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ABSTRACT

Autonomous Centerline Tracking (ACT) enables an unin-
habited aircraft system (UAS) to be guided down the center
of the runway, using a camera-based Deep Neural Network
(DNN). ACT is safety-critical. Guidelines by the European
Union Aviation Safety Agency (EASA) for machine-learning
based systems list numerous assurance objectives that must
be met toward Verification and Validation (V&V), and certi-
fication. We extend our analysis framework SYSAI (System
Analysis using Statistical AI) to support meeting assurance
objectives for a system with AI/ML (Artificial Intelligence /
Machine Learning) components and describe a combination
with a runtime monitoring architecture that also supports ad-
vanced risk mitigation to support safety assurance of a com-
plex AI-based aerospace system.

1. INTRODUCTION

In recent years, applications of Machine Learning (ML) and,
in particular Deep Neural Networks (DNNs) have demon-
strated a performance that can substantially increase opera-
tional capabilities of autonomous Unmanned Aerial Systems
(UASs). For example, DNNs can be used to visually detect
obstacles on the runway, to identify runways during approach
and landing, or to support taxi of a UAS at an airport.

All these applications have in common that they are safety-
critical. This means that failures can lead to mission fail-
ure, cause damage to the UAS or on the ground, or even lead
to injuries or loss of human life. Therefore the system must
perform safely and with good performance in a multitude of
nominal and off-nominal situations.

Because of the safety-criticality, such systems must be care-
fully designed and analyzed and certification is necessary to
demonstrate safety and performance of such a system. How-
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ever, current AC safety standards (e.g., DO-178C) only ap-
plies to “traditional” flight software. Approaches that are
based upon Machine Learning are not covered and techniques
for V&V are still under development.

The European Union Aviation Safety Agency (EASA) pub-
lished guidelines on how to approach V&V and certification
of autonomous systems with ML-based components; (European
Aviation Safety Agency, 2021) is focusing on Level 1 sys-
tems. As defined by the SAE (Society of Automotive En-
gineers (SAE), 2021), Level 1 is the lowest of 6 levels of
autonomy and concerns “driving assistance” systems. The
EASA guidelines breaks down the certification process into
numerous subtasks and objectives and provides thoughts and
initial guidelines on how to meet these objectives. The doc-
ument also contains a detailed use case, a Neural Network
(NN) based visual landing guidance system.

The EASA document shows numerous certification objec-
tives, which span system design, design of DNN and learning
algorithm, acquisition and management of training/test data,
testing, and deployment. Many of these certification objects
are not independent of each other; therefore they should not
be studied in isolation. In this paper, we investigate, how our
framework and tool SYSAI (System Analysis using Statisti-
cal AI, (He & Schumann, 2020)) can be used to perform in-
depth statistical safety- and performance analysis in a high-
dimensional space spanned by system and environmental pa-
rameters.

SYSAI can model regions of safe and high performance, and
can characterize boundaries between these regions. In this
paper, we will discuss, how SYSAI can be used and extended
to enable unified safety and performance analyses on the in-
dividual AI component and the entire system for multiple en-
vironmental and failure scenarios. Such analysis can be per-
formed for several DNN variants and can provide feedback to
the system designer. It also can provide essential information
for Run Time Assurance and Performance Monitors. We will
present a runtime monitoring architecture, which uses the in-
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Table 1. Relevant certification objectives (see Case Study in (European Aviation Safety Agency, 2021), p. 77)

Obj Description
CO-02 The applicant should define the AI-based (sub)system taking into account domain-specific definitions of ‘system’.
CO-04 The applicant (APPL) should perform a functional analysis of the (sub)system.
CO-03 APPL should define and document the ConOps for all AI-based (sub)systems.
CL-01 APPL should classify the AI-based (sub)system, based on the levels presented in the EASA AI typology and definitions.
SA-01 APPL should define metrics to evaluate the AI/ML component performance and reliability.
SA-02 APPL should perform a system safety assessment for all AI-based (sub)systems.
DM-03 To enable the data collection step, APPL should identify explicitly and record the input space and the operating param-

