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ABSTRACT

The identification of railway vehicle components’ charac-
teristics from measured data is a challenging task with com-
pelling applications in health monitoring, fault detection,
and system prognosis. Usually, though, such systems are
highly nonlinear, and naive identification techniques may
lead to unstable methods and inaccurate results. In this pa-
per, we show that these issues can be easily tackled with
the recently introduced proximal Gauss–Newton method,
which we employ to identify the parameters of a railway
nonlinear suspension system. In the proposed model, the
parameters are subject to safety bounds in form of box con-
straints, which allows preventing nonphysical solutions.
The suspension system we consider is highly nonlinear
due to the presence of an airspring in the secondary sus-
pension, which we introduce in a simplified Berg model.
Numerical examples, featuring data corrupted by various
noise levels, demonstrate the accuracy and efficiency of our
proposed method. Comparisons with state-of-the-art ap-
proaches are also provided.

1. INTRODUCTION

Currently, the maintenance process of railway vehicles and
their components is mainly based on fixed inspection in-
tervals, which periodically freezes operations and leads to
corresponding high costs. For this reason, the develop-
ment of reliable approaches to identify and isolate com-
ponent faults in real-time is gaining increasing interest in
the railway industry. One of the most popular approaches
for health monitoring and system prognosis consists in de-
scribing the system via its mathematical model and deduc-
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ing the model parameters from the system response, e.g.,
measured accelerations. Large deviations from nominal
components’ characteristics would indeed suggest a possi-
ble component fault. In the literature, this is often referred
to as the parameter identification method in model-based
approaches for Fault Detection and Isolation (FDI) (Strano
& Terzo, 2019), which only represents a small portion of
the techniques currently under research, see, e.g., (Bruni,
Goodall, Mei, & Tsunashima, 2007) for an extensive review.

The parameter identification problem for linear dynamical
systems is often solved with recursive least-square meth-
ods and Kalman filter (KF) approaches (e.g., Extended and
Unscented KF, Cubature KF), which can be employed for
identification problems considering the model character-
istics as additional system states. For linear suspension
models, KF-based identification techniques are predomi-
nant and have been proven to be effective, see for instance
(Zoljic-Beglerovic, Stettinger, Luber, & Horn, 2018; Zoljic-
Beglerovic, Luber, Stettinger, Müller, & Horn, 2020) and
the references therein. However, modern suspension sys-
tems, which include, e.g., airsprings, are better described
via highly nonlinear models, with possibly complex archi-
tectures (Berg, 1999; Mazzola & Berg, 2014). The addi-
tional source of nonlinearity can cause KF approaches to
suffer from severe issues, such as unstable and quickly di-
vergent behaviors, poor linearization and/or erratic behav-
iors (Xin-Chun & Cheng-Jun, 2013). Contrarily to KF-based
approaches, the Gauss–Newton method, a popular itera-
tive method for multibody dynamics identification (Eich-
Soellner & Führer, 1998), can be easily generalized to in-
clude constraints on the parameters. This is indeed a cru-
cial feature that can be leveraged to design stable meth-
ods with robust convergence guarantees, as we will detail
in Section 3.2. The main computational drawback of con-
sidering complex (i.e., nonlinear) constraints is that at each
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iteration one needs to solve a quadratic problem, which is
usually tackled via sophisticated active-set strategies. In
this paper, we offer a simple and robust alternative based
on the so-called proximal Gauss–Newton method (pGN),
originally introduced by Salzo and Villa in (Salzo & Villa,
2012).

1.1. Contributions and highlights

In the following, we outline our contributions for conve-
nience to the reader. We propose pGN for parameter identi-
fication for railway vehicle suspension systems as a simple
yet robust alternative to standard approaches in the field.
In this context, we demonstrate its efficiency by address-
ing a compelling parameter identification problem for a
quarter railway vehicle featuring a highly nonlinear Berg’s
airspring model in the secondary suspension (Berg, 1999;
Mazzola & Berg, 2014), and a linear spring/damper system
in the primary suspension. In particular, we give an answer
to the following research question: Can we identify the pa-
rameters of the given model, relying solely on the knowl-
edge of vertical track irregularities as the system excitation
and the corresponding simulated vertical accelerations of
both the bogie and the carbody? The answer is positive in a
sense that is clarified in Section 5.

To underscore the strengths of the proposed approach, let
us highlight some of its features. First, pGN stands out for
its simplicity and robustness. It allows us to tackle box con-
straints in parameter identification for dynamical systems
by composing the standard Gauss–Newton step with a pos-
sibly inexact projection onto the feasible set, cf. (Gonçalves
& Menezes, 2020, Theorem 3), which we compute with a
low-cost first-order scheme, as in Algorithm 1 in Section 3.

It is also worth emphasizing that we tackle the param-
eter identification problem for a quarter railway vehicle
equipped with an airspring in the secondary suspension,
a modern suspension technology gaining increasing pop-
ularity in the railway industry, yet remaining largely unex-
plored in parameter identification. In this specific use case,
despite the presence of this highly nonlinear suspension
system, the proposed methodology is capable of swiftly and
accurately identifying primary suspension characteristics,
even in scenarios with elevated levels of noise.

Eventually, when compared against conventional active-
set approaches equipped with state-of-the-art quadratic
solvers, the proposed method achieves comparable overall
performance, while not relying on any black-box solver.

1.2. Related works

In the remainder of the introduction, we provide an
overview of main related works devoted to parameter iden-
tification for model-based approaches, highlighting the

similarities and the differences between the state-of-the-
art and the proposed approach.

Many classical monographs, such as (Bard, 1974; Eich-
Soellner & Führer, 1998), include chapters on parameter
identification for constrained, even nonlinear, vehicle sus-
pension models. Standard approaches encompass Gauss–
Newton and projected-gradient-type methods. For in-
stance, (Eich-Soellner & Führer, 1998, Chapter 7) is devoted
to a parameter identification problem for a suspension sys-
tem with nonlinear damping for a truck model. The identi-
fication model is tackled with a Gauss–Newton method via
Karush–Kuhn–Tucker (KKT) conditions. Here, inequality
constraints are avoided, as they would lead to much more
delicate active-set strategies. As we mentioned, inequal-
ity constraints can be tackled either via projection or via
penalty methods, which are described in detail in (Bard,
1974). Such penalty methods, also known as barrier-like
approaches, are implemented, e.g., in (Grupp & Kortüm,
1993), for the identification of parameters for nonlinear
suspension system of a truck model with equality and in-
equality constraints.

