success. However, these mod-
els are often considered “black boxes” due to their opaque
decision-making processes, making it challenging to explain
their outputs to stakeholders, such as industrial equipment ex-
perts. The complexity and large number of parameters in
these models further complicate the understanding of their
predictions.

This paper presents a novel explainable AI algorithm that ex-
tends the well-known Local Interpretable Model-agnostic Ex-
planations (LIME). Our approach utilizes a conditioned prob-
abilistic diffusion model to generate altered samples in the
neighborhood of the source sample. We validate our method
using various rotating machinery diagnosis datasets. Addi-
tionally, we compare our method against LIME, employing
a set of metrics to quantify desirable properties of any ex-
plainable AI approach. The results highlight that DiffLIME
consistently outperforms LIME in terms of coherence and
stability while maintaining comparable performance in the
selectivity metric. Moreover, the ability of DiffLIME to in-
corporate domain-specific meta-attributes, such as frequency
components and signal envelopes, significantly enhances its
explainability in the context of fault diagnosis. This approach
provides more precise and meaningful insights into the pre-
dictions made by the model.

1. INTRODUCTION

Early artificial intelligence models, such as simple decision
trees, were transparent and easy to interpret, but their ca-
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pabilities were limited. However, in recent years, there has
been a significant surge in the performance of predictive mod-
els used for tasks such as classification and regression. This
improvement in performance has often come at the cost of
increased complexity, reducing the interpretability of these
models. These complex models, often referred to as “black-
box” models (Rudin & Radin, 2019), are difficult to under-
stand and explain due to their opaque decision-making pro-
cesses.

This lack of transparency becomes particularly problematic
in high-stakes fields where model predictions can have sig-
nificant consequences, such as medicine, law, criminal pro-
filing, autonomous driving, and defense (Goodman & Flax-
man, 2017). Furthermore, black-box models are more dif-
ficult to debug, making it challenging to identify the root
causes of errors or biases. In contrast, interpretable mod-
els facilitate diagnosing issues and implementing corrective
measures (Gilpin et al., 2018).

1.1. Explainable Artificial Intelligence

Explainability and interpretability are related but distinct con-
cepts in AI and machine learning. While no universally stan-
dardized definition exists, a commonly accepted distinction
is as follows. Interpretability refers to the extent to which a
human can understand how a model generates its predictions.
An interpretable model is inherently understandable without
requiring additional techniques. For example, decision trees
and linear regression models are considered interpretable be-
cause their decision-making process is transparent. Explain-
ability refers to the ability to describe or justify how a model
makes decisions, often using additional techniques. Explain-
ability is particularly important for complex models like deep
learning, where the decision process is not inherently inter-
pretable.

Explainable Artificial Intelligence (XAI) aims to address the
challenges associated with the opacity of black-box machine
learning (ML) models by developing methods that either pro-
duce explanations for these models or design inherently in-
terpretable models, particularly in the context of post hoc ex-
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plainability (Arrieta et al., 2020). Post hoc explainability ap-
proaches can be categorized into model-agnostic and model-
specific techniques. Model-agnostic techniques are versatile
and can be applied to a wide range of ML models. Exam-
ples include LIME (Local Interpretable Model-Agnostic Ex-
planations) (Ribeiro, Singh, & Guestrin, 2016) and SHAP
(SHapley Additive ExPlanations) (Scott, Su-In, et al., 2017).
Conversely, model-specific techniques are tailored to specific
types of ML models. Notable examples include Grad-CAM
(Gradient-weighted Class Activation Mapping) (Selvaraju et
al., 2017), saliency maps (Simonyan, Vedaldi, & Zisserman,
2013), and layer-wise relevance propagation (LRP) (Bach et
al., 2015), which are predominantly used for interpreting deep
learning (DL) models.

XAI techniques are widely applied across various domains,
with a particular focus on tasks involving tabular and image
data. These domains have seen significant advancements in
explainability methodologies, leveraging the structured na-
ture of tabular data and the visual explainability of image-
based tasks. However, signal processing tasks have histori-
cally received comparatively less attention in the XAI liter-
ature, resulting in a gap in the development of explainabil-
ity methods for these applications. Similarly, the application
of XAI techniques to time-series models remains largely un-
derexplored (Schlegel, Arnout, El-Assady, Oelke, & Keim,
2019).

Unlike tabular or image data, time-series data often exhibit
a non-intuitive nature characterized by complex temporal de-
pendencies, seasonality, and variability. These characteristics
make time-series data harder to interpret, both for humans
and algorithms, complicating the development of effective
explainability techniques (Siddiqui, Mercier, Munir, Dengel,
& Ahmed, 2019). Addressing this challenge requires tailored
approaches that consider the temporal and sequential struc-
ture of time-series data, potentially opening new avenues for
advancing XAI in this domain.

Attribution methods, widely used in computer vision, gen-
erate heatmaps to highlight the most relevant regions of an
input, helping to understand model predictions. These tech-
niques have also been adapted for time-series data, aiming to
identify the most influential time steps that contribute to the
decision of a model.

Schlegel et al. (Schlegel et al., 2019) explored the use of sev-
eral attribution interpretability techniques, including LIME,
SHAP, and saliency maps, to explain deep learning models
for time-series classification. Their work demonstrated that
these methods, originally designed for images, could be ef-
fectively applied to sequential data by treating temporal steps
as features and generating importance scores accordingly.

Class Activation Mapping (CAM), a popular technique in im-
age interpretability, has been adapted for time series. Wang

et al. (Wang, Yan, & Oates, 2017) and Selvaraju et al.

(Selvaraju et al., 2020) proposed to use CAM-based approaches
for time-series classification. These methods rely on the ac-
tivations of convolutional layers to identify the most discrim-
inative time steps, effectively highlighting key regions in the
input sequence that influence the prediction of the model.

