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ABSTRACT

This paper proposes an unsupervised approach for anomaly
detection in marine diesel engines using a transformer neu-
ral network based AutoEncoder (TAE) and residual analysis
with Sequential Probability Ratio Test (SPRT) and Sum of
Squares of Normalized Residuals (SSNR). This approach ef-
fectively captures temporal dependencies within normal time-
series data, eliminating the need for labeled failure data. To
assess the performance of the proposed methodology, faulty
data is collected under the same operational profile as normal
training data. The TAE is trained on the normal data, after
which the faulty data is tested using the trained model. Sub-
sequently, the SPRT and SSNR methods are used to analyze
residuals from the observed (input) and reconstructed (out-
put or tested) faulty data. Deviations exceeding a predefined
threshold are identified as anomalous behavior. Furthermore,
this study explores various architectures of transformer neu-
ral networks and other types of neural networks to conduct
a comprehensive comparative analysis of the performance of
the proposed approach. Insights and recommendations de-
rived from the performance analysis are also presented, which
offers valuable information for potential users to leverage.
The test results demonstrate the ability of the proposed ap-
proach to accurately and efficiently detect anomalies in ma-
rine diesel engines. Specifically, it can detect anomalies more
than 1000 time steps ahead of system alarms, outperforming
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other tested models.

1. INTRODUCTION

The maritime industry plays a critical role in global trade and
transportation, over 80% of the volume of international trade
in goods is carried by sea (Stalk, 2021). Ships and their on-
board equipment form the backbone of the operation of the
maritime industry. Maintaining onboard ship equipment is
critical to ensuring safe and efficient vessel operations. How-
ever, maintaining marine equipment poses significant chal-
lenges due to the remote and harsh environment of the sea.
To ensure that equipment performs optimally, ship owners
and operators need to have an effective maintenance strategy
in place that balances safety, cost, and operational efficiency.
In addition to the challenges of maintaining equipment, the
development of autonomous ships adds another layer of com-
plexity. Autonomous ships require higher equipment safety
and reliability standards, making the need for an effective
maintenance strategy even more critical.

In this context, it is essential to continue to explore innovative
and effective maintenance approaches to ensure the safe and
reliable operation of marine equipment. The development of
advanced data analytics, Internet of Things (IoT) technolo-
gies, and machine learning algorithms holds great promise to
improve maintenance of onboard equipment and achieve op-
timal performance (Knutsen et al., 2022). Over the recent
years, much has been implemented on these topics through
two main approaches: data-driven approaches and model-
based approaches (Bernardo & Reichard, 2017). Especially
data-driven approaches applying Deep Learning (DL) tech-
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niques have become a popular direction with successful im-
plementation in different domains. Neural networks are a
type of machine learning algorithms that are modeled after
the structure and function of the human brain. Deep learning
is a subset of machine learning, and neural networks make
up the backbone of deep learning algorithms (Kriegeskorte
& Golan, 2019). In fact, it is the number of node layers,
or depth, of neural networks that distinguishes a single neu-
ral network from a deep learning algorithm, which normally
have more than three.

Neural networks and deep learning models can be categorized
based on their architecture and working mechanisms. There
are various types of neural networks, such as Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN),
and AutoEncoder (AE). On the other hand, new architectures
are actively being developed by researchers. Over the last
couple of years, there has been a surge in the development of
large generative language models like ChatGPT. The key to
their success lies in the transformer architecture, which serves
as the foundational pillar for these models.

This paper proposes and tests a new method for detecting
anomalies in marine diesel engines using a transformer neu-
ral network. The approach is unsupervised, meaning that
the model is trained on normal operational data and tested
on data from faulty operations. Once reconstruction is com-
plete, SPRT and SSNR are used to evaluate the model’s per-
formance.

The remainder of the paper is organized as follows: Section II
discusses the latest trends in data-driven equipment anomaly
detection. Section III presents the methodology used in this
study. Section IV covers the model and data used in the study,
including the collection process and model training. Results
and analysis are presented in Section V. Finally, Section VI
concludes the paper and proposes future work.

