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ABSTRACT 

The paramountcy of Prognostics and Health Management 
(PHM) within the oil and gas sector is instrumental in 
ensuring safety, reliability, and economic efficiency by 
optimizing system availability. However, a prevalent 
industrial challenge is the lack of a comprehensive 
identification of health management requirements from actual 
operational situations. This study introduces an innovative 
Prognostics and Health Management Framework (PHMF), 
encompassing a methodical procedure to discern health 
management necessities systematically. The PHMF 
consolidates structured causal factors, foundational elements 
of functional failure, and the antecedents of unplanned 
downtime, which collectively inform the PHM strategy.  

This framework offers an integrated view of multiple 
dimensions of system health, facilitating accurate portrayal 
and proactive monitoring. It particularly underscores a reverse 
engineering approach to scrutinize the root causes of system 
failures and unexpected operational halts. To validate the 
practicality and efficacy of the PHMF, it has been applied to 
a real-world scenario: a lubrication oil system within a gas 
turbine equipment, thereby elucidating the specific PHM 
strategy prerequisites. 

1. INTRODUCTION 

Prognostics and Health Management (PHM) encapsulates 
diagnosing and forestalling system failure while appraising 
component reliability and residual service life (Shin & Jun, 
2015). Zio (2016) delineates PHM as a research and 
application domain dedicated to detecting component 
degradation, diagnosing faults, forecasting failure timelines, 
and proactively orchestrating their mitigation. PHM 
transcends condition-based maintenance, focusing on 
prognostic methodologies to steward equipment health 

(Vrignat et al., 2022). According to Biggio and Kastanis 
(2020), PHM aims to furnish a comprehensive machinery 
health assessment. Hu et al. (2022) characterize PHM as a 
pivotal technology for sustaining reliable, efficient, cost-
effective, and safe operational systems. 
 
Furthermore, Vrignat et al. (2022) highlight its critical role in 
effective maintenance policy formulation. We interpret PHM 
as a condition-based monitoring paradigm aggregating 
multifaceted parameters influencing system health, thus 
offering a cohesive snapshot of its condition and forecasting 
abilities, as data permits, to preempt potential malfunctions. 
The prevailing challenge is articulating health management 
strategies and systematically deriving health management 
requisites from pragmatic operation scenarios (Hu et al., 
2022). The primary inquiry of this study is the comprehensive 
identification of health management requisites informed by 
practical operation scenarios. 
 
Reliability constitutes an item's competency to fulfill required 
functions under specified environmental and operational 
parameters for a designated timeframe (Hoffmann Souza et 
al., 2020). We use reliability theory and analytical tools to 
appraise system reliability via historical failure data, such as 
failure rates. Reliability growth, a crucial industry Key 
Performance Indicator (KPI), gauges system reliability 
enhancement and necessitates further inquiry upon stagnation. 
Reliability management promotes the minimization of 
functional failures and unscheduled downtime by 
implementing measures across assets, personnel, and 
processes. 

Moreover, risk-based process safety persists as a formidable 
challenge in process industries. With a historical precedent 
spanning decades, digitalization augments process safety 
management across a system's lifecycle (Lee et al., 2019). 
Standardized terminologies and ontologies could foster a 
unified framework conducive to sharing digitalization 
benefits. Industry 4.0 heralds an integration and optimization 
era, exploiting contemporary technologies and modeling 
techniques to bolster process safety (Melesse et al., 2020). 
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Subsequently, Asset Performance Management (APM) 
prioritizes asset reliability, availability, and maintainability 
while balancing cost, safety, and environmental impacts. One 
key performance metric in APM is downtime, where targeting 
problematic assets can lead to significant annual cost savings. 
Nonetheless, enduring risks are linked to material 
degradation, subpar execution of reliability management, 
variations in operating conditions, maintenance protocols, 
asset upgrades, and operational shifts. State-of-the-art 
practices have underscored the efficacy of Reliability 
Centered Maintenance (RCM) in devising asset maintenance 
strategies (Pliego Marugán et al., 2019). Developed initially 
in the aero industry in the early 1960s, RCM has become a 
prevalent methodology in asset management within the oil 
and gas sector (Nithin et al., 2021). Although widely adopted 
for its effectiveness, RCM is not without its drawbacks; it is 
often labor-intensive, qualitative, and reliant on subjective 
judgment regarding the prioritization of equipment. 

Similarly, the industry harnesses diverse methodologies to 
garner insights into asset health, viewing it through discipline-
specific KPIs and monitoring various critical items. Decision-
making is informed by leading and lagging KPIs that provide 
data on system health. Traditional condition-based 
maintenance (CBM) is also utilized, employing predictive 
analytics to monitor specific equipment failure modes. 
Moreover, adhering to best reliability, operations, and 
maintenance practices can enhance overall performance and 
system health. Despite these efforts, there remains a need to 
refine decision-making by acquiring more comprehensive, 
real-time data on vital health parameters, including reliability 
issues, causal factors of failures, and their interrelated effects 
leading to unplanned downtime. Commonly, industry KPIs 
are lagging, reflecting past performance, such as system 
availability rates. Leading KPIs, while indicative of future 
performance, tend to be reported with less frequency—
monthly or quarterly, at best. While helpful, CBM techniques, 
like vibration diagnostics or efficiency assessments, do not 
provide a complete picture, as they may overlook factors such 
as spare parts availability that can significantly extend 
downtime, an indicator of poor system health. 

Burgeoning data availability, computational advancements, 
and methodological innovation increasingly drive reliability 
and physical asset management. Modern modeling 
frameworks typically integrate aspects of physics-based 
analysis, machine learning, and statistical learning (Yucesan 
et al., 2021). In this context, reliability risk-based approaches 
leverage data to shape maintenance strategies, placing big 
data and computing capabilities at the forefront, surpassing 
traditional human capacities. Nevertheless, challenges persist 
concerning the vast volumes of data and associated quality 
concerns, ranging from collection and storage to utilization 
(Campbell & Jardine, 2010). This paper addresses such 
challenges by proposing a Prognostics and Health 
Management (PHM) framework designed to systematically 

collect and harness data pertinent to health management 
requirements. 