Another relevant contribution is TSViz (Siddiqui et al., 2019),
which leverages saliency maps for analyzing time series. TSViz
provides a visualization framework that applies gradient-based
saliency techniques, such as Guided Backpropagation and In-
tegrated Gradients, to reveal which temporal segments con-
tribute most to a classification outcome.

Schlegel et al. (Schlegel, Vo, Keim, & Seebacher, 2021)
proposed TS-MULE, an extension of LIME for time series
forecasting models that utilizes local surrogates with a time-
aware neighborhood generation strategy. It segments the time
series into subcomponents and evaluates their contributions
to predictions. Differently, Meng et al. (Meng, Wagner, &
Triguero, 2023) identified key time series segments by opti-
mizing perturbations that maximize the change in prediction
probability. Their method determines the most influential re-
gions of the signal based on their contribution to classification
decisions. This approach is focused on network architecture,
as it relies on gradients for optimization. It is noteworthy that
these methods are subsequence-based, as their explanations
refer to specific subparts of the time series.

Despite their effectiveness, these attribution-based methods
have limitations. Many gradient-based approaches, including
saliency maps, suffer from noise and instability, producing
inconsistent explanations across similar inputs. Additionally,
LIME and SHAP rely on perturbation-based sampling, which
may not capture temporal dependencies accurately. These
challenges highlight the need for more robust interpretability
methods tailored specifically to time-series data which incor-
porate domain-specific constraints to improve explanation.

1.2. XAI in Predictive Maintenance

XAI methods have seen limited application in the field of
PHM (Vollert, Atzmueller, & Theissler, 2021). Despite the
growing recognition of the importance of explainability in
industrial settings, few studies have focused on developing
new XAI techniques or adapting existing ones to address the
unique challenges of PHM.

Notable progress has been made in specific applications. For
instance, (Decker, Lebacher, & Tresp, 2023) proposed a method
that transforms input data from the time domain to the fre-
quency domain, allowing feature attribution techniques to be
applied directly in the frequency domain. This approach avoids
retraining or modifying the weights of pre-trained models in
the time domain, simplifying the explainability process.

Similarly, (Zereen, Das, & Uddin, 2024) and (Santos, Guedes,
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& Sanchez-Gendriz, 2024) demonstrated the use of LIME
and SHAP techniques to improve machine fault diagnostics.
These methods enable targeted feature selection from time
and frequency-domain attributes, achieving accuracy compa-
rable to traditional approaches while significantly reducing
feature complexity.

The FaultD-XAI framework (Brito, Susto, Brito, & Duarte,
2023) provides an explainable and scalable solution for fault
diagnosis in rotating machinery. By leveraging transfer learn-
ing with synthetic vibration signals and applying Grad-CAM
to 1D CNNs, it enhances both diagnostic performance and
user confidence by offering post hoc explanations of model
predictions.

While these efforts represent significant advancements, the
integration of XAI into PHM is still in its early stages. Further
research is required to address the complexity of industrial
environments and develop more robust solutions tailored to
the specific challenges of this domain.

1.3. Aim and Structure of the Paper

The primary objective of this work is to propose a novel method
that extends the well-known LIME algorithm. This extension
incorporates additional features specifically designed to en-
hance its applicability to time-series data, with a particular
focus on fault diagnosis signals. Traditional LIME, while ef-
fective in many domains, encounters challenges when applied
to time-series data due to its inherent temporal dependen-
cies and non-stationary characteristics. Our proposed method
addresses these limitations by incorporating domain-specific
adaptations, such as signal envelopes, frequency components,
and other meta-features, to improve the explainability of pre-
dictions in fault diagnosis tasks.

DiffLIME introduces a novel approach to enhancing the ex-
plainability of black-box models by addressing key limita-
tions of existing methods like LIME, SHAP, and CAM-based
techniques. Unlike traditional perturbation-based methods
such as LIME, which randomly alters input features and may
disrupt temporal dependencies, DiffLIME leverages a diffu-
sion probabilistic model (DPM) to generate more realistic
perturbations, preserving the underlying structure of time-
series data. This leads to more coherent and stable explana-
tions. Additionally, the incorporation of meta-attributes en-
hances the robustness of explanations by providing additional
context for model explainability in concrete for its applica-
tion in fault diagnosis. Compared to CAM-based methods,
which are limited to convolutional architectures and strug-
gle with sequential dependencies in time series, DiffLIME
remains model-agnostic, making it applicable to a broader
range of architectures and other machine learning models.
Moreover, our experiments demonstrate that DiffLIME sig-
nificantly improves explanation stability while maintaining
competitive selectivity and coherence, offering a more reli-

able alternative.

The main contributions of this work are as follows:

• Diffusion-based Perturbation Mechanism: Unlike LIME,
which relies on arbitrary perturbations, DiffLIME em-
ploys a diffusion probabilistic model (DPM) to generate
more structured perturbations, preserving the temporal
consistency of time-series data.

• Enhanced Stability and Coherence: Our method signif-
icantly improves explanation stability across similar in-
stances, reducing variability in feature attributions while
maintaining high coherence.

• Meta-Attribute Integration: DiffLIME introduces meta-
attributes to enhance interpretability, providing additional
contextual insights into model predictions.

• Comprehensive Empirical Validation: We compare Dif-
fLIME against LIME and TS-MULE on benchmark datasets,
demonstrating its competitive performance in terms of
coherence, stability, and selectivity.

• Application: We applied the proposed method to fault
diagnosis, an area where there is a significant gap in the
application of XAI techniques and where more attention
is needed.

This paper is structured as follows. Section 2 introduces the
proposed method, detailing the algorithmic modifications and
additional features designed to enhance its performance for
time-series data. Section 3 presents experimental results on
benchmark fault diagnosis datasets, demonstrating the effi-
cacy of the proposed approach compared to traditional meth-
ods. Section 4 discusses the implications of the findings, the
limitations of the current work, and potential avenues for fu-
ture research. Finally, Section 5 summarizes the contributions
and highlights the importance of explainability in fault diag-
nosis applications.