In (Ding, Pan, & Chen, 2012), the authors propose a
Levenberg–Marquardt trust region method to estimate the
unknown parameters, in which the second-order sensitiv-
ity analysis is performed using the adjoint method. How-
ever, the methodology is not applied to railway vehicle sus-
pension systems. Meanwhile, (Callejo & de Jalón, 2015)
proposes the use of automatic differentiation to compute
the gradients of the objective function. The proposed
model in (Callejo & de Jalón, 2015) is nonlinear in partic-
ular due to the piece-wise linearity of the damper. In Sec-
tion 4.2, the authors also include an interesting discussion
about parameter constraints, and their relevance in the ve-
hicle parameter identification. From an optimization view-
point, the main difference with the present paper is that
in (Callejo & de Jalón, 2015) the authors tackle the con-
strained identification model via a projected-gradient de-
scent method, which, while enjoying global convergence
guarantees, is known to be significantly slower than Gauss–
Newton-type methods.

In (Serban & Freeman, 2001), the authors employ a Gauss–
Newton method for the optimization of a spring-damper
system of a 14-body model of the U.S. Army’s High Mo-
bility Multipurpose Wheeled Vehicle. However, no con-
straints are considered in the identification example. In
(Vyasarayani, Uchida, Carvalho, & McPhee, 2012), the au-
thors apply the homotopy technique to the problem of
parameter identification to mitigate the fact that Gauss–
Newton does sometimes converge to local minimizers in-
stead of global minimizers. Applications to a vehicle sus-
pension system with nonlinearities are shown as well.
In (Puel, Bourgeteau, & Aubry, 2013), a nonlinear time-
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dependent model describing a rubber bushing’s mechan-
ical behavior is presented and the parameters associated
with this model are then identified from experimental tests
using an adjoint state formulation of the identification
problem. We eventually refer to (Kraft, Puel, Aubry, & Fun-
fschilling, 2016) for an application of the adjoint state ap-
proach to the nonlinear vehicle–track system, where a cu-
bic nonlinearity is introduced in the primary suspension.

Considering the recent developments, the parameter iden-
tification literature in multibody systems has yet to recog-
nize the underexplored potential of the proximal Gauss–
Newton algorithmic framework. Our contribution seeks to
fill this gap by presenting a compelling application to the
identification of parameters for a highly nonlinear quar-
ter vehicle model, featuring an airspring model in the sec-
ondary suspension.

2. DYNAMICAL SYSTEM

In our application, we consider railway vehicles equipped
with airsprings in the secondary suspension. To begin, we
provide an overview of airsprings and the various modeling
approaches.

2.1. Airsprings

Airsprings are attracting increasing interest in the railway
industry. They first appeared in the 1960s and were consid-
ered somewhat of a novelty at the time but, nowadays, air
suspension is a standard fitting for passenger vehicles. The
mathematical modeling of airsprings is an ongoing chal-
lenge that found one of its first accurate descriptions with
the Berg model introduced in the late 1990s in (Berg, 1999).
According to Berg (see Figure 1), the vertical force gener-
ated by the airspring is given by the following law:

8
<
:

F = ke z +kv (z °w)+ z
z2 + z

F f ,max ,

M w 00 = kv (z °w)°C |w 0|Øsign(w 0) , Ø= 1.8,
(1)

where z is the displacement, ke , kv are elastic and vis-
cous parameters respectively, and M is the air mass that
due to high air acceleration cannot be neglected. The third
term on the right hand-side of the first identity is a friction
contribution, which is defined up to two input parameters
F f ,max and z2, i.e., the maximum friction force and the fric-
tion displacement respectively, see, e.g., (Sayyaadi & Shok-
ouhi, 2009; Berg, 1997) for more details.

A seminal airspring model appeared even earlier in the
works of Nishimura (Matsumiya, Nishioka, Nishimura, &
Suzuki, 1969; Oda & Nishimura, 1969), and an interest-
ing nonlinear variant has been analyzed more recently in
(Mazzola & Berg, 2014). The latter can be described with the
following equations of motion, which shall be compared

Figure 1. Left: the airspring model presented in
(Moheyeldein et al., 2018). Right: the airspring model pre-
sented in (Berg, 1999) without the friction component.

with Figure 1:
(

F = ke z +kv (z °w) ,

M w 00 = kv (z °w)°C (w 0)2sign(w 0) .
(2)

All the parameters in Eq. (2) have analogous meanings
to those in Eq. (1) and are specified for instance in
(Moheyeldein, Abd-El-Tawwab, El-gwwad, & Salem, 2018).
Note that Eq. (2) can also be understood as a simplified set-
ting of the Berg model in Eq. (1) with no friction term and
Ø= 2. For a more detailed discussion on different airspring
models we refer the interested reader to (Mazzola & Berg,
2014) and the references therein.

In this work, we consider a model in-between Eq. (2) and
Eq. (1), that reads as

(
F = ke z +kv (z °w) ,

M w 00 = kv (z °w)°C |w 0|Øsign(w 0) .
(3)

Note that we neglect the friction term, which, however,
is usually most pronounced for horizontal motion (Berg,
1999; Sayyaadi & Shokouhi, 2009), which we do not con-
sider.

2.2. Quarter vehicle model

We integrate the nonlinear airspring with elastic and vis-
cous contributions according to the simplified Berg model
described in Eq. (3) with a linear spring/damper system
in a two-mass oscillator configuration that instantiates our
quarter railway vehicle model. This model represents only
one railway vehicle wheel excited by track irregularities
modeled by an input function u, the so-called single-point
excitation. Note in particular that the vertical displace-
ments of the wheel are thus assumed to be equal to the
irregularities of the track. In this configuration, the mass
m2 is one-eighth of the car-body mass and accompanying
masses, while m1 is one-fourth of the bogie and accompa-
nying masses. The linear spring/damper system, with stiff-
ness and damping coefficients k1 and d1, respectively, con-
stitute the primary suspension, while the airspring model
in Eq. (3) represents the secondary.
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Figure 2. Quarter vehicle model with Berg’s airspring model
without friction as secondary suspension system.

The equations of motion of the quarter vehicle model de-
picted in Figure 2 read as

8
>>>><
>>>>:

m2x 00
2 +ke (x2 °x1)+kv (x2 °w) = 0,

M w 00 °kv (x2 °w)+C f
°
w 0 °x 0

1
¢
= 0,

m1x 00
1 °ke (x2 °x1)°C f

°
w 0 °x 0

1
¢
+d1(x 0

1 °u0)

+k1(x1 °u) = 0,

(4)

where we set f (z) := |z|Øsign(z) for all z 2 R. The latter is
a second-order nonlinear differential system that depends
on five model parameters: three parameters that define the
airspring, namely (ke , kv , C ), and two parameters corre-
sponding to the primary suspension, namely (d1, k1).

