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ABSTRACT

Bearings are critical components in rotating machinery, and
their failure can lead to costly repairs and downtime. To pre-
vent such failures, it is important to detect and diagnose bear-
ing faults early. In recent years, deep learning techniques
have shown promise for detecting and diagnosing bearing
faults automatically. While these algorithms can all achieve
diagnostic accuracy of over 90%, their generalizability and
robustness in complex, extreme variable loading conditions
have not been thoroughly validated. In this paper, a fea-
ture extraction method based on Synchro-squeezing Wavelet
Transform (SSWT), Random projection (RP), and deep learn-
ing (DL) is presented. To fulfill the data requirements of neu-
ral networks, data augmentation is initially utilized to aug-
ment the size of the original data. Subsequently, the SSWT
technique is employed to convert the signals from the Time
domain to the Time-Frequency domain, resulting in the con-
version of the 1-D signal to a 2-D feature image. To de-
crease the complexity of deep learning computation, data pre-
processing involves utilizing Random projection to reduce
feature dimensionality. The final step involves constructing
a Convolutional Neural Network (CNN) model that can iden-
tify fault features from the obtained Time-Frequency images
and perform accurate fault classification. By utilizing the
CWRU and IMS datasets to evaluate the method, the study
demonstrates that the suggested approach outperforms ad-
vanced techniques in terms of both diagnostic accuracy and
robustness.

Boubker Najdi et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

The rapid progress in science and technology has significantly
advanced modern industry (Gai, Shen, Hu, & Wang, 2020).
This advancement has led to the creation of highly integrated,
precise, and intelligent rotating machinery, essential in vari-
ous sectors of modern manufacturing. Bearings are crucial
components in these machines, providing stability and en-
abling the shaft to rotate relative to a stationary part. Over
time, the heavy loads exerted on these components lead to
their degradation, potentially causing unexpected equipment
failures.

According to studies (Gai et al., 2020), bearing issues are
responsible for about 40% of motor breakdowns, leading to
substantial financial losses, increased maintenance costs, ex-
tended downtime, and even risks to human safety (Liang,
Zuo, & Feng, 2018). Therefore, effective rolling bearing fault
diagnosis and condition monitoring are critical.

Many academics are integrating various signal processing tec-
hniques with machine learning algorithms to address chal-
lenging research problems, driven by the industry’s eager-
ness to adopt advanced digital technologies. The most com-
mon meth-od for fault classification and diagnosis in rolling
bearings is vibration feature extraction. Initial research ef-
forts focused on calculating different statistical indices in the
time domain (Renwick & Babson, 1985; Altman & Mathew,
2001) and frequency domain (Hu, 2006; Lei, 2008). How-
ever, variations in operating speed can render the bearing en-
vironment unstable, making stationary signal analysis meth-
ods less effective. This challenge has led to the increased use
of Time-Frequency Analysis (TFA) approaches, which pro-
vide both time and frequency information, making them suit-
able for non-stationary signals (Ricci & Pennacchi, 2011).
Classical TFA techniques include linear and quadratic ap-
proaches, such as the Short-Time Fourier Transform (STFT),
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Wavelet Transform (WT), and Wigner-Ville Distribution (W-
VD). The Time-Frequency Representation (TFR) produced
by conventional linear TFA methods, however, often experi-
ences spreading around the instantaneous frequency (IF) tra-
jectory of the signal, a limitation imposed by the Heisen-
berg uncertainty principle. To address this, the reassignment
method (RM) (Auger & Flandrin, 1995), which employs post-
processing techniques, has been suggested. However, this
method does not allow for signal reconstruction (Auger et
al., 2013). Daubechies proposed the SSWT as a solution
to this problem. The primary aim of the SSWT is to en-
hance the readability of the TFR provided by the Continu-
ous Wavelet Transform (CWT) (Daubechies, 2000) through a
reassignment technique while maintaining the invertibility of
the transform. Consequently, the SSWT is increasingly used
for fault diagnosis in various applications (Liu, Li, & Chen,
2018; Lee, Chen, Wu, & Jamerson, 1989; J. Wen et al., 2015).

Deep learning has revolutionized the training of neural net-
works with its capability to handle long and complex layers.
It is widely applied in various fields, including image gener-
ation and processing (Bengio, 2016; LeCun, Bengio, & Hin-
ton, 2015). The CNN, a deep learning model, mimics the
mammalian visual system and is known for its three key ar-
chitectural elements: local receptive fields, shared weights,
and spatial domain pooling, making it particularly effective
for two-dimensional visual input recognition (Pham, Kim, &
Kim, 2021b; Zan, Wang, Wang, Liu, & Gao, 2019; Pham,
Kim, & Kim, 2021a).

CNNs have gained popularity in bearing fault diagnosis. For
instance, Wen et al. (L. Wen, Li, Gao, & Zhang, 2018) de-
veloped 12 CNN models based on the standard CNN and
LeNet-5, transforming one-dimensional time series data into
two-dimensional image signals for input into the LeNet-5,
demonstrating success in three mechanical fault classification
tasks. Wang et al. (Wang, Zhuang, Duan, & Cheng, 2016)
enhanced CNNs’ generalization for fault detection by apply-
ing Morlet wavelet decomposition, bilinear interpolation, and
rectified linear units to grayscale images derived from vibra-
tion signals. Another approach, combining Cyclic Spectral
Coherence (CSCoh) with CNNs, has been proposed for di-
agnosing rolling bearing faults, showing improved detection
performance (Chen, Mauricio, Li, & Gryllias, 2020). How-
ever, these methods pose challenges in real-world engineer-
ing due to the high demand for training samples. Gathering
fault data is particularly difficult since equipment typically
operates without failure, leading to a data imbalance in fault
identification.