2. METHODS

In this section, we outline the methodology used to explain
the predictions of a predictive model through a novel diffusion-
based adaptation of LIME, referred to as DiffLIME. First, we
introduce the foundational concepts of the LIME algorithm.
Next, we describe the training process of the DPMs and how
they are used to generate the neighborhood of source signals.
Finally, we detail the training procedure for the explainable
surrogate model employed in DiffLIME.

Figure 1 provides a summary of the complete methodology,
which is detailed in the following sections. First, features
such as envelopes, frequencies, slopes, and noise ratios are
extracted from the original data to capture its key characteris-
tics. Using these extracted features, a synthetic dataset is gen-
erated and used to train a DPM. Once the black-box model is
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trained, DiffLIME leverages the DPM to generate explana-
tions for each of its predictions, ensuring more coherent and
stable interpretability.

FE SDG

Train
DPM

DPM

Train
Model

Explain

Figure 1. Summary graph of the complete methodology that
define DiffLIME. FE: Feature Extraction, SDG: Synthethic
Data Generation, DPM: Denoising Probabilistic Model

2.1. Interpretable Model-Agnostic Explanations (LIME)

LIME is a prominent technique within XAI, designed to pro-
vide explainability for complex machine learning models. LIME
approximates the behavior of a black-box model locally around
a specific instance by constructing a surrogate model that is
inherently interpretable. This surrogate model is trained on
a perturbed neighborhood of the original data instance, en-
abling the extraction of localized feature importance.

Formally, given a machine learning model f : X → R, where
X represents the input space, LIME aims to explain the pre-
diction f(x) for a specific instance x ↑ X . To achieve this,
LIME constructs a local neighborhood N (x) by generating
perturbed versions of x. The perturbed instances {x̃(j)} are
sampled from a distribution D(x), which preserves the prox-
imity of x while introducing variations. Typically, the neigh-
borhood distribution D(x) is defined as a set of perturbed
samples derived from the original input x = [s1, s2, . . . , sn]
by applying Gaussian noise to each feature independently:

D(x) = {x̃ | x̃i = si + ωi, ωi ↓ N (0,ε2), i = 1, 2, . . . , n}.
(1)

Here, x̃ = [x̃1, x̃2, . . . , x̃n] is a perturbed sample, where each
feature x̃i is drawn from a normal distribution centered at si
with variance ε2. For each perturbed instance x̃(j), the output
of the model f(x̃(j)) is computed.

To approximate the local behavior of f , LIME trains an in-
terpretable surrogate model g : X → R, such as a linear re-
gression or decision tree, using the dataset {(x̃(j), f(x̃(j)))}.
The surrogate model is optimized to minimize the following
objective function:

L(f, g,ϑx) =
∑

x̃(j)→N (x)

ϑx(x̃
(j)) ·

(
f(x̃(j))↔ g(x̃(j))

)2
,

(2)

where ϑx(x̃(j)) is a proximity kernel that assigns higher weights
to instances closer to x in the input space. A common choice
for ϑx(x̃(j)) is an exponential kernel:

ϑx(x̃
(j)) = exp

(
↔dist(x, x̃(j))

ε

)
(3)

where dist(·, ·) measures the distance between x and x̃(j), and
ε controls the spread of the neighborhood. The interpretable
surrogate model g provides an explanation for f(x) by reveal-
ing the contributions of input features to the prediction within
the local neighborhood.

The flexibility of LIME lies in its model-agnostic nature, as it
does not require access to the internal workings of f and is ap-
plicable to any black-box model. However, the method is in-
herently local and focuses on the behavior of f near x. While
this provides valuable insights, it does not capture the global
decision boundary of f . Additionally, the quality of the ex-
planation depends on the representativeness of the neighbor-
hood N (x) and the simplicity of the surrogate model g.

In the following section, we will use the symbol s instead of
x to denote a time-series signal, aligning the notation with the
context of signal processing.

2.2. Local Neighborhood in DiffLIME

In the DiffLIME algorithm, a DPM is used to generate the
local neighborhood of an input signal s ↑ Rn. The DPM,
trained on a synthetic dataset, produces diverse and repre-
sentative samples that capture the characteristics of the un-
derlying data distribution. Given an input signal s, neigh-
borhood signals are generated by conditioning the DPM on
meta-features extracted from s, ensuring that the local neigh-
borhood is well-sampled while preserving key signal charac-
teristics.

The meta-features, m ↑ Rk, are computed using:

m = h(s), (4)

where h(·) represents the meta-feature extraction function.

Synthetic samples s↑ are generated by perturbing s, m and
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sampling from the DPM:

s↑ ↓ DPM(s̃|m̃), (5)

where m̃ and s̃ are generate using the process defined in
Equation 1.

Diffusion Probabilistic Models (DPMs). DPMs (Ho, Jain,
& Abbeel, 2020) are generative frameworks that systemati-
cally remove noise from data through an iterative denoising
process. These models are trained to estimate the noise in-
troduced during the forward diffusion process, enabling the
reconstruction of the original data by reversing the diffusion
dynamics. The forward diffusion process incrementally cor-
rupts signal s0 with Gaussian noise across T time steps. The
posterior distribution of this process, denoted as q(s1:T |s0), is
formally expressed as:

q(s1:T |s0) = q(s0)
T∏

t=1

N (st|
√
1↔ ϖtst↓1,ϖtI), (6)

where I is the identity matrix, ϖt ↑ (0, 1) represents a vari-
ance schedule that increases with t, and N (s|µ,ε2I) denotes
a Gaussian distribution with mean µ and variance ε2I . As
T → ↗, the forward process transforms the data distribution
into an isotropic Gaussian distribution.