We reformulate Eq. (4) as a first-order dynamical system in
the phase space, resulting in

8
>>>>>>><
>>>>>>>:

m2v 0
2 +ke (x2 °x1)+kv (x2 °w) = 0,

M v 0
w °kv (x2 °w)+C f (vw ° v1) = 0,

m1v 0
1 °ke (x2 °x1)°C f

°
v 0

w ° v 0
1
¢
+d1(v1 °u0)

+k1(x1 °u) = 0,

x 0
1 = v1 , x 0

2 = v2 , w 0 = vw .

(5)

We shall assume that if all the parameters are positive and
the external excitation function u is regular enough, given
initial states, the dynamical system Eq. (5) admits a unique
global solution on a reference time-range, say T = [0,T ],
where T > 0. In the remainder of this paper, we consider
resting initial conditions, namely x1(0) = x2(0) = v1(0) =
v2(0) = w(0) = vw (0) = 0.

The system in Eq. (5) can be discretized with finite differ-
ences. Specifically, facing a highly oscillatory behavior, we
use a semi-implicit Euler scheme on a uniform grid of m+1

points and step h > 0, i.e., {0, t1, . . . , tm} with ti = hi for all
i 2 {0, . . . ,m}, and tm = T , thus getting

8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

vi+1
2 = vi

2 °
h

m2

≥
ke (xi

2 °xi
1)+kv (xi

2 °wi )
¥

,

vi+1
w = vi

w ° h
M

≥
°kv (xi

2 °wi )+C f
≥
vi

w ° vi
1

¥¥
,

vi+1
1 = vi

1 °
h

m1

≥
°ke (xi

2 °xi
1)°C f

≥
vi

w ° vi
1

¥

+d1(vi
1 ° (u0)i )+k1(xi

1 °ui )
¥

,

xi+1
1 = xi

1 +hvi+1
1 , xi+1

2 = xi
2 +hvi+1

2 ,

wi+1 = wi +hvi+1
w ,

(6)

for all i 2 {0, . . . ,m ° 1}, with resting initial conditions.
The discrete derivatives of v 1 := (v0

1, . . . , vm
1 ) and v 2 :=

(v0
2, . . . , vm

2 ), denoted by v
0
1 and v

0
2, yield two vectors in Rm

defined by

(v
0
1)i =

(v 0
1)i+1 ° (v 0

1)i

h
, and (v

0
2)i =

(v 0
2)i+1 ° (v 0

2)i

h
,

for all i 2 {0, . . . ,m °1}.

3. METHODOLOGY

Once our model in Eq. (6) is fixed, we can now introduce
our identification methodology in the presence of safety
bounds in form of box constraints.

3.1. Identification model

We denote by µ the vector containing the parameters’ val-
ues we aim to identify, specifically:

µ := (ke , kv , C , k1, d1) 2R5
+ , (7)

fix a time step h > 0 and consider x1,µ, x2,µ , v 1,µ, v 2,µ 2Rm+1

defined through Eq. (6) with model parameters specified by
µ, and masses m1, m2 and M as given in Table 1. Given
some simulated accelerations a` = (a0

`
, . . . , am°1

`
) 2 Rm for

` 2 {1,2} of the bogie and the carbody respectively, we shall
identify the model parameters solving the following nonlin-
ear constrained optimization problem

min
µ2B

kv
0
1,µ°a1k2 +kv

0
2,µ°a2k2 , (8)

where B is a set in R5 that puts a-priori bounds on the pa-
rameters. We set

B := [ø,2ke,n]£ [ø,2kv,n]£ [ø,2Cn]£ [ø,2k1,n]£ [ø,2d1,n] ,
(9)

where ø := 10°8 is a small threshold and ke,n , kv,n , Cn , k1,n ,
d1,n are the nominal values of ke , kv , C , k1, d1, respec-
tively, which are taken from (Berg, 1999) and listed in Table
1. Note that we are imposing that each parameter is pos-
itive and upper bounded with twice their nominal values,
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Table 1. Nominal model parameters for Eq. (4).

Sym. Definition Value (10°3) Unit

ke elastic airspring stiffness 250 N /m
kv viscous airspring stiffness 420 N /m
C damping stiffness of airspring 11.508 N (s/m)1.8

k1 primary elastic stiffness 282 N /m
d1 primary damping stiffness 21.9 N s/m
m1 mass of quarter bogie 0.7725 kg
m2 mass of eighth carbody 5.6875 kg
M mass of air in the airspring 0.218 kg

and that the values of m1, m2 and M are fixed.

Problem (8) can be reformulated in the standard root-
finding framework introducing the nonlinear functions
F 1 : R5 !Rm and F 2 : R5 !Rm defined by

F 1(µ) := v
0
1,µ°a1 , and F 2(µ) := v

0
2,µ°a2 ,

Combining F 1 and F 2 to a single function F : R5 !R2m , we
can reformulate Pbl. (8) to the standard form

min
µ2B

kF (µ)k2 . (10)

Note that Pbl. (10) is a particular case of (P ) in (Salzo &
Villa, 2012) with J (µ) = IB(µ), where IB is the indicator
function of the set B, i.e., IB(µ) =+1 if µ 62B and IB(µ) = 0
else.

3.2. Optimization scheme

As we described in Section 1.2, to solve the parameter iden-
tification problem when the number of parameters is less
than the mesh size, it is customary to employ the Gauss–
Newton method, which is an iterative method that reads as

µk+1 = µk °H
°1
k J

§
k F (µk ) , for k 2N , µ0 2R5 , (11)

where, for every k 2 N, H k := J
§
k J k , J k := F

0(µk ) is the Ja-
cobian of F at µk and J

§
k denotes its transpose. Here, we

assume that J k has full rank, so that H k is symmetric posi-
tive definite and hence invertible. Note that for every µ 2R5

such that the integration of Eq. (6) is feasible with model
parameters given by µ, the Jacobian of F at µ can be explic-
itly obtained with a standard sensitivity analysis, see for in-
stance (Eich-Soellner & Führer, 1998, Chapter 7).