The ubiquity of system data, encompassing process and 
operational details, as well as historical maintenance records, 
has opened new avenues for advanced analytics, including 
predictive failure modeling. The nexus of system reliability 
and health status is critical for informed decision-making 
within corporations, especially as novel technologies like the 
Industrial Internet of Things (IIoT), cyber-physical systems, 
blockchain, and data mining are being deployed to bolster 
equipment uptime. Examining data in the realm of reliability 
is fundamental to empowering artificial intelligence-driven 
tools. Thus, maintenance-related challenges can be 
surmounted through increased digitalization and the resultant 
surge in data and insights. Digitalization, encapsulated in the 
Industry 4.0 movement, is transforming decision-making 
processes in industrial settings. Nonetheless, the deployment 
of data analytics has often proceeded without a rigorous, 
quantitative evaluation of the cost-benefit equation or a 
methodical approach to sensor deployment and data 
extraction (Para et al., 2019). With an emphasis on refining 
production processes, there is ample scope for advancement 
(Filz et al., 2021). 

In this vein, PHM within the oil and gas industry is 
instrumental in ensuring safety and maximizing economic 
returns by maintaining optimal uptime and system reliability. 
PHM is pivotal in bolstering reliability across engineered 
systems, becoming a cornerstone in reliability enhancement 
(Nor et al., 2021). Notably, operational element degradation 
in manufacturing systems is inevitable due to fatigue and 
wear, leading to failures absent maintenance interventions 
(Levitin et al., 2021). Concurrently, an operator's capacity to 
rectify incipient issues to forestall functional failures and 
unplanned downtime hinges on their understanding and data 
about the system's health. Operators can circumvent process 
safety incidents and the ramifications of system failure and 
unavailability. Unanticipated downtime resulting from 
failures equates to substantial production losses and 
significant revenue depletion. Proactively monitoring asset 
conditions and human and process factors can refine decisions 
to mitigate critical failures and curtail unplanned downtime. 
Hence, a comprehensive and holistic health monitoring 
system can underpin operational and maintenance decision-
making strategies. 

Amidst declining oil prices and the reduced costs associated 
with deploying renewable energy resources, stringent cost 
control within capital and operational expenditures has 
become increasingly imperative, aligning with industry 
trends. Thus, advancing comprehensive PHM systems is 
critical, enabling cost savings by curtailing downtime and 
enhancing asset reliability. Furthermore, an all-encompassing 
PHM facilitates the progression of the digital twin (DT) 
paradigm, which optimizes asset management across various 
dimensions, yielding multifaceted benefits (Poddar, 2018). 
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While integrating artificial intelligence into PHM is a nascent 
trend in the oil and gas sector, certain implementations have 
already demonstrated tangible benefits (Koroteev & Tekic, 
2021). Concurrent with the advent of Industry 4.0, the oil and 
gas industry is progressively embracing digital technologies 
to boost productivity, augment efficiency, and ensure safety, 
all while striving to reduce capital and operational costs, 
mitigate health and environmental risks, and manage asset life 
cycle variability (Wanasinghe et al., 2020). 

Numerous challenges impede PHM's comprehensive 
implementation and utilization in practical settings (Zio, 
2022). Current research in PHM spans various domains, 
including inspection and maintenance strategies (Mancuso et 
al., 2021), maintenance decision-making (GAO et al., 2021), 
manufacturing performance (Li et al., 2022), autonomous 
maintenance (Khan et al., 2020), data-driven prognostics 
(Manjurul Islam et al., 2021), generic frameworks (Booyse et 
al., 2020), fault diagnostics (Soualhi et al., 2020), lifespan 
prediction (Yang et al., 2021), and strategic decision-making 
(Choo et al., 2016; Bougacha et al., 2020). Nevertheless, these 
studies often tackle isolated disciplines—electrical, 
instrumentation, mechanical, and process—without a holistic 
understanding of "health" or considering the full spectrum of 
practical causal factors of failures and downtime as integral to 
PHM. Moreover, due to constraints on data accessibility, 
many limit the scope of PHM to the usage of real-time sensor 
data for prognostics. This narrow focus can result in gaps in 
health knowledge and omit critical monitoring of known 
causal factors, leading to failures and downtime. 

Despite these limitations, the predictability of failures can 
improve with a more robust representation of actual health 
status, even identifying suboptimal systems before overt 
failures manifest. This predictability can be achieved by 
deriving features from correlated parameters. Thus, 
advancing a practical PHM approach is critical to minimize 
oil and gas industry downtime and costs. This research aims 
to pinpoint the requisites for a health management strategy 
and to comprehensively capture health management 
parameters from real-world industrial operations while 
embracing the ongoing digital transformation and the 
proliferation of data. 

The article is organized as follows: Section 2 delves into the 
proposed Prognostics and Health Management Framework 
(PHMF), which serves as the foundation for determining the 
components of PHM. Section 3 outlines the methodology and 
procedural steps. Section 4 illustrates a case study that 
delineates the PHM strategy for a lubrication oil system on a 
gas turbine. Finally, Section 5 concludes the study with 
conclusions and recommends future research. 

2. PROPOSED PROGNOSTICS AND HEALTH MANAGEMENT 
FRAMEWORK (PHMF) 

This research proposes a methodology to systematically 
extract PHM requirements from operational scenarios in the 
real world, specifically targeting the root causes of failures 
and unscheduled downtimes, alongside considerations for 
system performance and efficiency. The aim is to equip 
practitioners with the means to identify and judiciously 
determine PHM needs effectively. Monitoring relevant 
elements is crucial to accurately reflect system health and 
address potential failures and unscheduled downtimes. The 
PHMF, depicted in Figure 1, is designed to fulfill these 
requirements. It is structured into twelve pillars that are in 
harmony with lean manufacturing and management 
principles, covering a broad spectrum of system, process, and 
human factors. The categorization into twelve distinct pillars 
provides an extensive perspective on possible causes of 
failures and downtime. It allows for specialized attention and 
engagement of various focus groups and professionals 
interested in each area. Moreover, it enables leadership 
personnel to segment the PHM into different pillars for more 
targeted diagnostics and corrective actions.  

 
Figure 1: Proposed Prognostic and Health Management Framework 

(PHMF) Pillars 

The PHMF we propose underpins identifying critical 
elements for inclusion in a PHM strategy, forming the 
foundational construct for understanding health-related 
concerns. The framework scrutinizes twelve critical pillars: 
asset reliability, operational conditions, weather, and 
environmental influences, maintenance and condition 
monitoring, asset mechanical integrity, physical asset 
management, continuous improvement, leadership, economic 
considerations, process safety, and human reliability. These 
pillars are integral to distilling parameters crucial for health 
monitoring, which are pivotal to constructing a health index 
within a quantitative framework. The twelve PHMF pillars 
delineate the determinants of a system's health status from the 
PHM perspective as either robust or compromised. For each 
pillar, a specific set of parameters is meticulously selected to 
reflect the system's health status practically, aiding in 
formulating strategies for efficient failure prevention and 
resource allocation. Moreover, as these parameters are data-
driven, addressing the digitization challenges via PHMF in the 
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industry will facilitate data gathering and enhance the 
effective deployment of PHM applications. 