To address the computational and storage burden of high-
dimensional features in multi-layer CNNs, the Random Pro-
jection (RP) method is employed for image pre-processing
and dimensionality reduction. RP, simpler and faster than tra-
ditional techniques like PCA, becomes increasingly advanta-

geous as dimensions grow (Bingham & Mannila, 2001),
(M.Benbrahim, 2014).

Considering the literature review in the introduction and to
address the aforementioned limitations, this research integrate-
s several techniques, including SSWT, data augmentation, RP,
and CNN, to develop a comprehensive deep neural network
framework for diagnosing bearing faults. In our proposed
model, SSWT is employed to enhance the readability of the
TFR. RP effectively reduces the computational overhead as-
sociated with multi-layer CNN features and removes redun-
dant information from the SSWT outputs, accelerating the
deep learning training process. Our model utilizes a CNN
architecture inspired by the strengths of the LeNet-5, captur-
ing hierarchical information. Data augmentation techniques
are implemented to expose the model to a wider range of sce-
narios, thereby improving its generalization ability. This is
particularly crucial in tackling the challenges associated with
limited datasets in real-world engineering, where collecting
faulty data is often difficult. The augmentation introduces
diversity, enhancing the model’s adaptability to various con-
ditions and ultimately improving its performance in bearing
fault diagnosis. This comprehensive approach leverages the
strengths and mitigates the weaknesses of each technique, en-
suring the effectiveness of our model.

The rest of this paper is organized as follows: Section 2 ex-
plains the background theory behind the methods used in this
research. The proposed diagnostic method is presented in
Section 3. Section 4 introduces the experimental process and
analyzes the results. Finally, Section 5 draws conclusions.

2. THEORETICAL BACKGROUND

2.1. Convolutional Neural Networks

In this section, the theory behind CNNs is delved into, high-
lighting their increasing use in addressing various challenges
in computer vision. CNNs are particularly adept at detecting
patterns in two-dimensional feature spaces, such as images.
These patterns can often be represented by templates, which
are essentially smaller segments of the image itself. A stan-
dard CNN comprises three types of layers: a convolutional
layer, a pooling layer, and a fully connected layer (FCL), sim-
ilar to those found in typical neural networks (Ghosh, Sufian,
Sultana, Chakrabarti, & De, 2020), as illustrated in Figure 1a.

The convolutional layer employs a set of filters to generate
feature maps from input images. These feature maps capture
essential patterns and characteristics of the input. The pool-
ing layer serves as a down-sampling mechanism, effectively
reducing the dimensionality of the feature maps and retaining
only the most salient features. After several alternating con-
volutional and pooling layers, the fully connected layers are
utilized to calculate class scores, leading to the final output.
In the convolutional layers, feature maps from the previous
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layer are convolved with learnable kernels and then passed
through an activation function to produce the output feature
map. This process allows the combination of convolutions
from different input maps into a single output map, further
enhancing the network’s ability to extract and learn complex
patterns. Each output map in a CNN can include convolutions
from multiple input maps, which can be computed as follows:

xi
j = f

0

@
X

i2Mj

xl�1
i ⇤ klij + blj

1

A , (1)

In this equation, xi represents the i-th input map, klij is a
convolutional kernel for the j-th feature map at the l-th layer,
⇤ denotes the convolutional operation, blj is an additive bias,
and Mj is the set of input maps contributing to the j-th output
map at layer l. The results of this convolution are then passed
through an activation function, f (Bouvrie, 2006). One of
the most widely used activation functions in Neural Networks
(NNs) today is the Rectified Linear Unit (ReLU), defined as:

ReLU(x) = max(0, x), (2)

The ReLU function introduces non-linearity in the model, al-
lowing it to learn complex patterns in the data.

In a CNN architecture, the pooling layer is typically posi-
tioned between convolutional layers. This layer plays a cru-
cial role in reducing the number of parameters and computa-
tions in the network, thereby mitigating the risk of overfitting.
It achieves this by gradually reducing the spatial size of the
network. One of the most common types of pooling layers
is the max-pooling layer, which selects the maximum value
from each region of the input feature map. This process is
achieved using filters that slide through the input, as depicted
in Figure 1b, which shows the max-pooling transformation.

In the final phase of a CNN, the output feature maps from
the last convolutional or pooling layer are typically flattened
into a one-dimensional (1D) vector. This flattening process
is essential to transform the multi-dimensional output into a
format suitable for the fully connected layers that follow. In
these layers, each input is connected to each output with a
learnable weight. The expression for the output in a fully
connected layer is given by:

y = f

 
nX

i=1

xiwi + bi

!
, (3)

where y represents the output value, xi is the i-th input value
in the fully connected layer, wi and bi are the weight and bias
associated with xi, respectively, and f denotes the activation
function. This structure allows the network to learn complex
relationships between the high-level features extracted by the

(a) A typical CNN architecture

(b) Maxpooling Transformation

Figure 1. Illustration of CNN components: (a) A typical CNN
architecture, (b) Maxpooling transformation

previous layers and the final output.