2. RELATED STUDIES

Data-driven anomaly detection has garnered significant re-
search attention in recent years. (Liang, Knutsen, Vanem,
Æsøy, & Zhang, 2024) provides a comprehensive review of
anomaly detection in maritime equipment, highlighting the
current research emphasis on data-driven methodologies.
(Vanem & Brandsæter, 2021) presents a comprehensive im-
plementation of cluster-based anomaly detection for marine
engine systems. This study highlights the potential of em-
ploying statistical techniques for effective anomaly detection.
Concurrently, numerous researchers are also exploring the
application of DL methods in this domain, i.e., (Han, Li,
Skulstad, Skjong, & Zhang, 2020), (Ellefsen, Bjørlykhaug,
Æsøy, Ushakov, & Zhang, 2019) and (Hu, Cheng, Wu, Zhu,
& Shao, 2021). An autoencoder (AE) is a type of artificial
neural network that is used for unsupervised learning of ef-
ficient data representations. It consists of an encoder that

compresses the input into a latent representation and a de-
coder that decompresses it back to a reconstructed output.
By minimizing the reconstruction error between the input and
output, the AE learns to capture the essential features in the
data. After training, the encoder can be used to encode new
data, while the decoder can reconstruct an approximation of
the original input from the encoded representation. Because
of the mechanism, AEs can be used for anomaly detection,
where they are trained on healthy data and then used to de-
tect any deviations from the normal behavior of the machin-
ery or system. The key advantage is that AEs adopt an un-
supervised learning architecture, they do not require large
amounts of data to be labeled. (Han, Ellefsen, Li, Holmeset,
& Zhang, 2021) proposed an LSTM-based Variational Au-
toEncoder (LSTM-VAE) for fault detection in maritime com-
ponents. (Listou Ellefsen et al., 2020) proposed a fault-type
independent spectral anomaly detection algorithm for marine
diesel engine degradation based on Variational AutoEncoder
(VAE). (Hemmer, Klausen, Khang, Robbersmyr, & Waag,
2020) introduced an unsupervised learning approach for de-
tecting defects in large, slow-rotating axial bearings by de-
veloping a Health Indicator (HI). The proposed method uti-
lizes variational inference and involves the use of a VAE and
a Conditional Variational AutoEncoder (CVAE).

RNN is a type of neural network that is designed to handle se-
quential data. Unlike feed-forward neural networks like Mul-
tilayer perceptron (MLP), which process input data in a fixed
order and don’t have any memory (Liang, Tvete, & Brinks,
2019) and (Liang, Tvete, & Brinks, 2020), RNN maintain an
internal state that allows them to process sequences of vary-
ing lengths and capture the temporal dependencies between
successive inputs. (Hu et al., 2021) introduced a new Deep
Bidirectional Recurrent Neural Networks (DBRNN) ensem-
ble method for Remaining Useful Life (RUL) prediction of
aircraft engines. CNN has shown promising results in detect-
ing faults based on acoustic signals, vibration data, and ther-
mal images. For example, (Massoudi, Verma, & Jain, 2021)
used CNN to classify engine sounds based on the type and
severity of the fault.

After conducting a literature survey, it appears that the use
of Transformer Neural Network for anomaly detection is not
widely explored. To address this gap, (Zhang, Song, & Li,
2022) proposed a new deep method for RUL prediction called
Dual-Aspect Self-attention based on transformer (DAST) to
improve the overall efficiency of predictive maintenance tasks.
The results demonstrated that DAST outperforms DBRNN
and CNN methods in terms of Root Mean Squared Error (RMSE)
and score values for most engines. It is important to note
that DAST is a supervised learning approach that requires la-
beled data for training. However, in reality, obtaining suffi-
cient fault or RUL data can be challenging, which may limit
the performance of the model. In another transformer related
study, (Tuli, Casale, & Jennings, 2022) introduced TranAD, a
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deep transformer network for efficient and accurate anomaly
detection and diagnosis in multivariate timeseries data. Tran-
AD outperforms state-of-the-art baseline methods in both de-
tection and diagnosis performance while offering data and
time-efficient training. The paper uses seven publicly avail-
able datasets in their experiments. The authors acknowledge
some concerns about the lack of quality benchmark datasets
for time series anomaly detection.