To explore the issue qualitatively, we conducted a thorough 
literature review and gathered insights from practitioners 
using interviews and a questionnaire. These instruments were 
developed with industry best practices and standards in mind 
for each PHMF pillar. An Expert Matter Ranking Framework 
was utilized to ascertain the applicability of the pillars as root 
causes of system failures and unplanned downtime, as 
depicted in Figure 2. The consensus among experts was high, 
affirming the relevance of the pillars within the framework. 
We surveyed twelve oil and gas industry specialists from 
Oman, soliciting their views on whether these twelve pillars 
constitute a comprehensive framework for PHM and whether 
they serve as direct or indirect causal factors for failures and 
downtime. Their assessments ranked on a scale from 1 to 10, 
yielded an average rating exceeding 7.45, reinforcing that the 
pillars contribute to failures and downtime. 

 
Figure 2: System Health Framework Pillars Relevant by Expert Matter 

Therefore, the methodology recommended in section 3 for 
applying the PHMF entails an in-depth examination of system 
functions and health. It adopts a qualitative approach to 
pinpoint PHM requirements, facilitating the identification of 
potential systemic root causes of functional failures. 
Moreover, the PHMF methodologically reveals potential root 
causes of unplanned downtime while considering the 
economic and sustainability dimensions of system health as 
dictated by the system's design. The parameters identified 
through this methodology enable a deeper engagement with 
data collection, enhancing data quality, processing, and 
storage. This refined approach to data handling is essential for 
the subsequent development of reliable health indices.  

The forthcoming subsections elucidate the twelve pillars that 
constitute the PHMF, detailing each pillar's definition, 
potential elements, associated limitations, data collection 
methodologies, and justifications for their inclusion. A data 
set must be identified for every pillar and its corresponding 
elements, which is targeted for monitoring and considered an 
integral part of the PHM input. Thus, for a given system !, a 
data set for a pillar at a specific time ", denoted as #!"##$%& (") 
is compiled. This set consists of several parameters &'&!(") 
each tagged with a number '  representing the specific asset 

or piece of equipment to which it pertains. Formally, this 
relationship is denoted as: 

&'&!(") 	∈ #!"##$%& (")   (1) 

Indeed, while this article delineates the scope of data 
collection within the PHMF, it is worth noting that data 
processing can encompass various types, such as numerical, 
discrete, continuous, categorical, or ordinal data. Moreover, 
methodologies for dataset usage, including sampling criteria, 
treatment of missing data, outlier detection, cluster analysis, 
and data standardization and normalization techniques, need 
to be systematically delineated. Although our current focus is 
on eliciting practical inputs for health management 
requirements, there is an undeniable impetus to expand future 
research to incorporate discussions on data propagation 
between systems, the identification of systems susceptible to 
failure without exhibiting explicit malfunctions, the 
determination of opportune timeframes for intervention, and 
the development of corrective strategies. 

These parameters are vital for establishing an end-to-end 
process that elucidates the specifications for health 
management design. Moreover, these involve the 
comprehensive extraction and filtration of health management 
requirements derived from practical operational scenarios, 
ensuring a robust framework for health management within 
the industry.  

2.1. Asset Reliability Pillar 
Asset reliability serves as a pivotal decision-making criterion 
in industry, grounded in ISO 14224's definition of reliability: 
the capacity of an asset to perform as required, without failure, 
for a designated time frame under specified conditions, which 
is intrinsically tied to equipment or system failure events (ISO 
- ISO 14224:2006). Levitin et al. (2021) emphasized that 
reliability analysis, particularly of standby systems and their 
preemptive replacements, is a focal point of industry research 
efforts. This pillar integrates failure data as a core element of 
health management, empowering practitioners to comprehend 
system failure rates and initiate preventative designs for 
defects. Moreover, reliability growth is a critical KPI within 
the industry, gauging system reliability and signaling the need 
for in-depth analysis.  

This pillar encompasses two primary elements: operational 
equipment and system reliabilities, offering insights from a 
reliability engineering perspective. These elements are 
predicated upon the failure rate, from which reliability is 
inferred probabilistically. Operational system reliability 
captures system redundancy, considering serial and parallel 
configurations in system reliability calculations. The oil and 
gas industry's data quality and collection practices 
substantiate this pillar's inclusion in PHM strategy 
development. Recognizing these elements provides a lens 
through which to assess reliability growth, determining 
whether it signifies a healthy or unhealthy system state. 
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2.2. Operating Condition Pillar 

The operating condition pillar is focused on the state of 
process operating parameters, which can be either healthy, 
operating within the design envelope, or unhealthy, deviating 
from established design limits. This aspect of operational 
health is a critical requirement in PHM, and it has been 
prominently featured in numerous pivotal studies. Research 
by Al-Anzi et al. (2022), Liu et al. (2020), and Aizpurua et al. 
(2019) has incorporated the tracking of process parameters 
within the PHM framework. The root causes of deviations 
from healthy operating conditions are typically associated 
with identified failure modes connected to functional failures. 

Proactive monitoring of these parameters and the early 
detection of abnormalities are crucial to preventing failures 
and addressing issues before they result in functional failure. 
This pillar thus underpins the broader scope of practical health 
management requirements within PHM. Data collection in 
this domain predominantly utilizes real-time sensors, though 
manual inputs, such as gauge readings, are still relevant for 
specific failure mode detections. In oil and gas facilities, 
commonly monitored process elements include pressure, 
temperature, flow, valve positions, equipment status, 
electrical parameters, system fault alarms, gas chromatograph 
readings, and oil specification parameters. This data is 
primarily numerical and continuous, captured through real-
time sensor technology. 

2.3. Weather & Environment Pillar 

The weather and environment pillar examines environmental 
factors influencing system operations or contributing to 
specific functional failure modes. This pillar is significant not 
only for its role in understanding how weather conditions can 
affect asset performance but also for its impact on emissions 
that deviate from design parameters. Such factors are integral 
to providing a complete picture of a system's health. 
Moreover, this pillar addresses the crucial aspect of 
environmental greenhouse gas emissions, recognizing their 
relevance in assessing overall system health. Incorporating 
these environmental parameters into health management 
requirements is vital for accurately depicting system health 
and responding proactively to adverse conditions. 

