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ABSTRACT

Concerns over fuel scarcity and environmental degradation
largely drive the increasing popularity of electric vehicles (EVs).
Lithium-ion batteries (LIBs), known for their high energy and
power densities, are the favored power source for EVs. Over
the past few decades, research has been concentrated on en-
suring these batteries operate efficiently, safely, and reliably.
A key issue impacting the safety of Li-ion batteries is ther-
mal runaway (TR), which can lead to hazardous battery fires.
Internal short circuits (ISCs) are often the primary cause of
these TR incidents, making the early detection of spontaneous
ISC formation a pivotal diagnostic task. This research intro-
duces an innovative ISC detection technique for cylindrical
Li-ion battery cells. This technique is based on the augmen-
tation of the model state vector in an extended Kalman fil-
ter (EKF), combining both classical voltage measurements to
surface temperature observations. This framework enables
real-time estimation of the internal ISC state while maintain-
ing computational efficiency. The proposed method is tested
numerically considering a high-fidelity numerical plant cy-
cled using charge-depleting tests that mimic a practical bat-
tery cell working cycle at various C rates and at different am-
bient temperatures to account for both load and environmen-
tal uncertainties. The results demonstrate the robustness and
effectiveness of the method. In addition, the method has been
proven to be computationally efficient, demonstrating the fea-
sibility of its real-time implementation.

1. INTRODUCTION

Global warming and air pollution have spurred the recent
growth of the EV market. Among various battery types, LIBs

Yiqi Jia et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

have gained widespread popularity as portable energy sources
for EVs due to their notable advantages, including high en-
ergy density, high power density, and long lifetime (Goodenough
& Kim, 2010). However, irreversible processes, such as the
formation of a solid-electrolyte interphase (SEI) during LIBs
charging and discharging cycles, can adversely affect battery
health, leading to continuous capacity degradation and an in-
creased risk of battery failures and severe safety issues, such
as TR accidents (Amine, Kanno, & Tzeng, 2014). Given that
ISC has been identified as the primary cause of TR fire acci-
dents, preventing severe ISC is crucial for the Battery Man-
agement System (BMS) to ensure the safe and reliable oper-
ation of EVs (Grabow et al., 2023).

While the complete understanding of the spontaneous ISC
formation mechanism in rechargeable batteries remains elu-
sive, it has been observed that ISC progression typically in-
volves three stages: the early stage, the middle stage, and
the late stage (G. Zhang et al., 2021). During the early and
middle stages, the voltage drop and temperature increase may
be used as valuable indicators to detect ISC and prevent TR.
However, the minimal signal changes in thermal and electri-
cal indicators pose challenges in detecting faults based on raw
measurements. In contrast, during the late stage, the rapid
signal changes make it too late for alarms to counter the fast-
changing signals.

Over the past few years, there has been a significant effort
by many researchers to develop and integrate diagnostic al-
gorithms to detect ISC and prevent TR. Several data-driven
methods have been proposed, which are based on parame-
ter inconsistency. These include methods based on voltage
(Gao et al., 2021), temperature (Sun, Chou, Shieh, & Chu,
2021), State of Charge (SoC) (Lai et al., 2021), and remaining
charging capacity (RCC) (Kong et al., 2018). As previously
discussed, the inherent alterations in electro-thermal signals
caused by spontaneous ISC formation may not be immedi-
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ately distinguishable in the dynamic responses of the battery,
particularly during the incipient stages of ISC. Furthermore,
signal fluctuations attributable to external factors could po-
tentially trigger unwarranted alarms. Consequently, the pre-
cise determination of an appropriate threshold value poses a
significant challenge, given that this value profoundly influ-
ences the promptness and accuracy of detection.

Other data-driven approaches that leverage the power of ma-
chine learning techniques have also been developed recently.
These approaches employ models such as deep neural net-
works (Naha et al., 2020) or random forest (Xiao & Xiao,
2021). However, being only based on data, the performance
of these approaches is strongly limited by the scarcity of avail-
able data and the challenges in generating new ones.

