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ABSTRACT 

Ensuring the reliability and safety of space missions 
necessitates advanced anomaly detection systems capable of not 
only identifying deviations but also providing clear, 
understandable insights into their causes. This paper introduces 
a novel methodology for the detection of systemic anomalies in 
the telemetry data of the International Space Station (ISS), 
leveraging the synergistic application of the Functional 
Resonance Analysis Method (FRAM) and the Specification 
Tools and Requirement Methodology- Requirement Language 
(SpecTRM-RL). Integrated with machine learning-based 
normal behavior prediction model, this approach significantly 
enhances the explanatory of anomaly detection mechanisms. 
The methodology is verified and validated through its 
application to the thermal control system within the ISS's 
Japanese Experimental Module (JEM), illustrating its capacity 
to augment diagnostic capabilities and assist flight controllers 
and specialists in preserving the ISS's functional integrity. The 
findings underscore the importance of explainability in the 
machine learning-based anomaly detection of safety-critical 
systems and suggest a promising avenue for future explorations 
aimed at bolstering space system health management through 
improved explainability and operational resilience. 
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1. INTRODUCTION 

Within the orbiting International Space Station (ISS), a 
complex array of systems operates to maintain the necessary 
environmental conditions for human life and scientific 
experimentations. Despite the high reliability of these 
systems, the occurrence of anomalies remains an ever-present 
challenge, necessitating vigilant monitoring by flight 
controllers 24/7, 365 days a year. Flight controllers, 
organized into specialized teams such as the Fluid and 
Thermal Officer (FLAT), Control and Network Systems, 
Electrical Power, and Communication Officer (CANSEI), 
assess system telemetry to identify deviations that could 
indicate potential issues. This task, however, is complicated 
by the sheer volume of telemetry data and the intricate 
interplay of variables, making the detection of anomaly 
symptoms a formidable challenge. Early detection of 
equipment anomalies is crucial due to the extended timelines 
required for the manufacture, launch, and replacement of 
malfunctioning components. Traditional methods of 
monitoring single telemetry thresholds are often insufficient 
for early anomaly symptom detection, as many symptoms 
result from complex interactions among multiple variables. 
The limitations of current anomaly detection methodologies 
underscore the need for an approach that can account for the 
dynamic and complex nature of the ISS's operational 
environment. While machine learning-based methods have 
shown promise in identifying anomalies through the analysis 
of telemetry data, they often fall short in offering the 
explanatory depth required for flight controllers to quickly 
understand and react to emerging issues. In response to these 
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challenges, this paper introduces a novel methodology for 
explainable symptom detection in the ISS's telemetry data. By 
integrating the Functional Resonance Analysis Method (FRAM) 
(Hollnagel, 2012) and the Specification Tools and Requirement 
Methodology-Requirement Language (SpecTRM-RL) (Leveson, 
2003) with machine learning techniques, our approach aims to 
enhance the detection of anomaly symptoms. FRAM provides a 
framework for understanding the causal relationships and 
interactions among system functions that can lead to unexpected 
outcomes. Meanwhile, SpecTRM-RL offers a formal method to 
elucidate the combinations and ranges of variables involved in 
anomaly detection, thereby improving the clarity and utility of 
the information provided to flight controllers. Together, these 
methodologies enable a more explainable, efficient, and 
effective approach to monitoring the ISS, promising significant 
advancements in the management of space system health and 
safety. 

2. RELATED WORKS 

The prevalent automatic anomaly detection method in 
spacecraft telemetry, known as the out-of-limits approach 
(Fuertes, 2016), triggers an alarm when telemetry values fall 
outside predefined normal ranges. This method's primary 
limitation lies in the variability of normal ranges based on 
operational modes and inter-telemetry relationships, 
complicating the setting and updating of thresholds (Chandola, 
2009). To address these challenges, recent studies have shifted 
towards employing normal behavior models for anomaly 
detection, offering a more dynamic and context- sensitive 
solution to the limitations inherent in out-of-limit methods (Ahn, 
2020; Hayton, 2007; Pilastre, 2020; Yairi, 2017; Wang, 2019). 
Numerous researchers have proposed automatic anomaly 
detection methods, with machine- learning-based approaches 
gaining widespread adoption for their effectiveness. In the 
realm of aerospace applications, Wang et al. (2019) introduced 
a method for diagnostic health monitoring of spacecraft in orbit, 
highlighting the precision of machine-learning anomaly 
detection techniques. 

Here are three challenges associated with anomaly detection 
methods utilizing machine learning; 

1. The selection of telemetry data for use in machine learning 
necessitates a profound understanding of the system and 
advanced analytical skills. 

