
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2024 
  

1 

A Comprehensive Review of Machine Learning Techniques for 
Condition-Based Maintenance  

Tyler Ward1, Kouroush Jenab2, Jorge Ortega-Moody3, Selva Staub4 

1,2,3Morehead State University, Morehead, Kentucky, 40531, United States 
tbward@moreheadstate.edu 
k.jenab@moreheadstate.edu 

j.ortegamoody@moreheadstate.edu 

4 Bandırma Onyedi Eylül University, Bandırma, Balıkesir, Turkey 
sstaub@bandirma.edu.tr 

 
ABSTRACT 

While most industrial maintenance strategies are centered on 
optimizing machine runtime and cost reduction, the 
condition-based maintenance (CBM) strategy distinguishes 
itself from others in its use of real-time operational data from 
machines to help engineers make informed decisions. The 
introduction of machine learning (ML) into a CBM strategy 
can increase its effectiveness, enabling more accurate 
predictions and making the decision-making process more 
efficient. In this review paper, we seek to provide a 
comprehensive overview of the role ML plays in modern 
CBM systems, beginning by outlining the core concepts and 
historical development of CBM and briefly introducing 
various ML techniques being employed in industry today. 
We then review numerous real-world cases where ML-based 
CBM systems have been implemented and discuss some of 
the technological, human, and ethical challenges faced by 
organizations seeking to integrate sophisticated ML models 
into existing CBM systems. We end by highlighting some of 
the current limitations of ML-based CBM systems, paving 
the way for a discussion on emerging trends and future 
research directions in this area. 

1. INTRODUCTION 

Prior to the Industrial Revolution, maintenance was 
performed primarily reactively, occurring only after a 
machine failed. As machinery became more complex, there 
was a gradual shift toward more preventative maintenance 
strategies, although these approaches were still primarily 
based on scheduled maintenance intervals. Following World 
War II, modern maintenance strategies began to take shape, 

driven by advancements in technology and the increased 
importance of machinery in both military and industrial 
applications. 

Condition-based maintenance (CBM) is a maintenance 
strategy that seeks to extend the life of equipment and ensure 
operational effectiveness through the real-time assessment of 
the operational condition of a machine. The primary objective 
of CBM is to perform maintenance only when warranted, 
thereby adverting unnecessary downtime and reducing 
maintenance expenditures (Teixeria, Lopes, & Braga, 2020). 
The development of sophisticated diagnostic tools like 
vibration analysis and thermography in the 1970s and 80s 
formed the basis for the earliest version of the CBM strategy, 
alongside the development of the field of reliability 
engineering, which emphasized system reliability and 
maintenance optimization.  

The advent of computers and sensor technology towards the 
end of the 20th century significantly enhanced the CBM 
strategy by enabling real-time data collection and analysis. 
This era marked the start of the widespread integration of 
CBM across various industries, as its potential to enhance 
efficiency and reduce maintenance costs was realized. The 
rise of Industry 4.0 has further propelled CBM to 
prominence, with the rapid growth of artificial intelligence 
(AI) technology revolutionizing the way that data collected 
from machines can be analyzed and interpreted, empowering 
CBM systems with impressive abilities to predict failures in 
a machine long before they occur, allowing maintenance 
teams to deal with an issue before it ever becomes a problem 
(Fernandes, Reis, Melão, Teixeira, & Amorim, 2021). 

Machine learning (ML) is a subfield of AI that deals with the 
development of study of algorithms that can learn from data 
and generalize to unseen data. By leveraging patterns and 
insights extracted from vast amounts of operational data, ML 
algorithms can identify subtle indicators of equipment health 
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that may elude even the most experienced human experts, 
making them a valuable asset in the predictive maintenance 
(PdM) toolkit (Carvalho et al., 2019). However, integrating 
ML into existing CBM systems requires a deep 
understanding of the technology's capabilities and 
limitations. 

ML algorithms offer several advantages over conventional 
statistical and reliability models for CBM applications. They 
can automatically learn complex patterns and relationships 
from large, high-dimensional datasets without the need for 
explicit programming or model specification. This data-
driven approach allows ML models to capture intricate 
dependencies and non-linear interactions that may be 
difficult to represent using traditional parametric models. 
Additionally, ML algorithms can adapt and improve their 
predictions as new data becomes available, enabling 
continuous learning and refinement of the models. This 
adaptability is particularly valuable in dynamic industrial 
environments where operating conditions and failure modes 
may evolve over time. Specific ML techniques such as deep 
learning (DL) have demonstrated remarkable performance in 
tasks like image recognition and signal processing, making 
them well-suited for analyzing sensor data and extracting 
relevant features for CBM. 

Table 1 shows a breakdown of existing review articles on 
CBM and tangentially related topics. Our analysis identified 
a need for a review article focusing on a broad overview of 
the use of ML in all aspects of CBM. Current review articles 
largely focus on the use of ML in CBM for specific use cases, 
such as CBM of rolling element bearings, or individual 
aspects of CBM, such as anomaly detection, or they only 
focus on one type of ML applied to CBM tasks such as 
reinforcement learning. 

Table 1 Analysis of existing literature 

Authors Year Limitations 

Ellefsen, Æsøy, 
Ushakov, & Zhang 

2019 Focused on DL methods for 
prognostics and health 
management (PHM) of 
autonomous ships 

Çınar et al. 2020 The focus is on using ML-
based PdM for sustainable 
smart manufacturing   

Namuduri, 
Narayanan, 
Davuluru, Burton, 
& Bhansali 

2020 Focused on DL methods for 
PdM of electrochemical 
sensors 

Singh, Azamfar, Li, 
& Lee 

2020 Focused on ML-based 
PHM of rolling element 
bearings 

Adryan & Sastra 2021 Focused on the use of ML 
for PdM of aircraft engines 

Chatterjee & 
Dethlefs 

2021 Focused on the use of AI for 
the operations and 
maintenance of wind 
turbines 

Elbouchikhi, Zia, 
Benbouzid, & El 
Hani 

2021 Focused on signal 
processing and ML for 
intelligent grid condition 
monitoring 

Jourdan, Longard, 
Biegel, & 
Metternich 

2021 Focused on datasets for 
intelligent maintenance and 
corresponding use cases 

Leukel, González, 
& Riekert 

2021 Only focused on the failure 
prediction aspect of CBM 

Nacchia, Fruggiero, 
Lambiase, & 
Bruton 

2021 Primarily focused on 
identifying trends and gaps 
as opposed to in-depth 
understandings of specific 
application 

Siang, Ahamd, & 
Abidin 

2021 Only focused on the 
anomaly detection aspect of 
CBM and only concentrate 
on tiny ML methods. 

Afridi, Ahmad, & 
Hassan 

2022 Only focused on AI-based 
PdM of renewable energy 
systems 

Alsumaidaee et al. 2022 Only focused on the fault 
detection aspect of CBM 
specifically a medium-
voltage switchgear. 