Lastly, the detection of ISC can also be achieved by utiliz-
ing battery cell models. These include Equivalent Circuit
Models (ECM) (M. X. Zhang et al., 2018; Seo, Park, Song,
& Kim, 2020; Asakura, Nakashima, Nakatsuji, & Fujikawa,
2010, 2012; Feng, He, Lu, & Ouyang, 2018), or more ad-
vanced electro-chemical models (Ma, Deng, & Wang, 2023).
However, most of these works only rely on the electrical mod-
eling of the battery cell or consider electrical and thermal dy-
namics separately. As mentioned before, temperature plays a
crucial role in spontaneous ISC formation, hence using a cou-
pled electro-thermal model of the battery cell is a potentially
more effective approach. Nevertheless, research on model-
based algorithms that combine both electrical and thermal
measurements for ISC detection remains relatively limited in
the literature. The latter measurements are typically avail-
able in commercial BMS, and in fact, some model-based al-
gorithms considering an electro-thermal model of a battery
cell for SoC estimation have recently been reported in the
literature (Qin, Che, Li, Cai, & Jiang, 2022; X. Liu et al.,
2024; Saqli, Bouchareb, M’sirdi, & Bentaie, 2023). This sug-
gests that a model-based framework considering an electro-
thermal model of a battery cell could also be used for ISC
detection, and more importantly, given the non-negligible ef-
fect of ISC on battery temperature dynamics, combining both
voltage and temperature measurements is promising for im-
proving ISC detection performance.

Based on a previous work by the same authors (Jia, Bran-
cato, Giglio, & Cadini, 2024), this study introduces a novel
model-based ISC detection approach that employs the EKF
algorithm to track the ISC state evolution in real-time. The
algorithm utilizes the input load current and the voltage and
surface temperature measurements to dynamically update the
state of its model, which is augmented with a variable di-
rectly related to ISC. In comparison with other ISC detection
approaches, this approach has the following advantages:

• it relies on both voltage and temperature observations to
more accurately update the dynamic state evolution of
the cell;

• it considers a quantity strongly related to ISC in the model
state, allowing detection and quantification of ISC.

Moreover, as demonstrated in this work, the algorithm has
been designed to meet the computational and accuracy re-
quirements necessary for its implementation in a BMS. It is
based on a simple electro-thermal battery cell model, which
only marginally increases the computational complexity, and
on an efficient and lean filtering algorithm.

In our previous work (Jia et al., 2024), we had already demon-
strated the method’s advantages in quicker and more accurate
detection compared to classical model-based approaches only
relying on electrical measurements. This is further demon-
strated in this study when considering a more realistic plant
by implementing a coupled electro-thermal model of a cylin-
drical battery cell. This model has been validated experimen-
tally in a previous work by Lin et al. (Lin et al., 2014), and
is employed to accurately simulate the electrical and thermal
responses of the cell under varying ISC conditions. The simu-
lated signals are then fed to the EKF-based algorithm, which
performs the online ISC state estimation. In addition, this
study tests the robustness and reliability of this approach nu-
merically. The effectiveness of the algorithm is demonstrated
by considering different load and environmental conditions.
The latter affects the heat generation and consequently, the
dynamics coupling of the cell, which depends on its core tem-
perature. This dynamic coupling is due to the fact that the
electrical parameters, which exhibit temperature-dependent
variation in the plant, remain largely unaffected when the cell
temperature variations are small, while they undergo consid-
erable alteration when the core cell temperature variations are
significant.

The remainder of the paper is organized as follows: Sec-
tion 2 presents a brief overview of the coupled electro-thermal
model of a cylindrical battery cell, which was utilized to test
the algorithm; Section 3 outlines the online ISC detection al-
gorithm based on EKF; Section 4 illustrates the algorithm’s
detection performance; finally, Section 5 draws out the con-
clusions from this work and suggests potential future devel-
opments.

2. COUPLED ELECTRO-THERMAL BATTERY MODEL

This section briefly reviews the coupled electro-thermal model
of a cylindrical LIB cell developed by Lin et al. (2014). In
this model, the terminal voltage dynamic is captured using
an ECM, while the core and surface temperatures of the cell
are estimated with a two-state thermal model. The ECM sub-
model is modified adding a resistance in parallel to the output
terminals of the circuit to model the ISC occurrence. The
electrical parameters depend on the core temperature, SoC,
and current flow direction; the thermal parameters are as-
sumed constant instead.
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Figure 1. Coupled electro-thermal model of a cylindrical bat-
tery cell.