2. The decision-making process in black-box machine 
learning models lacks explainability. 

3. Alerts based on the analysis results are not presented in a 
manner that is comprehensible to users. 

When training machine learning models, if explanator variables 
are not appropriately selected, the analysis cannot be conducted 
correctly. To select appropriate telemetry data, it is necessary to 
understand the system’s behavior. One effective approach to 
understand the system’s behavior is interviewing experts and 
modeling their expert knowledge to visualize the system’s 
characteristics.  

When there are enough training data, a data-driven approach 
to select candidates of explanatory variable is also effective. 
Model methods such as STAMP (Leveson, 2012), Model 
Based Systems Engineering (MBSE), and Structured 
Analysis and Design Technique (SADT) (Ross, 1977) have 
been used to understand the system. These methods are 
accident-causal techniques having limitations such as 
focusing on either only machine or only human components. 
To address complex systems like ISS, it is essential to 
consider humans, machines, and their surrounding 
environment as a single socio-technical system and model 
them from a systemic perspective. FRAM is highly regarded 
for this purpose. 

Next, anomaly detection of safety-critical systems lacks the 
explainability needed for operational application, particularly 
in ISS operations where flight operators require clear 
rationales for predictions to justify action. After an alert is 
released triggered by an anomaly detection, it is necessary to 
understand which input data is deviating from the normal 
state and how. GalaxAI, as demonstrated by Kostovska et al. 
(2021), offers a visualized analysis of spacecraft telemetry 
data, enhancing mission specialists' understanding through 
feature importance of machine learning-based anomaly 
detection. Similarly, Zeng et al. (2022) developed a 
framework for identifying complex telemetry relationships in 
spacecraft using established causal links, addressing the need 
for interpretability in anomaly detection. To understand the 
reason for detection, it is necessary to grasp the range of 
values each telemetry take when in a normal state and an 
abnormal state. Decision tree (Morgan, 1963) can be used to 
understand the conditions of each telemetry in a simple 
system. However, it is difficult to use for complex systems 
with numerous branching conditions. By utilizing the 
accumulation of mathematics and mathematical logic, it is 
possible to rigorously verify the correctness of information 
systems using formal methods, enabling the analysis of the 
range of values each telemetry can take. In this research, we 
use the SpecTRM, which allows us to represent a state that 
causes another state to occur as a combination of explanatory 
variables in a simple and understandable manner. This paper 
outlines our approach to anomaly symptom detection for ISS 
operations, detailing the development of an automated 
system to identify anomaly symptoms while providing 
supplementary information to elucidate the reasons behind 
these anomaly detections. This methodology aims to enhance 
situational awareness and facilitate informed decision- 
making in managing ISS system health. 

3. METHODOLOGY 

3.1. Overview 

Our methodology for identifying and explaining symptoms 
in telemetry follows a structured three-step approach as 
shown in Figure 1. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

3 

 

 

 
 
 
 
 
 
 

 
Figure 1. Flow of our proposed method 

Firstly, we constructed a detailed system model to delineate the 
causal links between telemetry data, leveraging expert 
consultations and technical documents to accurately map out the 
complex interplay of system operations and their impact on 
telemetry signals. For the second step, we employed a machine 
learning-based approach for symptom detection. The final step 
provided a comprehensive explanation for any detected 
symptoms, thereby offering clear insights into the underlying 
issues. This process not only facilitates the early identification 
of potential anomalies but also enhances the understanding of 
complex system behaviors, crucial for maintaining operational 
safety and resilience. 

3.2. Systemic telemetry selection for anomaly symptom 
detection 

There are two approaches for anomaly detections: One is using 
many telemetries for data-driven anomaly detections. Feature 
extraction can be executed without expert knowledge and can 
apply to a large-scale system. However, it is difficult to detect 
anomaly symptoms for particular subsystems if there are many 
telemetries across subsystems. The other is using only selected 
telemetries with expert knowledge. It is suitable for detecting 
specific anomaly events of targeted subsystems. In the latter 
approach, telemetries are usually selected by experts, who 
knows the targeted system well, in advance. It is difficult to 
choose necessary telemetries without missing any important 
variables. Therefore, we propose a method to analyze and 
model the causal links between system functionalities and 
telemetries with using the FRAM modelling. FRAM allows us 
to delve into the complicated functional interactions within 
identified functions or telemetry data in the system. Initially, 
FRAM necessitates identifying the functions of the target 
system, characterized by six aspects detailed in Table 1 and 
visually depicted as hexagons, with each vertex representing 
one of the aspects. These functions interconnect through these 
six facets, forming a sophisticated network that models the 
system's complexities. Analyzing the FRAM model offers 
profound insights into the system's operational dynamics, 
illuminating how it works.  
 