2.2. Random Projection

The main objective of any data transformation or projection
approach is to maintain as much information as possible be-
tween the initial and transformed datasets while enhancing
the data’s presentation in its new form.

Even though the notion of dimensionality reduction is pop-
ular and beneficial, it has several drawbacks. First, the pro-
jection directions that arise are data-reliant, which causes is-
sues when the size of the data grows. Second, they can be
computationally too expensive. It has been demonstrated ex-
perimentally that results achieved with the RP approach are
equivalent to those obtained with PCA, and that the RP method
takes a fraction of the time needed by PCA (Kononenko &
Kukar, 2007).

In RP the original m-dimensional data X 2 Rm is trans-
formed to a n-dimensional space (n ⌧ m), using a random
generated n ⇤m matrix S = R.X via S 2 R with (n ⌧ m)
whose elements are scaled to have a unit length and chosen
to be independent and identically distributed (Kononenko &
Kukar, 2007). The RP projects the original m-dimensional
data to an n-dimensional space (n ⌧ m) while preserving the
distances between the observations through the Johnson–Lind-
enstrauss lemma below (Johnson & Lindenstrauss, 1984):
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Lemma 1 (Johnson–Lindenstrauss lemma). For any 0 < ✏ <
1 and any finite set X of points in Rm

, there exists a lin-

ear map M : Rm ! Rk
into a space of dimension k =

O( log(|X|)
✏2 ) such that for all u, v 2 X:

(1�✏)ku�vk2  kM(u)�M(v)k2  (1+✏)ku�vk2 (4)

This theorem establishes a mechanism to determine the min-
imum dimension in which the original data can be embedded
without significantly affecting the dataset’s local properties.
This embedding is achieved using a randomly generated ma-
trix MK⇥m, where the elements are scaled to unit length and
chosen to be independent and identically distributed. This
approach ensures that, in expectation, the Euclidean distance
between any two points is approximately preserved. The trans-
formation of the original data is represented as:

XRP
K⇥N = MK⇥m ·Xm⇥N (5)

where XRP
K⇥N represents the k-dimensional projected data,

MK⇥m is the random transformation matrix, and Xm⇥N is
the original set of N-dimensional observations.

For the distribution of matrix M , there are several options.
Achlioptas (Achlioptas, 2003) proposed an efficient method
for applications such as databases. The elements mij of the
matrix M can be generated according to one of the following
distributions:

mij =

(
+1 with probability 0.5,

�1 with probability 0.5.
(6)

mij =
p
3⇥

8
><

>:

+1 with probability 1
6 ,

0 with probability 2
3 ,

�1 with probability 1
6 .

(7)

In practice, any zero-mean, unit-variance distribution for mij

will yield a mapping that satisfies the Johnson-Lindenstrauss
lemma.

2.3. Synchrosqueezing wavelet tranform

The wavelet synchrosqueezed transform is a time-frequency
technique that reassigns the energy of a signal in frequency.
This reassignment serves to counteract the spreading effects
induced by the mother wavelet. Notably, unlike other time-
frequency reassignment techniques, synchrosqueezing precis-
ely redistributes energy along the frequency axis while pre-
serving the signal’s time resolution.

Let  be a complex mother wavelet, that has strictly posi-
tive support and meets the conventional admissibility crite-
rion

R1
0

 ̂(z)
z dz < 1 (Daubechies, 1992) as time t and scale

a > 0, the CWT of a signal s(t) is:

W s(a, t) =
1p
a

Z

R
s(⌧) ⇤(

⌧ � t

a
) d⌧ (8)

then the instantaneous frequencies from the CWT are extracted
in equation 9, ws, using the phase transform defined as:

ws(a, t) =
1

2⇡jW s(a, t)

@W s(a, t)

@t
(9)

the new time-frequency representation is obtained by map-
ping the information from the time-scale plane to the time-
frequency plane. Thus, the synchrosqueezing procedure is to
move the coefficients vertically according to the map (t, a) 7�!
(t, ws(a, t)):

SSWTs(t, ⌘) =

Z

{(a,t):⌘,ws(a,t)}

1

a
2
3

W s(a, t) da (10)

where SSWTs(t, n) is the SSWT of signal s(t), ⌘ is the IF
centered on the level of curves ws.

To visualize how the SSWT sharpens the TF transformation
and increases its resolution in the frequency domain, a basic
Gaussian-modulated cosine signal is used and represented in
Figure 2a, s(t) = A · cos(2⇡f0t) · e�

t2

2�2 as an example,
where the amplitude of the signal A = 1, the frequency of
the cosine term f0 = 28Hz, and � = 0.2 is the standard
deviation controlling the width of the Gaussian term and t is
time.