The data encompassed by this pillar might include real-time 
weather parameters, weather forecasts, and emission 
measurements pertinent to the system. Data points include 
ambient temperature, humidity, precipitation, wind speed, and 
UV index. Additionally, real-time sensors may monitor gases 
like NOx, SOx, CO2, and H2S for emission management. These 
measurements are typically continuous numerical values 
collected through real-time sensor networks. 

2.4. Maintenance Management Pillar 

System health is significantly influenced by its maintenance 
status, including the chosen maintenance philosophy or 

strategy, which is pivotal in restoring system reliability and 
functionality. Maintenance activities are the efforts to return a 
system to its functioning state. Maintenance management is a 
priority in the industry due to its impact on business 
performance and its significant share of the budget. 
Monitoring the efficacy of maintenance practices is an 
integral component of holistic health management. 

Nithin et al. (2021) advocated integrating probabilistic and 
statistical analysis with reliability-centered maintenance 
methodology to furnish quantitative, cost-effective asset 
maintenance solutions and failure predictions over time. 
Consequently, health management informs maintenance 
decision-making, such as condition-based maintenance, 
which is prevalent for estimating the useful life of assets. This 
pillar includes elements such as maintenance compliance, the 
status of work orders pending materials or awaiting shutdown, 
workforce effectiveness and utilization rates, the proportion 
of jobs completed on time, job closures, rework instances, the 
balance between planned and unplanned work, maintenance 
quality control, and mean time to repair. 

Industry best practices leverage computerized maintenance 
management systems (CMMS) to administer and archive 
data, which can serve as input for PHM. These parameters are 
indispensable for depicting the comprehensive health of 
maintenance management practices. Ineffective maintenance 
management can lead to system failure and downtime, 
directly or indirectly, and is a justified component of the 
PHMF. A PHM framework that encapsulates maintenance 
management elements is considered thorough and provides 
valuable insights for more informed decision-making. 

2.5. Condition Monitoring Management Pillar 

Condition Monitoring Management is an integral part of a 
condition-based maintenance strategy, which focuses on 
ongoing equipment and system health assessment to inform 
maintenance actions. Hanachi et al. (2018) highlighted the 
importance of asset health monitoring as a cornerstone of 
condition-based maintenance, where the prognostic 
framework for predicting the remaining useful life is crucial 
for health monitoring, diagnostics, and prognostics of an 
asset. 

This pillar encompasses various data derived from condition 
monitoring or predictive maintenance techniques, including 
but not limited to vibration analysis, lubricant testing, 
ultrasound assessments, thermographic inspections, 
performance monitoring, and efficiency evaluations. 
Additionally, front-line maintenance, often called operator 
rounds, leverages human observational capacity to identify 
failure signs preemptively. Effective implementation of these 
rounds can avert functional failures and minimize downtime. 

Incorporating these condition monitoring tools as part of PHM 
input is essential for accurately reflecting the actual health 
status of a system. Any abnormalities these tools detect 
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indicate potential system health issues that necessitate 
preventive actions to avert failures and downtime. Data 
acquisition from these tools can be conducted manually or via 
automated sensors, and their analysis plays a critical role in 
maintenance decision-making processes. 

2.6. Asset Mechanical Integrity Pillar 
Asset mechanical integrity is a critical aspect of system health 
that significantly influences downtime and can potentially 
affect safety and environmental compliance. A 
comprehensive system health assessment necessarily includes 
an evaluation of an asset's mechanical integrity. Under 
industry standards, mechanical integrity programs cover the 
asset's entire lifespan, from design to life extension and 
eventual decommissioning. A thorough understanding of 
mechanical integrity is essential for making timely decisions 
on repairing or replacing assets, thereby ensuring system 
reliability. 

Mechanical integrity primarily pertains to pressure vessels, 
piping systems, heat exchangers, storage tanks, and pressure 
relief devices. Processes integral to mechanical integrity 
include risk-based inspections, fitness-for-service 
assessments, identification of damage mechanisms, and 
integrity operating windows, all aimed at ensuring adherence 
to relevant industrial standards. Yingchao et al. (2019) have 
focused on condition-based maintenance and the Remaining 
Useful Life (RUL) prediction to minimize unexpected 
downtime and maintain quality. Lyu et al. (2020) addressed 
PHM related to RUL estimates, a crucial aspect for assuring 
system safety and reliability, suggesting that RUL can be 
projected by analyzing past impacts and representing the 
system's historical degradation events in localized segments. 

In the realm of mechanical integrity, being in a healthy state 
is synonymous with maintaining reliability and preventing 
unplanned downtimes. This PHMF pillar considers elements 
such as RUL estimations, regular non-destructive testing data, 
and compliance with inspection schedules. Actioning the 
recommendations from mechanical integrity inspections is 
vital and should be diligently monitored to influence system 
health positively. Compliance with these recommendations is, 
therefore, a requisite for PHM. Corrosion control is also a 
critical factor within this pillar, as it is imperative for 
maximizing RUL and averting failures. Parameters like 
integrity operating windows (IOW) conditions, cathodic 
protection status, and compliance with corrosion inhibitor 
injections are essential components that should be monitored 
as part of PHM.  

2.7. Physical Asset Management Pillar 

Physical Asset Management (PAM) is recognized for its 
substantial contributions to business value across various 
aspects. Regarded as one of the rapidly evolving engineering 
disciplines, PAM involves a complex interplay of activities 
and disciplines focused on planning and controlling the 

lifecycle of physical assets (al Marzooqi et al., 2019). With 
historical roots, the contemporary understanding of PAM 
pertains to the professional practices aimed at the stewardship 
of physical assets (Alhazmi, 2018). Reliability management, 
a component of maintenance excellence, is encapsulated 
within asset management, enhancing system dependability 
and predictability (Campbell & Jardine, 2010). Alhazmi 
(2018) developed a theoretical framework to deepen the 
understanding of PAM practices, drawing on established 
standards and guidelines. This framework showed that the 
logic underpinning the management of physical asset 
lifecycles is consistent across various PAM standards and 
guidelines. 

PAM is also inextricably linked with risk management. For 
instance, Syed & Lawryshyn (2020) introduced a decision-
making approach incorporating risk-informed perspectives 
within PAM, encompassing cost-benefit analyses and risk 
evaluation. Lu et al. (2020) pointed to the lack of efficient 
strategies and all-encompassing approaches to asset 
management, highlighting the need for a system that can 
monitor, detect, document, and correlate operational and 
maintenance issues effectively. 