 
 

 
 

Table 1. Six aspects of FRAM 

Building on Iino et al. (2022; 2023) initial use of the FRAM 
to model the relationships among telemetries, this paper 
expands the scope of FRAM modeling to encompass a 
broader range of system functional behaviors, incorporating 
additional insights gathered from extensive interviews with 
specialists in Safety-II approach. Safety-II approach focuses 
on what’s going right in a system (Hollnagel, 2015). This 
enhanced approach allows for a deeper understanding of the 
complex interactions within the system, providing a more 
comprehensive framework for analyzing telemetry data. 

 
3.3. Anomaly symptom detection using normal behavior 

models 

We implemented a machine learning-based anomaly 
symptom detection approach utilizing Random Forest (RF) 
(Breiman, 2001) and Long Short-Term Memory (LSTM) 
(Hochreiter, 1997) to analyze selected telemetries. Recently 
LSTM has been widely used for anomaly detection with time- 
series data (Malhotra, 2015). Several researchers also applied 
LSTM-based methods for anomaly detections of space 
systems such as satellites and rovers (Hundman, 2018; Fisher, 
2019). During the training phase, the model was calibrated to 
predict the pump inverter's temperature as objective variable 
based on explanatory variables, effectively modeling the 
telemetry relationships under normal conditions. Subsequent 
predictions with the trained model on testing data were 
conducted. 

Cross-validation is a technique used to evaluate the 
performance of machine learning models and enhance the 
reliability of predictions. It is especially crucial for validating 
the accuracy of time series forecasting models with high 
reliability. Unlike the traditional approach, which splits a 
dataset into training and test sets, time series data require 
learning and validation over time, making a simple split 
insufficient. Cross-validation involves dividing the dataset 
into several periods for sequential training and validation, 
allowing for a more reliable evaluation of the model's 
performance across the entire dataset. Cross-validation was 
conducted to assess the prediction accuracy of the normal 
behavior model. 

Step 3 
Providing additional information to explain causes of anomaly 
using SpecTRM 

Step 2 
Anomaly detection by normal behavior model 

Step 1 
Systemic selections of telemetries for detections using FRAM 

Class Aspects 
 
 

 
Input 

Trigger Input 
Prior condition Precondition 

 
Posterior 
condition 

change 
output Control 

stop output 
Resource 
Time 

Output Output 
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We utilized a grid search to fine-tune the hyperparameters of 
our RF and LSTM models, incorporating selected telemetries as 
explanatory variables through the model selection process. Grid 
search methodically explores a specified range of 
hyperparameters to identify the most effective settings. 
Following the tuning phase, we employed cross-validation to 
rigorously evaluate the model's accuracy, ensuring our findings 
were robust and reliable. 

Different models for anomaly symptom detection were made 
based on their purpose of analysis. Then, we chose an 
appropriate model comparing results based on qualitative and 
quantitative criteria for selection. The Pugh concept selection 
method, proposed by Pugh (1981), was utilized for its ability to 
navigate these trade-offs by comparing models across multiple 
criteria to identify the most suitable solution. This method helps 
in evaluating models' engineering aspects, where the FRAM 
model aids in determining suitability. The Root Mean Square 
Error (RMSE) quantitatively assesses each model's predictive 
performance. Operational considerations, like the timeliness and 
clarity of anomaly symptom detection, are also crucial. Through 
this multidimensional analysis, an appropriate model for alert 
simulations was chosen. 

3.4. Enhancing cause explanations with supplementary 
Information 

Upon receiving alerts from anomaly symptom detections, it is 
imperative for flight controllers and specialists to ascertain the 
detection causes prior to initiating troubleshooting actions. 
Given that traditional machine learning-based methods for 
anomaly symptom detection often lack transparency, offering 
black-box explanations, we engaged in further analysis using 
SpecTRM-RL to refine the identification of potential causes. 
SpecTRM-RL employs a two-dimensional table mapping each 
parameter against time, with conditions marked as True (T) or 
False (F), based on predefined criteria involving average and 
standard deviation values. The SpecTRM analysis table was 
divided into two sections: "Normal condition" and "Abnormal 
conditions." Each section contains rows that list various 
parameters with associated conditions, and columns 
representing instances or data points with a status of True (T), 
False (F) or wildcard (*). Wildcard (*) means both T and F. 
This methodology aids in enhancing the explainability of 
anomaly symptom detections. Parameter conditions were 
specified using their average and standard deviation, as outlined 
in equation (1). 