Figure 2b demonstrates that the CWT does not excel in pro-
ducing a concentrated time-frequency (TF) representation. In
contrast, as shown in Figure 2c, the SSWT achieves superior
time-frequency resolution by mitigating the spreading effect
inherent in the CWT. The synchrosqueezing technique of the
SSWT selectively reallocates energy, addressing the CWT’s
tendency to disperse signal energy, which can lead to reduced
precision. This results in a more accurate and focused depic-
tion of the signal’s temporal and frequency characteristics.

2.4. Data Augmentation

To achieve a robust bearing diagnostic model, data augmen-
tation is used on raw time-series data, implying the deliberate
addition of greater diversity to the training set. By doing so,
the model becomes capable of handling unexpected changes
in real-world data. This deliberate diversification ensures the
model’s adaptability to sudden shifts, highlighting its robust
nature. By strategically augmenting raw time-series data, the
model’s efficacy is ensured in a variety of changing scenar-
ios while also reinforcing its overall resilience. Moreover,
the overfitting of the model is prevented which increases the
generalization capabilities of deep learning models by using
data augmentation (Shorten & Khoshgoftaar, 2019). In this
work, sample-based augmentation is used to increase the size
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(a)

(b)

(c)
Figure 2. Comparison between the CWT (b) and SSWT (c)
representations of the signal s(t) (a)

of the bearing vibration dataset. The training and testing sam-
ples are expected to be taken from the original dataset, and the
augmentation is done separately on each sample of the signal.

To diversify the dataset for bearing fault diagnostics and adapt
the model to varying conditions, a new data augmentation ap-
proach is proposed. The flowchart of the utilized techniques
is presented in Figure 3. This method applies four differ-
ent augmentation techniques to the original data. Initially,
the raw dataset is subjected to high levels of noise to simu-
late harsh operating conditions and enhance the model’s re-
silience to noisy real-world environments. Additionally, the
data undergoes three distinct augmentation methods: tem-
poral warping, magnitude warping, and permutations, each
based on applying white noise and other transformations to
the original data. Time warping introduces temporal distor-
tions, which challenge the model to identify fault patterns
across various time scales, enhancing its resilience to speed
variations. In contrast, magnitude warping adjusts amplitude
values, aiding the model in detecting faults associated with
magnitude fluctuations. Permutation disrupts the temporal

sequence of the signal’s data points. This emphasizes the
importance of pattern recognition independent of a specific
temporal order and reduces the model’s reliance on memoriz-
ing sequences, thereby improving its adaptability to unseen
sequences. The augmented dataset, comprising the original
dataset along with those modified by high noise, time warp-
ing, magnitude warping, and permutation, enhances the train-
ing data. This improvement increases the model’s generaliza-
tion capability and robustness. Figure 4 depicts the signals
generated using this data augmentation approach.

3. PROPOSED METHOD FOR FAULT DIAGNOSIS

In this section, the proposed method for bearing diagnosis is
presented. This method leverages a CNN architecture along
with RP, enhanced with data augmentation techniques and
Time-Frequency feature extraction. The overall process is il-
lustrated in Figure 5, which provides a flowchart of the pro-
posed bearing diagnosis method.

One of the key advantages of employing a DNN architecture
in our approach is its ability to extract meaningful patterns
from data through non-linear transformations and approxima-
tions. The proposed architecture is structured in two major
stages:

• Phase 1: Four different data augmentation methods (e.g.,
high noise, time warping, magnitude warping, and per-
mutation) are used to create synthetic data from the orig-
inal signal. This synthetic data is then combined with
the original data to form a comprehensive augmented
dataset. The next step involves applying the SSWT to
extract time-frequency image features. The dimension-
ality of the obtained images is reduced using the random
projection algorithm.

• Phase 2: The images of the training dataset are fed to
the CNN in the training phase. From these training im-
age features, the CNN model learns to classify bearing
health conditions with frequency variations over time.
The testing dataset is used after the training to evaluate
the model’s performance.

The following subsection provides further information and
theoretical background about the techniques of the suggested
diagnostic method.

3.1. Case studies and results

In this section, two bearing datasets are used to verify the
performance and the effectiveness of the proposed approach.

• Case 1 (CWRU dataset): the Bearing Data Center at
Case Western Reserve University provides the CWRU
rolling bearing dataset (Smith & Randall, 2015).

• Case 2 (IMS dataset): the data set was provided by the
Center for Intelligent Maintenance Systems (IMS), Uni-
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Figure 3. The flowchart of the data augmentation process.

versity of Cincinnati (J. Lee, H. Qiu, G. Yu, J. Lin, and
Rexnord Technical Services, 2007).

Table 1 shows the software and the hardware environment
used through all the experiments:

Software Hardware
Tensorflow 2.0

Framework
2 GPUs: Tesla

V100s-PCI 32Gb
Python programming

language 3.10
High performance
computation server

Table 1. Software and Hardware configurations.

3.2. Case 1: CWRU dataset

The Case Western Reserve University (CWRU) dataset in-
volved experiments using a 2 hp (approximately 1.5 Kw) Re-
liance electric motor. An accelerometer sensor was positioned
near and far from the motor bearings to collect data. Defects
in motor bearings were introduced through Electro-Discharge
Machining (EDM). The setup of the CWRU test stand is de-
picted in Figure 6 (Smith & Randall, 2015).