However, a naive implementation of the Gauss–Newton
method according to Eq. (11) can lead to serious issues
along the iterations as non-physical negative stiffness val-
ues or very high coefficients can be reached, both of which
can make the integration of Eq. (6), hence the method itself,
highly unstable. pGN allows to overcome this issue with a
backward correction step as follows

µk+1 = proxH k
√

≥
µk °H

°1
k J

§
k F (µk )

¥
, for k 2N , µ0 2R5 ,

(12)

where √(µ) := IB(µ), B being the constraint set defined in
Eq. (9). The so-called proximity operator proxH k

√ can be
defined by means of a minimization problem as follows.
Given µ 2 Rp with p 2 N, a p by p symmetric positive defi-
nite operator M , and a proper, convex, lower semicontinu-
ous function √, proxM

√ is the defined by

proxM

√ (µ) := arg min
eµ2Rp

√(eµ)+ 1
2
keµ°µk2

M
, (13)

where kµk2
M

:= µ§Mµ for all µ 2 Rp . Note, indeed, that the
optimization problem in the right hand-side of Eq. (13) al-
ways admits a unique solution, and, thus, proxM

√ is a well
defined (nonlinear) function on Rp . If √ = IB and M = H k
it is easy to see that Eq. (13) is equivalent to

proxH k
√ (µ) = argmin

eµ2B
keµ°µk2

H k
= argmin

eµ2B
kJ k eµ° J kµk2 ,

(14)
or, in other words, proxH k

√ is the projection onto the set B

with respect to the metric H k , which we denote by PH k
B

. If
H k = I , we will omit the superscript writing PB instead of
PI

B . Note that Eq. (14) defines a non-trivial quadratic prob-
lem, which in general can be computed only approximately
with an inner procedure. Of course, if µ already belongs to
B, no inner iterations are required, which is asymptotically
the case when the optimal solution to Pbl. (10) belongs to
the interior of B.

The convergence guarantees in (Salzo & Villa, 2012) are
of local type, and they are comparable to those obtained
for the classical Gauss–Newton method. In particular,
under suitable regularity assumptions on the Jacobian of
F , we can expect linear convergence in the general case,
and quadratic convergence for zero residual problems, i.e.,
whenever

kF (µ̄)k= 0, when µ̄ solves Pbl. (10) . (15)

Note that Eq. (15) in our context means that if µ̄ is the opti-
mal solution to Pbl. (10), the reconstructions v

0
h,µ̄

fit per-

fectly the simulated accelerations ah for h = 1,2, which,
however, is unrealistic as ah is typically subject to noise. In
fact, in our experiments, we observe a linear convergence
behavior, even though the regularity assumptions on the Ja-
cobian of F are not necessarily met, cf. Section 4.2.

3.3. Active-set methods: two different approaches

It is important to note that our numerical method closely
aligns with classical approaches to solve Pbl. (10). In fact,
using the definition of the proximity operator and the fact
that for all µ 2 R5 it holds kµkH k = kJ kµk, we can see that
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Eq. (12) can be expressed as

µk+1 =argmin
µ2R5

IB(µ)+ 1
2
kµ°µk +

°
J
§
k J k

¢°1
J
§
k F (µk )k2

H k

=argmin
µ2B

1
2
kµ°µk +

°
J
§
k J k

¢°1
J
§
k F (µk )k2

H k

=argmin
µ2B

1
2
kJ k (µ°µk )+ J k

°
J
§
k J k

¢°1
J
§
k F (µk )k2 .

Now, using that J k
°

J
§
k J k

¢°1
J
§
k is simply the projection op-

erator onto the image of J k , we can conclude, in case J k has
full rank, that

µk+1 = argmin
µ2B

1
2
kJ k (µ°µk )+F (µk )k2 , (16)

which is a box-constrained quadratic problem (Salzo &
Villa, 2012) that can be solved with any efficient quadratic
solver. This is usually done in practice via active-set strate-
gies, cf. Section 1.2, which can benefit from warm and
hot start capabilities. One of the most efficient imple-
mentations of warm and hot started active-set methods is
contained in the open-source software qpOASES (Ferreau,
Kirches, Potschka, Bock, & Diehl, 2014).

Our computational methodology is based on a different ap-
proach. First, we compute the usual Gauss–Newton itera-
tion in Eq. (11) using a simple generic solver1, and, then,
use a cheap first-order method to project the obtained so-
lution onto the feasible set B. Note that if the projection
is computed exactly up to numerical tolerances, then the
two iterations would coincide. We compare the numerical
performances of these two approaches in Section 4.

Computing the projection While the method is quite ro-
bust to errors in the computation of the projections, the
choice of the inner procedure to compute the projection
does indeed affect the overall performance of the algo-
rithm (Salzo & Villa, 2012; Gonçalves & Menezes, 2020). In
our specific instance, we noticed that a generic projected–
gradient descent method provides excellent performances.
Specifically, at iteration k 2 N, our sub-routine that com-
putes the projection of eµk+1 (obtained computing the
Gauss–Newton iteration in Eq. (11)) onto B with respect
to the H k norm consists of alternating a forward step, i.e.,
evaluating µ 7! µ°æk H k (µ° eµk+1) with a suitable æk > 0,
and a backward step, i.e., a projection (with respect to the
`2 norm) onto B. The latter can be computed by projecting
every component to the corresponding interval. Eventually,
our optimization method reads as in Algorithm 1.

1In our numerical experiments, we have used numpy.linalg.solve
in Python.

Data: The measured accelerations a1 and a2.
Result: µ̄ = limk µ

k optimal solution to Pbl. (10).
Initialize: µ0 2B;
for k = 0,1,2, . . . do

Compute J k with sensitivity analysis;
H k √ J

§
k J k ;

Solve for sk+1: H k sk+1 + J
§
k F (µk ) = 0;

eµk+1 √ µk + sk+1;
eµ0,k+1 √ eµk+1;
æk √ 1

2kJ kk2;
for n = 0,1,2, . . . do

eµn+1,k+1 √ PB

°eµn,k+1 °æk H k
°eµn,k+1 ° eµk+1¢¢;

µk+1 = limn eµn,k+1;

Algorithm 1: Proximal Gauss–Newton method to solve
Pbl. (10), with a projected-gradient descent as a inner
procedure to compute the projection onto B with re-
spect to the metric H k .

4. NUMERICAL EXPERIMENTS

We performed computational experiments to test the pro-
posed method to solve Pbl. (8). All computations were car-
ried out in Python on a Laptop with 16 GB RAM and an Intel
Core i7-1255U CPU@1,7-4,7GHz.