2.1. Electrical modelling

At the top of Figure 1, which depicts the schematic of the
coupled electro-thermal model, the electrical submodel is il-
lustrated as a second-order ECM. Under a current i (positive
when discharging), the terminal voltage, denoted with vt is
obtained according to the Kirchhoff laws:

vt = OCV(z)�Rsi� vRC1 � vRC2 (1)

The first term, OCV(z), is the so-called open circuit voltage,
which is a non-linear function of the SoC, according to the
empirical relationship taken from Lai et al. (2021) and shown
in Figure 2. The SoC is denoted with z in the model, and it is
calculated via the Coulomb counting equation (Chang, 2013):

dz

dt
= � 1

Cbat
i (2)

where Cbat is the battery nominal capacity, expressed in As.
The second term in Eq. (1) is the voltage drop across the in-
ternal series resistance Rs. The last two terms, vRC1 and
vRC2 , are the voltage drops across the two series of parallel
RC circuits, which are used to model the transients voltage
dynamics (G. Liu et al., 2014). Their evolution is described
as

dvRC1

dt
= � 1

R1C1
vRC1 +

1

C1
i (3)

dvRC2

dt
= � 1

R2C2
vRC2 +

1

C2
i (4)

where R1 and R2 are the equivalent polarization resistances,
and C1 and C2 are the equivalent polarization capacitances.
The current i flowing within the circuit elements, according
to the Kirchhoff laws, is the sum of two contributions:

i = it + iISC (5)

being it the load current, and iISC = vt/RISC the parasitic
current due to ISC.
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Figure 2. Average voltage-SoC curve under C/20 discharging
tests. Adapted from Lai et al. (2021).

2.2. Thermal modelling

Assuming longitudinal homogeneity, the lumped thermal dy-
namics of a cylindrical battery cell can be represented by a
two-state thermal model, which is illustrated at the bottom
of Figure 1.The governing equations of the core temperature,
Tc, and the surface temperature, Ts are (Lin et al., 2012; Park
& Jaura, 2003):

Cc
dTc

dt
= Q+

Ts � Tc

Rc
(6)

Cs
dTs

dt
=

Tf � Ts

Ru
� Ts � Tc

Rc
(7)

The heat generated, denoted in Eq. (6) with Q, is due to
the chemical reactions taking place in the electrode assembly
during the battery operation. This quantity can be estimated
based on the electrical model (Lin et al., 2014), as

Q = i (OCV(z)� vt) (8)

which accounts for the joule heating and the energy that is
dissipated in the electrode overpotentials (Bernardi, Pawlikowski,
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& Newman, 1985). To model heat generation more accu-
rately, reversible heat, i.e., entropic heat, could be also incor-
porated in the model (Gu & Wang, 2000). A heat conduction
resistance, Rc, is employed to mimic the heat exchange oc-
curring between the core and the surface; convective cooling
through the battery surface is instead modeled with a convec-
tive resistance, Ru, between the battery surface and the en-
vironment (whose temperature is denoted with Tf ). Finally,
the core heat capacity, Cc, and the surface heat capacity, Cs,
determine the rate-of-change of Tc and Ts, respectively.

2.3. Electro-thermal coupling

The value of Rs is strongly dependent on temperature and
current flow direction and only slightly dependent on SoC,
hence it can be modeled with an Arrhenius-like function (Lin
et al., 2014):

Rj
s = Rj

s,0exp

 
T j

ref,Rs

T � T j
shift,Rs

!
(9)

with j = d, c when discharging or charging, respectively.

Instead, the values of Ri and Ci vary with SoC, current flow
direction, and temperature. For the polarization resistances
a second-order polynomial function and an Arrhenius-like
function are employed to respectively approximate SoC and
temperature dependency (Lin et al., 2014):

Rj
i =

⇣
Rj

i,0 + aji,1z + aji,2z
2
⌘

exp

 
T j

ref,Ri

T � T j
shift,Ri

!
(10)

with i = 1, 2 and j = d, c when discharging or charging,
respectively.

The polarization capacitances, instead, are fitted by a quadratic
function of SOC affine with temperature (Lin et al., 2014):

Cj
i =Cj

i,0 + cji,1z ++cji,2z
2
+

⇣
cji,3 + cji,4z + cji,tz

2
⌘
T

(11)

with i = 1, 2 and j = d, c when discharging or charging,
respectively.

The value of the coefficients in Eq. (9)-(11) are determined
fitting the experimental data given in Lin et al. (2014). The
value of all the other model parameters, which are assumed
to be constant, are indicated in Table 1.