3. METHODOLOGY

3.1. Proposed TAE

Transformer neural networks are deep learning models intro-
duced by (Vaswani et al., 2017), and have gained great pop-
ularity in the field of natural language processing. Unlike
RNNs, Transformer Neural Networks (TNN) have a paral-
lelizable architecture, making them faster for certain tasks.
They also require fewer training iterations and are less prone
to the vanishing gradient problem than RNNs. Although RNNs
have been widely used for sequence modeling, their limita-
tions have led to the development of TNN. TNN have shown
superior performance in several natural language processing
tasks, including language translation, compared to RNNs.
RNNs use recurrent connections to process sequential data,
while TNNs rely on self-attention mechanisms to capture de-
pendencies between all elements in a sequence, without us-
ing any connections between the elements themselves. One
key challenge in applying self-attention to sequential data is
that the order of the elements in the sequence is lost when
computing the attention weights. This is because the atten-
tion mechanism computes the attention weights based on the
similarity between the query vector and the keys associated
with each element in the sequence, regardless of their posi-
tion. This makes it challenging for the model to differentiate
between elements at different positions in the sequence. To
address this issue, the TNN introduces positional encoding.
Positional encoding is a technique that adds a fixed positional
vector to the input embeddings, providing the model with in-
formation about the position of each element in the sequence.
The purpose of this is to provide the model with positional
information, allowing it to distinguish between different ele-
ments in the sequence.

Instead of using TNN for prediction, in this study TNN was
used in an auto-encoder manner to reconstruct the data. This
study introduces two transformer auto-encoder architectures,
namely TAE and TNN-MLP. The architectural depiction of
the proposed framework is presented in Figure 1. Notably, the
difference between these two architectures lies in the design
of the decoder. Specifically, TAE incorporates transformer
layers in both encoder and decoder, whereas TNN-MLP em-
ploys MLP structures within the decoder layer. This varia-
tion in architectural design aims to facilitate a comprehensive
evaluation of transformer architecture. The details of the pro-

posed architecture are illustrated as follows.

1. Feed-forward Neural Network: An FNN is a fundamen-
tal type of artificial neural network that can be used as
a building block for constructing more complex models
such as MLPs. It is characterized by its fully connected
structure, where each unit in one layer is directly con-
nected to all units in the subsequent layer via weight con-
nections.

2. Positional encoding is a way of incorporating position
information into the input embeddings by adding a fixed
vector to each embedding, which varies based on its posi-
tion in the sequence. There are various ways of positional
encoding methods to choose. In this paper, the method
from (Vaswani et al., 2017) is used.

3. Residual connection and normalization layer (Add & Norm):
This layer is added after each sublayer in TNN encoder.
The function of residual connections is to ease the chal-
lenge of training deep neural networks. Meanwhile, layer
normalization can quicken the training progress and pro-
mote faster convergence of the model by normalizing the
activation value of each layer.

4. Multihead self-attention layer: The encoder employs mul-
tihead self-attention to extract the significance of various
sensors along the sensor dimension, enabling it to au-
tonomously learn to prioritize characteristics with higher
weights. As a consequence, there is no need for human
intervention during the training process, resulting in an
automated and efficient feature selection process.

5. Layer normalization and residual connections: Each sub-
layer in the TNN, including multi-head self-attention and
position-wise feed-forward networks, is surrounded by
residual connections and followed by layer normaliza-
tion. Residual connections allow the output of each sub-
layer to be added to its input, which helps to mitigate
the vanishing gradient problem by allowing gradients to
flow directly to earlier layers. Layer normalization, on
the other hand, is a technique that is used to normalize
the activations of each layer. This helps to stabilize the
learning process by reducing the internal covariate shift.

3.2. Sequential Probability Ratio Test

SPRT is a statistical method (Wald, 1992) for testing a hy-
pothesis based on a sequential analysis of data. The method
involves taking samples of data sequentially and updating the
probability of a hypothesis after each sample is taken. (Vanem
& Storvik, 2017) , (Brandsæter, Vanem, & Glad, 2019) and
(Brandsæter, Manno, Vanem, & Glad, 2016) have already ex-
plored the application of SPRT on maritime equipment and
proved its capability of detecting anomalies.