݉݉݅݅ െ 4݅݅ߪߪ  ݅݅ݔݔ  ݉݉݅݅ + 4(1) , ݅݅ߪߪ 

where ݔݔ݉݉ ,ݔݔݔݔ, and ݔݔߪߪ denote the value, mean, and standard 
deviation of the i-th parameter, respectively. The SpecTRM- RL 
algorithm then discerns patterns by identifying combinations of 
T, F, or * states for each parameter. By comparing these 
combinations before and after the onset of anomaly symptoms, 
flight controllers and specialists can effectively analyze 
telemetry trends, aiding in the assessment and understanding of 
system behaviors preceding anomalies.  

 

This comparative approach enhances the predictive 
capabilities and situational awareness of operational teams. 

4. EXPERIMENT 

4.1. Experimental setup 

To investigate the efficacy of our proposed anomaly 
symptom detection methodologies, we performed an 
experiment centered around a historical malfunction within 
Thermal Control Assembly-Low (TCA-L) in the Japanese 
Experimental Module (JEM) of ISS, specifically the pump 
failure on March 26, 2012, attributed to an overcurrent from 
upstream power supplies. Recognizing the complexity of this 
anomaly, induced by multiple factors and challenging to 
pinpoint through a singular parameter, our objective was to 
ascertain if symptom detection was feasible through the 
analysis of multi-variable data preceding the event. Utilizing 
ISS system data in 2012, particularly from the incident, we 
analyzed downlinked telemetry to ground stations, aiming to 
verify our detection approach against this real-world failure 
scenario. Utilizing telemetry data downloaded from JEM to 
ground systems from November 2011 to March 2012, we 
divided the data into training and testing sets as detailed in 
Table 2.  
 

Table 2. Number of telemetry data 

This division was informed by trend analysis of the upstream 
current values of TCA-L. Specialists found the change of 
trend in the upstream current on around March 1, 2012. For 
training a machine-learning models, telemetry data during 
normal period should be used. Therefore, we utilized the data 
between November 2011 to January 2012 for training models. 
To simulate anomaly symptom detection, the test data 
includes data from periods where the anomaly occurred after 
March 1, 2012. Additionally, to assess how well the 
anomaly symptoms during normal periods are detected, data 
from the normal period between January 31, 2012, and March 
1, 2012, is also included. To address missing values and 
mitigate noise, we averaged the raw telemetry data, provided 
at one-second intervals, over one-hour periods. The 
averaging interval was determined through data-driven 
analysis based on the prediction accuracy of the machine 
learning model. In our preliminary analysis, we built several 
predictive models for each of the data averaged over 1 
minute, 10 minutes, and 1-hour intervals, respectively, and 
compared their mean RMSEs as shown in Table 3.  

 

 

Model 
No Period Number of telemetry 

data 
Train 2011/11/6-2012/1/30 3,725,381 
Test 
(1st half) 2012/1/31-2012/3/1  

2,421,955 Test 
(2nd half) 2012/3/1-anomaly 
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Example of the prediction of the models with 1 minute, 10 
minutes, and 1 hour averaging intervals are shown in figures 2, 3, 
and 4 respectively. Based on Table 3, we chose the 1-hour 
averaging interval, which resulted in the lowest mean RMSE for 
this study. 

 

 
Figure 2. Example of prediction of the model  

using data averaged over 1-minute 

 

 
Figure 3. Example of prediction of the model  

using data averaged over 10-minute 

 

 
Figure 4. Example of prediction of the model  

using data averaged over 1-hour 

 
 
 

Averaging 
Intervals Mean RMSE 

1-minute 0.7715714291 
10-minute 0.774714286 
1-hour 0.756285714 

Table 3. Comparison of mean RMSE  
for averaging intervals 

4.2. Telemetry selection through FRAM model 

To select telemetries for making machine learning models, we 
initially understood why the system goes right. We analyzed 
the technical documents of the system and performed some 
interviews with flight controllers and specialists who know 
the system well. Through the analysis and interviews, we 
made a FRAM model to delineate the causal relationships 
among functions related to the anomaly in the system. We 
selected the temperature of the pump inverter as the objective 
variable as specialists identified the pump inverter system's 
malfunction as the probable cause of the overcurrent anomaly, 
guiding our focus to the pump inverter's operations within the 
thermal control system of JEM. Our FRAM model is 
represented in Figure 5, illustrating the dependencies within 
the pump inverter functions and the significant impact of the 
cabin environment on its operation. 