As detailed in Figure 1, the two sub-models interact through
a two-way coupling. First, the electrical submodel computes
the SoC and the voltage of the battery, based on the load cur-

Parameter name Symbol Value Unit
Nominal battery capacity Cbat 2.1 Ah
Environment temperature Tf 25 °C
Surface heat capacity Cs 4.5 JK�1

Core heat capacity Cc 62.7 JK�1

Heat conduction resistance Rc 1.94 KW�1

Heat convection resistance Ru 3.19 KW�1

Table 1. Constant model parameters.

rent it and the electrical parameters. The difference between
vt and OCV(z), along with i, is used to compute the elec-
trical heat Q. Then, the thermal model calculates Tc and
Ts based on Q and the environment temperature Tf . The
core temperature, Tc, which represents the temperature of the
lumped electrode assembly, is used to determine the value of
the temperature-dependent parameters of the electrical model.

The coupled electro-thermal model of a cylindrical LIB cell,
which incorporates a representation of the ISC phenomenon,
will henceforth be referred to as the cET-ISC model.

3. ONLINE ISC ESTIMATION ALGORITHM

The state of a dynamical system is a set of variables that fully
describe the actual condition and behaviour of the system.
Non-linear dynamical systems are systems whose dynamics
depend on the state in a non-linear way, meaning that they
cannot be expressed as a linear combination of the state vari-
ables (Walcott & Zak, 1987). A state-space model is a way
of representing the dynamics and the observations of a sys-
tem using a hidden state vector, which collects all the state
variables (Nise, 2020). The state equation, denoted with f ,
and the observation equation, denoted with h, are two func-
tions that define a state-space model. The state equation f
describes how the state vector evolves as a function of the
previous state and some noise. The observation equation h,
instead, describes how the observed data is related to the state
vector and some noise.

The EKF is a type of online state estimator. It is an itera-
tive method that can estimate the state of non-linear dynam-
ical systems (Simon, 2006). It deals with non-linearity by
approximating the non-linear dynamic equations with linear
ones using Taylor expansion. The algorithm has two main
steps:

• the prediction step, where the next state estimate, de-
noted with x̂, and the predicted observations, denoted
with ŷ, are computed by using the previous state estimate
in the non-linear dynamic equation and in the non-linear
observation equation, respectively; also, in this step, the
error covariance matrix, denoted with ⌃x̂, which repre-
sents the prediction uncertainty, is calculated;

• the correction step, where the state estimate and the error
covariance matrix are updated with appropriately weighted
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innovation terms that depend on the actual observations
of the system.

The whole algorithm is shown in Table 2. Note that the al-
gorithm must be properly initialized, assigning a value to the
state vector estimate and the error covariance matrix, respec-
tively.

The EKF algorithm is employed to perform parameter iden-
tification when the system parameters are unknown or uncer-
tain and need to be estimated along with the state variables.
Parameter identification is the process of finding the values of
the parameters that best fit the observed data and the system
model. The EKF can perform parameter identification by us-
ing one of the following methods (J. Zhang, Zhou, & Huang,
2018):

• Joint estimation: this method combines the state and pa-
rameter vectors into an augmented state vector, and the
EKF estimates both the state and the parameters simulta-
neously. This method is simple and effective, but it may
suffer from observability issues and high computational
costs, especially when the augmented state dimension is
big.

• Dual estimation: this method uses two separate EKFs,
one for state estimation and one for parameter estima-
tion. The state EKF uses the parameter estimates from
the parameter EKF as inputs, and the parameter EKF
uses the state estimates from the state EKF as outputs.
This method is more efficient, but less accurate as it ne-
glects possible cross-correlation effects between the state
variables.

In this work, a simplified version of cET-ISC model described
in Section 2, which neglects the electro-thermal coupling, is
discretized in time using the forward Euler integration method,
allowing its implementation in the filter. Following the ap-
proach employed by the same authors in a previous work (Jia
et al., 2024), the state vector of the simplified model is aug-
mented including the equivalent ISC conductance GISC =

1/RISC , yielding:

x = [z, vRC1 , vRC2 , GISC , Tc, Ts]
T (12)

to allow the joint estimation of a parameter directly related to
the ISC status. The choice of using GISC in place of RISC is
motivated by the simpler computation of the Jacobian matri-
ces, which is required by the EKF algorithm. However, RISC

can be easily calculated from GISC . The input vector and the
output vector are

u = [it, vt]
T (13)

y = [vt, Ts]
T (14)