To efficiently sample intermediate states without iterating through
all T steps, the forward process can be reformulated. Defin-
ing ϱt = 1↔ ϖt and ϱt =

∏t
i=1 ϱi, the marginal distribution

at step t is given by:

q(st|s0) = N (st|
↘
ϱts0, (1↔ ϱt)I). (7)

The generation of new samples requires the reverse diffusion
process, characterized by the posterior distribution q(st↓1|st).
However, directly computing this distribution is intractable
due to its dependence on the true data distribution. To ad-
dress this challenge, a parameterized model pω(st↓1|st) is in-
troduced to approximate q(st↓1|st). Assuming a Gaussian
form, this model is expressed as:

pω(st↓1|st) = N (st↔ 1|µω(st, t),ε2
ω(st, t)I), (8)

where µω and ε2
ω represent the predicted mean and variance,

respectively, and ς denotes the trainable parameters of the
model.

The parameters ς are optimized by minimizing the negative
log-likelihood of the training data. An effective alternative to
the Evidence Lower Bound (ELBO) was proposed in (Ho et
al., 2020), leveraging a simpler objective that directly opti-
mizes the noise estimation task. The loss function is defined
as:

argmin
ω

1

M

M∑

i=1

L
(
ω↔ ωω

(↘
ϱts0 +

↘
1↔ ϱtω, t

))
, (9)

where ω ↓ N (0, I) represents the noise sampled from a Gaus-
sian distribution, and L is a loss function measuring the dis-
crepancy between the true noise ω and the predicted noise ωω.

The reverse diffusion step is thus formulated as:

µω(st, t) =
→
ωts0 +

→
1↑ ωtε↑

→
1↑ ωtεω

(→
ωts0 +

→
1↑ ωtε, t

)
→
ωt

(10)

pω(st→1|s) = N
(

st→1

∣∣∣∣µω(st, t), I
)
. (11)

This framework enables the generation of high-quality sig-
nals by iteratively denoising the data.

Synthetic Data Generation Process. DPMs typically re-
quire large amounts of training data to learn complex distri-
butions effectively. However, in many real-world scenarios,
especially in domains like fault diagnosis or time-series anal-
ysis, the available dataset is often limited or imbalanced. The
synthetic data generation process overcomes this limitation
by producing diverse and representative samples that reflect
the characteristics of the underlying data distribution:

Dsynthetic =
N⋃

i=1

{s(j), s̃(j),m(j), e(j)},

where s(j) is a clean synthetic signal, s̃(j) is the correspond-
ing noisy signal, and m(j) contains metadata describing the
characteristics of the signal s(j), and e(j) represent the upper
and lower envelopes of the signal s(j).

The process generates synthetic signals by varying critical
domain-specific parameters, such as frequencies, slope, noise,
and envelope structures. These variations ensure that the DPM
learns to model not only the observed data but also potential
unseen variations, improving generalization.

Algorithm 1 shows the complete process of synthetic data
generation. The goal of the GenerateDistributions func-
tion is to analyze a dataset X of time-series signals and com-
pute a hierarchical representation of their statistical properties
across different frequency bands. This representation cap-
tures information such as frequency distributions, noise ra-
tios, signal slopes, and probabilities of cluster assignments
for signal envelopes. It provides a structured probabilistic
summary of the dataset, useful to generate synthetic time-
series while respecting the original statistical characteristics,
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Algorithm 1: Synthetic Data Generation Algorithm
Inputs: Dataset X, total samples N to generate
D ↓ GenerateDistributions(X);
E ↓ ExtractEnvelopes(Detrend(X));
C ↓ KMeans(E, Ncluster);
Ns ↓number of signals to generate for each feature distribution in D ;

Initialize arrays Dsynthetic ↔ R2N↑T , ;

foreach d ↔ D do
for n ↔ Ns[d] do

Sample frequencies f , slope m, noise ϑ, and envelope index
ie from d;

Generate envelope (eu, el) sampled from C[ie] and its
deviations;

Generate clean signal;
s ↓

∑
f↓f sin(t · f);

s ↓ AdjustToEnvelopes(s, eu, el);
s ↓ AddSlope(s,m);
Dsynthetic[i],M[i] ↓ s, {f ,m, 0, ie};
Dsynthetic[i+ 1],M[i+ 1] ↓
AddNoise(s, ϑ), {f ,m, ϑ, ie};

i ↓ i+ 2;
end

end
return Dsynthetic;

including frequency dynamics, noise levels, and envelope dis-
tributions.

For each time-series signal s(j) ↑ X, the function extracts the
top n dominant frequencies using spectral decomposition or
Fourier transform. This produces a matrix F ↑ RN↔k, where
N is the number of signals and k is the number of dominant
frequencies for each signal:

Fjk = fk(s(j)), i = 1, . . . , N, k = 1, . . . ,K,

where fk(s(j)) denotes the k-th dominant frequency of the
signal s(j).

The most prominent frequencies F:,1 are used to define an
initial coarse segmentation of the frequency range. The range
[min(F:,1),max(F:,1)] is divided into C equal chunks:

!f =
max(F:,1)↔min(F:,1)

c
,

Rc = [min(F:,1) + (c↔ 1)!f,min(F:,1) + c!f ] ,

c = 1, . . . , C

For each frequency range Rc, the function identifies signals
whose most prominent frequencies fall within Rc. The pro-
cess is recursively applied to their remaining k ↔ 1 frequen-
cies. At each step, the range of frequencies is further parti-
tioned, creating a hierarchical structure of increasingly finer
resolutions.

At each level of the hierarchy, the mean and standard devi-
ation of the frequencies are computed. Additionally, at the
final level of the hierarchy, the mean and standard deviation

of the noise and slope are included, along with the most likely
envelope of the signals in the group.

Figure 2. Two examples of synthethic signal generation pro-
cess

To ensure that the generation process accurately captures the
full distribution of the data, meta-features are extracted from
all categories present in each dataset, including both healthy
and faulty conditions.

The signal is detrended before extracting the envelopes, en-
suring they are centered around the zero y-axis. We hypothe-
size that this facilitates the clustering of signal envelopes and
improves their interpretability during the visualization of the
explanations. Additionally, the original trend is treated as a
meta-feature, which may be useful depending on the dataset
and task. For instance, in Remaining Useful Life (RUL) pre-
diction, the trend can provide valuable insights into the degra-
dation process, making it a crucial feature to consider.