 

Figure 5. Systemic model through FRAM 

Commands from the flight controllers control the rotational 
speed of the pump and the on/off state of the water separator. 
The pump inverter converts DC energy for TCA pump to 
function. The Power Supply delivers power to TCA pump 
while it powers the water separator. From a heat exchange 
perspective, heated water from other equipment flows into the 
TCA pump and is then expelled into space through the US 
module. Cooling water from the accumulator cools both the 
pump and the pump inverter. In addition, heat or humidity 
from astronauts in cabin (environment factor) affect the 
temperature of the TCA pump. The theory of FRAM posits 
that variable parameters and factors introduce system 
variabilities.  
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Furthermore, the interactions of these variabilities within the 
system's function network can lead to unforeseen outcomes not 
readily explained by traditional cause-effect relationships. This 
perspective underscores the complexity of system behaviors and 
the need for nuanced analysis in understanding and predicting 
system performance. Given the critical role of both constant and 
variable parameters in system safety, we incorporated specific 
telemetries for anomaly symptom detection. Our focus on the 
pump inverter's temperature led to selecting parameters 
indicative of condensation causes, notably service module 
partial pressure of water and cabin temperature within the JEM. 
The service module partial pressure of water, a key indicator of 
humidity levels in the ISS during 2011 and 2012, along with 
three additional parameters influencing pump inverter 
temperature, formed the basis of our analysis, highlighting the 
interconnectedness of system variables in predicting anomaly 
symptoms. Based on those characteristics of the system 
revealed by FRAM modelling, we made four patterns of 
selecting telemetries because it is important to select telemetries 
for training models from different views. The chosen 
telemetries are detailed in Table 4. For making model 1, we 
selected the telemetries related to TCA-L to analyze the 
anomaly symptoms of systems related to TCA-L such as 
Interface Heat Exchanger (IFHX) and TCA-L pump. For model 
2, telemetries of service module partial pressure of water and 
cabin temp, which are related to dew point, are added besides 
telemetries related to TCA-L. For model 3, telemetries related 
to power unit of Thermal Control System (TCS) and due point 
are chosen to monitor the symptoms of anomaly in the trend of 
power. Lastly, model 4 was created with the telemetries related 
to cabin heat exchange, which is connected to the power unit for 
TCS, and due point. We compared results of anomaly symptom 
detections using those four models qualitatively and quantitively 
in next step. 

4.3. Anomaly symptom detections via RF and LSTM with 
hyperparameter tuning 

Utilizing RF regression and LSTM, we applied machine 
learning for anomaly symptom detection, focusing on the pump 
inverter's temperature influenced by explanatory variables. 
This modeling process, aimed at capturing normal telemetry 
relationships, led to predictive analyses using test data. 
Discrepancies between measured and predicted temperatures 
indicated potential anomaly symptoms, particularly in the latter 
test period where increased prediction errors suggested a shift 
towards system abnormality, culminating in a failure. Table 5 
and Table 6 show hyperparameters of LSTM and RF used in the 
experiment. 

4.4. Model selection through Pugh concept 

For our quantitative analysis, we computed the RMSE for each 
RF model as depicted in Table 7, revealing Model 2 as the best 
performer with an RMSE of 0.462, and Model 4 as the second-
best at 0.958.  

 
 

Model No Selected telemetries for models 
Model 1 
(TCA-L) 

IFHX in temp 
IFHX out temp 
TCA-L LTL Control temp 
TCA-L pump out flow rate 
TCA-L pump speed 

Model 2 
(TCA-L 
+ 
Dew point) 

IFHX in temp 
IFHX out temp     
TCA-L LTL Control temp 
TCA-L pump out flow rate 
TCA-L pump speed 
Service module partial pressure of water 
Cabin temp 

Model 3 
(Power 
+ 
Dew point) 

Power Distribution Unit for TCS current out 
Service module partial pressure of water 
Cabin temp 

Model 4 
(Cabin heat 
exchange + 
Dew point) 

Service module partial pressure of water 
Cabin temp 
Condense out pressure of water separator 
Cabin heat exchanger coolant out temperature 
Cabin heat exchanger flow rate 

Table 4. Selected telemetries for each model 
 

Parameter Setting 
Sequence length 7 hours 
Number of units 600 
Number of epochs 300 
Batch size 50 
Activation 
function 

Relu 

Optimizer Adam 
Weight initializer Glorot uniform 
Dropout 10% 

Table 5. Hyperparameters of LSTM 

 
 

Parameter Setting 
Number of trees 1000 
Max features 1 

Table 6. Hyperparameters of RF 

Figure 6 shows the observed and predicted values for the 
objective variable across models, with blue, red, pink, and 
yellow lines representing the predictions from Models 1 
through 4, respectively, and a grey line for the observed 
values. To identify abnormal symptoms, we scrutinized the 
deviations between predicted and observed values, 
considering significant deviations as indicators of abnormality. 
Following our comparison of models using the Pugh Concept 
Selection, depicted in Table 7, we found that Model 2 had the 
lowest RMSE, indicating high accuracy. 
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Figure 6. Observed and predicted temperatures for each model 