While many elements of PAM have been addressed in other 
pillars of the PHMF, there are still critical components to be 
considered, including document control, spare parts/ 
inventory management, and competency issues related to 
asset-related training. The data relevant to this pillar are 
predominantly digital and accessible, mainly when industry 
best practices are in place. It encompasses data related to 
human resources and document control systems. Such data is 
pivotal for monitoring conditions that may adversely affect 
systems, processes, and people, and it is integral to 
maintaining a holistic perspective on asset management 
within an organization.  

2.8. Continuous Improvement Pillar 

Continuous Improvement (CI) practices in manufacturing 
represent a dynamic, quality-centric approach. The American 
Society for Quality (ASQ) describes CI as "the ongoing 
improvement of products, services, or processes through 
incremental and breakthrough improvements." This concept 
aligns with the pursuit of operational excellence and reliability 
enhancement within manufacturing systems. Therefore, 
adopting CI practices involves a proactive stance on 
enhancing operations and entails compliance with CI 
protocols to mitigate failures and downtimes indirectly. Such 
compliance contributes to a healthier, more resilient system. 
Within this pillar, relevant elements include tracking the 
number of CI-recommended tasks over a specific period and 
monitoring task completion, especially the number of tasks 
overdue. Ensuring the timely closure of CI tasks is a testament 
to a commitment to system improvement and reliability, 
reinforcing the overall health and performance of the system. 
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2.9. Leadership Management Pillar 

The leadership management pillar underscores the 
significance of leadership in day-to-day operations, which is 
crucial for ensuring system reliability and making successful 
decisions. Effective leadership that proactively prevents 
functional failures curtails losses and maximizes system 
utilization, uptime, and safety. Leadership issues may 
underlie functional failures, necessitating research to evaluate 
their impact on system health. Identifying leadership-related 
parameters within this pillar is the first step in this process. 

This study posits that leaders with a strong influence can 
contribute to system health by providing clear direction and 
making decisions that mitigate the impact of failures and 
downtime. Thus, understanding the role of leadership is vital 
for gaining insights into its effects on the system. A challenge 
lies in capturing relevant data. For instance, the absence of an 
operations supervisor during a shift or a maintenance 
supervisor during a shutdown might indicate an unhealthy 
operational condition. Engaged leadership is associated with 
healthier operational states, reliability, and safety. 

This research suggests that leadership involvement is a 
fundamental aspect that should be considered as part of PHM 
input. The positive impact of effective leadership is reflected 
in operational performance and business resilience. 
Additionally, enhancing a culture of reliability requires 
leadership backing to fortify system reliability. Leadership 
compliance with actions intended to cultivate such a culture 
and the closure of related tasks can lead to heightened 
operational excellence. Leadership endeavors and actions 
toward cultural enhancement should be incorporated within 
this pillar despite the challenges in collecting consistent data. 
Integrating such information into the management indicators 
system is feasible and can offer a comprehensive perspective 
on leadership's impact on system health. 

2.10. Economic Factors Pillar 

The economic factors pillar emphasizes the financial aspects 
of system health. For a system to be deemed healthy, it must 
not only perform effectively but also do so in an economically 
sustainable manner over the asset's lifecycle. Economic 
efficiency and operational costs incurred throughout the 
asset's life are crucial in practical health management. 

This pillar involves monitoring system-related costs and 
integrating these financial parameters into PHM 
requirements. Such monitoring helps shape strategic decision-
making, especially when costs approach predefined limits. 
The elements under consideration within this pillar typically 
include the value of production loss, maintenance expenses, 
and utility costs such as fuel and electricity. The data related 
to these elements can be obtained through sensor or meter 
readings and by calculating the downtime cost associated with 
the unit's output product. These inputs are integral 
components of operation and maintenance budgeting, and 

they are consistently tracked throughout the asset's lifecycle, 
providing a comprehensive view of the system's economic 
health. 

2.11. Process Safety Management Pillar 

Process safety is the rigorous management of operating 
systems and processes handling hazardous materials, 
grounded in sound design and operating procedures, as 
outlined by the Centre for Chemical Process Safety (CCPS) 
(AIChE, n.d.). Monitoring and measuring the efficacy of 
process safety management (PSM) elements is essential for 
maintaining system integrity. 

While certain PSM elements are accounted for within other 
pillars of the PHMF, additional elements critical to preventing 
functional failures, minimizing downtime, and upholding 
safety need to be integrated. Within this pillar, particular 
attention is given to five key aspects of PSM that should be 
factored into PHM: process hazard analysis, work permit 
systems, pre-startup safety reviews, management of change 
protocols, and internal and external audits. 

Capturing data for these aspects poses challenges; 
nonetheless, their inclusion in the PHM strategy renders it 
more comprehensive. Emphasis on the digitization of such 
data is paramount. The availability and proper management of 
this data facilitate monitoring these elements and initiating 
actions in response to nonconformities or deviations, which 
represent unhealthy conditions within the process safety 
framework. Incorporating PSM into PHM ensures a proactive 
stance towards maintaining safety and operational integrity.  

2.12. Human Reliability Pillar 
Human reliability is critical in PHM, as human error is a 
known cause of failures and downtime. Effective incident 
prevention involves management recognition of potential 
human error and its potential consequences in daily operations 
(Hunszu et al., 2004). A PHM framework that does not 
measure human reliability falls short of being comprehensive. 

Monitoring human reliability is complex; however, there are 
several techniques for its assessment, such as the Human Error 
Assessment and Reduction Technique (HEART) developed 
by Kirwan, B. (1994). The first step in incorporating human 
reliability into PHM is identifying individual tasks that affect 
system operation. Subsequently, the human error probability 
associated with these tasks can be estimated, considering the 
specific conditions and environment at the execution time. 

Operator tasks, such as opening manual valves, adjusting 
settings on human-machine interface (HMI) panels, or 
manually initiating standby equipment, are prime examples of 
activities heavily influenced by the human element in system 
operations. The performance data for these tasks is 
significantly impacted by individual competencies and the 
context in which they are performed. 
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Integrating the human reliability aspect into the PHM 
framework is crucial for comprehensive system health 
management. It acknowledges that human actions are critical 
to the system's operational integrity. Including such data in 
PHM allows for the monitoring and analysis of human 
performance, thereby providing a more complete 
understanding of system health and enabling the development 
of strategies to mitigate risks associated with human error. 
This holistic approach ensures that the PHM framework 
considers technical and mechanical data and encompasses the 
variability and potential fallibility inherent in human 
interaction with the system. 