Extended Kalman Filter Algorithm
Initialization:

Initialize state estimate x̂�
0 and error matrix covariance ⌃x̂�0

Prediction Step:
Predict the state estimate:
x̂�
k = f(x̂+

k�1, uk�1, w̄k�1)
Predict the observations:
ŷk = h(x̂+

k�1, ŷk�1, uk�1, n̄k�1)
Predict the error covariance matrix:
⌃x̂�k

= Ak⌃x̂�k�1
AT

k +Bk⌃wB
T
k

Correction Step:
Compute the Kalman gain matrix:
Kk = ⌃x̂�k

CT
k (Ck⌃x̂�k

CT
k +Dk⌃nD

T
k )

�1

Update the state estimate:
x̂+
k = x̂�

k +Kk(yk � ŷk)
Update the error covariance matrix:
⌃x̂+k

= ⌃x̂�k
�Kk(Ck⌃x̂�k�1

CT
k +Dk⌃nD

T
k )K

T
k

Where:
Ak = @f

@x

��
x̂+k�1,uk�1,w̄k�1

Bk = @f
@w

��
x̂+k�1,uk�1,w̄k�1

Ck = @h
@x

��
x̂+k�1,uk�1,n̄k�1

Dk = @h
@n

��
x̂+k�1,uk�1,n̄k�1

and ⌃w,⌃n are the covariance matrices of the two independent,
zero-mean, Gaussian processes w and n.

Table 2. Description of the Extended Kalman Filter algo-
rithm.

assuming that the load current it, the terminal voltage vt, and
the surface temperature Ts are all measurable quantities.

4. CASE STUDY

This section presents a numerical case study to demonstrate
the effectiveness of the proposed algorithm in detecting and
quantifying ISC insurgence for different operating conditions.
These conditions encompass both low and high discharging
and charging current profiles and different environmental tem-
peratures. This allows for the assessment of the robustness of
the online ISC estimation algorithm described in Section 3
against loads and environmental uncertainties. In addition,
we have demonstrated the advantages of adding surface tem-
perature measurements for enhanced ISC detection perfor-
mance and the real-time feasibility of the approach.

In this section, the cET-ISC model previously described in
Section 2 is employed to simulate the behaviour of an actual
battery cell, generating voltage and surface temperature data.
These data are then processed by the suggested EKF-based
diagnostic tool to estimate the actual ISC state. For the re-
mainder of this section, we refer to this model as the ’plant’.

4.1. ISC detection threshold

The selection of an appropriate ISC detection threshold, which
is essential for the prompt triggering of an alarm and the en-
suring of the safe operation of the battery, is largely contin-
gent upon the specific type of battery and its intended appli-
cation. Consequently, it is not feasible to determine such a
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threshold in a non-case-specific manner. Nonetheless, in this
work we proposed a systematic approach based on a prelim-
inary analysis conducted in the plant, which could be repli-
cated experimentally on a real battery cell to set an appro-
priate ISC detection threshold. This analysis involves the
performance of a series of simple discharging and charging
tests (at a current of 1C) with varying equivalent ISC resis-
tances and at different ambient temperatures. From the ob-
served voltage and temperature data, it is possible to com-
pute some useful indicators, namely the discharge time tdis,
the charge time tch, and the maximum surface temperature
Ts,max, which are correlated with the presence of ISC, as pre-
viously demonstrated in Feng, Ouyang, et al. (2018). These
quantities are highlighted in Figure 3. The analysis also in-
volves an investigation into the extent to which the voltage
and temperature measurements are affected. The results ob-
tained are presented in Figure 4, where the indicators have
been normalized with respect to the value obtained in nomi-
nal conditions, i.e., no ISC presence and ambient temperature
of 25°C. For the considered ambient temperature range, the
indicators derived from the electrical signals are minimally
affected by the ambient temperature (the curves obtained at
different temperatures overlap) but are strongly influenced by
ISC severity. As expected, instead, the indicator derived from
the temperature signal is mostly affected by the ambient tem-
perature, especially when high values of the equivalent ISC
resistance are considered, therefore we will use the charge
and the discharge times as valuable indicators to set a proper
ISC detection threshold.