eters that drive the selection of the training, validation and test data sets.
DM-04 Once data sources are collected, APPL should make sure that the data set is correctly annotated or labelled.
DM-10 APPL should ensure V&V of the data all along the data management process so that the DQRs are addressed.
LM-01 APPL should describe the AI/ML components and model architecture.
LM-03 APPL should document the credit taken from the training environment and qualify the environment accordingly.
LM-04 APPL should provide quantifiable generalization guarantees.
LM-05 APPL should document the result of the model training.
LM-06 APPL should document any model optimization that may affect the model behavior (e.g. pruning, quantization) and

assess their impact on the model behavior or performance.
LM-07 APPL should estimate bias and variance ... should provide evidence of the reproducibility of the training process.
LM-08 APPL should ensure ... meet the associated learning process management requirements.
LM-09 APPL should perform an evaluation of the performance of the trained model based on the test data set and document the

result of the model verification.
SRM-01 ... APPL should determine whether the coverage of the objectives associated with the explainability and learning assur-

ance building blocks is sufficient or if ... safety risk mitigation (SRM), would be necessary ...
SRM-02 APPL should establish SRM means as identified in Objective SRM-01.

formation produced by SYSAI to dynamically select a well
performing AI component based upon the current situation or
to switch to an fall-back component to sustain safety in case
the AI components cannot perform adequately.

We will illustrate, how our smart SYSAI framework can per-
form these tasks and thus support performance/safety evalua-
tion, performance improvement, and revalidation.

The rest of the paper is structured as follows: in Section 2
we discuss the range of certification objectives set up by the
EASA guidelines. Section 3 provides an overview of the Au-
tonomous Centerline Tracking system. Section 4 presents
SYSAI and its extension toward multi-objective analysis and
the synergistic integration with runtime monitoring. Section 5
discusses related work, and Section 6 summarizes and con-
cludes.

This paper is an extended version of (He & Schumann, 2023),
which was presented at the PHMAP 2023 conference.

2. BACKGROUND: AUTONOMY CERTIFICATION

Autonomous capabilities for aircraft are usually safety criti-
cal: a malfunction can lead to loss of the UAS and the pay-
load, it can even endanger human life in other aircraft or on
the ground. Therefore, safety of operations must be estab-
lished by certification. A first usable guide paper on auton-
omy certification and verification has recently been published
by the EASA (European Aviation Safety Agency, 2021). For
the important trustworthiness of the autonomous system, nu-
merous verification objectives are set up that must be met.
Our approach has been inspired by the EASA Guide Paper,
Appendix F (European Aviation Safety Agency, 2021; EASA

& Daedalean, 2021), where a relevant AI-based aerospace
system, a vision-based landing system, is analyzed as a case
study.

Table 1 lists the main objectives, which span five groups,
ranging from ConOps (CO-*), safety assessment (SA-*), data
collection and management (DM-*), learning management
(LM-*), and safety risk mitigation (SRM-*). Obviously ob-
jectives in all categories interact with each other. For a com-
plete certification, all objectives need to be met.

3. AUTONOMOUS CENTERLINE TRACKING

As a case study, we use the ACT (Autonomous Center Line
Tracking) system, which enables autonomous taxiing, one of
the most important ground operations for Unmanned Aerial
Systems. The core component of ACT is a Deep Neural
Network (DNN) that takes images as inputs from cameras
mounted on the aircraft’s starboard wing (Figure 1). The
DNN component is running onboard the aircraft and contin-
uously estimates the position and orientation of the aircraft
with respect to the runway center line. These values are the
cross-track error cte in meters, and the heading error he in
degrees, respectively.
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Figure 1. Autonomous Centerline Tracking (ACT) system
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A simple fixed-gain controller uses this information to pro-
duce control signals to steer the aircraft left and right, while
the aircraft is rolling at a constant, low speed. For our exper-
iments, the X-Plane Flight Simulator (www.xplane.com)
was used as simulation environment. For this case study, we
were provided with a finalized prototype implementation and
fully trained DNNs.

4. SYSAI ANALYSIS AND RUNTIME ASSURANCE

In this paper, we present our extended AI-component and sys-
tem analysis with SYSAI. It can be used to address most of
the objectives in Table 1. The analysis can provide feedback
to the designers, and generate information to be used by our
extended Runtime Assurance Architecture (RTA, Section 4.3)
to enforce safety and risk mitigation throughout operations
while ensuring adequate performance.