To ensure that the synthetic dataset contains signals represent-
ing the same feature distribution, the number of samples to
generate for each set, Ns, is determined based on the ratio of
the number of samples exhibiting those features in the orig-
inal dataset. This approach preserves the proportional rep-
resentation of features, maintaining consistency between the
synthetic and real data distributions.

From the predefined ranges of meta-features, a random value
is selected for each specific feature, including frequencies,
slope, envelope, and noise level. Using the frecuency val-
ues, an initial synthetic signal is generated as a combination
of sinusoidal components. This intermediate signal is then
adjusted to match the selected envelope, and finally, the spec-
ified noise level is added. Figure 2 illustrates two examples
of this synthetic signal generation process.

Residual U-Net Model. The DPM model is implemented as
a Residual U-Net, a neural network architecture specifically
designed for denoising time-series data (Solis-Martin, Galan-
Paez, & Borrego-Diaz, 2023). This model utilizes skip con-
nections, residual blocks, and metadata to improve its perfor-
mance on complex temporal signals. The input to the model
consists of a noisy time-series signal, concatenated with both
upper and lower envelopes, meta-attributes, and the denoising
step index.

It is composed of down-sampling blocks, residual blocks, and
up-sampling blocks. The down-sampling blocks progressively

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

reduce the temporal resolution while increasing the feature
dimensions, enabling the model to capture high-level patterns.
On the other hand, the up-sampling blocks reconstruct the
time-series signal, incorporating information from earlier stages
through skip connections. Figure 3 shows the schematic of
the down-up blocks.

Down-Up Sampling Block

Residual block

Addition Concatenation

1D Convolution

Dense layer

Figure 3. Diagram of the down-sampling and up-sampling
blocks.

Meta-attributes and timestep information are integrated into
the model as conditional inputs. For timestep embedding, the
model employs an embedding mechanism where the timestep
index is projected into a high-dimensional space. This em-
bedding is further processed through fully connected layers
(see Figure 3) with non-linear activations, such as the Swish
activation function (Ramachandran, Zoph, & Le, 2017). Meta-
attributes are incorporated as a conditioning mechanism through
layers that integrate these features into the temporal represen-
tation. Figure 4 shows the full architecture of the DPM net-
work.

Figure 4. A schematic representation of the DPM neural net-
work.

The model architecture is structured with six down-sampling
levels and six up-sampling levels, each with a depth of three.
This depth refers to the number of down-sampling and up-
sampling blocks present at each level. The channel sizes vary
across levels, with the number of convolutional kernels de-

fined by the following sequence: 32, 64, 64, 32, 32, 32. These
values specify the number of filters used in the convolutional
layers at each respective level.

Additionally, the DPM network is trained to perform over 20
denoising timesteps, effectively removing noise from the in-
put signal progressively through the reverse diffusion process.

The Adam optimizer is used with a learning rate of 1≃ 10↓5.
The loss function is set to the mean absolute error (MAE),
which quantifies the difference between the predicted and ac-
tual values. The model is trained for a total of 2000 epochs,
with a batch size of 32. Each epoch processes 100 steps.

2.2.1. Surrogate Model

Given a signal s and a predictive model f , DiffLIME gener-
ates M local neighborhood samples using the trained DPM.
From the signal s, the vector of meta-attributes m, and the
envelope index e are obtained. A new dataset is then created
to feed the surrogate model:

k = argmaxf(s)

s↑(j) = DPM(s̃(j), m̃(j), Cẽ(j))

Dexplanaible = {s,m, e, fk(s)}
M⋃

j=1

{s↑(j),m↑(j), e↑(j), fk(s↑(j))},

where s̃(j) and m̃(j) represent the perturbed signals and per-
turbed meta-attribute vectors, respectively, using the process
defined in Equation 1, and Cẽ(j) is the envelope associated
with the perturbed signal s̃(j). Once the signal has been re-
constructed by the DPM, the meta-attributes and the envelopes
are computed over s↑(j), yielding m↑(j) and e↑(j).

After all samples are generated, the meta-attributes are scaled
using a standard scaler to ensure proper normalization. Fi-
nally, the envelope indices e↑(j) are encoded using one-hot
encoding, resulting in the vectors e↑(j), which are included in
the explainable dataset along with the predicted probability
for the category selected by f over the source sample s.

2.3. Explanations

The surrogate model fsurrogate is trained on the dataset Dexplainable
to approximate the predictions of the black-box model fk(s↑(j)).
In this work, we use a Ridge regression model as the surro-
gate, which is categorized as an explainable model. Since
Ridge regression is a linear model, it provides an easily inter-
pretable explanation in the form of a weighted sum of input
features. This approximation remains valid within the neigh-
borhood of the original instance, ensuring that the explanation
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reflects the local behavior of fk rather than a global summary.

Once the Ridge regression model is trained as the surrogate,
its learned coefficients play a central role in interpreting the
predictions of the black-box model fk. Each coefficient rep-
resents the estimated contribution of a particular feature in the
perturbed dataset Dexplainable to the prediction of the model.

A higher absolute value of a coefficient indicates a stronger
influence of the corresponding feature on the prediction. Pos-
itive coefficients suggest that increasing the feature value leads
to a higher predicted output, while negative coefficients in-
dicate an inverse relationship. Furthermore, the coefficients
serve as a mechanism to rank feature importance, helping to
identify which aspects of the input signal most significantly
affect the decision of the model.

The coefficients aligned with the raw signal data points pro-
vide insights into time-domain feature importance. Addition-
ally, the coefficients aligned with the meta-attributes extend
the explanations to other domains, such as frequency compo-
nents, global characteristics like envelope shapes, or statisti-
cal properties such as slopes and noise ratios.