3. METHODOLOGY  

The methodology for thoroughly determining a system's 
health management requirements within real-world 
operational contexts involves utilizing the PHMF. This 
approach hinges on grasping the system's critical functions. 
Detailed in Figure 3 is an end-to-end procedural flowchart 
designed to guide users through this process.  

 
Figure 3: Methodology Procedure Workflow 

We pinpoint functions tied to various critical equipment and 
components to map out the health management requirements 
of manufacturing processing systems. The process unfolds in 
three main stages: 

 
1) System Function Identification: The operational flow 

is segmented into subsystems directly affecting the final 
product. During this initial phase, numerous functions 
within each system are identified. This step is pivotal as 
it involves an in-depth examination of system failures 
and failure modes, necessitating a thorough 
comprehension of each system's function. Understanding 
the function is crucial as it lays the foundation for 
discerning potential points of failure and planning for 
effective health management. 

2) Critical Equipment and Component Identification: 
The PHM strategy should be refined by focusing on 
functional failure modes specific to vital equipment and 
components. This targeted approach considers the 
repercussions these failures have on the system's overall 
reliability and the occurrence of unscheduled downtime. 
Identifying which equipment and components are critical 
ensures that the PHM strategy is effective and efficient, 
directing attention and resources to areas with the most 
significant impact on operational continuity and system 
health.  

3) PHMF Pillars Analysis: The process involves 
scrutinizing each PHFM pillar to identify relevant 
elements and determine the parameters that will be 
monitored for health management requirements. This 
detailed analysis helps pinpoint the specific data points 
critical for understanding and maintaining the system's 
health. 

The recommended methodology should be applied 
comprehensively to a system, considering any changes 
throughout the system's life cycle. Implementing the PHMF 
and following this procedure aids in thoroughly extracting 
health management design requirements based on actual 
operational scenarios. Monitoring the designated parameters 
can swiftly address the critical causal factors that may lead to 
unplanned downtime and functional failures, thereby 
bolstering system reliability. 

This end-to-end and holistic procedure accurately represents 
the system's health, ensuring that no known issues concerning 
assets, processes, or personnel are overlooked. Furthermore, 
this method facilitates digital transformation and promotes 
data availability for applying PHM in the oil and gas industry. 
It paves the way for enhanced diagnostic and predictive 
capabilities within the framework of proactive health 
management. 

The PHMF's pillars encapsulate the key domains necessary to 
maintain and enhance system health from a reliability 
management perspective. While many studies in PHM have 
traditionally concentrated on operating conditions and 
condition monitoring of equipment or systems, they have 
often not fully addressed the breadth of factors that the 
additional pillars represent. These other pillars provide a more 
holistic view of a system's health and offer avenues for 
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improving practical operations within the oil and gas industry. 
The framework can significantly contribute to operational 
excellence and system integrity by incorporating these 
comprehensive elements.   

The methodology presented has drawbacks; it demands 
considerable time and effort, relies on quantitative 
assessments such as the health index method, and necessitates 
a digital transformation framework for effective data 
collection, storage, and analysis. Additionally, it involves a 
degree of human judgment in its execution. 

Future research should focus on refining the procedure to 
enhance efficiency, especially regarding parameter criticality 
and independence, and incorporating risk assessments for 
each parameter. PHMF provides a systematic approach to 
identifying parameters encompassing all known failure modes 
and causes of unplanned downtime. That could enable the 
execution of comprehensive analytics integral to the PHM 
strategy. 

This study also catalyzes advancing digital transformation 
initiatives, reinforcing the need for system reliability and 
exploring additional data capture methodologies for the 
extensive future application of PHM in big data. 

4. CASE STUDY 

This case study examines a lube oil system in a gas turbine 
generator unit, which serves as a supportive system fulfilling 
multiple functions. The aim is to demonstrate the efficacy and 
practical application of the proposed PHMF in determining 
health management needs from a real-world operational 
standpoint within the context of the lube oil system. The 
process began with articulating the system's function: "supply 
oil with a correct pressure and temperature to the gas turbine 
bearings and the driven equipment for lubrication and 
cooling." 

A typical lube oil system layout for a gas turbine, as depicted 
in Figure 4, consists of an oil tank that stores the system's oil, 
along with pumps and pressure regulators. A piping network 
facilitates the transportation of the lubricating oil to the 
requisite components of the turbine generator. A filtration 
system is in place to ensure the delivered oil meets quality 
standards. The system's temperature is regulated via a heater, 
temperature control valves, and heat exchangers equipped 
with electrical air fans to maintain optimal operating 
conditions. 

The second step in applying PHMF to the lube oil system 
involves identifying critical equipment tags. These tags 
represent components whose failure could lead to system 
functional failure and unplanned downtime. The failure 
modes analysis in this case study has pinpointed 42 critical 
tags that significantly influence the system's functionality and, 
hence, warrant particular attention. The identified tags include 
one cooler, one control valve, twelve transmitters, four motor 
fans, seven motor pumps, and seventeen piping components. 

Table 1, which is not visible in this format, presumably lists 
these tags and their detailed descriptions.  

 
Figure 4: A Typical Lube Oil System in Turbine Generator 

 