The trained model introduced previously provides a recon-
struction x

0

t of the observed signal values xt at each time step
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Figure 1. Proposed architecture

t. The residuals, i.e. the difference between the reconstructed
and the observed value rt = x

0

t�xt are analyzed sequentially
by the SPRT to determine if the signal indicates a normal or
anomalous state of the system. To employ SPRT for ana-
lyzing residual data, it is necessary to define two competing
hypotheses: a null hypothesis H0 and an alternative hypoth-
esis H1. The null hypothesis H0 asserts that residuals are
normally distributed with mean 0 and a standard deviation
�, representing the system in its normal state. This normal
state is a condition where the system operates as expected,
and these residual properties serve as a reference for anomaly
detection. Comparing observed residuals to this reference al-
lows the SPRT to identify deviations indicating anomalies,
ensuring system performance and reliability. In contrast, the
alternative hypothesis H1 assumes that the residuals are nor-
mally distributed with a specific mean µ and/or a different
standard deviation �

0, indicating an anomalous state. The
SPRT is performed independently for each feature to detect
these potential anomalies.

H0 : r ⇠ N(0,�)

H1 : r ⇠ N(µ,�0)
(1)

The SPRT can be calculated in the following steps. It is as-
sumed both follow normal distribution, the normal distribu-
tion probability function is:

f(r) =
1p
2⇡�2

· exp
✓
� (r � µ)2

2�2

◆
(2)

where r is the residuals of reconstructed and observed signal

value. Then, the likelihood of the data for the hypotheses L0

and L1 can be calculated using the following functions:

L0(x) =
nY

i=1

f1(ri)

=
nY

i=1

1p
2⇡�2

· exp
✓
� (ri)2

2�2

◆

L1(x) =
nY

i=1

f0(ri)

=
nY

i=1

1p
2⇡�02

· exp
✓
� (ri � µ)2

2�02

◆

(3)

After that, the likelihood ratio can be calculated based on L1

and L0 when H0 has a mean of 0. If L1 is greater than L0,
it indicates that the distribution aligns more closely with H1

than with H0, and vice versa. The log likelihood ratio can be
calculated as:

log
L1

L0
= log(

nY

i=1

�

�0 exp


(ri)2

2�2
� (ri � µ)2

2�02

�
) (4)

In this case, ri represents the residuals at each time step i.
Once the hypotheses are defined and the log likelihood is cal-
culated, the SPRT index can be sequentially calculated and
updated. To achieve this, two threshold values, A and B,
must be specified. The calculated SPRT index at each time
step is then compared with these lower and upper decision
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boundaries. At each time step, three possible outcomes can
occur:

• If the value falls below the lower limit (A), it indicates
the acceptance of the normal state (H0). Consequently,
the test statistic is reset.

• If the value exceeds the upper limit (B), it suggests the
acceptance of the anomalous state (H1). Accordingly,
the test statistic is reset.

• When the value lies between the defined threshold val-
ues, it signifies an insufficiency of available information
to reach a conclusive decision.

SPRT =

8
><

>:

if log L1
L0

> B, 0

if A  log L1
L0

 B, log L1
L0

if log L1
L0

< A, 0

(5)

The thresholds A and B can be calculated based on the fol-
lowing equations:

A = log

✓
�

1� ↵

◆

B = log

✓
1� �

↵

◆ (6)

where ↵ is the probability of Type I error (false alarm), which
represents the probability of rejecting the true H0 (i.e., falsely
identifying normal states as anomalous). � is the probability
of Type II error (i.e., missing anomalous states), which repre-
sents the probability not rejecting H0 when it is false. Reject-
ing H0 inherently implies the acceptance of the alternative
hypothesis H1. In this study, both ↵ and � are set as 0.01.
Figure 2 illustrates how SPRT works for each feature to be
tested.

3.3. Sum of Squares of Normalized Residuals

The chi-square distribution, also written as �2 distribution, is
a continuous probability distribution widely used in statistical
inference and hypothesis testing. It is particularly relevant
in scenarios where the sum of squared independent, identi-
cally distributed random variables is being analyzed. The chi-
square distribution is a special case of the gamma distribution
and is often used in goodness-of-fit tests, independence tests
for contingency tables, and the estimation of confidence in-
tervals.

The chi-square distribution is characterized by its degrees of
freedom, which determine the shape of the distribution. The
degrees of freedom are typically related to the number of
independent observations or constraints in a given problem.
Specifically, the sum of the squares of k independent stan-
dard normal distribution variables follows a chi-square dis-

Figure 2. SPRT method illustration

tribution with k degrees of freedom. This concept forms the
basis of the SSNR. In this study, the assumption is made that
the SSNR follows a chi-square distribution with k degrees of
freedom equal to the number of features, which is 21.