This dataset includes a total of 10 health conditions, consist-
ing of nine fault conditions and one normal condition (N).
The fault conditions are Ball fault (B), Inner Race Fault (IR),
and Outer Race Fault (OR), each with damage sizes of 0.007,
0.014, and 0.021 inches (where 1 inch equals 2.54 cm).

The faulty bearings of the test motor were replaced, and vi-
bration data was recorded under motor loads ranging from 0
to 3 horsepower (motor speeds from 1797 to 1729 RPM), as
detailed in Table 2. Acceleration measurements were cap-
tured over a 10-second duration with a sampling frequency of
12 KHz.

In this study, each health condition is represented by 12000

Dataset Number Load (hp) Speed (RPM)
1 0 1797
2 1 1772
3 2 1750
4 3 1729

Table 2. Description of the datasets under different load-
s/speeds.

Health
Conditions Label Fault

size(inches)
Training
samples

Testing
samples

N 0 – 750 180
B7 1 0.007 750 180
IR7 2 0.014 750 180
OR7 3 0.021 750 180
B14 4 0.007 750 180
IR14 5 0.014 750 180
OR14 6 0.021 750 180
B21 7 0.007 750 180
IR21 8 0.014 750 180
OR21 9 0.021 750 180
Total Samples – – 7500 1800

Table 3. Bearing health conditions and class labels of CWRU
for each Dataset.

data points, referred to as observations. For the training datase-
t, 150 sample segments, each consisting of 640 points, are ex-
tracted. These samples are then augmented four times using
the techniques discussed in the previous section, resulting in
750 samples for each health condition. This augmentation in-
creases the training dataset to a total of 7500 samples. The
same augmentation process is applied to the testing dataset,
yielding 1800 samples. Augmenting the test set ensures that
the test data closely resembles the training set, enhancing the
model’s performance and its ability to generalize to similar
signals. Table 3 summarizes the health conditions, along with
the number of training and testing samples.
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Figure 4. The original signal against the data augmentation techniques.

3.2.1. Results of signal transformation

The signal-to-image conversion results for the nine bearing
faults using the SSWT Transform are depicted in Figure 7.
Each converted image has a resolution of 128 ⇥ 640 pixels.
However, this resolution is still relatively large and contains
redundant information. To address this, the random projec-
tion technique previously discussed is applied to compress
the images, making them more suitable for processing by the
CNN model. The results of this compression are shown in
Figure 8, where the randomly projected images clearly dis-
tinguish between different fault conditions. These images
highlight key time and frequency features from the SSWT,
providing an intuitive means to categorize the faults.

3.2.2. Analysis and Results

In the CNN architecture for bearing fault diagnosis, a multi-
layered network was designed inspired by the LeNet-5 model.
This network is capable of capturing hierarchical features fro-
m input data effectively. Table 4 details the specifics of our
network structure. The architecture includes four convolu-
tional layers—with 32, 64, 128, and 256 filters respectively—
progressively increasing in size to capture more complex fea-
tures. Following each convolutional layer, max-pooling lay-
ers reduce spatial dimensions, aiding in feature abstraction.
To prevent overfitting, drop-out layers are incorporated af-
ter the first and second dense layers. Our model consists
of two densely connected layers, and hyperparameter tuning
was a critical step to ensure optimal performance. Grid search
was conducted over predefined ranges for filters, dense units,
dropout rates, and learning rates. The final model employs
256 and 1280 units for the dense layers, dropout rates of 0.3

Layer Type Filter Activation Output
No. Size Shape
1 InputLayer - - (128, 128, 1)
2 Conv2D (3, 3) ReLU (126, 126, 32)
3 MaxPooling2D (2, 2) - (63, 63, 32)
4 Conv2D (3, 3) ReLU (61, 61, 64)
5 MaxPooling2D (2, 2) - (30, 30, 64)
6 Conv2D (3, 3) ReLU (28, 28, 128)
7 MaxPooling2D (2, 2) - (14, 14, 128)
8 Conv2D (3, 3) ReLU (12, 12, 256)
9 MaxPooling2D (2, 2) - (6, 6, 256)

10 Flatten - - 9216
11 Dense - ReLU 1280
12 Dropout - - (None)
13 Dense - ReLU 256
14 Dropout - - (None)
15 Dense - Softmax 10

Table 4. The CNN architecture for bearing fault diagnosis.

and 0.1, uses the Adam optimizer (Kingma & Ba, 2014), and
a learning rate of 6.8e-5. Activation functions include ReLU
for convolutional and dense layers, and Softmax for classifi-
cation in the output layer. The training comprises 20 epochs,
split into two batches of 10 epochs each, with batch sizes of
128 and 256, respectively. This architecture strikes a balance
between robustness and complexity, ensuring accurate fault
diagnosis in bearing systems.

Our objective is to assess the stability and robustness of our
CNN model under various conditions. Four separate datasets
from the CWRU bearing dataset were used to train the CNN
model, and the model’s performance was monitored through
training accuracies and losses. Figure 9a and Figure 9b show
the training accuracy and loss curves for the 20 training epochs,
with accuracy values ranging from 0% to 99%. It was ob-
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Figure 5. Flowchart of the proposed bearing diagnosis method.