Ciaburro 2022 Only focused on the fault 
detection aspect of CBM 

Drakaki, Karnavas, 
Tziafettas, 
Linardos, & 
Tzionas 

2022 Only focused on the use of 
ML and DL for PdM of 
induction motors. 

Fernandes, 
Corchado, & 
Marreiros 

2022 Only focused on the fault 
diagnosis and prognosis 
aspect of CBM 

Ferreira & 
Gonçalves 

2022 Only focused on the 
remaining useful life (RUL) 
prediction aspect of CBM 

Nor, Kassim, 
Minhat, & Ya’acob 

2022 Only focused on ML-based 
PdM techniques for a 
nuclear reactor cooling 
system. 
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Sanzana, Maul, 
Wong, Abdulrazic, 
& Yip 

2022 Only focused on DL 
applications in facility 
management and 
maintenance for heating, 
ventilation, and air 
conditioning 

Serradilla, Zugasti, 
Rodriguez, & 
Zurutuza 

2022 Only focused on DL models 
for PdM 

Sharma, Mittal, & 
Soni 

2022 The focus on the 
interpretability of ML 
methods in CBM 

Campos Olivares, 
Carrasco Muñoz, 
Mazzoleni, 
Ferramosca, & 
Luque Sendra 

2023 This paper gives a general 
overview of ML for PdM 
but is lacking in detail in 
terms of real-world use 
cases and future directions. 

Chen, Fu, Zheng, 
Tao, & Liu 

2023 Only focused on the role of 
ML in digital twins for PdM 

Kumar, Khalid, & 
Kim 

2023 Only focused on PHM of 
rotating machinery of 
industrial robots 

Ogunfowora & 
Najjaran 

2023 Only focused on 
reinforcement and deep 
reinforcement learning 
solutions for maintenance 

Payette & Abdul-
Nour 

2023 This paper does not go in-
depth into specific ML 
applications within CBM 

Polverino et al. 2023 This study only reviews 50 
papers 

Saurav, Avesh, 
Sharma, & Hossain 

2023 Only focused on ML-based 
PdM of Indian railways 

Surucu, Gadsden, 
& Yawney 

2023 Only focused on the 
condition monitoring aspect 
of CBM 

Tama, Vania, Lee, 
& Lim 

2023 Only focused on DL 
applications for fault 
diagnosis of rotating 
machinery using vibration 
signals. 

Gupta et al. 2024 Only focused on ML-based 
PdM for electric vehicle 
power electronics 

 

This review article aims to provide a comprehensive 
overview of the current landscape of ML-based CBM 
systems, covering the processes that enable ML integration, 

such as data handling and feature engineering, practical 
applications, and integration challenges. By addressing these 
topics, the article seeks to spark a discussion on potential 
future advancements in the field of maintenance engineering, 
focusing on improving efficiency, reliability, and the overall 
effectiveness of maintenance strategies. 

2. REVIEW METHODOLOGY 

The first stage of our review process was to understand the 
overall trends in the literature surrounding publications 
regarding ML-based CBM systems. To acquire this data, we 
queried an online research database, Dimensions, consisting 
of over 140 million journal and conference articles. 
Dimensions supports Boolean queries in its search 
functionality, allowing researchers to refine and narrow the 
search results. 

Our query to the Dimensions database was “condition-based 
maintenance AND machine learning,” meaning that we were 
only searching for articles that contained both keywords. We 
refined the query further by limiting the search only to return 
articles that included both of the keywords in the title and 
abstract of the article, as well as imposing the limitation that 
only articles published between 2003 and 2023 should be 
considered. This led to 1,705 articles that matched our criteria 
being returned. 

Once we had the initial results, we manually evaluated the 
articles that were returned to ensure relevance to our review 
focus. After manual review, we removed 68 articles from 
consideration. These articles were found not to concern ML-
based CBM systems, and typically were included in the 
results because they used the words “condition” and 
“maintenance” frequently in non-industrial contexts, such as 
patient/human maintenance in articles relevant to the medical 
field, and plant maintenance in articles related to agriculture. 
This removal of articles from the search results led to the final 
count of articles being considered 1,637. 

Once these 1,637 articles were identified, we sought to 
determine the number of publications and citations in this 
area per year over the 20 years between 2003 and 2023. One 
of the reasons that Dimensions was chosen as the database to 
query is because it has built-in tools to visualize trends based 
on specific metrics. Figure 1 depicts the number of articles 
published over these 20 years, and Figure 2 depicts the 
number of times these articles were cited over the same 
period. 

These two figures show that research on ML-based CBM 
systems increased gradually from 2003 to 2016, then rapidly 
increased post-2016, demonstrating increased interest in this 
topic in recent years. Several key factors contributed to this 
increase in research interest around this time. One of the most 
critical contributing factors has been the significant 
improvement and cost reduction of Internet of Things (IoT) 
devices and sensors. This has led to a rapid uptick in Internet-
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connected devices, with studies showing that the number of 
such devices in use approximately doubles every five years, 
with estimates showing that in 2020, there were 50 billion 
IoT devices in use, up from 25 billion in 2015 (Singh, 2023). 
In the context of CBM research, this improvement in the 
capabilities and availability of IoT devices has made it much 
easier and cost-effective to collect vast amounts of real-time 
data from machinery and equipment, which is crucial in CBM 
strategies. 

 

Figure 1. Articles published per year with the keywords 
“condition-based maintenance” AND “machine learning” in 

the title and abstract 

 

Figure 2. The citation count per year of papers with the 
keywords “condition-based maintenance” AND “machine 

learning” in the title and abstract 

This vast amount of real-time data would be useless without 
the ability to process it, which leads to a second major 
contributing factor to the rise of ML-based CBM systems: 
increased computational power. In recent years, there have 
been significant advancements in graphical processing units 
(GPUs) and cloud computing technologies. This 
technological advancement has enabled the rapid processing 
of large datasets of condition information from machinery 
and equipment. It has enabled the integration of complex ML 
models, particularly DL models (Jauro et al., 2020), that are 

highly effective at pattern recognition, making them 
particularly suitable for CBM tasks.  

As ML models have improved, so has their adoption rate in 
various sectors across Industry 4.0 (Jan et al., 2023). As more 
organizations adopt ML-based approaches to CBM and show 
increased efficiency, the rate of funding from both 
governmental and private sectors for this type of research has 
increased, which is evident by Figure 3, which depicts a trend 
line of 317 grants awarded per year between 2003-2023 to 
encourage research in the area of ML applications for CBM. 
This data was obtained using the same search query to 
Dimensions described earlier in this discussion. In addition 
to increased funding, collaboration between industry and 
academia has also risen in recent years, with studies showing 
that articles in the area of AI published since 2012 that are a 
collaborative effort between industry and academia receive 
more citations and online interest than articles published by 
industrial or academic researchers individually (Färber & 
Tampakis, 2023). One last consideration that needs to be 
addressed to understand the growth in ML-based CBM 
research is the wide availability of open-source ML 
frameworks and tools for CBM purposes, which has allowed 
researchers and practitioners in the field of maintenance 
engineering to implement and experiment with advanced ML 
models more easily than before (Zhao et al. 2020).  

 
Figure 3. Grants awarded per year sponsoring research into 

ML-based CBM 

Once we analyzed these trends in ML-based CBM research, 
we next defined the scope of our review. We identified 
several areas we wanted to address: a discussion of data 
handling and feature engineering techniques that facilitate the 
use of ML for CBM, an introduction to ML and the 
techniques that have found applications in CBM, specific 
real-world use cases where ML was integrated into CBM 
systems, the challenges and limitations of integrating ML 
into CBM systems, and future trends and directions that could 
be explored within the area of ML-based CBM. Once this 
scope was defined, we switched the academic database we 
queried from Dimensions to Google Scholar due to the 
increased size of the Google Scholar database and its more 
expansive search capabilities. We then queried the database 
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using keywords relevant to each of the areas we wanted to 
address, as well as imposing the limitation that the 
publication date of the articles must fall between 2018 and 
2024 to identify the 71 articles that make up our reference 
list. A bar chart showing the distribution in terms of 
publication year of the articles in the reference list is shown 
in Figure 4. 