To assess the significance of the SSNR, a comparison is made
with the corresponding chi-squared distribution. This enables
the determination of the probability of observing an SSNR
value as large or larger than a defined threshold. The thresh-
old for hypothesis testing can be derived using the inverse cu-
mulative distribution function (CDF), which allows the map-
ping of probabilities back to values from the distribution. Three
confidence levels are selected in this study: 99.99%, 99.7%,
and 95% for evaluation. The confidence level represents the
threshold probability. For instance, a confidence level of 99.7%
implies a 0.3% chance of making a false alarm. By consider-
ing the given confidence level and degrees of freedom (equal
to the number of features), threshold values of 47.56, 37.37,
and 27.58 are obtained using the inverse CDF. The selec-
tion of a 99.7% confidence level is guided by the three-sigma
rule (Pukelsheim, 1994), which serves as a widely recognized
benchmark. However, in practical applications, the confi-
dence level can be adjusted to meet specific requirements.
Different applications may exhibit varying degrees of sensi-
tivity to inaccuracies in reconstructed signals. A higher confi-
dence level of 99.99% is also selected based on the condition
of this study.

By applying the threshold to the SSNR, the reconstruction
error can be effectively monitored. The SSNR is defined as
follows:

SSNR =
diX

i=1

✓
ri � µo

�o

◆2

(7)

where di is the number of features, ri is the residuals of re-
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Figure 3. SSNR method illustration

constructed faulty data, µo is the mean of residuals of recon-
structed normal data, �o is the standard deviation of residuals
of reconstructed normal. Figure 3 provides an example of
the application of SSNR. In this figure, different dashed lines
represent distinct confidence levels, while the Y-axis depicts
the cumulative SSNR of all tested features. Notably, for each
sample, only a single SSNR value is obtained. Further details
regarding the test results will be discussed in the following
sections.

4. EXPERIMENTAL STUDY

4.1. Data collection and processing

The Department of Ocean Operations and Civil Engineering
at NTNU Ålesund has established a hybrid power lab for
data collection. The laboratory consists of a compact marine
diesel engine integrated with a generator, a marine battery
system, a marine DC switchboard equipped with essential
power converters, and a comprehensive marine automation
system that supervises the entire operational process. No-
tably, the generated power is seamlessly redirected back into
the power grid to effectively simulate dynamic load fluctua-
tions within the system. The test bench is illustrated in Figure
4, which shows the marine diesel engine, the installed sen-
sors, and the power switchboard. The system’s energy flow is
shown in Figure 5.

Data is collected by running the engine on an operational pro-
file simulating a ferry crossing on Norway’s west coast. The
ferry departs from shore at a safe and constant speed, then ac-
celerates until it reaches a suitable speed. The speed is main-
tained at a constant level before safely decreasing and finally
braking just before docking. The entire ferry crossing process
takes 20 minutes, and the complete engine operating profile is
depicted in Figure 6. Both the normal operation data and the
faulty degradation data are collected while running the same
engine operating profile. The only difference between the two
data sets is that a fault is introduced in the faulty degradation

data. Therefore, the primary objective is to predict the fault
time step on time.

The engine is equipped with two water cooling systems - a
primary and a secondary system, where the latter cools the
former. The primary cooling system is regulated by an in-
ternal bimetal thermostatic valve, which commences opening
at a temperature of 78°C and reaches full opening at 90°C.
On the other hand, the secondary cooling system relies on a
frequency operated fan that circulates air through a heat ex-
changer. A malfunction of the fan is intentionally introduced
to create a fault that subsequently leads to a decline in cooling
efficiency within the secondary cooling system to generate
the test data. To prevent potential issues, the system triggers
an alarm when the cooling water temperature exceeds 85°C.
A total of 2336 time steps were recorded over a 1168-second
period, with a frequency of 2 Hz. In this study, the feature
selection process was implemented by employing the domain
knowledge and expertise of the engine operator to select 21
input features. All the features have been used in the training
of proposed AE models.

The data used for training has undergone zero-mean and unit
variance normalization. This technique involves scaling the
features to have a zero mean and unit variance, which ensures
that all features are on a comparable scale and prevents the
dominance of features with large variances during the learn-
ing process. Moreover, such normalization can improve the
stability and performance of machine learning models during
training. It is worth noting that the normalization statistics
derived from the normal operation data are also utilized for
the faulty degradation data.