Figure 6. The CWRU test stand (Smith & Randall, 2015).

served that the curves began to stabilize at epoch 8, indicating
consistent achievement of 100% accuracy beyond this point
by the model.

The training loss curves rapidly decreased during the initial
epochs, suggesting a swift learning rate. By the third epoch,
the training losses had significantly reduced, implying an in-
crease in accuracy. After epoch 8, the loss curves stabilized
across all four datasets, indicating that the model had reached
its optimal settings. Figure 10 demonstrates the model’s per-
fect accuracy of 100 percent on the training set for all datasets,
efficiently identifying the underlying patterns in the data.

The effectiveness of our model in capturing complex fault-
related characteristics is demonstrated through t-Distributed
Stochastic Neighbor Embedding (t-SNE) visualization. t-SNE

Figure 7. The SSWT of all CWRU bearing faults.
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Figure 8. The RP of the obtained SSWT bearing faults of
CWRU.

(a)

(b)

Figure 9. Training accuracy (a) and training loss (b) curves
of the four datasets(best CNN model).

is a technique used to visualize high-dimensional data in a
low-dimensional space, revealing patterns not readily appar-
ent. In the t-SNE plot of the raw data (Figure 11), no distinct
clusters corresponding to different fault states are observed.
The data points appear randomly distributed, suggesting a
lack of clear fault-related patterns.

However, after applying the SSWT and RP, the t-SNE visu-
alization begins to show distinct clusters (Figure 12). This
change indicates that these preprocessing steps help in reveal-
ing fault-related structures in the data. The t-SNE visualiza-

(a)

(b)

(c)

(d)

Figure 10. The confusion matrices of the four bearing
datasets.
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tions of different layers of the CNN architecture are further
analyzed and displayed across eight subplots. In these vi-
sualizations, particularly in the convolutional layers (Layer:
conv2d to conv2d3 shown in Figure 13), a remarkable sepa-
ration between clusters is observed. Each cluster represents
a different fault state, indicating that the convolutional layers
are effectively extracting features specific to each fault type.

In the flattened layer (Layer: flatten), and the dense layers
(Layer: dense to dense1), the clusters remain distinct and
well-separated, reinforcing the capability of our model to dif-
ferentiate between various fault states. A notable observation
is in the t-SNE visualization of the final dense layer (Layer:
dense2 with softmax activation for classification), where clus-
ters appear as curved lines and dots, a result of the transfor-
mation of the feature space by the softmax layer. This distinct
representation in the final layer highlights the model’s ability
to classify faults accurately.

3.2.3. Comparison with time-frequency analysis methods
under different operating conditions

The CWT with the morlet wavelet and STFT methods are
used to be compared with SSWT, which are often regarded
as useful for processing transient and nonstationary signals.
To verify the robustness and the generalization performance
of the proposed method, tests under different operating con-
ditions are performed. In this experiment, a dataset from one
load is utilized for training, and two datasets from another
load are used for testing. For instance, the notations A 7! B
and A 7! C mean that the dataset of load A is used for train-
ing and the dataset of loads B and C are used, respectively,
for testing. Ten different health conditions are present in each
dataset under a single load; Table 3 has already provided the
specifics. More precisely, loads 1, 2, and 3 are connected
to datasets A, B, and C, respectively. The TF representa-
tions from the methods are randomly projected and trained
with the selected CNN model for a fair comparison. In ad-
dition, the suggested model’s, denoted SSWT-RP(Aug), ef-
fectiveness is evaluated using augmented data. The compar-
ison seeks to demonstrate how data augmentation affects the
model’s overall performance, as exhibited by increased accu-
racy and improved generalization. The results displayed in
Table 5 demonstrate the accuracies of tests across domains.
Notably, compared to existing TF approaches, our suggested
method with augmentation shows clear superiority. It is im-
portant to note that a significant accuracy difference still ex-
ists without using data augmentation techniques, underscor-
ing the robust feature representation capability of SSWT-RP.

3.2.4. Comparison with other methods

The results presented in Table 6 offer compelling evidence of
the superiority of our proposed algorithm compared to exist-
ing state-of-the-art methods on the same dataset. The sug-

gested method surpasses alternative methods in classification
performance. It achieves classification accuracies of 100%,
100%, 99.22%, and 99.61% for datasets 1, 2, 3, and 4, respec-
tively, resulting in an average accuracy of 99.71% across all
datasets. The only misclassifications were 0.27% and 0.44%
for the OR7 and B14 fault types, respectively, in the load (2
hp), with OR7 being mistaken for OR14 and B14 for B21.
Similarly, in the load (3 hp), the sole misclassification was
0.38%, with B21 being misclassified as IR14.

When compared to other models, the suggested CNN method’s
evaluation on the CWRU bearing dataset demonstrated its
outstanding generalization capability and resilience. Notably,
the CNN model showed higher resistance to noise and changes
in the vibration data compared to the other models, as evi-
denced by its much lower standard deviation in performance
measures. Our algorithm achieved significantly higher accu-
racy rates on all four datasets, with rapid convergence after
only four epochs of training, and remained stable throughout
the remaining training epochs. The CNN architecture’s built-
in hierarchical feature learning, capable of capturing complex
Time-Frequency patterns in the 2D images obtained from time-
series vibration data through SSWT, was vital in enhancing
the model’s ability to recognize subtle fault signals.