4.1. The Smart Analysis Framework SYSAI

SYSAI (System Analysis using Statistical AI) (He & Schu-
mann, 2020) is a flexible statistical learning framework for
V&V and the analysis of complex and high-dimensional cyber-
physical systems with AI components. Figure 2 shows the
high-level architecture of SYSAI analysis framework. On the
left-hand side, we have the “system under test” (SuT), which
in our case is the ACT system and the XPlane simulator, as
described in the previous section. The SuT is executed given
a set of parameters provided by the statistical learning model
of SYSAI. The result of the test run is then used to incremen-
tally construct the statistical model.

Statistical 

learning 

model 

Active
learning

Computer
Experiment

Design

Time series analysis

testcase generation
Intelligent

System

under test 

Simulator

Safety envelope analysis

Property checking

Blackbox and Whitebox

analysis

Figure 2. SYSAI architecture

For the representation and construction of the statistical model,
SYSAI uses Dynamic Regression Trees (DynaTrees (Taddy,
Gramacy, & Polson, 2011; Gramacy & Polson, 2011)), a dy-
namic Gaussian process model based upon Particle Filters.
DynaTrees are regression and classification learning models
with complicated response surfaces in on-line application set-
tings. DynaTrees create a sequential tree model whose state
changes over time with the accumulation of new data, and
provide particle learning algorithms that allow for the effi-
cient on-line posterior filtering of tree-states. A major ad-

vantage of DynaTrees is that they allow for the use of sim-
ple models within each partition. The models also facilitate
a natural division in sequential particle-based inference: tree
dynamics are defined through a few potential changes that are
local to each newly arrived observation, while global uncer-
tainty is captured by the ensemble of particles.

This surrogate model is initialized with available training data
and incrementally refined using candidate data points that
are produced by our active learning module. It evaluates the
current surrogate model using a customized active-learning
heuristics and suggests candidate data points that provide most
information for model refinement. For these candidate points,
the ground truth is obtained by executing the SuT.

SYSAI features customizable heuristics that allow the active
learning to focus on particular characteristics of the model.
Classical algorithms like ALM (MacKay, 1992) or ALC (Cohn,
1996) focus on under-explored regions in general of the do-
main space. Inspired by (Jones, Schonlau, & Welch, 1998)
and work on contour finding algorithms, we loosely follow
(Ranjan, Bingham, & Michailidis, 2008) and define our boun-
dary-aware metric boundary-EI (He, 2015, 2012) that puts the
focus of the search into “interesting” and potentially “trou-
blesome” areas near safety boundaries. Here, the surrogate
model therefore exhibits substantially more details than in
other areas that are not of interest. This exploration is guided
by the selected active learning heuristics and is able to cover
the entire input space with a low number of data points. The
SYSAI framework and the underlying models and algorithms
are described in detail in (He & Schumann, 2020).

SYSAI, in general, supports the following important analysis
tasks (Figure 2):

• Safety-envelope analysis: our framework can perform
automatic analysis of the safety-envelope, which indi-
cates under which operational conditions the system is
behaving safely or not. Geometric shape modeling does
not only identify but also characterizes regions with sim-
ilar behavior and describes those regions in easy to un-
derstand geometrical terms. SYSAI thus helps to make
the system more explainable.

• Property checking: our tool supports the automatic check-
ing and analysis of safety and performance requirements.

• Time series analysis: SYSAI can perform advanced time-
series analysis in a high-dimensional parameter and state
space. This analysis provides a deeper understanding of
the system behavior and its dynamics. The tool also sup-
ports event prediction.

• Intelligent test-case generation: SYSAI can efficiently
generate relevant test cases in high-dimensional spaces.

• Blackbox and Whitebox analysis: with our SYSAI tool,
system-wide and component-based analyses can be car-
ried out. The SYSAI interface allows to access data in-
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side of components, thus enabling Whitebox analysis.

4.2. Analysis with SYSAI

Traditional approaches for DNN performance analysis and
improvement are usually restricted to individual characteris-
tics of the neural network, e.g., architecture, learning parame-
ters, or data sets. As Table 1 shows, however, V&V objectives
span multiple dimensions, including concepts of operations,
network architecture, learning, data sets, and risk mitigation.
Both, the DNN as well as the entire system, which uses the
DNN component have to be considered.