The reconstruction of the data is a time series problem. When
dealing with time series data, it is often useful to divide it into
smaller sub-sequences or sequences that have a fixed length.
This can be done using a sliding window approach where a
window of fixed length is moved across the time series data
at a fixed stride. At each window position, the sub-sequence
of data within the window is extracted and added to a list of
sub-sequences.

4.2. Model training

In the proposed architecture for time series reconstruction us-
ing the transformer, several key hyper-parameters must be de-
fined to ensure its effective implementation. The number of
TNN layers refers to the number of encoding and decoding
layers in the architecture. Increasing the number of layers
can improve the model’s ability to capture complex tempo-
ral patterns but may also increase the risk of overfitting. The
number of heads is the number of parallel attention mecha-
nisms that are applied in each encoder and decoder layer. In-
creasing the number of heads can enhance the model’s ability
to attend to multiple parts of the input sequence simultane-
ously. The time sequence length is the length of the input
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Figure 4. Test bench: Marine diesel engine, sensors and power switchboard

Figure 5. System energy flow

Figure 6. Engine operation profile

time series sequence that is fed into the model. This parame-
ter determines how much historical data the model can use to
make its predictions. The feedforward network’s dimension
refers to the hidden layer size in the FNN component of the
TNN. Increasing this dimension enables the model to capture
more complex feature relationships.

This study trains four model series, each contributing a unique
architecture to the reconstruction task:

1. TAE (Transformer-based AutoEncoder): A transformer-
based autoencoder, where transformer layers are employed
both in the encoder and decoder modules. The integra-
tion of transformer structures in both components en-
hances the model’s ability to capture intricate relation-
ships within the input data.

2. TNN-MLP (Transformer with MLP Decoder): This
alternative architectural proposal distinguishes itself by
incorporating a transformer layer in the encoder and a
Multilayer Perceptron (MLP) in the decoder. This hy-
brid design seeks to leverage the strengths of transformer
mechanisms for encoding, while employing the flexibil-
ity of MLP structures for decoding, thereby offering a
versatile approach to information representation.

3. MLP (Multilayer Perceptron): A standalone multilayer
perceptron neural network model, this architecture relies
on a series of interconnected layers.

4. LSTMAE (LSTM Autoencoder): This configuration

7
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Figure 7. Observed (Blue) vs Reconstructed (Orange) data

adopts an autoencoder architecture based on LSTM lay-
ers in the encoder.

In this study, TAE, TNN-MLP, and LSTMAE models require
time-series data as input. The training data will be processed
with a defined sequence length, and a sliding window will
be applied across the entire dataset for these models. On
the other hand, the MLP can accept input data directly. For
TNN-MLP, LSTMAE, and MLP, only the best-performing
models are chosen for evaluation. In the context of TAE, a
variety of TAE models with diverse architectures and param-
eters have been trained to identify the optimal model. The
initial architecture is proposed based on the common prac-
tices (Hongchun, Fanlun, & Xiaoyong, 2001) and test results.
Based on that, around 80 TAE models with different parame-
ters have been trained, only the best of each training group is
selected for evaluation. Five representative TAEs have been
selected for more detailed examination. In addition, the pa-
rameters tested on TAE can be observed in Table 2. In total,
as presented in Table 1, nine models have been chosen for
evaluation, comprising six TAE models, one TNN-MLP, one
MLP, and one LSTMAE. All selected time series models are
trained using a sequence length of 60 time steps.

5. RESULT ANALYSIS

As previously mentioned, the system triggers an alarm if the
cooling water temperature exceeds 85°C. In this particular
case, a cooling fault occurred due to a malfunction in the fan
at the beginning of the test, resulting in a reduction in cool-
ing efficiency in the secondary cooling system. The evalu-
ation of the trained model is carried out by analyzing both
the observed and reconstructed data. Figure 7 shows ob-
served (blue) and reconstructed (orange) data features from
the TNN-MLP model. The red square marks the time step
(1658) when the system alarm was triggered, persisting until
the test ended.

5.1. Evaluation of reconstruction performance

In this study, all models utilized for analysis are autoencoders.
The ability of autoencoders to reconstruct the original data is
an important metric of their performance. The Root Mean
Square Error (RMSE) is calculated for each of the 21 fea-
tures across all time steps, and then a mean RMSE across all
features is calculated. The results are shown in Figure 8, in-
dicating that the reconstruction performance was good, with
only the LSTMAE model exhibiting a slightly worse perfor-
mance compared to the other models.