3. EXPERIMENTS

This section details the experiments conducted to validate the
proposed DiffLIME methodology. The datasets and model
architectures used are described in Sections 3.1 and 3.2, re-
spectively. Section 3.3 presents an example of a visual ex-
planation generated by the method. Section 3.4 summarizes
the results obtained using various XAI metrics to validate the
approach. Section 3.6 describes an experiment designed to
enforce specific feature importance and verify whether the
method correctly highlights them. Section 3.7 explains how
to generate global explanations with DiffLIME, and finally,
Section 3.8 highlights how this method can be practically
beneficial for engineers.

3.1. Datasets

To conduct the experimental phase, two well-known datasets
were utilized: the CWRU dataset and the JNUB dataset. The
CWRU dataset (Bearing Data Cente Case School of Engi-

neering; Case Western Reserve University, n.d.), provided by
Case Western Reserve University, is a widely used bench-
mark for fault diagnosis in rotating machinery. It contains vi-
bration data collected from an experimental setup consisting
of a motor, a torque transducer, and a dynamometer. Faults
were artificially introduced in the drive-end and fan-end bear-
ings with varying severity levels and fault types, including in-
ner race, outer race, and ball defects. The data was recorded
under different operating conditions, such as varying loads
and speeds, providing a diverse set of scenarios for evaluat-
ing diagnostic algorithms. The signals were sampled at high
frequencies, ensuring sufficient resolution for both time and

frequency domain analyses.

The JNUB dataset (Li, Ping, Wang, Chen, & Cao, 2013) in-
cludes vibration data collected under various fault conditions,
including inner race, outer race, and ball defects, across dif-
ferent severity levels. The data was recorded using a motor-
driven test rig equipped with sensors placed on the bearings
to monitor vibration. The signals were captured at different
operating speeds and loads, offering a comprehensive repre-
sentation of real-world fault scenarios in rotating machinery.

For the experiments, a signal length of 128 points was used.
Figure 5 illustrates examples of signals categorized by fault
type, highlighting the differences in signal characteristics be-
tween the two datasets. These variations are further empha-
sized in Figure 6, which presents the 10 envelope centroids
extracted from both datasets using KMeans.

The number of clusters was set to 10, aligning with the num-
ber of categories in the datasets. However, this choice may
need to be re-evaluated depending on the specific character-
istics of each dataset. A more thorough analysis would be
required to determine the optimal number of clusters for dif-
ferent cases. Although both datasets focus on rotating ma-
chinery and vibration signals, they exhibit significant differ-
ences in their signal patterns, particularly in the shape of their
envelope representations. These variations arise from factors
such as differences in operating conditions, fault severities,
sensor placements, and data acquisition setups, which can in-
fluence the clustering process and the interpretability of the
results.

Figure 5. A few samples of dataset signals. (Top) CWRU
signals (Bottom) JNUB signals.

3.2. Models to analyze

For each dataset, a 1D-CNN and an LSTM network were
trained to predict faults.

The 1D-CNN architecture consists of three convolutional blocks,
each containing three consecutive convolutional layers fol-
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Figure 6. Top) CWRU centroid envelopes. (Bottom) JNUB
centroid envelopes. Solid lines represent the upper envelope,
while dashed lines represent the lower envelope.

lowed by a max-pooling layer. After the convolutional blocks,
a flattening layer is applied, followed by two fully connected
(dense) layers before the output layer. The network is trained
using the Adam optimizer for up to 200 epochs, with the same
configuration applied to both datasets.

The LSTM network consists of two stacked LSTM layers,
each with 64 units. The output of the second LSTM layer is
flattened and then follows the same fully connected structure
as the 1D-CNN.

Figure 7 displays the confusion matrices for the fault predic-
tion models applied to the CWRU and JNUB datasets. It is
important to note that the models were not extensively opti-
mized, as the primary focus of this work lies in the evaluation
of the XAI method rather than achieving the highest possible
predictive performance.
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Figure 7. Confussion Matrices of the CWRU and JNUB fault
prediction models

3.3. Local Explanation

By incorporating meta-features into the local prediction anal-
ysis, the explainability graph can be extended to include these
meta-features alongside the signal data points. Figure 8 illus-
trates an example of a local explanation, highlighting the sig-
nal region that DiffLIME identifies as the most relevant for
the prediction of the model.

Additionally, the graph displays the importance of the meta-
features, which contribute 19% of the total importance in this
example. The five frequencies with the highest magnitudes
are presented in a frequency graph, complementing the fre-
quency importances. Similarly, the envelope cluster assigned
to the signal is shown, allowing for a comparison of its im-
portance relative to the other nine envelope clusters.

Figure 8. Local explanation of the CWRU prediction for an
inner ring fault (correctly classified). Ex corresponds to the
envelope centroids, while Fx represents one of the top five
frequencies.

3.4. DiffLIME validation

Tables 1 and 2 summarize the results of the validation metrics
for the proposed method compared to the baseline LIME (Schlegel
et al., 2019) and TS-MULE (Schlegel et al., 2021), applied
to both the CWRU and JNUB datasets. The metrics evalu-
ated include coherence, selectivity, and stability, which col-
lectively assess the quality and reliability of the explanations
generated (Solís-Martín, Galán-Páez, & Borrego-Díaz, 2023).
The experiments were executed 10 times to ensure statistical
robustness, reducing the impact of variability in the results.
The mean and standard deviation of each metric are reported
to provide a comprehensive evaluation of performance con-
sistency.

For the coherence metric, which quantifies the decrease in
prediction confidence when relevant features are excluded,
DiffLIME outperformed both LIME and TS-MULE across
all datasets and network architectures. The improvement,
although slight, was consistent for both datasets and model
types.