The acceptable variance range of the nominal discharge and
charge time of a LIB cell may vary depending on several fac-
tors such as the specific application, the health of the battery
cells, the ambient temperature, and the load conditions. Here
we conservatively set this range at ±5% of the nominal value.
This is because, in the context of the anomaly under consider-
ation, we favour the earliness of detection. However, a wider
range could be employed to minimise the chances of trigger-
ing false alarms. The previous analysis therefore allows us to
determine when the severity of the ISC in the plant becomes
relevant by considering equivalent ISC values for which these
quantities leave the acceptable variance range. Thus, as in-
dicated by the dotted lines in Figure 4, if RISC < 100⌦,
the ISC can be neglected because its effect on the discharge
and charge time is within the allowable variance range of
these quantities. Therefore, we will set RISC = 100⌦ as
the detection threshold in our online ISC detection algorithm.
Nonetheless, it is crucial to note that the proposed approach
entails the continuous monitoring of the equivalent ISC resis-
tance value, along with its temporal evolution. Consequently,
if the value remains unchanging, the filter will converge on
its true value. The ISC detection threshold proposed here is
therefore only required to actually trigger an alarm, based on
the aforementioned analysis. However, the user can observe

that the equivalent ISC resistance value may have already de-
creased even before the alarm is triggered. This makes the
overall approach less sensitive to the choice of the ISC detec-
tion threshold, as for a healthy cell, the estimated ISC resis-
tance value is expected to oscillate around a very high value,
which is the one at which the filter has been initialized, while
for a faulty cell, a step decrease of the equivalent ISC resis-
tance value is expected, as later shown in the results presented
in Section 4.2.

As mentioned in the introduction, according to (G. Zhang et
al., 2021) the ISC state can be classified based on how much
it affects the electrical and thermal characteristics of the bat-
tery cell. Based on the previous analysis, the plant’s elec-
trical and thermal characteristics are slightly affected when
20⌦  RISC < 100⌦ (variance 5-10%). This domain is
therefore regarded as the soft ISC region. The plant’s elec-
trical and thermal characteristics are quite affected when in-
stead 5⌦ < RISC  20⌦ (variance 10-20%). This domain
is therefore regarded as the moderate ISC region. Finally, the
plant’s electrical and thermal characteristics are severely af-
fected when RISC < 5⌦ (variance >20%). This domain is
therefore regarded as the severe ISC region.

4.2. Detection results

The measurements processed by the suggested EKF-based di-
agnostic tool to estimate the actual ISC state, are generated by
discharging and charging the plant, such that 0.1  z  0.9,
with a charge-depleting current profile followed by a constant
charging current. Note that, to account for any dynamics that
the plant does not capture (which include sensor noise, non-
modeled electrochemical effects, e.g., hysteresis, as well as
temperature gradient effects, since a two-state model is con-
sidered here, which can only capture the temperature differ-
ence between the cell core and surface), white noise is added
to these measurements before being fed to the filter.

During the simulation, the plant is cycled with several work-
ing cycles, to allow the filter to converge to a steady-state
value of the estimate. The working cycle shape considered
is illustrated in Figure 5. The figure illustrates two profiles,
with average discharging currents and constant charging cur-
rents of 1C and 4C. As a consequence of the overall lower
current amplitude, the working cycle characterised by lower
currents will generate, according to Eq (8), less electrical heat
and hence will lead to a lower temperature variation in the
battery cell core. Consequently, the dynamics coupling will
be less pronounced in the former case, as the temperature-
varying electrical parameters in the plant will be largely un-
affected. This allows testing the robustness of the ISC detec-
tion algorithm presented in Section 3 against different load
conditions.

A simplified electro-thermal model is employed within the
filter for the sake of simplicity and computational efficiency.
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(a)

(b)

Figure 3. ISC severity indicators obtained from measurement
signals. These outputs are obtained at the nominal plant con-
dition, i.e., when no ISC is present and at the ambient temper-
ature of 25°C, discharging/charging the plant with 1C current.
(a) Terminal voltage. (b) Surface temperature.

Figure 4. ISC indicators evolution with increasing ISC sever-
ity and variable ambient temperature. The dotted lines indi-
cate the ISC value for which the allowed variance range (±
5%) is overcome. These results have been obtained by dis-
charging/charging the plant with 1C current. (a) Normalized
discharge time. (b) Normalized charge time. (c) Normalized
maximum surface temperature.
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Figure 5. Single working cycle architecture (load current, on
the left, and corresponding SoC evolution, on the right). The
SoC outputs illustrated are obtained at the nominal plant con-
dition, i.e., when no ISC is present and at the ambient temper-
ature of 25°C. (a) Average 1C discharging/charging current.
(b) Average 4C discharging/charging current.