3.3. Case 2: IMS dataset

In this section, the proposed approach is applied to another
motor bearing dataset provided by the Center for Intelligent
Maintenance Systems (IMS) (J. Lee, H. Qiu, G. Yu, J. Lin,
and Rexnord Technical Services, 2007), to further validate
the method and test its effectiveness. Figure 14a and Figure
14b display the positioning of the sensors and the mechanical
structure of the system, respectively (J. Lee, H. Qiu, G. Yu, J.
Lin, and Rexnord Technical Services, 2007).

Four bearings were arranged along a single shaft to form the
bearing test rig. An AC motor, coupled to the shaft via a rub-
ber belt, drove the shaft at a constant speed of 2000 rpm. A
spring mechanism provided a radial force of approximately
26690 N on the shaft and bearing. An oil circuit system that
controlled the lubricant’s flow ratio and temperature was used
to lubricate the bearings. The bearings were all double-row
Rexnord ZA-2115 bearings. Two PCB 353B33 High Sensi-
tivity Quartz ICP accelerometers for each bearing (x- and y-
axes) were placed on the bearing housing for dataset 1, but for
datasets 2 and 3, only one accelerometer for each bearing. All
failures occurred after the bearing had completed more than
its intended lifetime of more than 100 million revolutions.

The datasets describe tests up to failure and include files with
snapshots of 1-second vibration signals taken at predetermined
intervals (every 5 or 10 minutes). The NI DAQ Card 6062E
was used to collect the data. These files contain 20,480 data
points that were timestamped for collecting events and sam-
pled at 20 kHz. Three tests were conducted in this exper-
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Figure 11. Label colors and t-SNE of Raw Data Figure 12. t-SNE after SSWT and RP

Figure 13. t-SNE visualization of CNN layers

Method A 7! B A 7! C B 7! C C 7! A Average
STFT-RP 87.5± 2.33 89.12± 1.54 81.21± 0.87 90± 0.99 86.96
CWT-RP 93.39± 0.25 91.33± 1.11 87.21± 0.98 89.78± 0.25 92.68
SSWT-RP 95.12± 0.96 94.87± 0.74 94.48± 0.30 95.66± 0.15 95.04
SSWT-RP(Aug) 98.5 ± 0.54 99.1 ± 0.22 96 ± 0.34 97.16 ± 0.12 97.68

Table 5. Comparison of different TF methods under noise and different loads/speeds

(a) The bearing test rig and
sensor placement.

(b) The mechanical sys-
tem’s structure.

Figure 14. The experimental setup (J. Lee, H. Qiu, G. Yu, J.
Lin, and Rexnord Technical Services, 2007).

iment, resulting in a roller element defect in bearing 4 and
an inner race defect in bearing 3 at the end of test 1. In the
other tests, 2 and 3 respectively, bearings 1 and 3 had outer
race failure. The test folders contain several files each, and
only 30 out of 750 files were randomly selected for each con-
dition type, to demonstrate the reliability and the generaliza-
tion ability of the proposed method, without the need for large

amounts of data thanks to the data augmentation techniques.
Each revolution has 600 data points at a sampling rate of 20
kHz and a rotational speed of 2000 RPM. The size is set to
be twice the rotation period, or 1200 data points. Every con-
dition now contains 512 segments, which leads to 3072 seg-
ments after applying the four data augmentation techniques
in the proposed method. The training dataset forms 62.5% of
the total dataset, and the remaining 37.5% forms the testing
dataset. Table 7 lists the health conditions and sample num-
bers for training and testing.

3.3.1. Results of Signal Transformation

The same procedure is applied to augment the vibration sig-
nals for the IMS dataset, preserving the same parameters of
the techniques used above. Following the chosen signal seg-
mentation of the 1200 data points used in the subsection above,
the results of the signal-to-image conversion of the four bear-
ing health conditions using the SSWT Transform are shown
in Figure 15. The converted images have a size of 128⇥1200
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Method Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average
Altman,Mathew(FFT-SVM) 68.6 60 67.6 68.4 66.15
Altman,Mathew(FFT-ANN) 82.2 82.6 77 76.9 79.68
Gao(WDCNN) 99 98 99 99 98.75
Chen(CSCoh) 99.39± 0.20 99.33± 0 99.33± 0 97.68± 0.98 98.93
Yang(HSA-CNN) 99.75± 0.36 99.65± 0.33 98.85± 0.31 99.66± 0.12 99.34
Proposed Method 100 ± 0 100 ± 0 99.22 ± 0.36 99.61 ± 0.12 99.71

Table 6. Comparison of different methods with our proposed method

Health
Conditions Label Training

samples
Testing
samples

Healthy 0 1920 1152
Inner Race 1 1920 1152
Outer Race 2 1920 1152
Roller 3 1920 1152
Total Samples – 7680 4608

Table 7. Bearing health conditions and class labels of IMS

Figure 15. The SSWT of all IMS bearing health states.

pixels each.

It can be seen from the projected images that the different
fault conditions appear completely distinct from one another.
Random projection is the last stage of data transformation.
The results of the random projection of the obtained images
in Figure 15 are presented in Figure 16.