4.1. Simulated data generation

In this section, we describe the generation of synthetic rail-
way irregularity profiles and corresponding accelerations.
To simulate realistic conditions, we account for noise aris-
ing from measurement errors and structured noise intro-
duced through a downsampling procedure. Specifically,
railway irregularity data, i.e., u in Eq. (4), is generated syn-
thetically with

u(t ) :=F (t )
≥ rX

j=1
ª j sin

≥2ºv
∏ j

t
¥
+¥ j cos

≥2ºv

∏̃ j
t
¥¥

, (17)

where F : R ! R is a fade-in function to guarantee rest-
ing initial conditions, which satisfies F (0) = F 0(0) = 0 and
F (t ) = 1 for all t ∏ 1, e.g.,

F (t ) := (1°min{max{1.2° t ,0},1}2)2 ,

r = 500 is the signal complexity, ª1, . . . ,ªr are numbers sam-
pled from a Gaussian distribution with zero mean and vari-
ance 2 ·10°4, and ¥1, . . . ,¥r are defined by ¥ j := e¥ j °

Pr
i=1 e¥i ,

where e¥1, . . . ,e¥r are again sampled from a Gaussian distri-
bution with zero mean and variance 2 · 10°4. In this way,
u(0) = 0, and, due to the fade-in function, also u0(0) = 0.
In our experiments, we picked v = 10 and ∏ j , ∏̃ j sampled
from a Gaussian distribution with mean 11 and variance 3,
in such a way that the resulting signals always simulate rail-
way irregularities of average wavelength 11 m, and average
amplitude of 3 cm for a railway vehicle moving at 10 m/s.

6
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Eventually, we sample the continuous function u : R ! R

on a uniform time mesh with em = 105 nodes and final time
T = 10 s.

If the underlying model parameters, i.e., ke , kv , C , k1, d1,
are specified by some µ̄ 2R5, we generate the accelerations
a1 and a2 synthetically by solving Eq. (6) with data u, u0 as
above, model parameters µ̄, and masses m1, M , m2 speci-
fied in Table 1. To mimic measured data, we:

• Apply white noise of varianceæA(a1) andæA(a2) to a1
and a2, respectively, where, for ` = 1,2, A(a`) denotes
the maximal amplitude of a`, i.e., A(a`) := max a` °
min a`,

• Downsample a1, a2,u,u0 from the uniform time mesh
with em = 105 nodes to a uniform time mesh with m =
103 nodes, i.e., we consider a sampling rate of 100 H z.
To do so, we compute the mean of the values for every
chunk of 102 nodes.

We emphasize that compared to the generated synthetic
data, experimental data would be further corrupted by
more structured process error. Indeed, while the one-wheel
approximation can provide useful insights and simplify the
proposed identification approach, it fails to capture the full
range of dynamic interactions and structural complexities
of a railway vehicle bogie. Experimental data would there-
fore also be influenced by 3D interactions between wheels,
axles, and the body of the vehicle, among other effects. For
this reason, our synthetic data is only a first approximation
of actual experimental data, as it includes only noise from
sensor error (up to 20%) and noise arising from the down-
sampling procedure described in Section 4.1. Note that the
latter can be understood as a first approximation of process
error. Altogether, exploring the effect of actual experimen-
tal data is a fundamental avenue for future research, which
can be addressed with the proposed methodology.

4.2. Experiments

To simulate a potential faulty scenario, the underlying
model parameters are assumed to be equal to the nominal
parameters, with two exceptions: k1 is set to be 20% higher
and ke is set to be 20% lower than the corresponding nomi-
nal values. We refer to these parameters as the ground-truth
values and collect them in a vector µ̄. Once the model pa-
rameters are fixed, we perform the following set of experi-
ments.

1. Robustness to noise. We consider five levels of noise
ranging from æ = 0% to æ = 20%. Here, the former is an
ideal zero noise case, and the latter is a very noisy scenario
where the data has been corrupted with a noise of vari-
ance of magnitude equal to 20% of the amplitude of the
signal. For each noise levelæ, following Section 4.1, we gen-

erate railway irregularity data and simulated measured ac-
celerations 20 times with a white noise of level æ. In each
case, we run Algorithm 1 with initialization µ0 = µn, where
µn 2R5 is the vector of nominal model parameters. We stop
the outer and inner loops as soon as kµk+1 °µkk ∑ 10°5 or
k = K with K = 500, and keµn+1,k °eµn,kk ∑ 10°5 or n = 10000,
respectively. For comparison, on the same data, we also
employ a state-of-the-art active-set approach solving the
quadratic subproblem, i.e., Eq. (16), using the quadratic
solver qpOASES (Ferreau et al., 2014) (GN–QP). To con-
clude, we repeat the same experiment but with µ̄ = µn, i.e.,
we simulate no actual fault in the system components.

If the noise increases, the initialization µ0 might be out of
the basin of attraction of the method, see Theorem 1 in
(Salzo & Villa, 2012), and, therefore, the method could cy-
cle or behave wildly, yet yielding always feasible iterates,
i.e., with µk 2 B. We will therefore say that the method
fails if the maximum amount of iterations is reached. We
also count the number of iterations in which the projec-
tion subroutine onto B performs at least one iteration (PA),
or, in other words, the number of k such that eµk+1 does
not belong to B. This allows us to keep track of the num-
ber of times that Algorithm 1 activates the aforementioned
backward correction step. Additionally, we compute mean
and standard deviation of the reconstructed parameters
(Reconstructed parameters) at the final iteration and their
Relative Error (RE parameters) with respect to the ground-
truth values, that means, the value RE(p) := |p°p̄|

p̄ for each
parameter p either ke , kv , C , k1 or d1, where p̄ is the
corresponding ground-truth value. Eventually, we com-
pute the eigenvalues of the positive definite matrix H(µ̄) :=
F
0(µ̄)§F

0(µ̄), where F
0(µ̄) is the Jacobian of F at µ̄, µ̄ be-

ing the vector of ground-truth parameters. The condition
number of this matrix provides us with two interconnected
properties. On the one hand, it is related to the identifiabil-
ity of the system2 according to (Grewal & Glover, 1976). On
the other hand, together with the noise level, it influences
the diameter of the basin of attraction of the method, see
(Salzo & Villa, 2012, Theorem 1). All the results are summa-
rized in Tables 2, 3, 4, and 5. Note that the reconstructed pa-
rameters and the relative errors have been rounded to the
second and the first decimal digit, respectively. In Figure 3,
we show how the reconstructed acceleration fits the simu-
lated data, and in Figure 4 we display a bar chart with the
eigenvalues of H(µ̄) and of H(µn).