From the reviewed literature, we found that a total of 221 
unique keywords classified the articles. We analyzed these 
keywords and categorized them into ten distinct categories 
to declare their relevance to ML-based CBM systems. This 
categorization is shown in Table 2. 

 
Figure 4. Number of publications per year in the references 

Table 2 Categorization of unique keywords from the 
literature 

Category Keywords 

Fundamental concepts 

Machine learning  

Artificial intelligence, machine 
learning, deep learning, supervised 
learning, unsupervised learning, 
reinforcement learning 

Maintenance 
types 

Predictive maintenance, preventative 
maintenance, prescriptive analytics, 
predictive analytics, condition-based 
maintenance, condition-based 
maintenance (CBM), predictive 
health maintenance, proactive 
maintenance 

Maintenance 
strategies 

Maintenance, maintenance 
management, optimal maintenance 
planning, smart plant maintenance 
system 

Statistical 
methods and 
analysis 

Statistics, Bayesian inference, 
statistical methods, data science, data 
analytics, factor analysis, data-driven 
decision-making 

Technologies and tools 

Sensors and IoT 
Sensor, industrial sensors, Internet of 
Things (IoT), Power IoT, IoT, edge 
computing, wireless transmission 

Computational 
models and 
algorithms 

Neural networks, convolutional 
neural networks, recurrent neural 
network, LSTM autoencoder, 
generative adversarial networks, 
random forest, support vector 
regression, deep neural networks 

Data processing 
and analysis 
techniques 

Feature extraction, feature selection, 
feature importance, principal 
components analysis, data 
preparation, data imbalance, 
oversampling 

Data 
management and 
platforms 

Blockchain, digital twin, knowledge 
base, application server, private 
LPWAN, LoRaWAN gateway 

Applications and systems 

Industrial and 
manufacturing 

Industrial system, smart factory, 
industrial automation, industrial 
manufacturing, industrial robots 

Vehicles and 
machinery 

Rotating machines, pumps, hydraulic 
systems, electrical machines, 
bearings, ball screw drives, aircraft, 
trucks, buses 

Energy and 
utilities 

Upstream oil & gas, energy supply, 
wind turbine 

Infrastructure 
and 
transportation 

Railway infrastructure, high-speed 
railway (HSR), switches and 
crossings, vehicles 

Maintenance tasks and objectives 

Detection and 
diagnosis 

Anomaly detection, fault detection, 
defect inspection, fault diagnosis, 
motor fault detection, failure 
prediction, degradation 

Reliability and 
assessment 

Reliability, reliability assessment, 
remaining useful life, health 
indicator, lifetime prediction 

Prediction and 
forecasting 

Prediction methods, prediction, 
multi-step multivariate time series 
forecasting 

Techniques and methodologies 

Analysis and 
optimization 

Regression, Bayesian regression, 
particle swarm optimization, gradient 
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boosting, hyperparameter 
optimization 

Learning and 
adaptation 

Transfer learning, self-supervised 
learning, continual learning, domain 
adaptation 

Inspection and 
quality control 

Image restoration, image processing, 
defect classification 

Theoretical and methodological foundations 

Statistical and 
mathematical 
models 

Canonical link function, Hurst 
exponent, T2 chart, Weibull failure 
rate function 

Analytical 
techniques 

Wavelet spectrum analysis, 
compressed sensing, multivariate 
signal processing, principal 
component analysis 

Decision-making 
and planning 

Decision support, Bayesian decision 
theory, partially observable Markov 
decision process, planning under 
uncertainty 

Emerging trends and considerations 

AI and advanced 
models 

Generative adversarial network 
(GAN), variational autoencoder, 
black box, knowledge reasoning 

Standards and 
frameworks 

Industry 4.0, CPPS, OPERAND, 
micro-world, experimental platform 

Ethical and 
societal impacts 

Transparency, explainable artificial 
intelligence, decision support 
systems 

 

Based on these keywords, it is clear that the literature on ML 
for CBM reflects an increasingly multidisciplinary and 
collaborative approach through the integration of advanced 
analytics, information technology, and data science within 
traditional engineering domains. There is a clear shift from 
reactive maintenance strategies to more proactive and 
optimized approaches focused on predictive and prescriptive 
maintenance. This trend is driven by the need to enhance 
asset reliability, reduce downtime, and minimize 
maintenance costs across various industries, and is facilitated 
by the widespread adoption of sophisticated AI models, 
especially neural network (NN) based architectures like deep 
neural networks (DNNs), convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and 
autoencoders. These models offer robust pattern recognition 
and anomaly detection capabilities crucial for accurate failure 
prediction, health monitoring, and RUL estimation of 
industrial assets across sectors like manufacturing, energy, 
transportation, and others.  

In addition to the implementation of AI, there is also an 
emphasis on harnessing the rapid growth of sensor data and 
industrial IoT (IIoT) technologies to enable real-time 
monitoring, data collection, and interconnected intelligent 
systems for CBM. There is also a drive to develop robust data 
management pipelines to handle large, complex datasets and 
address challenges like noise, missing values, and class 
imbalance through data preparation techniques and digital 
twins. The literature exhibits methodological diversity, with 
researchers combining traditional statistical methods and 
optimization algorithms with cutting-edge ML architectures 
like generative adversarial networks (GANs) and 
reinforcement learning models. Applications range from 
static machinery to dynamic assets like rotating equipment, 
vehicles, aircraft, and wind turbines.  

Along with improving prediction accuracy and lead times, 
researchers are increasingly focusing on broader goals like 
reliability assessment, life cycle management, and 
maximizing asset utilization while minimizing downtime and 
maintenance costs over the entire operational lifecycle. The 
emphasis on RUL prediction and lifecycle perspectives 
indicates a holistic approach to maintenance optimization 
rather than solely focusing on fault detection. Additionally, 
there is a growing interest in enhancing model interpretability 
through explainable AI (XAI), knowledge transfer via 
transfer learning, and improving data efficiency. Ethical 
considerations like transparency and trustworthiness of AI 
systems for high-stakes maintenance decisions are also 
gaining attention.  

ML-based CBM research is a rapidly evolving field marked 
by significant technological innovations, cross-disciplinary 
convergence, and a strong drive toward intelligent, predictive 
maintenance systems. As the capabilities of ML models and 
IIoT technologies continue to advance, there is immense 
potential for optimizing asset performance, operational 
efficiency, and sustainability across industries. The balanced 
coverage of theory and applications suggests a solid 
grounding complemented by a solutions-oriented mindset. 
The discussion and analysis presented in this section serve as 
a general overview of the current literature. The following 
sections will expand on this discussion and analysis. 