3.3.2. Analysis and Results

The IMS dataset is used to train our CNN model using the
same architecture as in Case 1. The training accuracy and
loss throughout 20 training epochs are shown in the line chart
of Figure 17(a).

A quick learning rate was evident from the rapid drop in train-
ing losses from epochs 1 to 6. The curve began to stabilize
around epoch 7, after which the model consistently attained

Figure 16. The RP of the obtained SSWT bearing health
states of IMS.

100% accuracy. The confusion matrix in Figure 17b, on the
other hand, shows the results of the testing dataset. The algo-
rithm made no single mistake when classifying all the bearing
conditions, resulting in a remarkable 100% total testing accu-
racy.

Significant insights are revealed by the investigation of the t-
SNE clustering results from the CNN architecture used with
the IMS Bearing Dataset. The raw data’s t-SNE plot (Fig-
ure 18) does not show clear clusters corresponding to various
fault states; instead, it appears to have class labels spread at
random. However, after employing the SSWT and RP, the
clusters emerged and took on more distinct patterns (Figure
19).

The convolutional layers (Layer: conv2d8-conv2d9) in Fig-
ure 20 reveal different clusters for each type of fault, demon-
strating the model’s capacity to identify fault-related informa-
tion. The flattened layer (Layer: flatten2), where the distinct
separation of fault conditions continues, reflects this. The
dense layers (Layer: dense6-dense7) maintain cluster sepa-
ration, affirming the architecture’s effectiveness in generating
refined representations that preserve fault distinctions. How-
ever, an unexpected result emerges in the t-SNE visualization
of the last dense layer (Layer: dense8), which includes a soft-
max activation for classification. Here, two clusters (Class
0 and 2) are scattered, and two (Class 1 and 3) are repre-
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(a) (b)

Figure 17. The loss and accuracy curves (a) and the confusion matrix (b) of the IMS Dataset.

sented by a dot, potentially due to the transformative effects
of the softmax layer on original feature representations and
the distribution change. It is important to remember that us-
ing t-SNE on the softmax output layer may not always yield
meaningful results. The combination of the t-SNE clustering
results offers strong evidence of the model’s ability to detect
complex fault-related features. The architecture’s capabil-
ity to accurately reflect the various fault scenarios is demon-
strated by the clusters’ continuous separation across layers.

3.3.3. Comparison with Other Methods

Alternative deep learning (DL) methodologies have been se-
lected to compare prediction accuracy in this situation and
evaluate the efficacy of the proposed CNN model. The com-
pared DL approaches include a LeNet-based CNN (L. Wen et
al., 2018), a method with good anti-noise and domain adap-
tation ability (W. Zhang, Peng, Li, Chen, & Zhang, 2017), a
multi-sensor information fusion and 2DCNN method (Wang,
Wang, Wang, Li, & Song, 2021), raw sensor data using deep
neural networks considering temporal coherence (R. Zhang,
Peng, wu, Yao, & Guan, 2017), and an enhanced integrated
filter network (Wu, Tao, Yang, Xie, & Li, 2022), along with
the method proposed in this paper. The mean prediction accu-
racy serves as the final criterion for evaluation in the compari-
son. Table 8 contains the summary information of the results.
The comparison demonstrates the clear advantage of the sug-
gested method over alternative deep learning techniques. The
average prediction accuracy is a remarkable 99.98%, frequen-
tly exceeding 100% in most model runs. The following ap-
proaches’ prediction accuracies are: Enhanced integrated fil-
ter network (99.90%), LeNet-based CNN (99.79%), Multi-
sensor information fusion and 2DCNN (99.90%), DNN con-
sidering temporal coherence (99.94%), and Anti-noise and
domain adaption ability (96%). The results on the IMS dataset
confirm the outstanding performance of the proposed CNN
method.

4. CONCLUSION & FUTURE RESEARCH WORK

In this study, a new fault diagnosis framework called SSWT-
RP-CNN is proposed to increase the precision and robustness
in identifying rolling bearing faults in mechanical systems.
The capacity of the CNN architecture’s built-in hierarchical
feature learning to capture complicated Time-Frequency pat-
terns in the 2D images obtained from time-series vibration
data through SSWT was vital in enhancing the model’s abil-
ity to recognize tiny fault signals. Our method was validated
on two large experimental datasets, resulting in remarkable
results on both datasets, achieving a high accuracy rate. By
training and testing the approach with a large amount of data,
highly precise and reliable results were obtained. Our method
successfully detected various types of bearing faults of differ-
ent size damages, including inner race, outer race, and ball
faults, with a remarkable level of accuracy. These results
show that our method is a promising and dependable strat-
egy for bearing diagnosis applications in real-world scenarios
due to its ability to generalize effectively to unknown bearing
conditions.

The focus on bearing fault diagnosis in this work provides a
potential avenue for further study. Exploring bearing prog-
nostics, particularly in predicting remaining useful lifetime
(RUL), is a natural next step in this research. Even though the
study was successful in accurately identifying the faults, con-
centrating on forecasting bearing lifespan can provide useful
advice for operational and maintenance decisions. In the fu-
ture, the focus is planned to be on estimating the RUL. This
evolution offers enhanced resource planning and decision-
making capabilities, by offering a better estimation of how
long you can keep the component before it fails.
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