 

Table 7. Comparison results through Pugh Concept selection 

However, Models 3 and 4 excelled in early anomaly symptom 
detection. Those models could detect symptoms of anomaly 
earlier by seeing the difference between the observed and 
expected values. If the differences are high, it is indicated that 
the parameters have clearer unusual trends. After discussions 
with specialists and flight controllers, we opted Model 4 for our 
alert simulations. Early high levels of symptoms with relatively 
high accuracy in RMSE provides the resilience of operations 
because specialists and flight controllers will have more time to 
plan and prepare for troubleshooting of the anomaly. This 
decision was driven by the paramount importance of early 
anomaly symptom detection, combined with the model's 
superior predictive accuracy, underscoring our commitment to 
enhancing system reliability and safety. 

4.5. Comparison results of RF and LSTM through cross- 
validation 

We divided the dataset into five periods from November 6, 
2011, to March 1, 2012, for analyzing prediction error trends 
over time. Table 8 provides details of these intervals, enabling 
an examination of prediction errors' progression during the 
defined period. During the dip between 2012-02-22 and 2012-
03-01, maintenance of the system was performed. Therefore, we 
excluded the data during the time. 

 
 

 
 
 
 
 
 
 
 

 Table 8. Cross-validation periods 

To refine the analysis results for the RF and LSTM model of 
model 4, we divided telemetry data into two sets for the 
normal condition period, designated for training and testing to 
fine-tune the LSTM's hyperparameters, as shown in Table 8. 
We applied a one-hour averaging to each telemetry signal to 
manage missing data and mitigate noise issues. Following this 
preprocessing, we executed a grid search to optimize the 
hyperparameters, aiming for enhanced model performance 
and accuracy. We assessed the predictive accuracy of a finely 
tuned LSTM model through cross-validation and compared it 
with that of an RF model using the same method. Table 9 
presents their performance across different periods, with 
average RMSE scores of 0.213 for LSTM and 0.174 for RF, 
indicating RF's superior accuracy. 

 

 

 
 

 

 

 

 

Table 9. RMSE of LSTM and RF at each period 

During a particular cross-validation phase marked by lower 
predictive accuracy, we observed significant fluctuations in 
the objective variable, with marked deviations from expected 
values, as illustrated in Figure 7. 
 

 

Figure 7. Observed temperatures and  
temperatures predicted by RF 

To enhance predictive accuracy in phases of significant 
objective value fluctuation, we adjusted the LSTM's 
hyperparameters, specifically targeting high accuracy for the 
second cross-validation period.  

Method Model 1 Model 2 Model 3 Model 4 
RMSE 1.307 0.462 1.095 0.958 
Beginning 
of 
Symptom 

1week~ 
2weeks 
before 

2days~ 
3days 
before 

2week~ 
3weeks 
before 

2week~ 
3weeks 
before 

Levels of 
symptoms Low Low High High 

CV Period 
1 2011/11/6 00:00:00~2011/11/28 2:00:00 
2 2011/11/28 3:00:00~2011/12/20 3:00:00 
3 2011/12/20 4:00:00~2012/1/15 2:00:00 
4 2012/1/15 3:00:00~2012/2/6 6:00:00 
5 2012/2/6 7:00:00~2012/3/1 23:00:00 

CV LSTM RF 
1 0.210 0.102 
2 0.283 0.223 
3 0.132 0.144 
4 0.169 0.150 
5 0.271 0.252 
Average 0.213 0.174 
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This period was used as validation data, with other periods 
for training, employing a grid search for optimization. 
Subsequent cross-validation showed improved average RMSE 
scores: 0.136 for LSTM and 0.148 for RF, with LSTM 
outperforming RF, as detailed in Table 10. 

 

 

 

 

 

 

 

Table 10. RMSE of tuned LSTM and RF at each period 

4.6. Alert simulation 

We conducted an alert simulation using pre-defined thresholds 
and compared outcomes across two, three, and four-sigma 
levels using RF model 4. The four-sigma threshold was selected 
due to its optimal alert balance discussing about the tradeoff of 
frequency and reliability with flight controllers and specialists. 
If we have less than three sigma levels, there are too many alerts 
based on the interviews of flight controllers. Figure 8 shows red 
points marking values that surpass the threshold, indicating 
potential alerts. 