3. DATA HANDLING & FEATURE ENGINEERING 

CBM systems are largely powered by smart devices 
strategically placed to monitor the condition of a machine. 
These devices generate a continuous data stream, capturing 
parameters such as temperature, pressure, vibration, and 
more. Because CBM relies so heavily on accurate, real-time 
information about the condition of a machine, selecting the 
correct data collection methods is necessary to ensure that the 
data being received from the machine accurately reflects its 
operational condition. This section details various methods 
and characteristics of data collection devices. It highlights 
various methods of handling this data and its features to 
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ensure proper integration of ML approaches into the CBM 
process. Figure 5 visualizes multiple aspects of the data 
handling and feature engineering phase of an ML-based 
CBM system. 

 
Figure 5. Potential components of the data handling and 
feature engineering phase of an ML-based CBM system 

Sensors are one of the most commonly used devices to enable 
CBM, measuring physical characteristics of equipment 
performance, and often send data in the form of time-series 
measurements. This temporal nature makes sensor data 
particularly useful for performing CBM, as it facilitates the 
identification of patterns over time that could be indicative of 
potential issues. Sensor data is often augmented through IoT 
devices, which can contribute additional real-time 
information such as the location, environmental conditions, 
and operational parameters of a machine. 

Inadequacies in data quality or scarcity of data points can 
impede the performance of ML models within the CBM 
framework. Addressing data quality is imperative, involving 
measures to rectify issues related to calibration, sensor drift, 
and measurement errors. The regular calibration and 
maintenance of sensors are crucial to maintaining data 
accuracy, ensuring that the information used to train ML 
models in a CBM system is reliable. When teaching these 
models, a sufficient data volume is essential to enable these 
models to generalize effectively and produce reliable 
predictions across diverse scenarios. 

The initial data obtained from sensors and IoT devices may 
exhibit characteristics such as noise, incompleteness, or the 
presence of outliers. Addressing these issues is crucial to 
preparing the data for effective utilization in ML models. One 

fundamental aspect of this process is data imputation, which 
involves filling in incomplete data points to maintain the 
overall integrity of the dataset. Various techniques, including 
mean imputation (Martins, Fonesca, Farinha, Reis, & 
Cardoso, 2022), interpolation (Roux, Fang, & Barros, 2022), 
or ML-based imputation methods (Ward, Jenab, & Ortega-
Moody, 2023), can be applied to ensure a comprehensive and 
representative dataset. Another important step is outlier 
detection, aimed at identifying and managing data points that 
deviate significantly from the norm. This is necessary to 
prevent extreme values from negatively influencing the 
predictions of the ML model. Common methods for outlier 
detection include statistical approaches such as z-score (Yin, 
Liu, Huang, & Pan, 2022) and interquartile range 
(Aqueveque, Radrigan, Pastene, Morales, & Guerra, 2021), 
as well as ML-based anomaly detection methods (Lourenço 
et al., 2023). These preprocessing and cleaning measures 
collectively contribute to refining the raw data, enhancing its 
quality, and ultimately facilitating the strong performance of 
ML models in the CBM process. 

Feature selection involves techniques that aid in identifying 
the most informative features from the data while discarding 
irrelevant or redundant ones. Widely employed methods for 
feature selection include mutual information (Hamaide & 
Glineaur, 2021), recursive feature elimination (Nemat Saberi, 
Belahcen, Sobra, & Vaimann, 2022), and the extraction of 
feature importance scores from tree-based models (Allah 
Bukhsh, Saeed, Stipanovic, & Doree, 2019). In instances 
where temporal patterns characterize equipment data, time-
series features assume paramount importance. The 
engineering of time-specific features, such as statistical 
moments (Fong, 2022), trend analysis (Ngoma, Mativenga, 
& Pretorius, 2020), and spectral analysis (Bae, Mun, Chang, 
& Vidakovic, 2019), can provide valuable insights into the 
behavior of the equipment over time. Additionally, domain 
knowledge and expertise are increasingly important when 
incorporating ML into CBM, as the incorporation of domain-
specific can lead to the creation of features that capture 
critical aspects of the equipment's health. 

4. PRINCIPLES OF ML 

4.1. Categories of ML Algorithms 

ML algorithms can be classified into several different 
categories (Sarker, 2021), each with its own relevance to 
CBM. These categories are described below and depicted 
visually in Figure 6. The next section includes an expanded 
discussion of each category and specific algorithms 
employed for use in CBM systems. 

1. Supervised Learning: In the context of CBM, supervised 
learning algorithms use labeled training data to learn the 
relationship between the input features (e.g., sensor 
readings) and the output variable (e.g., equipment 
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failure). Once trained, supervised learning models can 
predict future failures or estimate the RUL of equipment. 

 
Figure 6. Categories of ML algorithms and their 

characteristics 

2. Unsupervised Learning: These algorithms, including 
clustering and dimensionality reduction approaches, 
detect anomalous behavior or new patterns in equipment 
sensor data that could indicate a potential failure. 

3. Reinforcement Learning: Although less common in ML-
based CBM systems than their supervised and 
unsupervised counterparts, reinforcement learning 
algorithms can develop maintenance policies where a 
model learns to make decisions by performing actions 
and assessing the results. 

In recent years, there has been a rapid rise in the adoption of 
DL approaches within each category, largely driven by 
advancements in NN architectures, layers, objectives, and 
optimization techniques (Schneider & Vlachos, 2023). DL is 
facilitated by large NNs capable of making accurate data-
driven decisions (Kelleher, 2019). Because DL methods are 
particularly suited to contexts where there is a large amount 
of complex data (Kelleher, 2019), it should be no surprise that 
DL has found many applications within the context of CBM. 

Implementing DL into supervised learning tasks for CBM 
can lead to augmented capacity to predict equipment failure 
with greater accuracy, as DL approaches are better equipped 
to deal with complex, nonlinear relationships in large-scale 
maintenance data. For unsupervised tasks, DL can enhance 
the accuracy of anomaly and pattern detection by effectively 
learning the normal operational baselines of the equipment, 
even without the presence of labeled data. When applied to 
reinforcement learning tasks, DL can improve the decision-
making process, enabling the development of more 
sophisticated and adaptive maintenance strategies that can 
dynamically respond to the equipment’s condition and 
operational demands.  

4.2. ML Techniques used for CBM 

Employing a variety of ML techniques significantly enhances 
CBM's efficacy. These techniques transform raw data into 
actionable insights, facilitating proactive maintenance 
decisions. This section delves into the different ML 
techniques applied in CBM and their contributions to the 
maintenance process. Figure 7 shows several examples of 
ML techniques for each category of algorithm. 

Supervised models are prominent in applying ML in the 
CBM process, especially in cases that require the prediction 
and classification of equipment conditions. Regression 
analysis is employed to forecast continuous outcomes, such 
as the time until failure of the degradation rate of 
components. Techniques such as linear regression (LR) 
(BahooToroody, De Carlo, Paltrinieri, Tucci, & Van Gelder, 
2020), support vector regression (SVR) (Hong, Xu, & Zhang, 
2019), and ensemble methods such as random forests (RF) 
(Fredriksson, 2022) leverage historical data to anticipate 
future failure points. On the other hand, classification models 
categorize equipment conditions into distinct classes, such as 

Figure 7. Examples of ML algorithms used for CBM 
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‘normal operation,’ ‘needs inspection,’ or ‘immediate 
maintenance required.’ Algorithms such as decision trees 
(DT) (Allah Bukhsh et al., 2019), naïve Bayes (NB) 
(Maheswari & Umamaheswari, 2020), k-nearest neighbors 
(KNN) (Rathore & Harsha, 2022), and NNs (Berghout, 
Benbouzid, Muyeen, Bentrcia, & Mouss, 2021) process 
sensor data to identify and signal impending failures based on 
the predefined classes.  