5.2. Evaluation on SPRT

As introduced previously, the SPRT is computed using the
log likelihood and two thresholds. The SPRT index is reset
whenever it surpasses both thresholds. In this study, the nor-
mal data set is referred to as the training data, while the faulty
data are referred to as the test data. Standardization of resid-
uals from the reconstructed test data is crucial for consistent
SPRT performance. The residuals of the reconstructed test
data are standardized using the mean and standard deviation
derived from the first 500 time steps of the same data. It is
important to note that during these initial 500 time steps, the
system is in normal operation mode, with all signals falling
within their respective normal working ranges. This standard-
ization approach ensures a stable performance of the SPRT.

In this study, two alternative hypotheses are examined: devia-
tions in the positive and negative directions of the mean. The
three-sigma rule is applied in this step, with the alternative
means of 4 and -4 being utilized in the tests. The result of the
positive test of model TAE-1 is presented in Figure 9 as an
example. In Figure 9, each subplot depicts the application of
SPRT to a specific feature. The red dashed line represents the
upper limit (B), and the red dot indicates the first time index
at which an anomaly is detected.

For the anomalies detected in the first 500 time steps are taken
as faulty warning. It is worth noting that the SPRT indices are
calculated for selected number of features, with some features
indicating errors earlier than others. The detected anomalous
time step for each feature is defined as the first instance when
it crosses the threshold after 500 time steps. Subsequently,
the overall detected anomaly time step is determined by com-
puting the average of all detected anomaly time steps across
all features. The detailed average anomalous time steps iden-
tified by positive mean test of all the models is presented
in Figure 10. The different dots for the same model means
the indication of different number of flagged features (from
5 to 21). Selecting a higher number of flagged features pro-
vides greater confidence in the identified anomalies; however,
it will result in delayed notification. 10 features is tested as
the balancing point with good performance. The SPRT result
with mean of first 10 flagged features can be seen in Figure
11.
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Table 1. 9 selected models

Model # encoder layers # decoder layers # Hidden dimensions # Trainable parameters
1 TAE-1 6 1 2048 632009
2 TAE-2 6 1 1024 323785
3 TAE-3 3 1 2048 361958
4 TAE-4 3 3 2048 545772
5 TAE-5 6 3 2048 815823
6 TAE-6 10 1 2048 992077
7 TNN-MLP 5 5 2048 577685
8 MLP 4 4 160-640 212501
9 LSTMAE 2 2 512 817429

Figure 8. Reconstration RMSE of training data

Table 2. Transformer autoencoders

Parameters Values
Sequence length 10,30,60

Transformer encoder layers 3,6,10
Transformer decoder layers 1,3

Hidden dimensions 512,1024,2048
Number of head 7

Learning rate 0.001, 0.005, 0.01
Optimizer SGD, ADAM

As shown in both Figure 10 and Figure 11, all the trans-
former related models show better performance than MLP,
LSTMAE. With transformer architecture, the ones with trans-
former in both encoder and decoder shows better performance
than the half transformer architecture (TNN-MLP).

The TAE-4 is the first model capable of indicating anomalies.
However, it requires more time to establish confidence in its
detection, specifically to reach the required number of fea-
tures with anomalous flags. Conversely, TAE-1 and TAE-2
exhibit comparable and commendable performances in early
anomaly detection and confidence building. The difference
between TAE-1 and TAE-2 resides in the dimensionality of
the feedforward network model within each transformer layer,
with TAE-2 employing half the hidden dimension of TAE-1.

Despite this, TAE-2 can detect anomalies slightly earlier than
TAE-1, suggesting adequacy in the number of hidden neurons
in TAE-2.

TAE-6 adopts a 10-1 encoder/decoder architecture with the
deepest structure and the highest number of trainable parame-
ters, consequently demanding the longest training time. How-
ever, TAE-6 fails to exhibit better performance compared to
other TAE models, indicating that the deeper encoder does
not significantly contribute to performance. Models with six
layers in the encoder (TAE-1, TAE-2, TAE-5) are deemed ap-
propriate. Furthermore, the decoder does not require more
than one layer, as evidenced by the superior performance of
TAE-1 and TAE-2 over TAE-5, and the increase in decoder
complexity results in additional training time.