Tag Number (T) Equipment Short Description 
110-LO-01 PIPE (LUBE OIL) 
510-LO-01 PIPE (LUBE OIL) 
130-LO-01 PIPE (LUBE OIL) 
150-LO-01 PIPE (LUBE OIL) 
E-04 LUBE OIL COOLER, AIR-COOLED 
534-LOD-01 PIPE LUBE OIL) 
110-LO-01 PIPE (LUBE OIL) 
110-REG-05 PIPE (LUBE OIL) 
510-LO-01 PIPE (LUBE OIL) 
534-LOD-01 PIPE (LUBE OIL) 
130-LO-01 PIPE (LUBE OIL) 
130-LOD-01 PIPE (LUBE OIL DRAIN) 
110-REG-05 PIPE (LUBE OIL) 
150-LO-01 PIPE (LUBE OIL) 
130-LO-01 PIPE (LUBE OIL) 
130-LOD-01 PIPE (LUBE OIL DRAIN) 
150-LO-01 PIPE (LUBE OIL) 
510-LO-01 PIPE (LUBE OIL) 
TV-779 LO TEMP CONTRL VALVE 
KM-05 MOTOR, FAN 1, LUBE OIL MIST 
KM-06 MOTOR, LUBE OIL COOLER FAN 1 
KM-07 MOTOR, LUBE OIL COOLER FAN 2 
KM-08 MOTOR, LUBE OIL COOLER FAN 3 
PM-01 MOTOR, PUMP, PURIFICATION UNIT 
PM-02 MOTOR, PUMP 1, MAIN LUBE OIL 
PM-03 MOTOR, PUMP 2, MAIN LUBE OIL 
PM-04 MOTOR, PUMP 3, MAIN LUBE OIL 
PM-05 MOTOR, SCAVENGER PUMP 
PM-06 MOTOR, SCAVENGER PUMP 
PM-07 MOTOR, SCAVENGER PUMP 
PDT-777B PDT PRESSUREIN LO TANK 
PDT-777C PDT PRESSUREIN LO TANK 
TE-778A TEMP ELEM L.O. TEMPERATURE 
TE-778C TEMP ELEM L.O. TEMPERATURE 
PT-786C PRESS TRANS LO PRESSURE 
TE-778B TEMP ELEM L.O. TEMPERATURE 
PT-786A PRESS TRANS LO PRESSURE 
PT-786B PRESS TRANS LO PRESSURE 
PDT-777A PDT PRESSUREIN LO TANK 
PDT-752A PDT DIFF.PRESSURE BEARING 2 
PDT-752B PDT DIFF.PRESSURE BEARING 2 
PDT-752C PDT DIFF.PRESSURE BEARING 2 

Table 1: Lube Oil System Tags and Types Description 

The third step involves thoroughly evaluating the pillars 
outlined by PHMF to determine specific elements critical to 
health management. In this case study, a comprehensive 
analysis yielded 275 parameters pertinent to the lube oil 
system's health management. Table 2 shows the elements and 
the conditions signifying healthy operation for each 
parameter. This data provides crucial insights into the 
appropriate measures to be taken in the event of deviations 
from these healthy conditions.  
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The following in-depth examination and application of the 
PHMF's pillars focus on the health management requirements 
for a lube oil system in a gas turbine unit. This meticulous 
process has led to the identification of critical parameters: 

In the Asset Reliability (AR) pillar, the 42 critical tags 
identified must be monitored for failure rates to assess 
reliability. The goal is to track reliability growth, which, for 
these tags, translates to 42 sub-parameters. Additionally, 
overall system reliability is considered concerning its 
foundational components, accounting for series and parallel 
relationships, adding one more parameter from this pillar. Any 
unhealthy condition detected among these parameters 
necessitates investigative action. 

Within the Continuous Improvement (CI) pillar, it is 
necessary to monitor approved CI tasks. Two parameters 
emerge the quantity of recommended tasks as a leading 
indicator and the number of overdue tasks, which reflect 
compliance. Unhealthy conditions in this area require a task 
force to address compliance gaps and establish preventive 
measures. 

The Operating Condition (OC) pillar encompasses multiple 
elements. Existing sensors provide real-time pressure and 
temperature data, with nine pressure transmitters and three 
temperature transmitters in play. A temperature control valve 
(TCV) is critical and must be included. Motor fans and pumps 
are monitored for their operational status, and the electrical 
parameters of all motors are tracked. Faulty alarms across all 
critical transmitters and motor parameters sensors lead to 46 
additional tags to be monitored. Any deviation from 
prescribed limits signals a need for troubleshooting and 
corrective actions. 

For the Weather and Environment (EN) pillar, weather 
conditions affecting the lube oil system's performance, 
especially those involving an air cooler and TCV, are 
significant. At the same time, forecast and current weather 
data are applicable and valuable for proactive measures since 
the lube oil system does not generate emissions. Manual 
adjustments to the TCV may be necessary under adverse 
weather conditions. Environmental parameters relating to 
emissions are non-applicable.  

In the Maintenance Management (MN) pillar, preventive and 
corrective maintenance activities are crucial. Maintenance 
compliance, work order status, workforce effectiveness, job 
completion rates, maintenance quality alerts, and mean time 
to repair are all vital parameters. Unhealthy readings in these 
areas prompt a deeper look into improving maintenance 
practices. 

The Condition Monitoring (CM) pillar considers various 
techniques relevant to the lube oil system. Mineral oil 
conditions, daily operator rounds, vibration monitoring for 
rotating equipment, and motor performance efficiency must 
be under surveillance. Actions taken in response to alerts from 
these parameters aim to preempt failures or unplanned events. 

The Asset Mechanical Integrity (MI) pillar involves risk-
based inspection analyses of critical piping and equipment. 
Compliance with non-destructive testing (NDT) inspections, 
Remaining Useful Life (RUL) estimations, and adherence to 
post-inspection recommendations form part of the integrity 
checks. Corrosion control is also a factor, though due to its 
nature, the lube oil system excludes chemical injections or 
cathodic protections. 

For the Leadership Management (LS) pillar, the presence of 
an operational supervisor during shifts is considered a 
parameter, with leadership engagement and reliability culture 
actions extending beyond the lube oil system to the broader 
station or plant level. 

The Physical Asset Management (AM) pillar comprises 
documentation control, spare parts inventory monitoring for 
critical components, and tracking of operator and technician 
competencies related to the lube oil system, all critical for 
maintaining the system's PHM.  

Within the Economic Factors (EF) pillar, monitoring 
operational expenses related to the lube oil system, which 
encompasses maintenance and electricity costs for operating 
the motors, is crucial. Should costs exceed expected 
thresholds, an investigation should be initiated to identify and 
implement improvements. 

For the Process Safety Management (PS) pillar, maintaining 
adherence to PS practices within the lube oil system is 
fundamental. Parameters that inform the health management 
strategy include compliance with work permits, effective 
Management of Change (MOC) processes, and the 
implementation of audit recommendations. These parameters 
are instrumental in proactively remedying conditions that may 
compromise health and safety, thereby preempting failures 
and potential incidents. 

Lastly, in the Human Reliability (HR) pillar, tasks that require 
manual intervention, such as changing or swapping oil filters, 
are particularly prone to human error, which can cause 
functional failures or even a unit trip. It is essential to provide 
clear communication and oversight to those performing the 
tasks and to monitor the execution closely to minimize risk. 
Incorporating the likelihood of human error for these tasks 
into the health management strategy, especially if scheduled 
during a specific shift, is a proactive measure to alert the 
system to potential issues. 