Specific DL models can be trained using a supervised 
approach, where extensive, labeled datasets are used to teach 
these models to recognize intricate patterns and relationships 
within the data. Examples of these models include DNNs and 
CNNs. DNNs extend the capabilities of supervised 
approaches by providing more nuanced pattern recognition in 
complex datasets, often found in the type of sensor data that 
CBM applications rely on. CNNs, on the other hand, are 
primarily designed for processing and interpreting image 
data, such as thermal images (Huerta Herraiz,  Pliego 
Marugán, & García Márquez, 2020) or visual inspections 
(Doğru,  Bouarfa, Arizar, Aydoğan, 2020). CNNs prove 
effective in detecting signs of wear or damage, offering a 
comprehensive means of visual analysis within CBM 
frameworks. 

Where supervised models aid in the prediction and 
classification capabilities of ML-based CBM models, 
unsupervised approaches are crucial for uncovering patterns 
and anomalies within sensor data. Clustering techniques, 
such as k-means (Wang, Liu, Wei, Chen, & Xu, 2020) or 
hierarchical clustering (Zhu & Zhou, 2023) facilitate the 
grouping of similar data points. The clusters aid in identifying 
patterns associated with various operational modes and 
detecting outlier conditions that may signal potential 
malfunctions.  

Advances in DL techniques, such as GANs, have improved 
the robustness of models in detecting outlier conditions (Lu, 
Du, Qian, He, & Wang, 2022). A GAN is an ML framework 
that involves using two competing NNs in a zero-sum game, 
where a gain in one NN represents a loss in the other. The use 
of GANs to aid anomaly detection involves the generation of 
new synthetic data containing anomalies in an existing 
dataset, which can improve anomaly detection accuracy by 
addressing the common class imbalance problem in anomaly 
detection, where there are often many more data points 
representing normal operating conditions compared to 
anomalous ones (Lu et al., 2022).  

Additionally, principal component analysis (PCA) is 
commonly employed for dimensionality reduction in CBM 
applications (Quatrini, Constantino, Di Gravio, & Patriarca, 
2020). PCA enables the grouping of sensor data into principal 
components, capturing the most significant variations. This 
dimensionality reduction enhances the efficiency of 
subsequent analysis by other ML models, offering a more 
streamlined and insightful understanding of equipment 
conditions. 

Autoencoders are another powerful tool that can enhance 
anomaly detection and dimensionality reduction tasks. 
Powered by DL, autoencoders can aid in boosting the 
effectiveness of anomaly detection by learning a compressed 
representation of normal operating conditions and 
subsequently reconstructing the input (Ahmad, Styp-
Rekowski, Nedelkoski, & Kao, 2020). This allows 
autoencoders to pinpoint deviations in the reconstruction, 
identifying potential issues and contributing to the early 
identification of abnormalities (Ahmad et al., 2020). When 
used for dimensionality reduction, autoencoders can encode 
data into a lower-dimensional space that retains the most 
significant features necessary for representing the original 
dataset (Ahmad et al., 2020). 

Further unsupervised DL techniques that have been found to 
be useful in CBM include recurrent neural networks (RNNs) 
and long-short term memory (LSTM) networks. RNNs have 
a unique recurrent structure capable of preserving previous 
information and passing it into the current calculating 
process, enabling it to perceive the association of time 
sequence data at different time intervals (Cheng, Wang, Wu, 
Zhu, & Lee, 2022). While powerful, RNNs do suffer from a 
drawback called the vanishing gradient problem. This 
problem occurs when the length of a sequence increases; the 
gradient magnitude typically decreases alongside it, slowing 
the training process of the RNN. LSTMs have emerged as a 
solution to this problem by introducing various gates to the 
RNN architecture: the input, output, and forget gates. These 
gates enable a “short-term memory” for RNNs (Wang, Bu, & 
He, 2020). RNNs and LSTMs are particularly adept at 
handling sequential data like time-series sensor readings, as 
they excel in identifying temporal patterns that serve as 
indicators of equipment health status, enabling a nuanced 
understanding of dynamic operational conditions. This 
makes RNNs and LSTMs handy tools for modern ML-based 
CBM systems. 

Both supervised and unsupervised approaches to 
incorporating ML into CBM are well-studied. These 
techniques integrate well into the maintenance process and 
have become essential components in any ML-based CBM 
system. However, these techniques represent just a tiny 
portion of the full body of literature on this topic. More 
advanced applications of ML in CBM revolve around 
integrating reinforcement learning algorithms into the 
maintenance process. 

Reinforcement learning techniques such as Q-learning 
(Tanimoto, 2021) and policy gradients (Cheng, Liu, Li, & Li, 
2023) can optimize maintenance schedules and resource 
allocation by allowing ML models to learn the most effective 
actions under specific conditions. Essentially, the models are 
trained to make decisions that lead to optimal timing for 
maintenance interventions, thereby minimizing downtime 
and associated costs. The application of reinforcement 
learning in this context enhances the adaptability of 
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maintenance strategies, allowing for a more dynamic and 
responsive approach to preserving equipment health and 
functionality. Deep reinforcement learning (Zhang & Si, 
2020) incorporates NNs into reinforcement learning 
frameworks to aid decision-making in complex 
environments, improving the efficacy of maintenance 
schedules and resource allocation while minimizing 
downtime and associated maintenance costs. 

ML models have transformed CBM from a reactive to a 
predictive and even prescriptive practice. The ability to 
accurately forecast potential failures and prescribe 
maintenance actions can significantly reduce unplanned 
downtimes and maintenance costs, improving equipment 
availability and longevity. The selection of an appropriate 
model depends on the nature of the data, the specific 
maintenance task, and the desired outcome. In addition, 
deploying these models requires a careful balance between 
predictive performance and computational efficiency, 
especially when real-time analysis is required. The following 
section focuses on real-world examples where ML 
algorithms were implemented into CBM systems. 

5. REAL-WORLD APPLICATIONS  

Effective deployment of CBM strategies in industry relies on 
systems capable of considering several canonical tasks in the 
maintenance lifecycle of a machine. These tasks include the 
detection of anomalies or potential failures, the diagnosis of 
faults to identify their nature and cause, the classification of 
different types of faults to streamline maintenance processes, 
the analysis of root causes to prevent future occurrences, and 
the optimization of maintenance schedules to ensure 
maximum operational efficiency with minimal downtime. 
ML techniques, with their ability to analyze and interpret vast 
amounts of data, have significantly contributed to the ability 
of CBM-based systems to address these canonical 
maintenance tasks. This section dives into real-world 
applications of ML in CBM, demonstrating how ML 
techniques can be used for each of these tasks within a CBM 
framework. 

5.1. Data Preparation and Feature Handling 

The data preparation and feature selection stages of 
incorporating ML into CBM are critical steps that 
significantly impact the effectiveness of predictive models. 
The raw input data is transformed into a usable format in the 
data preparation stage. In the feature selection stage, the most 
relevant data attributes are identified. These phases, 
involving data cleaning, normalization, and strategic feature 
selection to capture underlying patterns indicative of 
equipment health, are essential in bridging the gap between 
raw data and actionable insights, enabling the development 
of robust predictive maintenance strategies that are accurate 
and reliable. 