The lower ranking of TNN-MLP compared to the TAE mod-
els suggests that the compressed representations from its en-
coder may indeed require a more sophisticated decoder to
achieve effective reconstruction. Despite having similar train-
able parameters as TAE-4, TNN-MLP requires significantly
less training time.

Both MLP and LSTMAE can detect anomalies before system
alarms are triggered, but not as effectively as transformer-
related models. Even when employing a half-transformer ar-
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Figure 9. TAE-1 SPRT on test data - positive mean change

Figure 10. SPRT on test data with different number of se-
lected features with Flag

Figure 11. SPRT on test data of the first 10 features with Flag

chitecture like TNN-MLP, it demonstrates better performance
compared to MLP and LSTMAE. It is noteworthy that across
all test categories, longer sequence lengths (time steps) con-
sistently yield superior performance compared to shorter ones.
This observation rationalizes the choice to train all selected
models using a sequence length of 60 time steps.

5.3. Evaluation on Sum of Squares of Normalized Resid-
uals

In addition to assessing the models’ performance using SPRT,
the performance is also evaluated using SSNR, as previously
introduced. To implement SSNR, the test data residuals un-
dergo standardization, adopting the same approach used in
SPRT. The mean and standard deviation of the test data resid-
uals from the first 500 time steps are utilized for standard-
ization. A time step is considered a potential warning if its
SSNR value exceeds the average. The SSNR performance is
illustrated in Figure 12, where it is evident that the SSNR can
detect anomalies well before the system alarm is activated.
Figure 13 provides a closer examination of the SSNR per-
formance. Similarly, anomalies detected within the first 500
time steps are considered as faulty warnings.

The SSNR frequently detects faults from time step 600, indi-
cating anomalies well before the system alarm. However, the
SPRT exhibits a more stable performance in comparison with
the SSNR. This discrepancy can be attributed to the features
utilized for evaluation. The SSNR calculates SSNR values
across all features, whereas the SPRT only computes features

10
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Figure 12. SSNR with full scale

Figure 13. SSNR with selected scale

that surpass the threshold. Features failing to meet the thresh-
old criteria are excluded from the overall SPRT evaluation.

6. CONCLUSION AND FUTURE WORK

This paper introduces a novel unsupervised approach for de-
tecting anomalies in marine diesel engines, leveraging a trans-
former based autoencoder and residual evaluation methods
utilizing SPRT and SSNR. The utilized dataset comprises nor-
mal and faulty operational data gathered under identical op-
erating conditions, where the normal data are employed for
model training and the faulty data for testing. A detailed de-
scription of the proposed architecture is provided, along with
a comprehensive performance evaluation comparing the TAE
with other models, including TNN-MLP, MLP, and LSTMAE
models. In the performance evaluation, TAE models demon-
strate superiority over other models in the early detection of
anomalies.

The evaluation of observed and reconstructed data highlights
the stable performance of the proposed TAE in timely anomaly
detection. The TAE models are capable of detecting anoma-
lies approximately 1000 time steps prior to the system raising
an alarm. TNN-MLP also demonstrates commendable per-
formance with 40% less training time comparing with TAE.
Additionally, MLP and LSTMAE exhibit capability in anomaly

detection before system alarms, but not as early as transformer-
related models. Notably, transformer-related models require
longer training time compared to neural networks without
transformer architecture. However, a half transformer archi-
tecture, represented by TNN-MLP, also proves effective if
stringent training time constraints apply.

In comparison to our previous study (Liang, Knutsen, Vanem,
Zhang, & Æsøy, 2023), the current architecture undergoes
a more comprehensive evaluation alongside neural networks
with diverse architectures, sequence lengths, and parameters.
The results provide stronger evidence supporting the enhance-
ment of time series anomaly detection performance through
the utilization of a transformer architecture. However, it is ac-
knowledged that the model’s performance could potentially
be further improved with the use of larger training datasets.
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NOMENCLATURE

TNN Transformer Neural Networks
AE Autoencoder
LSTM Long Short-Term Memory
MLP Multilayer perceptron neural network
TAE TNN based autoencoder
TNN �MLP TNN as encoder and MLP as decoder
RNN Recurrent Neural Networks
LSTMAE RNN with LSTM based autoencoder
SPRT Sequential Probability Ratio Test
CNN Convolutional Neural Networks
SSNR Sum of Squares of Normalized Residuals
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