Generator
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Algorithm
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Figure 3. Extended SYSAI interface

To enable such a multi-faceted analysis, we have extended
the interface from SYSAI to the system under test (Figure 3)
to allow SYSAI not only to control the execution of the sys-
tem with the AI component, but also to execute automatic
experiments using different DNN architectures, learning al-
gorithms, and scenarios. In principle, our architecture is ca-
pable of performing analyses, which can include automatic
generation of data sets and DNN training. However, the exe-
cution times for such runs can be very long. In this paper, we
therefore focus on the analysis of the ACT with two different
trained DNNs, which have been provided by the designers.
Even so, the execution of SYSAI runs can take substantial
time because for each run, the full scenario of taxiing down
the runway has to be simulated in real time, which takes about
3 minutes each.

After the run of SYSAI, customized plots are produced that
can provide feedback to the designer regarding safety and per-
formance. The resulting data are also used by our runtime as-
surance architecture, which will be discussed in Section 4.3.

Figure 4A shows the probability distribution of the actual
DNN output cte versus the ground truth ctegt. Two differ-
ent DNNs, given to us were considered in this case. The ideal
DNN should have sharp peaks along the diagonal (shown in
red). Whereas DNN 1 has an overall good behavior but a
small bias for negative values of cte, DNN 2 behaves better

in that area but has substantial deviations for larger positive
values. These results are based upon the DNN only analysis.
Incorporated into the ACT system, both DNNs perform sat-
isfactory, due to robustness of the controller. Here, SYSAI
caused the execution of an entire run down the runway with a
random initial cte.

Figure 4B shows the analysis of a training set that had been
manually generated. Given different starting locations, the
aircraft drives down the runway in a typical manner without
violating any safety constraint. Such a training set obviously
covers the space of nominal operations; however scenarios,
where the AC enters in the middle of the runway, would not
be covered by this data set. Here, the designers need to de-
cide if the operational envelope is sufficiently covered, or ad-
ditional training data sets need to be generated and analyzed,
a task that SYSAI can perform.

4.3. Runtime Assurance Architecture

Many safety requirements of a complex system cannot be to-
tally verified during design time. In order to overcome this
gap, ASTM has developed and published the standard F-3269
(ASTM, 2017) for an assured Runtime Assurance Architec-
ture (RTA). Its underlying principles of operations are as fol-
lows (Nagarajan, Kannan, Torens, Vukas, & Wilber, 2021):
since the AI component cannot be V&V’ed or trusted, its out-
put signals are considered to be “unassured” even if the inputs
are assured. In order to prevent faulty AI outputs from prop-
agating through the system, the behavior of the AI compo-
nent is continuously monitored during flight. This is accom-
plished by the RTA monitor, a traditional piece of software
certified separately. Therefore, an assured signal is available
at all times judging if the AI component can be trusted or not.
In case the AI component cannot be trusted, the RTA switch
changes the signal routing from the unreliable AI component
to an assured fallback component, which takes over system
operations, albeit with some restrictions.

In previous work (He, Schumann, & Yu, 2022), we have in-
stantiated the RTA to use a powerful temporal reasoning en-
gine and use parameters and data provided by SYSAI to pop-
ulate the temporal properties. In this paper, we describe an
extension of our RTA, which does not only allow continu-
ous safety checks, but can also use the monitors to mitigate
loss of performance during run time. Figure 5 shows the ex-
tended architecture. Like the AI component of the ACT sys-
tem, our RTA is executed on board the aircraft. The additional
computational resources needed for runtime monitor and the
RTA switch are minimal, compared to the execution of the
DNN. The core of the runtime monitor is the R2U2 (Real-
izable,Responsive, Unobtrusive Unit) (Rozier & Schumann,
2017), which performs signal processing, evaluation of tem-
poral logic formulas, and calculation of posterior probabili-
ties for discrete Bayesian networks. If necessary, the R2U2

4



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

A B

Figure 4. A: performance analysis of two different DNN architectures. B: Camera positions for training set on the runway. The
runway is oriented vertical and the taxi trajectories start at the bottom of the graph.
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Figure 5. R2U2 runtime monitoring architecture (inspired by
(Nagarajan et al., 2021), Fig. 1)

can be implemented as an FPGA configuration, again lower-
ing the computational load of the flight computer.

In addition to the runtime monitor, the RTA switch, and the
assured fallback components, the system can have multiple AI
components, which are connected to the RTA switch. These
are designed to perform the same function, but might have
differences in performance for certain conditions, operational
conditions, or failures. They also might have a different com-
putational footprint.