An example of data preparation and feature selection being 
used in the real-world ML-based CBM system is in the 
development of a hybrid data preparation method to predict 
failures in aircraft equipment (Celikmih, Inan, & Uguz, 
2020). The authors who developed this system employed the 
ReliefF feature selection method and a modified K-means 
algorithm to identify the most compelling features and 
eliminate noisy or inconsistent data. Through this meticulous 
process of converting raw sensor data into a refined format 
suitable for ML analysis, the authors ensured their subsequent 
models were fed high-quality information tailored for precise 
predictions. Once the data had been adequately prepared, 
they evaluated the model using the multi-layer perceptron 
(MLP), SVR, and LR ML algorithms, achieving good results 
that demonstrated the effectiveness of an ML-based system 
in predicting equipment failure. 

5.2. Detection 

The ability to quickly and accurately detect potential issues 
before they worsen and lead to failures is a pivotal component 
of the CBM strategy. The detection process is critical to CBM 
systems as it lays the foundation for all maintenance actions 
that come after it, dictating the efficiency and effectiveness 
of the overall maintenance process. Incorporating ML 
algorithms into a CBM system can lead to easier 
identification of subtle anomalies or trends that may not be 
apparent when using traditional methods. 

An example of this is the use of ML to detect concept drifts 
in continuous data streams, specifically in the context of 
predictive maintenance (Zenisek, Holzinger, & Affenzeller, 
2019). The authors of this study aimed to proactively identify 
wear and tear in industrial machinery to prevent breakdowns. 
They evaluated the LR, RF, and symbolic regression (SR) 
algorithms. They found that the models built with the RF 
regressor performed better during the training phase. Still, the 
SR models outperformed the other two during the testing 
phase, indicating an increased capacity to generalize to 
unknown data. Despite these differences, each of these three 
models was deemed very accurate for the predictive 
maintenance tasks. 

Another study proposed a data-driven predictive maintenance 
system for manufacturing production lines (Ayvaz & Alpay, 
2021). The data for this system was generated from IoT 
sensors in real-time, and ML algorithms were applied to this 
data to detect potential failures before they occurred. 
Following an evaluation of the efficacy of different ML 
models, it was determined that the RF and eXtreme gradient 
boosting (XGBoost) algorithms outperformed all of the other 
models, and it was these two algorithms that were 
implemented into the production line. 

The ability of ML algorithms to automate event-oriented 
maintenance systems through unstructured, textual, and 
unsupervised data has also been studied (Decker, Leite, 
Minarini, Tisbeni, & Bonacorsi, 2022). The specific goal of 
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this study was to detect periods of anomalous activity based 
on content and information extracted from log events. For 
this purpose, the authors evaluated the one-class SVM, 
isolation forest (IF), and local outlier factor (LOF) ML 
algorithms, finding that IF provided the best fault detection 
accuracy.  

5.3. Fault Diagnosis 

Simply detecting the presence of potential issues is not 
enough for an effective CBM system. Once potential 
problems are identified, the next step lies in diagnosing the 
various issues. Diagnosing faults requires a detailed analysis 
of potential fault types and their potential causes. This step is 
crucial for maintenance strategies like CBM that address the 
root of a problem instead of only its symptoms. Through the 
use of ML, it becomes possible to not only identify but also 
understand the complex patterns indicating faulty conditions. 
The advanced analytical capabilities enabled by ML allow 
maintenance teams to make informed decisions, ensuring 
timely and appropriate interventions. 

An example of ML being used to enable fault diagnosis in a 
CBM system is the use of an ensemble ML technique based 
on the RF, support vector machine (SVM), and MLP 
algorithms using LR as a metamodel to diagnose states of a 
rotating machine to determine if the machine was operating 
normally, or whether it was experiencing faulty conditions 
(Jenab, Ward, Isaza, Ortega-Moody, & Anaya, 2024). The 
results of this study demonstrated the effectiveness of hybrid 
approaches for determining specific maintenance needs 
based on the machine's condition. 

5.4. Fault Classification 

After abnormal conditions have been detected and diagnosed, 
the next phase in the CBM process lies in classifying faults. 
These classes are predefined based on the characteristics and 
underlying causes of known faults. Accurately classifying 
faults is crucial to streamlining maintenance procedures, 
facilitating targeted interventions, and enhancing decision-
making processes. The use of ML algorithms in CBM can 
enable the automated classification of different types of 
faults, which allows a more sophisticated understanding of 
equipment behavior and maintenance requirements. 

Since fault classification is a classification problem, using 
supervised ML algorithms is a natural choice. For example, 
the DT classifier has been used to classify pump failures in 
the oil and gas industry (Aliyu, Mokhtar, & Hussin, 2022). 
This model attempted to classify operational condition data 
points into three classes: regular, broken, and recovering. The 
authors of this study found that their model achieved 91.94% 
accuracy in the testing phase and 74.4% in the testing phase. 
Another study utilized a CNN to improve the classification 
accuracy within an innovative plant maintenance system 
through blob detection processing (Shin, Jo, Cha, & Lee, 
2020).  

Another method of performing fault classification is through 
an unsupervised clustering approach. In one study, a k-means 
cluster-based fault identification model was constructed, 
which was made up of three components: a k-means cluster 
analysis component, a fault mode – fault cluster centroid 
knowledge base component, and a fault identification 
component (Wang et al., 2020b). It was found that the 
accuracy of this model when classifying surge, rubbing, and 
misalignment faults for rotating machinery was 94%, 100%, 
and 80%, respectively. Hierarchical clustering can break a 
conventional classification problem into many sub-problems 
arranged in a hierarchy (Adams et al., 2019). One study found 
that the proposed hierarchical classification method reduced 
resource consumption in such a system compared to a more 
traditional classification approach (Adams et al., 2019). 

Deep unsupervised methods such as RNNs have also been 
employed in the fault classification. One study analyzed 
several different fault classification models: SVM, RF, 
eXtreme gradient boosting (XGBoost), RNN, LSTM, and 
gated recurrent unit (GRU) (Huang, Chen, & Huang, 2019). 
This study aimed to determine how to improve classification 
accuracy through dimensionality reduction best. Commonly 
used methods for dimensionality reduction, such as 
autoencoders and variational autoencoders, did not 
effectively improve classification accuracy and, in some 
cases, reduced it. However, when the variational autoencoder 
was enhanced to be based on an RNN, the classification 
accuracy of all models was significantly improved. 

5.5. Root Cause Analysis 

Once faults have been detected, diagnosed, and classified, the 
next logical step in the CBM process is the performance of 
root cause analysis. This is the process of identifying the 
underlying reasons for identified faults. Through this 
analysis, maintenance teams move past the superficial 
symptoms of a fault to address foundational issues that can 
lead to compromised reliability and performance in 
equipment. Accurate root cause analysis is essential for 
implementing measures to prevent the recurrence of issues. 
ML algorithms can enhance root cause analysis through deep 
pattern and correlation analysis in vast datasets. 