2. Comparison with active-set methods. We perform a
time comparison of a state-of-the-art active-set approach
and the proposed pGN approach according to Algorithm
1. In the former, at each iteration, we solve Eq. (16) using

2Note that, due to the presence of noise, µ̄ is only an approximation of the
actual minimizer, but in low-noise regimes, this can be a good approxi-
mation.
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Figure 3. Simulated and reconstructed estimates of the ac-
celerations a1 and a2 under several noisy regimes. Confer
Section 4.2 point 1 for a detailed description.
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Figure 4. Eigenvalues of the approximate Hessian H(µ) :=
F
0(µ)§F

0(µ), for µ = µ̄ the vector of ground-truth (faulty) pa-
rameters and µ = µn the vector of nominal parameters.

the state-of-the-art quadratic solver qpOASES (Ferreau et
al., 2014). For the latter, we consider the same inner stop-
ping criteria that we employed in our first experiment. For
the two methods, we set the maximum number of outer it-
erations to k = 50. We generate railway irregularity data and
synthetic measured accelerations according to Section 4.1.
We corrupt data with an error level of æ = 5% and run the
two identification methods. If one of these two fail, i.e.,
does not reach the prescribed accuracy within the maxi-
mum number of iterations allowed, we corrupt data once
again and repeat the experiment until both identification
methods succeed. We do so 30 times. In each case, we
measure: final time, i.e., the time employed for the method
to perform 50 iterations, and sub-routine time, namely, the
total time employed without considering the computation
of the sensitivity matrices, i.e., the operators J k in our nota-
tion. Means and standard deviations of our results are sum-
marized in Table 6. The average distance to minimizer as a
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Figure 5. Distance to minimizer as a function of the itera-
tion number. Aggregate results of 30 independent runs in
a comparison between pGN according to Algorithm 1 and
the Gauss–Newton method with the qpOASES subroutine
(GN–QP) to solve Eq. (16). Confer Section 4.2 point 2 for a
detailed description.
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Figure 6. For æ = 10%, objective values across iterations
for failure and success cases using Algorithm 1 and the
quadratic solver qpOASES to solve Eq. (16) at each iteration
k 2 N. Five distinct convergence behaviors are highlighted
with thick lines, cf. Section 4.3 for further comments.

function of the iteration is shown in Figure 5.

4.3. Results

We begin our discussion with the outcomes of our initial
experiment reported in Tables 2 and 3. As expected, un-
der the ideal scenario of zero noise, we observe that the
residual of the pGN method converges to the prescribed
tolerance after only a few iterations (approximately 7) with
highly accurate estimations of the ground-truth parame-
ters. Note, however, that the relative error is not zero due
to the downsampling. The situation changes when we in-
troduce a noise level of 5%. In this scenario, we detect
increased uncertainty in estimating the airspring’s charac-
teristics, particularly for parameter C , associated with the
nonlinear damping component in the airspring. Nonethe-
less, this increased uncertainty does not compromise the

8
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Table 2. Faulty case, results of experiment in point 1 in Sec-
tion 4.2 utilizing pGN to approximate Eq. (16).

Noise
level Info

Reconstructed
parameters (£10°3)

RE
parameters (%)

æ
=

0%

Success: 20
Failures: 0
Iter.: 7 (0)
PA: 0 (0)

ke : 200.39 (0.0)
kv : 424.23 (0.0)
C : 10.83 (0.0)
k1: 330.88 (0.0)
d1: 21.81 (0.0)

ke : 0.2 (0.0)
kv : 1.0 (0.0)
C : 5.9 (0.0)
k1: 2.2 (0.0)
d1: 0.4 (0.0)

æ
=

5%

Success: 13
Failures: 7
Iter.: 214 (229)
PA: 24 (106)

ke : 205.42 (21.1)
kv : 435.26 (20.86)
C : 10.2 (20.86)
k1: 329.5 (3.36)
d1: 21.8 (0.25)

ke : 9.4 (5.5)
kv : 4.2 (4.5)
C : 38.8 (19.4)
k1: 2.6 (1.0)
d1: 1.1 (0.6)

æ
=

10
%

Success: 18
Failures: 2
Iter.: 73 (143)
PA: 2 (4)

ke : 191.85 (52.71)
kv : 445.18 (75.02)
C : 14.01 (75.02)
k1: 335.65 (10.15)
d1: 21.86 (0.77)

ke : 22.1 (14.9)
kv : 8.8 (16.6)
C : 51.9 (30.9)
k1: 2.4 (1.9)
d1: 2.7 (2.3)

æ
=

15
%

Success: 10
Failures: 10
Iter.: 262 (237)
PA: 131 (194)

ke : 161.77 (87.83)
kv : 605.98 (194.79)
C : 18.51 (194.79)
k1: 331.97 (17.26)
d1: 21.95 (1.51)

ke : 42.0 (23.0)
kv : 48.5 (41.9)
C : 84.0 (29.2)
k1: 4.7 (2.8)
d1: 6.5 (2.3)

æ
=

20
%

Success: 10
Failures: 10
Iter.: 261 (239)
PA: 224 (221)

ke : 256.37 (149.45)
kv : 336.0 (411.51)
C : 12.21 (411.51)
k1: 321.26 (15.09)
d1: 20.85 (2.17)

ke : 68.6 (40.9)
kv : 100.0 (0.0)
C : 77.1 (36.7)
k1: 6.3 (2.5)
d1: 10.0 (4.7)

estimation accuracy of the elastic component ke character-
istics of the airspring, which exhibit an average accuracy
of about 90% in all considered cases. Even as the noise
level rises further, causing the estimation of C to deterio-
rate rapidly, it is noteworthy that primary components k1
and d1 still yield acceptable estimations with an average ac-
curacy of 90%, even at a noise level of æ = 20%. In partic-
ular, the reconstructed accelerations demonstrate a robust
fit to the simulated ones, even in regimes with high levels of
noise, as illustrated in Figure 3.

One potential reason for the increased loss of accuracy
at higher noise levels can be deduced from Figure 4,
which displays the eigenvalues of the approximate Hessian
H(µ) := F

0(µ)§F
0(µ) for µ = µ̄ (the ground-truth parame-

ters) and µ = µn (the nominal parameters). We observe in
particular that the condition numbers of these matrices are
on the order of 105, with smallest eigenvalues on the order
of 10°4. This suggests an inherent identifiability issue (ac-
cording to (Grewal & Glover, 1976)) in the considered sys-
tem, or, in other words, that solving Pbl. (8) is intrinsically
difficult and obtaining inaccurate estimations of some sys-
tem parameters (C in this case) might be unavoidable. Note
as well that according to Theorem 1 in (Salzo & Villa, 2012),
high condition numbers of these approximate Hessians at
the minimizer (together with the noise level) lead to smaller
basins of attraction of the method, making pGN (as well
as any other methodology based on Gauss–Newton such

Table 3. Faulty case, results of experiment in point 1 in Sec-
tion 4.2 utilizing qpOASES to approximate Eq. (16).