In our ACT case study, we use two different DNNs. The SY-
SAI analysis reveals, which of the AI components perform
better and more reliable in which region of the state space,
under which failures and scenarios, etc. This spatial and tem-
poral information is then encoded using R2U2 (temporal) for-
mulas, which then control the RTA switch. Specifically, the
switching is extended with respect to the original RTA: if the
currently active AI component fails to meet safety or perfor-
mance requirements, the R2U2 monitor will check if one of
the other AI components can do the job. If this is possible,
the RTA switch will activate that component. Note that in this
case, the R2U2 provides the assured result that the activated
component performs safely (although it is an unassured com-
ponent). This switching between the two trained networks
can be done with very little overhead.

In case, no AI component meet the necessary requirements,
the R2U2 will switch to a fallback position to assure contin-
ued system safety, exactly as in the original F-3269 RTA.

The switch must be designed in such a way that (a) no big
transients occur, which might damage the physical system,
and (b) no repeated switching or bouncing between the dif-
ferent fallbacks can happen. For (a), our architecture sup-
ports a soft RTA switch, which allows phasing a phasing out
period to avoid harsh transitions. Rules about switching are
formulated in temporal logic and are checked and enforced
by R2U2.

4.4. Monitoring Requirements

Based upon the relevant objectives shown in Table 1, we de-
velop requirements that are checked by R2U2 during system
operation. These requirements can be grouped into (1) safety
requirements (for the entire ACT system), (2) system perfor-
mance requirements, (3) performance requirements for the
AI component (the ACT DNN), (4) environmental require-
ments and requirements based on system ConOps, and (5)
failure mode based requirements. These requirements are for-
mulated as a set of temporal logic formulas, which can be
efficiently checked by R2U2. As described in (Reinbacher,
Rozier, & Schumann, 2014; He et al., 2022), R2U2 uses fu-
ture and past time observers for Linear Temporal Logic; for
details of operation and the logics see these papers.

The relevant monitoring requirements use signals produced
by the ACT system, the DNN, the NAV (navigation system),
and the aircraft. Signal names and descriptions are shown
in Table 2. Note that these signals are produced by the sys-
tem itself and cannot contain ground truth values. In order to
improve the quality of the R2U2, we include a navigational
component (e.g., GPS). However, measurements of this com-
ponent are not considered as verified. The signals in Table 2
are produced by the ACT system, the DNN, the NAV system,
and the AC (e.g., the flight control system). Except for the
DNN output, traditional non-ML software is used to calcu-
late these values. They are read with a suitable rate (here:
1Hz).
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Table 2. Signals used for R2U2

Signal Source Description
T AC local time
T

act ACT elapsed time
act AC ACT is active (Bool)
cte, he DNN DNN output
˙cte, ḣe DNN derivatives of DNN output
cte

0
, he

0 NAV initial position on Rwy
RwyID AC runway ID
v AC AC velocity (front-wheel)
v
NAV NAV AC velocity down Rwy

(from NAV)
s
cam ACT camera status (categorical)
b
cam ACT image brightness
f
cam ACT fuzziness of camera image

o
cam

, o
cam
x , o

cam
y ACT obstructions in image

ADNNi ACT DNN number i is active

The requirements are listed in Table 3. For a more compact
representation we used:

• All requirements (except PS-02) are only valid while the
ACT system is active, i.e., for a requirement R we get:
act → R.

• Short, infrequent dropouts of the requirements can be tol-
erated. Otherwise, too many false alarms occur. For a
requirement R we require ¬↭Id¬R holds,

• all thresholds for signal comparisons are shown as ω (de-
spite the fact that they have different values),

• SR(ω) denotes a geometric internal representation of a
shape as characterized by SYSAI. Typical shapes include
rectangles, triangles, (hyper-)spheres or ellipsoids.

The requirements shown in Table 3 list the relevant require-
ments for checking by R2U2. Many requirements can be ex-
pressed by Boolean expressions, past time temporal logic op-
erators are used to express (a) the immediate beginning of
the center-line tracking (e.g., SS-02) or (b) some time there-
after (e.g., SS-03, SS-04). In each formula, the condition that
the tracking is off (i.e., ¬act) is used as a trigger. Here, ↑
means the temporal previous operator. Other temporal for-
mulas show a typical pattern: ¬↫J¬p for a Boolean formula
p means that p cannot be false for a longer period than interval
J . For example, SS-06 ¬↫10s(cte > ω↓he > 0) says, when
the AC is already on the right side of the runway cte > ω and
the AC is pointing to the right—away from the center line,
then this situation should not occur for more than 10 consec-
utive seconds (the interval J), because the AC might leave the
runway otherwise.