The RF and artificial neural network (ANN) models have 
been used to conduct root cause analysis on a compressor 
(Steurtewagen & Van den Poel, 2019). The RF model was 
used to classify compressor behavior into regular versus 
erratic operation on sensor data. In contrast, the ANN model 
was used to predict whether the compressor was operating 
within specifications. Root cause analysis ranked key 
variables contributing to compressor failures based on their 
Gini importance using the RF model. In this study, the 
authors demonstrate that insights from ML models, when 
combined with expert knowledge, can hypothesize the root 
causes of high vibrations in a compressor and suggest specific 
maintenance actions to address these issues. 
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5.6. Optimization of Maintenance Schedules 

Once all prior tasks have been completed, the final step of 
ML-based CBM centers on transforming synthesized insights 
from ML analyses into actionable, strategic maintenance 
plans. The optimization of maintenance schedules is not 
merely about timing; it is about precision – ensuring 
maintenance activities are conducted at the optimal time to 
prevent future failures, enhance equipment longevity, and 
maintain operational efficiency. With the solid predictive 
capabilities of ML algorithms, maintenance teams can 
forecast equipment health deterioration and schedule 
interventions proactively. By aligning maintenance activities 
with the actual condition of equipment, organizations can 
significantly reduce downtime, cut costs, and elevate the 
reliability of operations. 

Advanced statistical and ML methods for multi-step 
multivariate time series forecasting in predictive maintenance 
have been evaluated (Tessoni & Amoretti, 2022). In terms of 
statistical methods, the authors considered vector 
autoregression (VAR), vector moving average (VMA), and 
vector autoregression moving average (VARMA), a novel 
approach coined as Theta. In terms of ML models, they 
evaluated variants of RNNs, namely the Elman RNN 
(ERNN), LSTM, and gated recurrent unit (GRU). The 
authors evaluated these models on eight different predictive 
maintenance datasets, with ERNN outperforming advanced 
statistical methods in two of the datasets and LSTM and GRU 
outperforming the statistical techniques for two. The success 
of these RNN variants in outperforming statistical methods in 
multiple datasets highlights the potential of such methods to 
aid in scheduling maintenance activities. 

A two-stage dynamic scheduling framework for aircraft fleet 
maintenance under a CBM strategy has been proposed 
(Tseremoglou & Santos, 2024). In the first stage, the authors 
address uncertainty in predicting component health by 
planning the optimal maintenance policy based on the belief 
state-space of component health, formulated as a partially 
observable Markov decision process (POMDP) solved using 
the partially observable Monte Carlo planning (POMCP) 
algorithm. The second stage integrates this maintenance 
policy with the scheduling of preventive and corrective tasks 
using a deep Q-network (DQN) model that continuously 
adjusts the maintenance schedule based on new task 
information and resource availability constraints. Testing on 
a case study from a large airline showed the model could 
schedule 96.4% of monitored components on time while 
achieving a 46.2% maintenance cost reduction compared to a 
corrective maintenance approach. 

6. CHALLENGES AND LIMITATIONS OF ML INTEGRATION 
IN CBM SYSTEMS 

This section delves into the challenges and considerations 
that arise when attempting to seamlessly incorporate ML into 
CBM systems, as depicted in Figure 8. One of the primary 

challenges is data compatibility. It's crucial to ensure that the 
data from sensors and monitoring devices is in a format that 
ML models can process. This often requires data 
preprocessing (Masmoudi, Jaoua, Jaoua, & Yacout, 2021), 
conversion into compatible formats (Zhang, He, Yan, Jiang, 
& Zhu, 2022), and addressing any data quality issues 
(Timocin, 2020). 

 

Figure 8. Challenges and limitations of ML-based CBM 
systems 

In terms of the types of data quality issues that may be 
encountered in ML-based CBM systems, maintenance data, 
particularly historical records, often face problems like 
incompleteness, noise, or sensor errors, leading to data gaps 
and variability that can impede the training and accuracy of 
ML models (Nunes, Santos, & Rocha, 2023). Additionally, 
CBM datasets typically exhibit class imbalance, where 
instances of failure are much fewer than normal operation 
cases, potentially leading to biased models that favor the 
majority class (Sridhar & Sanagavarapu, 2021). Moving past 
these potential issues with data quality and availability, 
another aspect of ML-based CBM systems that can prove 
challenging for organizations seeking to implement such 
systems is the need for real-time processing. CBM systems 
frequently require immediate data analysis to promptly detect 
and predict equipment issues, which can be particularly 
strenuous in environments with limited resources. This 
necessity calls for ML models that process data with minimal 
latency, enabling rapid maintenance decisions and alert 
generation (Tran, Doan, Vu, & Vu, 2023).  

Alert generation is one of the primary features of an ML-
powered CBM system (Sinha, Pandaw, & Das, 2023). ML 
models in these systems can generate alerts and notifications 
upon detecting any anomalies or predicting potential failures. 
Such alerts are crucial as they facilitate timely interventions, 
preventing equipment failures before they occur. 
Additionally, these systems can enhance maintenance 
efficiency through condition-based scheduling (Tseremoglou 
& Santos, 2024) and adaptive maintenance. By analyzing the 
current state of the equipment, these systems can optimize 
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maintenance schedules and dynamically adjust based on the 
actual health and needs of the equipment, ensuring that 
maintenance is conducted only when necessary. This 
approach minimizes equipment downtime and increases 
longevity while reducing maintenance costs and increasing 
maintenance effectiveness. 

To support these ML models, the system's infrastructure must 
be robust and scalable, capable of handling the computational 
demands of sophisticated ML algorithms. This requirement 
extends beyond hardware components, encompassing 
software platforms, to ensure efficient operation under 
various conditions. The data storage and management system 
may be the most critical component within this 
hardware/software infrastructure. For any CBM system, the 
ability to store and manage large volumes of sensor data is 
paramount. This capability is often accomplished through 
database systems that are capable of handling time-series 
data.  

Since ML models, especially in sectors with large and 
complex data sources, demand significant computational 
resources, the infrastructure may need to include cloud 
computing solutions or potent on-premises hardware to meet 
these demands. Additionally, data visualization and reporting 
tools are indispensable in CBM systems. These tools provide 
clear insights into the health and maintenance performance of 
equipment and empower maintenance personnel with the 
necessary data interpretation capabilities to make informed 
and effective decisions. 

One of the major hurdles with implementing ML models is 
the interpretability of the models themselves, especially in 
complex DL networks, which often operate as black-box 
models, making it challenging to derive meaningful insights 
from their predictions (Hussain, 2019). One method of 
resolving this issue is designing user-friendly interfaces for 
maintenance personnel. These human-machine interfaces 
should enable easy interaction with ML models and facilitate 
the interpretation of results. These interfaces are critical to the 
successful integration of ML into CBM systems (Quispe G., 
Rajabiyazdi, & Jamieson, 2020). 

Integrating ML models into CBM systems involves advanced 
software development and deployment strategies. A crucial 
step in this process is model deployment, where the ML 
models must be integrated compatibly with the existing CBM 
software architecture. This integration could encompass 
various techniques like containerization, utilizing 
microservices, or direct integration with existing software 
modules. 