This model does not consider the coupling between electri-
cal and thermal dynamics, but includes constant electrical
parameters estimated when the cell is at the nominal ambi-
ent temperature of 25°C. This simplification is adopted due
to the practical constraints in real-world applications, where
predicting the temperature range in which the battery cell
will function is not always feasible. Moreover, conducting a
comprehensive analysis of the cell dynamics evolution under
varying environmental conditions can be a time-consuming
and costly process.

The filter state estimate and error covariance matrix are ini-
tialized as follows:

x̂0 = [0.90, 0V, 0V, 1/500 ⌦�1, 298.15K, 298.15K]
T

⌃x̂0 =[10
�6, 10�6

V
2, 10�6

V
2,

10
�8

⌦
�2, 10�6

K
2, 10�6

K
2
]
T

where a negligible ISC condition is considered, i.e., RISC,0 >
100⌦. All the other filter parameters are indicated in Table 3.
Note that the process noise covariance is non-zero only for
the state variable we are interested in estimating, which is
the equivalent ISC conductance. In other words, in the filter
model, an additive process noise with standard deviation �G

has been added only for the equivalent ISC conductance state,

Parameter name Symbol Value Unit
Sampling time �t 1 s
Voltage noise covariance �2

V 5⇥ 10�5 V�2

Temperature noise covariance �2
T 5⇥ 10�3 K�2

Process noise covariance �2
G 5⇥ 10�11 ⌦�1

Table 3. Filter parameters.

to allow the filter to dynamically update its value, and hence
estimate its unknown evolution.

Before evaluating the algorithm’s robustness against load con-
ditions and environmental uncertainties, we compare the on-
line ISC estimation algorithm performance in terms of timeli-
ness of the detection when the latter is fed with solely voltage
measurements and a combination of voltage and surface tem-
perature measurements. The detection results obtained while
cycling the plant with the working cycles with 1C current at
different ISC conditions are illustrated in Figure 6. It should
be noted that ISC detection can be initiated by setting a suit-
able threshold on the estimated ISC resistance value. In this
work, this value is established at 100 ⌦ based on the analysis
conducted in Section 4.1. An alarm is triggered at any time
that the equivalent ISC estimate crosses downward the detec-
tion threshold, indicating the presence of an ISC. Therefore,
the timeliness of the detection can be quantified as the time
when this threshold is crossed, and the alarm is triggered. The
results demonstrate how consistently, for different ISC sever-
ity, the timeliness increases when combined measurements
are considered.

In the following, a comparison of the detection results, when
working cycles with low and high current loads are consid-
ered, is carried out to understand the extent to which the
load uncertainties affect the dynamics coupling in the plant
and subsequently the detection performance for different ISC
conditions. The detection results obtained while cycling the
plant with the working cycles with low and high current at dif-
ferent ISC conditions are illustrated in Figure 7. Regardless
of the strength of the dynamic coupling in the plant, the re-
sults show that the filter is capable of converging to a steady-
state value of the equivalent ISC resistance. However, as ex-
pected, the coupling has a significant impact on the detection
performance, especially when the ISC is soft. In this case,
indeed, the large fluctuations in the response may led to false
alarms. These fluctuations are due to the fact that the residu-
als between the predicted filter outputs and the measured out-
puts are significantly affected by the prediction errors. The
latter are the result of the strong dynamics coupling in the
plant, which affects the electrical parameters. As the ISC be-
comes more severe, its impact on the residuals increases and
becomes comparable in amplitude to one of the mismodelling
effects, or even greater, allowing the filter to better estimate
the equivalent ISC resistance value.
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(a)

(b)

(c)

Figure 6. Timeliness performance comparison between the
filter with only voltage and the filter with combined voltage
and temperature measurements. The black triangle and cir-
cle indicate when the alarm is triggered for the two cases,
respectively. The detection time saved for the different ISC
severities is as follows: (a) Soft ISC: -20% (b) Moderate ISC:
-18% (c) Severe ISC: -9%.