Regarding selectivity, which measures the impact of remov-
ing non-important features on the prediction, TS-MULE out-
performed both LIME and DiffLIME. This is likely due to the
optimization-based approach of TS-MULE, which systemat-
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Model Method Coherence Selectivity Stability
1D-CNN LIME 0.365 ± 0.010 0.702 ± 0.013 1.035 ± 0.004
1D-CNN TS-M 0.331 ± 0.019 0.669 ± 0.011 0.727 ± 0.007
1D-CNN Ours 0.380 ± 0.018 0.707 ± 0.010 0.507 ± 0.009
LSTM LIME 0.209 ± 0.005 0.674 ± 0.003 0.652 ± 0.005
LSTM TS-M 0.185 ± 0.004 0.712 ± 0.007 0.350 ± 0.102
LSTM Ours 0.213 ± 0.005 0.677 ± 0.007 0.307 ± 0.004

Table 1. Comparison of the proposed DiffLIME method with
standard LIME and TS-MULE (TS-M) across multiple met-
rics for the CWRU dataset. The evaluated metrics include
coherence, selectivity, and stability, which assess the quality
and reliability of the explanations. Bold values indicate the
best performance for each metric.

Model Method Coherence Selectivity Stability
1D-CNN LIME 0.254 ± 0.005 0.835 ± 0.009 0.755 ± 0.006
1D-CNN TS-M 0.263 ± 0.006 0.848 ± 0.007 0.410 ± 0.007
1D-CNN Ours 0.282 ± 0.006 0.842 ± 0.009 0.383 ± 0.004
LSTM LIME 0.175 ± 0.002 0.750 ± 0.007 0.572 ± 0.004
LSTM TS-M 0.181 ± 0.004 0.762 ± 0.006 0.450 ± 0.010
LSTM Ours 0.183 ± 0.002 0.755 ± 0.005 0.309 ± 0.002

Table 2. Comparison of the proposed DiffLIME method with
standard LIME and TS-MULE (TS-M) across multiple met-
rics for the JNUB dataset. The evaluated metrics include co-
herence, selectivity, and stability, which assess the quality and
reliability of the explanations. Bold values indicate the best
performance for each metric.

ically perturbs the input signal to identify the most influential
regions while minimizing the effect of irrelevant features. By
leveraging meaningful perturbations and optimization strate-
gies, TS-MULE enhances the ability of the model to focus on
truly significant signal components, leading to superior selec-
tivity performance.

The most significant difference between the methods was ob-
served in the stability metric, which evaluates the consistency
of explanations across similar instances. DiffLIME substan-
tially outperformed LIME and TS-MULE in this regard, with
lower stability values indicating greater robustness. This im-
provement is probably due to the use of the DPM model,
which generates synthetic perturbations in a more controlled
manner, ensuring that explanations remain consistent even
when small variations are introduced in the input data.

Overall, the results highlight that DiffLIME provides more
coherent and stable explanations compared to the baseline
LIME and TS-MULE methods while maintaining a satisfac-
tory level of selectivity.

3.5. Execution Time Analysis

To assess the computational efficiency of DiffLIME in com-
parison to LIME and TS-MULE, we measured the execution
time required for each method across different datasets and
models. Table 3 presents the results obtained for the CWRU
and JNUB datasets using both CNN and LSTM models.

The results indicate that TS-MULE is the most computation-
ally efficient method, consistently achieving the lowest ex-

ecution times across all scenarios. LIME follows closely,
with slightly higher execution times. In contrast, DiffLIME
exhibits significantly longer execution times, being approxi-
mately 5 to 9 times slower than TS-MULE. This increase in
computational cost is expected due to the incorporation of a
diffusion-based generative process, which enhances the qual-
ity and stability of explanations at the expense of speed.

Additionally, it is important to highlight that the synthetic
data generation and the training of the diffusion probabilis-
tic model (DPM) require an initial computational overhead
of approximately 1000 seconds. This one-time cost is in-
curred before DiffLIME can be applied to generate expla-
nations. While this preprocessing step increases the overall
computational burden, it enables DiffLIME to produce more
coherent and stable explanations by leveraging the synthetic
data generated by the DPM.

Dataset Model LIME (s) TS-MULE (s) DiffLIME (s)
CWRU CNN 0.1600 0.1086 0.9538
CWRU LSTM 0.1809 0.1163 0.9904
JNUB CNN 0.1707 0.1105 0.9810
JNUB LSTM 0.1691 0.1112 0.9919

Table 3. Comparison of execution times (in seconds) for
LIME, TS-MULE, and DiffLIME across different datasets
and models.

3.6. Testing the Method with Synthetic Forced Importances

To validate the proposed method, it is possible to create a
synthetic dataset designed to enforce specific feature impor-
tances and evaluate whether DiffLIME can accurately detect
these predetermined importances. For this purpose, 10 artifi-
cial target responses were generated using the CWRU dataset,
each correlated with the envelope associated with a particular
signal. The predictive model used for this evaluation was the
same as the one described in later sections, and the resulting
confusion matrix is shown in Figure 9.

DiffLIME was applied to the test set to generate explana-
tion vectors, and the ranking of envelopes associated with the
model predictions was computed. Figure 10 illustrates the
ranking distribution for each envelope. In 40% of the cases,
the most important envelope identified by DiffLIME matched
the envelope directly correlated with the prediction, demon-
strating the ability of the method to effectively highlight rel-
evant features. Nearly 60% of the cases fell within the top
3 ranked envelopes, indicating strong alignment. Only en-
velope E4 appears to be consistently misranked, suggesting
potential challenges in detecting its relevance.

3.7. Global explanation

While the proposed method focuses on local predictions, it
is also possible to perform a global analysis by ranking the
importance of meta-attributes per state. Figures 11 and 12
present the average ranking of meta-attributes for both datasets,

10



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 9. Confusion matrix for the model trained on the syn-
thetic dataset with forced feature importances. The dataset
was generated by correlating artificial target responses with
specific signal envelopes from the CWRU dataset.

Figure 10. Envelope ranking results for the synthetic dataset
using DiffLIME.

categorized by the health state and the rolling element fault
state.