Ethical considerations are increasingly important, especially 
concerning potential biases in data and models that might 
lead to unfair maintenance decisions. Addressing and 
mitigating these biases is crucial yet challenging (Bacelar, 
2021). The dynamic nature of equipment conditions requires 
continuous model monitoring and updating to maintain 

predictive accuracy (Maschler, Vietz, Jazdi, & Weyrich, 2-
2020). Moreover, implementing CBM can be resource-
intensive, posing a challenge for smaller organizations or 
industries with budget constraints. The lack of skilled 
personnel with expertise in the domain and ML technology 
exacerbates the situation. Complying with industry-specific 
regulations and standards presents further challenges 
(Ramuhalli, Huning, Guler Yigitoglu, & Saxena, 2023), as 
does ensuring security and privacy in the face of potential 
cyberattacks. Additionally, adopting commercial CBM 
solutions may lead to vendor lock-in, creating dependency on 
specific vendors for software, hardware, or data services. 

Interoperability also poses a challenge for integrating ML 
into CBM. Before 2018, there were no coherent standards to 
promote the intra- and inter-enterprise interoperability 
required for modern CBM systems (Kaur, Selway, 
Grossmann, Stumptner, & Johnston, 2018). In two papers 
released in 2018, Karamjit Kaur and colleagues from the 
University of South Australia, MIMOSA, and the PdMA 
Corporation outlined the Open Industrial Interoperability 
Ecosystem (OIIE) architecture. 

The OIIE effort aims to promote open standards and 
protocols that will improve industrial system interoperability. 
Its main goal is to provide a unified, integrated environment 
where various industrial systems, such as enterprise resource 
planning systems, manufacturing machinery, and supply 
chain management tools, may effectively communicate and 
work together. Promoting open architecture for greater 
system integration flexibility, data sharing capabilities for 
vital functions like CBM and real-time monitoring, and 
standardization initiatives to guarantee system compatibility 
are all essential to the OIIE's purpose. To further the growth 
of the ecosystem, the architecture also strongly emphasizes 
cooperative efforts between technology suppliers, business 
leaders, and end users. In line with the objectives of Industry 
4.0, the OIIE aims to improve decision-making in industrial 
operations, promote innovation, and increase efficiency 
through various initiatives, such as automation, data sharing, 
and the use of IoT devices in industrial settings. 

The OIIE is a promising and effective series of guidelines for 
encouraging interoperability between industrial systems to 
facilitate the incorporation of CBM processes into existing 
systems. However, there still remains a gap in the literature 
for standards that center on interoperability between CBM 
systems and ML algorithms. This gap deserves further 
exploration.  

7. FUTURE TRENDS AND DIRECTIONS 

The landscape of ML-based CBM is continuously evolving, 
driven by technological advancements in ML and related 
fields, some of which are shown in Figure 9. A significant 
development for the future of ML-based CBM is the rise of 
XAI, which aims to make complex ML models more 
transparent and understandable, thus increasing the 
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trustworthiness of CBM systems (Krishnamurthy, Nezafati, 
Stayton, & Singh, 2020). The integration of edge computing 
is set to play a pivotal role in facilitating real-time data 
processing closer to the data sources, thereby enhancing the 
efficiency and scalability of CBM systems (Liu, Hu, Jia, & 
Tao, 2021). Furthermore, developing and using novel 
ensemble techniques is expected to continue, leveraging the 
strengths of different algorithms for improved predictive 
accuracy and robustness in CBM (Jenab et al., 2024). 

 

Figure 8. Future trends and directions for ML-based CBM 
systems 

New sensor technologies are expected to generate high-
fidelity data (Levinski et al., 2023) and enable more precise 
monitoring through multi-sensor fusion (van Staden & Boute, 
2021). Another exciting development is the shift towards AI-
driven prognostics (Zschech, Heinrich, Bink, & Neufeld, 
2021) and prescriptive maintenance (Ansari,  Glawar, & 
Nemeth, 2019), where AI algorithms will not only predict 
failures but also suggest optimal maintenance actions. This 
progression is complemented by the trend towards 
continuous learning (Maschler et al., 2020) and adaptive 
systems (Xiong, Zhou, Ma, Zhang, & Lin, 2023), where 
models dynamically update themselves in response to real-
time data, maintaining effectiveness despite changing 
equipment conditions.  

Blockchain technology is anticipated to play a crucial role in 
enhancing data security and traceability in CBM, ensuring the 
integrity and transparency of maintenance records (Tran et 
al., 2022). Additionally, the increasing collaboration between 
humans and AI models, mainly through user-friendly 
interfaces in CBM systems, is expected to foster a synergistic 
approach to maintenance decision-making. Moreover, with 
the expanding role of AI in CBM, ethical considerations will 
gain prominence, emphasizing responsible AI practices to 
ensure fairness and accountability. 

Several cutting-edge ideas and techniques from the broader 
ML community hold significant promise for enhancing CBM 
systems in the future. One such concept is federated learning, 
which enables collaborative training of ML models across 
multiple decentralized data sources without sharing raw data. 
This approach could be precious in CBM scenarios where 
data privacy and security are critical concerns, allowing 
models to learn from diverse data sources while preserving 
data ownership and confidentiality (Zhang, Li, Ma, Luo, & 

Li, 2021). Additionally, the field of meta-learning, which 
focuses on developing algorithms that can quickly adapt to 
new tasks with minimal retraining, could facilitate the 
development of CBM models that can rapidly generalize to 
new asset types of operating conditions, reducing the need for 
extensive data collection and retraining for each new 
application (Yang, Wang, & Luo, 2024). 

Self-supervised learning techniques, which enable models to 
learn rich representations from unlabeled data, could 
potentially alleviate the data labeling bottleneck often 
encountered in CBM applications. Using the vast amounts of 
unlabeled sensor data available, self-supervised models could 
learn meaningful feature representations that can be 
transferred to downstream CBM tasks, reducing the reliance 
on extensive labeled datasets (Chen, Ma, Xu, Jin, & Zhou, 
2024). The process of domain adaption, which aims to 
transfer knowledge from one domain to another, could be 
instrumental in developing CBM models that can seamlessly 
adapt to new asset types or operating environments, 
leveraging knowledge gained from related domains (Nejjar, 
Geissmann, Zhao, Taal, & Fink, 2024). 

8. CONCLUSION 

As time has passed, knowledge has increased, and technology 
has evolved and improved, the use of ML has become pivotal 
to modern CBM systems. The application of ML technology 
has led to more effective decision-making processes, which 
has had a significant positive effect on operational reliability 
and cost-effectiveness. Despite these advancements, properly 
integrating ML techniques into existing CBM systems is 
challenging. Issues including poor data quality, 
incompatibility between systems, and the intensive demands 
of real-time data processing present significant hurdles to 
overcome.  

Furthermore, ML models' complexity and black-box nature 
can sometimes act as a barrier to integration, specifically in 
terms of interpretability and usability. Adequately addressing 
these challenges is essential for the continued efficacy of ML-
based approaches to CBM. These challenges aside, the future 
potential of ML in CBM is excellent. The rise of XAI is 
making ML models more transparent and understandable, 
edge computing is enhancing the processing capabilities at 
the data collection site, and the development of hybrid ML 
models promises to deliver more robust and efficient 
maintenance solutions. 

As industries continue to evolve, it is becoming increasingly 
important for organizations to embrace technological 
innovation balanced and sustainably. This includes being 
mindful of the ethical implications and challenges 
accompanying such advancements. ML has significant 
potential to bring about more reliable, efficient, and 
optimized maintenance processes in CBM systems. As such, 
organizations and industries must continue to focus on 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

15 

innovation, collaboration, and continuous improvement to 
utilize these benefits fully. 
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