(a)

(b)

(c)

Figure 7. ISC detection results for different ISC conditions:
4C discharging/charging vs 1C discharging/charging. The
black triangle and circle indicate when the alarm is triggered
for the case of 4C and 1C, respectively. (a) Soft ISC (b) Mod-
erate ISC (c) Severe ISC.
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A further analysis of the detection results is conducted, this
time considering different ambient temperatures at the differ-
ent load conditions (high and low current, respectively). This
is done in order to ascertain the extent to which environmen-
tal uncertainties affect the dynamics coupling in the plant and
subsequently the detection performance for a fixed moderate
ISC condition in the plant. The coupling between the thermal
and electrical dynamics of a battery cell may become more
or less strong, depending on the temperature difference be-
tween the cell core and the cell surface. This, in turn, is af-
fected by the ambient temperature. The detection results at
different ambient temperatures, considering an initial homo-
geneous temperature distribution in the plant, are summarised
in Figure 8. Once again, the filter is capable of converging
to a steady-state value of the equivalent ISC resistance, with
an exception made for the case of 1C load current cycling at
5°C ambient temperature. Here, it is possible to make similar
considerations regarding the fluctuations in the filter estimate
when different ambient temperatures are considered, which
increases the chances of triggering false alarms, penalizing
the detection performance of the algorithm, and ultimately
making it unstable.

The computational time required at each step of the online
estimation has also been calculated in order to demonstrate
the applicability of the approach in real-time. The real-time
performance has been evaluated by computing the latency at
each time step, that is the time taken for the algorithm to pro-
cess a single unit of data from input to output. The average
latency value is approximately 35 ms, with peak values of
50 ms for some spare time steps. These performances were
obtained on a machine equipped with an Intel Core i7-9700
processor, with eight cores and 3.00 GHz, 64 GB of RAM,
and a solid-state drive. It is notable that only approximately
10% of the CPU power is used (i.e., only one core of the pro-
cessor) while running the algorithm. This indicates that a less
powerful and cheaper processor can be used to run the algo-
rithm in a BMS. In commercial BMS the latency typically
ranges from 1s to 100ms (Kong et al., 2017). However, the
latter latency range is typically required with respect to con-
trol applications. In contrast, for the considered application,
namely monitoring and reporting, even higher latency values
can be accepted. In conclusion, the results demonstrate the
computational efficiency of the approach and its feasibility in
terms of real-time implementation in a commercial BMS.

5. CONCLUSION

This paper proposes a novel model-based approach for ISC
detection in LIB cells. The method employs a computation-
ally efficient model and a lean online state-estimation algo-
rithm, which could be seamlessly integrated into a BMS to
enhance battery cell management and safety. The approach
is tested numerically considering a high-fidelity plant con-
sisting of a coupled electro-thermal model of a cylindrical

(a)

(b)

Figure 8. ISC detection results for a fixed moderate ISC con-
dition in the plant with variable ambient temperature. The
black triangle indicates when an alarm is triggered. (a) 4C
load current cycling (b) 1C load current cycling.
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battery cell. The plant model considers a second-order ECM
model and a two-state thermal model to accurately mimic the
electrical and thermal dynamics of the cell. By exploiting
both surface temperature and the terminal voltage observa-
tions, the EKF algorithm can accurately estimate a state of
its model that is directly related to the ISC condition of the
plant. The satisfactory results of the detection process have
demonstrated that, for different load conditions and ambient
temperatures, the algorithm is capable of detecting ISC oc-
currence and also accurately quantifying its severity in a rela-
tively short amount of time, that is approximately four work-
ing cycles. Therefore, we have demonstrated the robustness
and reliability of the filtering algorithm proposed for effective
ISC detection and quantification under different load condi-
tions and environmental uncertainties. It is worth noting that
detection performance could be further improved by incorpo-
rating dynamic coupling into the filter model, although this
would require additional experimental analysis for accurate
modelling and additional computing power to run the algo-
rithm online. However, this may not be necessary if the bat-
tery is operated in a controlled environment and load, due to
the presence of the battery and thermal management systems.

There are limitations to this study that require further investi-
gation in future research. In this study, a single battery cell is
considered, assuming that it is possible to access both sur-
face temperature, voltage, and applied current for the sin-
gle cell. In many applications, cells are typically stacked in
modules, which in turn are arranged to form a battery pack.
Consequently, future research will concentrate on developing
model-based algorithms that are capable of detecting and po-
tentially quantifying ISC occurrences in a battery pack, even
when a limited network of temperature and voltage sensors is
available.
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