The analysis of this case study reveals that the extraction of 
health management requirements is thorough, encompassing 
a wide range of aspects and conditions. This comprehensive 
scope accurately portrays system health, particularly in 
identifying unhealthy conditions. Such a detailed 
understanding facilitates timely interventions—akin to 
seizing an opportune window—to preclude failures and 
enhance overall system reliability.
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Table 2: Lube Oil System PHMF Elements 

Pillar  Dataset Element Parameters Healthy Criteria 
Asset Reliability (AR) !!"#  Operational Asset Reliability "##!($)	42 tags Positive reliability growth, no new failures   

Operational System Reliability "$#($) Positive reliability growth  
Continuous Improvement 
(CI) 

!%&#  number of tasks recommended "'#($) A target number of tasks to be recommended archived  
number of tasks overdue  "(#($) NO recommended task is overdue 

Operating Condition (OC) 
 

!)%#  Pressure Transmitter reading "*#!($)	9 tags Within accepted limits 
Temperature Transmitter reading "+#!($) 3 tags Within accepted limits 
Control Valve Position Reading ",#!($) 1 tag Within accepted limits 
Equipment Status (Auto) "-#!($) 11 tags Must be Auto 
Standby/Out of service ".#!($)11 tags No out of service 
Electrical Current "#/#!($)11 tags Within accepted limits 
Electrical Voltage "###!($)11 tags Within accepted limits 
Electrical Frequency "#$#!($)11 tags Within accepted limits 
System Faulty detection alarm "#'#!($) 46 tags No alarm 

Weather & Environment 
(EN) 
 

!01#  Weather Temp "#(# ($) Within accepted limits 
Weather Humidity "#*# ($) Within accepted limits 
Weather Rain perception "#+# ($) Within accepted limits 
Weather Wind speed "#,# ($) Within accepted limits 
Weather Wind Direction "#-# ($) Within accepted limits 
Weather UV index "#.# ($) Within accepted limits 
Forecasting Temp "$/# ($) Within accepted limits 
Forecasting Humidity "$## ($) Within accepted limits 
Forecasting Rain  "$$# ($) Within accepted limits 
Forecasting Wind speed "$'# ($) Within accepted limits 
Forecasting Wind Direction "$(# ($) Within accepted limits 
Forecasting Weather UV index "$*# ($) Within accepted limits 

Maintenance management 
(MN) 

!21#  PM Compliance % "$+# ($) Within accepted limits 
WO Waiting for the materials % "$,# ($) 0% (or end user target) 
WO Waiting for Shutdown "$-# ($) 0% (or end user target) 
Manpower Effectiveness % "$.# ($) Within accepted limits 

WO completed on time % "'/# ($) 100% (or end user target) 
WO Closure % "'## ($) 100% (or end user target) 
Rework WO % "'$# ($) 0% (or end user target) 
% Of planned Work (CM/PM)  "''# ($) Within accepted limits  
Quality Control -Alarms "'(# ($) No alarm 
MTTR (Mean Time to Repair) "'*# ($) Within accepted limits 

Condition Monitoring 
(CM) 

!%2#  FLM Compliance "'+# ($) 100% compliance (or end-user target) 
FLM Alert "',# ($) No alert 
Vibration Alert "'-#!($) 11 tags No alert 
Lube oil condition Alert "'.#!($) 1 tag No alert 
Performance Alert "(/#!($) 7 tags No alert 
Efficiency Alert "(##!($) 4 tags No alert 

Asset Mechanical 
Integrity (MI) 

!2&#  Useful Remaining life (URL) Alert "($#!($) 18 tags No alert 
NDT inspection Alert "('#!($) 18 tags No alert  
Inspection compliance "((#!($) 18 tags 100% compliance 
MI Recommendations compliance "(*# ($) no overdue task 

Leadership Management 
(LS) 

!34#  Supervisor existing  "(+# ($) no supervisor absence 
Leadership Engagement "(,# ($) the target of Engagement sessions achieved  
Reliability Culture action "(-# ($) No overdue action 

Physical asset 
management (AM) 

!!2#  
 

Documents Control "(.# ($) No missing Documents to the system (revision up to date) 
Spare parts Out of Stock "*/# ($) No Inventory Out of Stock 
Training Competency  "*## ($) no missing Competency with Individuals related to the system  

Economic Factors (EF) !05#  Preventive Maintenance Cost "*$# ($) within budget 
Corrective Maintenance Cost "*'# ($) within budget  
Utility cost Electricity "*(# ($) Limit of design consumption rate 

Process Safety 
Management (PS) 

!64#  Work Permit Compliance "**# ($) 100% compliance (or end-user target) 
Open Management of Change  "*+# ($) no overdue task 
MOC Compliance "*,# ($) 100% compliance (or end-user target) 
Compliance Audits Overdue "*-# ($) no overdue task  

Human Reliability (HR) !7"#  Probability of Human Error for a task "*.#!($) 1 tag The task does not require it to be done. However, the operator's mistake 
during the task must be carefully assisted once high alarm differential 
pressure appears to perform the task. 

 The total extracted parameters for the health management strategy of the Lube oil system are 275 parameters. 
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The analysis of this case study reveals that the extraction of 
health management requirements is thorough, encompassing 
a wide range of aspects and conditions. This comprehensive 
scope accurately portrays system health, particularly in 
identifying unhealthy conditions. Such a detailed 
understanding facilitates timely interventions—akin to 
seizing an opportune window—to preclude failures and 
enhance overall system reliability. 

5. CONCLUSION 

This study explored the extraction and refinement of health 
management requirements from operational scenarios. A 
novel framework, the Prognostics and Health Management 
Framework (PHMF), alongside a dedicated procedure, was 
proposed to pinpoint system health components for 
monitoring purposes. The PHMF, encompassing twelve 
distinct pillars and various elements, provides a customizable 
approach to PHM design, accurately reflecting a system's 
health. 

Implementing the PHMF enhances the utility of Digital Twins 
(DTs) by supporting the collection of extensive data sets, 
leading to improved PHM applications and more significant 
value generation. The case study showcased the practicality 
of the PHMF and its associated procedure, proving its 
applicability and scalability in industrial settings and its 
efficacy in facilitating comprehensive root cause analysis for 
failures and unplanned downtime. 

Future research could include the development of a system 
health index derived from the PHMF's data sets, integrating 
prognostics, crafting a prioritized decision matrix to hasten 
health restoration, and further industrial case studies to 
validate and refine the methodology. 
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