Noise
level Info

Reconstructed
parameters (£10°3)

RE
parameters (%)

æ
=

0%

Success: 20
Failures: 0
Iter.: 7 (0)
PA: 0 (0)

ke : 200.39 (0.0)
kv : 424.23 (0.0)
C : 10.83 (0.0)
k1: 330.88 (0.0)
d1: 21.81 (0.0)

ke : 0.2 (0.0)
kv : 1.0 (0.0)
C : 5.9 (0.0)
k1: 2.2 (0.0)
d1: 0.4 (0.0)

æ
=

5%

Success: 13
Failures: 7
Iter.: 214 (229)
PA: 0 (0)

ke : 205.42 (21.1)
kv : 435.26 (20.86)
C : 10.2 (20.86)
k1: 329.5 (3.36)
d1: 21.8 (0.25)

ke : 9.4 (5.5)
kv : 4.2 (4.5)
C : 38.8 (19.4)
k1: 2.6 (1.0)
d1: 1.1 (0.6)

æ
=

10
%

Success: 18
Failures: 2
Iter.: 73 (143)
PA: 0 (0)

ke : 193.1 (53.03)
kv : 445.1 (75.01)
C : 14.01 (75.01)
k1: 335.41 (10.09)
d1: 21.85 (0.77)

ke : 22.4 (14.6)
kv : 8.8 (16.6)
C : 51.9 (30.9)
k1: 2.4 (2.0)
d1: 2.6 (2.3)

æ
=

15
%

Success: 7
Failures: 13
Iter.: 335 (223)
PA: 0 (0)

ke : 205.66 (87.09)
kv : 659.95 (199.27)
C : 16.57 (199.27)
k1: 323.35 (16.49)
d1: 21.14 (1.41)

ke : 42.1 (11.5)
kv : 59.6 (44.2)
C : 77.1 (32.5)
k1: 6.1 (2.5)
d1: 6.9 (2.5)

æ
=

20
%

Success: 9
Failures: 11
Iter.: 283 (239)
PA: 0 (0)

ke : 237.81 (139.57)
kv : 466.67 (417.4)
C : 9.8 (417.4)
k1: 322.85 (15.38)
d1: 20.95 (2.15)

ke : 63.3 (34.8)
kv : 100.0 (0.0)
C : 85.4 (28.4)
k1: 5.9 (2.5)
d1: 10.1 (3.6)

as any traditional approach that solves the inner quadratic
problem with specific quadratic solvers like qpOASES) sys-
tematically fail for large noise levels, as we can also ob-
serve in Tables 4 and 5. It is important to note, though,
that noise levels greater than 10% are unrealistic in prac-
tical scenarios, where sensor errors are usually of the order
of 5%. Nonetheless, we tested the method in these extreme
cases to demonstrate the limits of our approach.

The typical convergence behavior of the method is illus-
trated in Figure 6. We observe in particular that success and
failure regimes for a noise level of æ = 10% can be quickly
distinguished. In failure cases, the iterates exhibit high os-
cillations for all k 2N. Conversely, in success cases, the os-
cillations tend to vanish rapidly. Thus, failing regimes can
be identified on the fly during the identification process,
which represents a particularly appealing feature for appli-
cations to FDI. In the same figure, we also observe that suc-
cess regimes can display a variety of behaviors. Some cases
show the method oscillating for more than 25 iterations be-
fore settling into the basin of attraction of an isolated min-
imum, while in other cases, the method converges to a so-
lution in fewer than 10 iterations. Although failure and suc-
cess cases are easily distinguishable visually, efficient auto-
matic classification requires dedicated criteria depending
on the specific case study and the level of noise consid-
ered. One approach to handling failing cases is to repeat the
identification process with different data. Naturally, persis-
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Table 4. Non faulty case, results of experiment in point 1 in
Section 4.2 utilizing pGN to approximate Eq. (16).

Noise
level Info

Reconstructed
parameters (£10°3)

RE
parameters (%)

æ
=

0%

Success: 20
Failures: 0
Iter.: 6 (0)
PA: 0 (0)

ke : 254.38 (0.0)
kv : 422.52 (0.0)
C : 10.45 (0.0)
k1: 274.35 (0.0)
d1: 21.7 (0.0)

ke : 1.8 (0.0)
kv : 0.6 (0.0)
C : 9.2 (0.0)
k1: 2.7 (0.0)
d1: 0.9 (0.0)

æ
=

5%

Success: 20
Failures: 0
Iter.: 54 (67)
PA: 1 (4)

ke : 251.34 (29.03)
kv : 421.54 (21.36)
C : 12.85 (21.36)
k1: 276.99 (4.86)
d1: 21.74 (0.31)

ke : 9.5 (6.7)
kv : 4.1 (3.0)
C : 37.1 (31.3)
k1: 2.1 (1.4)
d1: 1.3 (0.9)

æ
=

10
%

Success: 10
Failures: 10
Iter.: 279 (225)
PA: 190 (216)

ke : 250.27 (28.95)
kv : 599.27 (215.34)
C : 14.95 (215.34)
k1: 277.79 (6.46)
d1: 21.65 (0.38)

ke : 8.7 (7.6)
kv : 51.4 (42.5)
C : 61.4 (36.5)
k1: 2.3 (1.5)
d1: 1.4 (1.6)

æ
=

15
%

Success: 9
Failures: 11
Iter.: 284 (238)
PA: 238 (230)

ke : 212.29 (100.42)
kv : 646.88 (293.87)
C : 14.86 (293.87)
k1: 283.18 (11.34)
d1: 22.04 (0.44)

ke : 33.3 (27.0)
kv : 80.1 (37.3)
C : 89.5 (21.5)
k1: 3.1 (2.6)
d1: 1.8 (1.1)

æ
=

20
%

Success: 4
Failures: 16
Iter.: 410 (181)
PA: 378 (183)

ke : 292.67 (86.03)
kv : 301.56 (178.82)
C : 11.51 (178.82)
k1: 272.22 (11.01)
d1: 21.16 (0.74)

ke : 27.0 (27.3)
kv : 33.8 (38.2)
C : 100.0 (0.0)
k1: 3.5 (3.8)
d1: 4.2 (2.3)

tent and repetitive failures in the context of FDI can also be
indicative. These might suggest a major component fault,
where the nominal parameters consistently fail to fall into
a basin of attraction of the method.