 

Figure 8. Alert simulations with the results of RF 

These simulation findings enable the issuance of alerts to flight 
controllers, enhancing monitoring and response capabilities. 
Setting an anomaly symptom detection threshold at plus or 
minus four standard deviations (±4ߪ) from the mean reveals a 
striking pattern of alerts, as detailed in Table 11. Using the RF 
method, this approach resulted in 2 alerts from 680 data points 
in the first half of the year, with a significant jump to 128 alerts 
from 595 data points in the latter half. This substantial increase 
in alerts underscores the system's variable performance and the 
growing frequency of anomalies as the year unfolded. 

 

 

 Standard 
deviation 

Normal 
value range 

Alarms 
1st half 

Alarms 

RF ±40.697- ߪ㹼
0.576 

2/680 128/595 

Table 11. Alert simulations with the results of RF 

4.7. Enhancing explanation with additional information 
via SpecTRM 

Figure 9 shows our results of SpecTRM analysis. At first, we 
performed a comprehensive statistical review of each 
telemetry data such as Service module and cabin temperature, 
establishing a four-VLJPD� ��ı�� WKUHVKROG� IRU� HDFK� FRQGLWLRQ��
Using the threshold, we obtained the conditions for each 
parameter. For example, service module PPH2O<11 and cabin 
temperature<22. 

 
Normal condition 

Service module PPH2O < 11 T T F T T T * 
Cabin temperature< 22 F T * * T F F 

Condense out pressure of water separator < 
2 T T T T T T T 

Temperature of pump inverter is 
between 3 & 4.5 T F F * * F T 

Cabin heat exchanger coolant out 
temperature < 12 T T F T F * F 

Cabin heat exchanger flow rate< 280 T T T T T T T 
Number of data 21 23 25 109 248 332 389 

Abnormal conditions 
Service module PPH2O < 11 F T  

Cabin temperature< 22 F F 
Condense out pressure of water separator < 

2 T T 

Temperature of pump inverter is between 3 
& 4.5 F F 

Cabin heat exchanger coolant out 
temperature < 12 F F 

Cabin heat exchanger flow rate< 280 T T 
Number of data 10 118 

Figure 9. Notable results of SpecTRM-RL analysis 

Then, we separated the data into two group: normal and 
abnormal conditions. Normal conditions are data of blue 
points and abnormal conditions are one of red points in Figure 
5 separately. Each section contains rows that list various 
parameters with associated conditions, and columns 
representing instances or data points with a status of True (T), 
False (F), or wildcard (*). If each parameter meets the 
condition, we set T. If it does not meet the condition, we put F. 
Using our tool for SpecTRM analysis enables us to show the 
complete combinations of T or F for each parameter in normal 
and abnormal conditions automatically. There were 21 points, 
which have the conditions of cabin temperature (<22) is F and 
other parameters’ conditions are T.  

The notable results reveal distinct patterns from RF analysis 
results: under normal operating  conditions,  seven 
combinations of telemetry states were observed, whereas 
under abnormal conditions, only two combinations were noted.  

CV LSTM RF 
1 0.157 0.103 
2 0.182 0.231 
3 0.089 0.123 
4 0.159 0.151 
5 0.095 0.133 
Average 0.136 0.148 
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Notably, three parameters consistently registered false values 
during these abnormal conditions: cabin temperature, pump 
inverter temperature, and cabin heat exchanger coolant outlet 
temperature, indicating significant deviations from expected 
operational parameters. 

5. DISCUSSION 

5.1. Systematic telemetry selection using FRAM 

FRAM modeling offers a systemic approach to understand 
complex systems, emphasize the holistic analysis of interactions 
and variabilities within the socio-technical systems. This 
method excels in delineating causal relationships and 
dependencies among system functions, particularly highlighting 
the interplay between constant and variable parameters. This 
systemic perspective is crucial for predicting unforeseen 
outcomes that arise from the complex interactions within the 
system, moving beyond traditional linear cause-and-effect 
analyses. 

FRAM's comprehensive approach facilitates a deeper 
understanding of system behaviors, enhancing the ability to 
mitigate potential anomalies through a nuanced analysis of the 
interconnectedness of system variables. Although FRAM is an 
effective tool to develop a model of target systems, it still 
involves some limitations: the first limitation is that the method 
is time consuming to build appropriate models through manual 
works such as interviews with experts; the second limitation is 
that FRAM is essentially a qualitative method, and it is almost 
impossible to eliminate subjectivity in the analysis; the third 
limitation is that the resolution of FRAM model depends on the 
purpose of analysis. These limitations consistently require great 
workloads by analysts, and more effective ways of analysis are 
therefore expected. To overcome the problem, for instance, it is 
expected that functions can be extracted automatically from 
interviews of experts using Natural language processing (NLP) 
methods such as Generative Pre-trained Transformer (Radford, 
2018) in the future. Another approach is to implement FRAM as 
numerical simulation models: Patriarca (2017) adopted the 
concept of monte-carlo simulation to evaluation of states in 
each function; Hirose and Sawaragi (2020) developed a 
simulation model based on fuzzy inference and suggested 
possibilities of FRAM to represent complex behaviors of target 
systems. Those approach is expected to reduce workloads and 
contribute to increasing objectivities of analysis. 