The safety-condition SS-08 is a result of a SYSAI analysis,
where a safety region with respect to the initial cte0, he0 is
characterized. For a given threshold ω, the red line in Figure 6
depicts to the safety boundary; all starting conditions outside
this region can lead to ACT failure. R2U2 uses estimated
shapes (e.g., an ellipse) for efficient checking.

CTE

he

C
T

E

C
T

E

m
a

x

m
a

x

Figure 6. Safety-envelope: surface shows estimated maximal
CTE value during a run over initial values cte0 and he

0. The
safety boundary at a given threshold of 40ft is shown as a red
line.

Obviously, many of the requirements concern values that need
to be checked against given thresholds in a high dimensional
space.

The coverage of training data is an important issue affecting
safety of the DNN-based system. E.g., SS-02 checks if the
actual situation is consistent with training data (Figure 4B).
If the AC is outside the area, on which the DNN has been
trained, probability of ACT failure is higher. In this case, the
DNN has not been trained well for larger values of cte further
down the runway. If such a situation is detected (SS-02), it
might lead to bad performance of ACT and could possibly
lead the AC off the runway.

Several of the component performance conditions (PC) de-
scribe constraints on the dynamic behavior of the DNN it-
self. Typically, such conditions express that, while operat-
ing, the output of the DNN should change, but should not
“jump around” wildly. R2U2 can also detect oscillations of
the system (PS-03) using Fast Fourier Transforms of the rel-
evant signals. That way, it can be avoided that the ACT
produces vibrations (high frequency oscillations in the front-
wheel steering) as well as low-frequency oscillations where
the AC “tumbles” along the runway like drunk.

In most of the requirements, values for the thresholds ω and
the intervals are based upon results of the SYSAI analysis.
For example, PC-04 – PC-06 encode conditions on when a
switch between the two DNNs should take place. These for-
mulas are a direct result of the analysis shown in Figure 4A.

Obviously, many of the requirements concern values that need
to be checked against given thresholds in a high dimensional
space. Since SYSAI is capable of performing geometric es-
timation of boundaries, the runtime monitor is not restricted
to hyperplane thresholds. Richer geometric shapes (including
those based on circles, ellipses, parallelograms) enable fine-
tuning of the runtime properties.
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Table 3. Requirements for R2U2

ID Formula Description
SS-01 RwyId = RwyIdtarget the AC shall be on the correct runway
SS-02 ↑¬act → v = 0 when ACT starts, the AC should be stationary
SS-03 ↭J¬act ↓ v > ω the AC should move with a measured minimum speed (measured at front

wheel)
SS-04 ↭J¬act ↓ v ↔ ω the AC should move with a measured minimum speed (measured at front

wheel)
SS-05 ↑¬act → |cte ↗ cte

0| < ω ↓ |he ↗
he

0| < ω

when ACT starts, the AC should be close to the defined starting point on
the runway

SS-06 ¬↫J(cte > ω ↓ he > 0) when AC is near the right border of the runway, the AC shall not move
further to the right (he > 0) for an extended time

SS-07 ¬↫J(cte < ↗ω ↓ he < 0) symmetric to SS-06
SS-08 (cte0, he0) ↘ SR

0(ω) The starting point on the runway shall lie within the ACT safety region
(Figure 6)

SC-01 |cte| < ω ↓ |he| < ω the DNN outputs shall be reasonably limited
SC-02 coverage the DNN should operate within trained domain (see Fig 4A)
PS-01 v

NAV
> ω AC shall move with a minimum velocity down the runway

PS-02 ↑act ↓ act → Tact < ω the AC shall reach the end of the runway (end of act) within a reasonable
time

PS-03 ¬Osc the ACT system should not cause low frequency oscillations (tumbling
down the runway) or high frequency oscillations (vibrations). To be mea-
sured using FFT (cte)