It is interesting that according to Tables 4 and 5 the same
behavior occurs even if the ground-truth coincides with the
nominal parameters and the initialization of the method,
no matter the methodology utilized to approximate the
quadratic subroutine. This is due to the fact that, due to
downsampling (process error), the ground-truth data does
not necessarily coincide with the actual minimizer.

Concerning our second experiment, Table 6 reveals only a
slight acceleration in computation when employing a state-
of-the-art quadratic solver to address Eq. (16), achieving a
speedup of approximately 10% at a sub-routine level. How-
ever, this efficiency gain does not translate into an over-
all time reduction, as the main computational bottleneck
remains the computation of the sensitivity matrix, a task
present in both scenarios. From Figure 5, we also ob-
serve that, even if the projection is not computed up to nu-
merical tolerances, overall, the distance to the minimizer
(computed letting the algorithm run for 250 iterations) de-
creases with similar behavior. Further, the convergence
rate seems to be linear even though the regularity assump-
tions in (Salzo & Villa, 2012) are not necessarily met. No-
tably, it appears that inexact computations do not impact

Table 5. Non faulty case, results of experiment in point 1 in
Section 4.2 utilizing qpOASES to approximate Eq. (16).

Noise
level Info

Reconstructed
parameters (£10°3)

RE
parameters (%)

æ
=

0%

Success: 20
Failures: 0
Iter.: 6 (0)
PA: 0 (0)

ke : 254.38 (0.0)
kv : 422.52 (0.0)
C : 10.45 (0.0)
k1: 274.35 (0.0)
d1: 21.7 (0.0)

ke : 1.8 (0.0)
kv : 0.6 (0.0)
C : 9.2 (0.0)
k1: 2.7 (0.0)
d1: 0.9 (0.0)

æ
=

5%

Success: 20
Failures: 0
Iter.: 54 (67)
PA: 0 (0)

ke : 251.6 (28.67)
kv : 421.6 (20.92)
C : 12.85 (20.92)
k1: 276.95 (4.81)
d1: 21.74 (0.31)

ke : 9.3 (6.7)
kv : 4.1 (2.9)
C : 37.1 (31.3)
k1: 2.0 (1.4)
d1: 1.3 (0.9)

æ
=

10
%

Success: 11
Failures: 9
Iter.: 251 (226)
PA: 0 (0)

ke : 250.93 (26.54)
kv : 621.48 (216.28)
C : 13.52 (216.28)
k1: 276.9 (6.23)
d1: 21.69 (0.41)

ke : 8.4 (6.5)
kv : 55.8 (42.9)
C : 65.2 (35.9)
k1: 2.4 (1.5)
d1: 1.4 (1.5)

æ
=

15
%

Success: 9
Failures: 11
Iter.: 285 (237)
PA: 0 (0)

ke : 241.68 (102.24)
kv : 588.67 (227.33)
C : 12.31 (227.33)
k1: 277.61 (16.39)
d1: 22.01 (0.43)

ke : 31.7 (26.1)
kv : 50.5 (44.7)
C : 89.6 (21.4)
k1: 4.8 (3.6)
d1: 1.7 (1.1)

æ
=

20
%

Success: 7
Failures: 13
Iter.: 355 (221)
PA: 0 (0)

ke : 233.83 (102.77)
kv : 527.2 (200.93)
C : 3.29 (200.93)
k1: 278.61 (12.74)
d1: 22.04 (0.7)

ke : 33.1 (25.2)
kv : 35.4 (41.1)
C : 100.0 (0.0)
k1: 3.5 (3.1)
d1: 2.6 (2.0)

Table 6. Time comparison between the pGN method and
the Gauss–Newton method with qpOASES subroutine to
solve Eq. (16). Confer Section 4.2 point 2 for a detailed de-
scription.

mean (std) median unit

Final time pGN 1.274835 (0.839708) 1.555865 s
Final time GN–QP 1.259149 (0.816052) 1.552521 s
Sub-routine time pGN 0.016892 (0.014701) 0.017929 s
Sub-routine time GN–QP 0.013765 (0.009359) 0.015717 s

this linear rate of convergence.

5. DISCUSSION

Gauss–Newton-type methods are a widely used choice in
the context of parameter identification in dynamical sys-
tems. In this paper, we proposed an efficient alternative
which can easily handle the presence of physical bound-
aries. Altogether, the results allow us to conclude that the
research question in Section 1.1 can be answered positively,
but they also show the limitations of the approach. In-
deed, our method consistently delivers satisfactory results
in low-noise regimes and demonstrates remarkable robust-
ness to noise for primary suspension characteristics. How-
ever, it is also important to acknowledge that the identifica-
tion of parameters C and kv could be significantly affected
by noise, especially if the Hessian of the objective at the
isolated minimizer is ill-conditioned. These issues, which
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seem related to the local convergence behavior of Gauss–
Newton-type methods, can be addressed with additional
computational overhead by employing suitable globaliza-
tion strategies in the spirit of (Gonçalves & Menezes, 2020).
Note, however, that for pGN, these were established only
under quite restrictive assumptions, and in the context of
parameter identification and FDI they could significantly
impact performances.

6. CONCLUSIONS

While quite efficient but arguably involved approaches to
quickly solve constrained parameter identification prob-
lems are already well established in the literature, the pGN
method outlined in Algorithm 1 emerges as a competi-
tive alternative, with a simple implementation that does
not rely on any black-box software to run efficiently. Ad-
ditionally, the method exhibits the important feature of
generating sequences of solution estimates that remain
within physical boundaries, ensuring operational stability
also when data is corrupted with high noise.

We showcased the effectiveness of the pGN method
through a compelling application to parameter identifica-
tion of a quarter railway vehicle’s model characteristics,
particularly in the presence of an airspring in the secondary
suspension system. The results showcased the robust per-
formance of the proposed methodology, achieving an accu-
racy of over 90% for the primary suspension system. How-
ever, due to identifiability issues, airspring parameter iden-
tification was more sensitive to noise, yet without compro-
mising overall performance. In conclusion, we expect that
pGN will prove quite useful in the community, with a high
potential also for larger models with more nonlinear com-
ponents.

Moving forward, we plan to explore the performance of our
identification methodology under different forms of noise,
further investigate the identifiability of Pbl. (8), and develop
a more sensitive approach to identify nonlinearities in sus-
pension systems.
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