5.2. Detecting anomaly symptoms using various machine 
learning-based methods 

In the initial cross-validation, the RF model recorded a superior 
average RMSE score (0.174 vs. 0.213) compared to the LSTM 
model, indicating higher predictive accuracy for the RF model. 
This outcome suggests that the RF model may be more robust, 
particularly in handling noisy data and missing data, for this 
specific dataset and problem setting. 

 

The data preprocessing steps, such as averaging every hour, 
and the adjustment of hyperparameters for the LSTM model, 
played a crucial role in enhancing model performance. 
Notably, during the cross-validation phase where significant 
fluctuations in the objective variable were observed, adjusting 
the LSTM's hyperparameters improved the predictive 
accuracy. Specifically, this suggests that recursive neural 
networks like LSTM are effective, especially in scenarios 
involving time-series data or significant fluctuations in the 
objective variable. It is also possible to perform anomaly 
prediction by combining other advanced machine learning 
methods with the approach proposed in this paper. 

5.3. Analyzing the rationale for anomaly alert triggers 

During the normal operational period, varied conditions were 
observed; however, unique characteristics emerged in 
abnormal conditions, specifically relating to cabin temperature 
and cabin heat exchanger coolant outlet temperature, both 
critical for dew point considerations. These conditions have 
implications for pump inverter condensation.  

A Japanese astronaut on the ISS previously conducted 
troubleshooting tasks for this anomaly and identified a pump 
inverter failure caused by an overcurrent of power (JAXA, 
2013). Our analysis results align with this observation. This 
incident underscores the importance of detailed anomaly 
symptom detection and rationale understanding for safety- 
critical systems, suggesting the need for further discussions on 
explanatory levels with flight controllers and specialists for 
future preparedness. In alerting flight controllers, it's crucial to 
include information on potential causes behind detected 
symptoms. SpecTRM-RL's identification of condition 
combinations further aids in monitoring telemetry trends, 
pinpointing water vapor pressure and cabin temperature in 
JEM as critical factors influencing condensation, with 
statistical analysis affirming these findings.  

Although SpecTRM-RL is an effective tool to analyze the 
combinations of parameters, it still has a limitation: it takes 
lots of time to complete the analysis due to high number of 
combinations of parameters if there are many telemetries are 
used for making models. To overcome the problem, we can 
use SpecTRM analysis by just comparing the trends of 
telemetries between normal and abnormal period. The method 
will reveal the trend change of some combinations of 
telemetries. It will help us to find the rationale of anomaly 
symptom detections. 

5.4. Future applications 

In discussing future applications, Wyatt et al. (2000) 
emphasized the importance of monitoring of nominal 
conditions for the purposes of generating reports, adaptive 
alarm limits and model-based reasoning for future planetary 
exploration mission. Deep space missions require autonomous 
operations to cope with long communication delays. In 
addition, Prognostics and Health Management for remote 
crew health maintenance are demanded for future missions.  
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Predictive diagnostics to provide early and actionable real-time 
warnings for crews will be required (Popov, 2019). Additionally, 
the need for Prognostics and Health Management systems is 
emphasized for remote crew health maintenance, with 
predictive diagnostics playing a key role in providing early and 
actionable warnings. Our proposed method, offering 
interpretable assessments and warnings, is poised to 
significantly enhance health monitoring and symptom detection 
in space systems, contributing to the safety and operational 
resilience of future missions. 

6. CONCLUSION 

In our conclusion, we introduced a novel methodology for 
explainable symptom detection in telemetry, integrating the 
Functional Resonance Analysis Method (FRAM) and 
Specification Tools and Requirement Methodology- 
Requirement Language (SpecTRM-RL) with machine learning 
techniques. This approach facilitates systemic analysis, 
addressing the challenges of complex, multifactorial interactions 
that previous studies struggled with. Our method was verified 
and validated through an experiment using 2012 telemetry data 
from the thermal control system of Japanese Experiment 
Module (JEM), successfully identifying anomaly symptoms 
alongside their potential causes. Future enhancements will focus 
on refining condition thresholds for each parameter and alert 
mechanisms to improve detection accuracy and timeliness. 
Further validation across different systems and interface 
improvements are essential for practical application. 
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