PC-01 ¬↫J( ˙cte = 0 ↓ ḣe = 0) the DNN outputs should not be stationary for a longer time
PC-02 | ˙cte| < ω ↓ |ḣe| < ω the DNN outputs should not ”jump around”
PC-03 ¬↫J |he| > ω the AC should be well aligned to the runway; longer times with larger

he should be avoided
PC-04 cte > ω → ADNN1 when cte > ω, ACT should use DNN1 for most of the time
PC-05 cte < 0 → ADNN2 when cte < 0, ACT should use DNN2 for most of the time
PC-06 ¬(ADNN2 ↓ cte < 0 ↓↫J ˙cte > 0) when cte < 0 with DNN1 active, but cte is growing, ACT shall switch

over to DNN1
ES-01 T > 0900 ↓ T < 1430 ACT shall only operate between 9AM and 2:30PM local
ES-02 RwyId ↘ {allowable-Runway-IDs} ACT shall only operate on ”allowable” runways
ES-03 f

cam
< ω ACT shall only operate if the vision is not to bad (foggy)

FS-01 ¬↫J¬scam the camera shall be operational for most of the time
FS-02 ωlow ↔ b

cam ↔ ωhigh the brightness of the the camera image shall be always within a suitable
range

FS-03 f
cam ↔ ω the fuzziness of the the camera image shall be always limited

FS-04 ¬↫J¬Ocam ↘ SR(ω) a camera obstruction (no signal in certain area of image sensor, Figure 9)
shall not show up for an extended time

FS-05 ↑ADNN1 ↓ O
cam ↘ SR(ω) →

ADNN2

when DNN1 was active and an obstruction shows up in certain areas
(Figure 10), DNN2 shall be activated

RTA-01 ¬(↫JSrta(i, j) ≃↫JSrta(j, i)) a switch between component/fallback i and j must not happen too often

A time of day

im
ag

e 
fu

zz
in

es
s

B time of day

im
ag

e 
fu

zz
in
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s

Figure 7. Performance areas for different components wrt.
two variables

Figure 7A shows a 2D projection of a simple scenario: we
have 3 different AI components available that are performing
particularly well in different regions of the space, spanned by

the parameter of image fuzziness, and time of the day (which
governs light conditions). These regions are abstracted as col-
ored rectangles.

Requirements then can be formulated to specifically enforce
or forbid switching between the different AI components, in
our example, e.g., PC-04 – PC-06 or FS-06.

Environmental conditions, like lighting or visibility can sub-
stantially influence the behavior of ACT. With SYSAI, we
were analyzing the performance at different times of the day.
Figure 8A shows that the success rate of ACT strongly differs:
whereas the performance is satisfying during the morning
hours, the performance increases during noon hours. How-
ever, after 2PM local time, the performance of ACT drops.

7
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The reason for this behavior becomes clear that lighting of
the scene is substantially different during different times of
the day and the DNN, which had been analyzed had only
been trained with data obtained at 9AM (Figure 8). Images
taken earlier in the morning are darker (A) and thus reduce
DNN performance. During afternoon hours, however, the AC
casts a shadow on the runway (Figure 8C), which obviously
confuses the DNN and ACT effectively stops working. Our
R2U2 uses ES-01 (derived from SYSAI analysis) to avoid
such situations.

A

B

C

D

Figure 8. A: Success rate (in %) for different times of the day.
Threshold for CTE is 40ft. Camera images taken from runs
at 8AM (B), 11AM (C), and 3PM (D).

In a real application, ACT has to be able to safely operate
under a host of possible failure cases. We have analyzed a
set of typical, camera-related failure cases with SYSAI: cam-
era images being too dark or too bright, foggy camera lenses,
or dirt specks on the camera lens blocking part of the image.
Figure 9 shows a typical example when ACT has to operate
under failures. In our case, a part of the camera image is
blocked by a piece of dirt on the camera lens. Depending on
the (x,y) position of this dirt patch, its influence on the over-
all performance can vary substantially. Figure 10A shows the
system behavior for one DNN 1. Darker colors mean bet-
ter performance. Although the overall performance is very
good, there are some critical locations, where the dirt pro-

Figure 9. ACT camera image with ”dirt” spot (black rectan-
gle) and superimposed boundary lines for high risk regions
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Figure 10. Performance of ACT under dirt on the camera
lens.

hibits successful operation (bright yellow areas). The anal-
ysis of a different DNN 2 reveals that, albeit poorer over-
all performance, DNN 2 is not that sensitive to dirt patches
(Figure 10B). Therefore the RTA will switch from DNN1 to
DNN2 when a dirt patch is detected in areas bounded in red.