The results indicate that, for the CWRU dataset, frequencies
with higher magnitudes are more associated with the fault
state. However, this behavior is not observed in the JNUB
dataset, where no such bias is apparent. Regarding the meta-
attributes, features such as slope, entropy, noise, and peri-
odicity show differing levels of influence on the predictions.
Among these, slope exhibits minimal influence, whereas en-
tropy and periodicity are significant contributors. Specifi-
cally, entropy dominates in the CWRU dataset for the health
state, while periodicity is more influential in the JNUB dataset
for the fault state.

The envelope clusters generally demonstrate medium-to-low
importance with a balanced contribution across states. An

exception is observed for E1, which, particularly in the JNUB
dataset, emerges as a key characteristic associated with the
fault state.

Figure 11. Meta-attributes ranking for health state in CWRU
and JNUB datasets.

3.8. Engineer-Focused Explanations with DiffLIME

DiffLIME enhances fault detection in rotating machinery by
providing explainability to deep learning models. When a
model predicts a bearing fault, engineers need to understand
the reasoning behind this decision. The goal of DiffLIME
is to generate insights so engineers can verify whether the
model relies on physically relevant features or if biases and
artifacts influence the results.

For example, an engineer diagnosing a bearing fault in an in-
dustrial motor uses a deep learning model that classifies the
machine as faulty. To confirm the reasoning, DiffLIME iden-
tifies high energy in a specific frequency band and an anoma-
lous envelope pattern as key contributing factors. Since these
align with known characteristics of inner race defects, the en-
gineer can trust that the decision of the model is based on
meaningful physical indicators. If DiffLIME instead high-
lighted irrelevant features, such as random noise, the engi-
neer might suspect model bias or sensor anomalies, prompt-
ing further investigation. This transparency improves trust
in AI-driven diagnostics, facilitates preventive maintenance,
and helps refine predictive models for more reliable fault de-
tection.
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Figure 12. Meta-attributes ranking for rolling element fault
in CWRU and JNUB datasets.

4. DISCUSSION

This study presents a novel approach to enhancing the ex-
plainability of machine learning models for fault diagnosis
tasks, with a particular emphasis on time-series data. By ex-
tending the LIME algorithm with meta-attributes and lever-
aging the DPM for feature generation, we introduce a frame-
work capable of providing robust and insightful explanations.
Below, we discuss the implications of our results, the role of
DPM in the analysis, limitations, and directions for future re-
search.

The integration of the DPM played a critical role in this study.
DPM was used to model the underlying data distribution and
generate synthetic samples, which were instrumental in es-
timating meta-attributes such as noise, slope, and envelope
probabilities. This probabilistic approach enabled a more com-
prehensive representation of the latent structure of the signal,
bridging the gap between raw signal analysis and higher-level
feature explainability.

One of the key contributions of this work is the incorpora-
tion of meta-attributes, such as slope, noise, entropy, period-
icity, and envelope clustering, into the explanation process.
These attributes, derived in part through the DPM, provide
a structured understanding of how different signal character-
istics contribute to model predictions. The analysis revealed
that frequencies with higher magnitudes in the CWRU dataset
dominate the importance rankings in the fault state, which
aligns with the fundamental role of these frequencies in fault

diagnosis signals.

The envelope clustering analysis, enhanced by the probabilis-
tic insights from DPM, reveals that the earlier clusters (E1)
hold significant importance, particularly in the JNUB dataset
for fault states. This suggests that E1 captures key fault-
related features critical for accurate predictions.

Our proposed approach builds upon LIME by introducing
domain-specific enhancements for time-series data. The use
of DPM differentiates this method from traditional LIME im-
plementations and other model-agnostic methods like SHAP.
While these methods primarily focus on static data features,
the DPM-enhanced framework enables dynamic analysis of
signal properties, making it better suited for fault diagnosis
tasks.

Compared to deep learning-specific explanation methods, such
as Grad-CAM or saliency maps, our approach provides a com-
plementary perspective. It bridges the gap between high-level
feature importance and detailed signal-level insights, ensur-
ing that both the meta-attributes and signal structure are ac-
counted for in the explanation.

Despite its advantages, this approach has several limitations.
First, the computational overhead introduced by DPM and
meta-attribute calculations can be substantial, especially for
large datasets or real-time applications. While the probabilis-
tic framework enhances explainability, it also increases the
complexity of the explanation process. Nevertheless, the im-
proved coherence and stability provided by DiffLIME justify
its use in scenarios where interpretability quality is prioritized
over execution speed. However, for applications requiring
real-time or low-latency interpretability, TS-MULE or LIME
may be more suitable due to their faster response times.

Additionally, the clustering of envelopes and the selection of
meta-attributes require careful tuning to ensure generalizabil-
ity across different datasets. The current approach assumes a
static clustering structure, which may not adapt optimally to
varying signal types or fault scenarios.

Future research could focus on optimizing the integration of
DPM by reducing computational complexity or exploring lightweight
generative models. Dynamic clustering methods could also
be investigated to improve the adaptability of envelope anal-
ysis across diverse datasets.

Another promising direction involves extending the meta-attributes
to incorporate temporal dependencies, allowing the frame-
work to capture evolving fault characteristics over time. Hy-
brid methods combining DPM-enhanced LIME with other
explanation techniques based on deep learning, such as Grad-
CAM, could provide multi-level insights, blending global and
local interpretability.

Finally, the application of this approach to broader domains,
including predictive maintenance, anomaly detection, and health-
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care time-series analysis, would further validate its versatility
and robustness.

5. CONCLUSION

This work demonstrates the potential of combining a DPM
with an extended LIME algorithm to improve explainabil-
ity in fault diagnosis tasks. By incorporating meta-attributes
derived from probabilistic modeling, the proposed approach
generates more comprehensive visualizations that integrate
time-domain, frequency-domain, and other relevant features,
providing deeper insights into model predictions. The method
has been evaluated against baselines LIME and TS-MULE
using three explainability metrics across two different datasets,
demonstrating superior performance in two cases and compa-
rable behavior in the other. While some challenges remain,
this framework represents a significant advancement in en-
hancing the interpretability of machine learning models for
fault diagnosis.
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