Finally, the RTA monitors its own operations: E.g., RTA-01
constrains how often a switch between the AI component and
a specific fallback can happen and also controls switching
back. Such requirements are necessary to avoid bouncing be-
tween different components and fallbacks.

In general, these requirements are produced in accordance
with objectives SRM-01 and SRM-02 in Table 1. A detailed
safety risk analysis provides the basis for the system and com-
ponent safety properties. Performance and environmental prop-
erties are derived from system and design requirements, and
requirements concerning failures (FS-*) can be taken from
the results of a Fault Tree analysis (FTA) and an FMEA (Fail-
ure Mode and Effects Analysis).

5. RELATED WORK

Several AI-based aerospace systems have been manually an-
alyzed for safety using the EASA Guidelines (European Avi-
ation Safety Agency, 2021), e.g., (EASA & Daedalean, 2021;
FAA, 2021). For the performance analysis and improvement
of AI components, in particular, DNN-based components nu-
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merous approaches and tools exist. (Yu & Zhu, 2020) pro-
vides a good overview of this area. Most of these approaches
focus on network architecture and other hyper parameters of
the DNN, but do not analyze the performance of the entire
system. Furthermore, analysis of architecture, training/testing
data sets, and training algorithms are usually performed in
isolation.

Runtime assurance architectures have been subjected to a stan-
dard in the ASTM F-3269 (Nagarajan et al., 2021) for safety
certification purposes. Numerous approaches for runtime mon-
itoring exists, e.g., coPilot (Pike, Goodloe, Morisset, & Niller,
2010).

6. CONCLUSIONS

Certification procedures and guidelines for systems with ML
and AI components have numerous V&V objectives. In this
paper, we present an extension of our SYSAI framework,
which enables simultaneous analysis of objectives on mul-
tiple levels. The analysis provides feedback to the designer
and generates information for an advanced runtime assurance
architecture, which does not only continuously monitors the
system for safety violations, but also can switch between dif-
ferent AI components to yield best possible performance.

As complex systems with advanced AI/ML components are
increasingly used in many areas, our SYSAI approach can
be used in many other areas, like in the automotive domain.
Albeit similar safety and performance requirements apply for
the automotive domain, RTA is still in its infancy there. Other
application areas for SYSAI include non-visual ML-based
subsystems, e.g., those used for prognostics and health man-
agement.

For this case study, the ACT system including the DNNs were
given to us for analysis and V&V. Valuable feedback can be
provided to the designers as a result of SYSAI analysis. This
not only concerns threshold values or operational constraints,
as we discussed the use of two different DNNs, but SYSAI
allows to quickly, and without too much effort test and eval-
uate substantially different architectures. Examples could in-
clude the use of two cameras, mounted at different positions
on the aircraft, or a DNN that ingests a number of consecutive
frame before estimating cte, he. SYSAI can provide substan-
tial support during an early, highly iterative design process.

Future work will include improvements of our RTA with re-
spect to potentially harmful transients while switching com-
ponents and the integration of prognostics algorithms to pre-
dict when an AI component’s performance declines or the
system becomes unsafe.

We will also work on extending SYSAI applications toward
other safety-relevant domains (e.g., automotive), Prognostics
and Health Management (PHM) components (He & Schu-
mann, 2024), and toward integrating SYSAI into the design

process for AI/ML components in complex systems.

NOMENCLATURE

AC Aircraft
ACT Autonomous Centerline Tracking
AI Artificial Intelligence
APPL Applicant
cte centerline tracking error
DNN Deep Neural Network
DQR Data Quality Review
EASA European Union Aviation Safety Agency
FTA Fault Tree Analysis
FMEA Fault Mode & Effects Analysis
GPS Global Positioning System
he heading error
ML machine learning
NAV navigation
NN Neural Network
PC Performance Condition
ReLU Rectified Linear Unit
RTA Runtime assurance
SAE Society of Automotive Engineers
SRM Safety Risk Mitigation
SuT System under Test
SYSAI System Analysis using Statistical AI
UASs Unmanned Aerial Systems
V&V Verification and Validation
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