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ABSTRACT

Control rod motion is one of the primary means of regulat-
ing the rate of fission in a nuclear reactor core to ensure safe
and stable operation. Reactor power distribution and thermal
power output can be fine-tuned by adjusting the control rod
position. For high-precision control of rod movements, Fine
Motion Control Rod Drives (FMCRDs) are often used. The
operation of FMCRDs provides a unique opportunity to im-
plement condition monitoring related to the intermittency of
motion and the use of control rod banks. This research sets
out to detect three types of faults in an electrically driven FM-
CRD. In addition to detecting faults, this work will attempt
to determine both the type of fault and the source of each
fault, completing the fault detection and diagnostics (FDD)
pipeline on a scarcely researched system. The three types
of faults to be investigated are short-circuit faults, ball screw
wear faults, and ball screw jam faults. This is a potential ad-
vancement to the within-bank FDD of this specific drive sys-
tem intended for deployment in an advanced nuclear reactor
plant. Using encoder-decoder structured convolutional neural
networks and autoencoders, the three tested faults were confi-
dently detected and isolated as well as reasonably diagnosed
by monitoring the FMCRD servomotor torque.

1. INTRODUCTION

Control rods (CRs) serve a crucial function in the manage-
ment of the thermal power produced in a nuclear reactor core.
By absorbing neutrons, an inserted CR slows the rate of fis-
sion. As the CR is extracted, fewer neutrons are absorbed
and the rate of fission increases. This insertion and with-
drawal is usually achieved with a driving mechanism. The
fine motion control rod drive (FMCRD) provides precise con-
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trol of CR position. The BWRX-300 design by GE-Hitachi
uses servomotors for FMCRDs, a change from the primarily
hydraulically-driven CR drives in current boiling water reac-
tors (BWRs).

Fig. 1, illustrates a representative reactor core layout for typ-
ical operations of control rod banks (Louis et al., 2021). In
this illustration, taken from an Evolutionary Power Reactor
(EPR) from the US EPR projects, the nuclear core has two-
hundred and forty-one (241) fuel assemblies (total squares
in the grid) with seven (7) distinct assembly designs where
each assembly has two-hundred and sixty-five (265) fuel rods.
Individual control rods are distributed within a fuel assem-
bly to form a group (bank). Individual rods in a control rod
bank are independently controlled and, hence, not connected
physically. While they are in proximity and move together
as a unit when inserted or withdrawn, each rod operates in-
dependently within the fuel assembly to control the rate of
nuclear reaction. The EPR in Fig. 1 further shows how dif-
ferent banks can be grouped into clusters to provide flexibility
and redundancy in controlling the reactor. The EPR contains
eighty-nine (89) banks grouped into seven clusters (control –
4; shutdown – 3), one for each assembly design. Different
banks can be inserted or withdrawn in overlapping patterns
to maintain uniform power distribution and avoid localized
power peaks. This overlap ensures smooth reactivity con-
trol and prevents sudden changes in power levels. Certain
banks are designated as shutdown banks and are specifically
reserved for rapidly shutting down the reactor in case of emer-
gencies. SMR designs such as the BWRX-300 used as a ref-
erence in this work include a similar arrangement of control
rod banks which are prime candidates for health monitoring
to ensure performance, reliability, and safety.

FMCRD operation introduces unique challenges and oppor-
tunities for condition monitoring and health assessment. First
a challenge: CR motion is intermittent (that is, CRs spend
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Figure 1. Rod cluster control assembly pattern
(Louis et al., 2021).

much of their time in a stationary position and only move
when commanded in response to changing reactor conditions)
and movement typically occurs over short time intervals. While
the CR is in a stationary position, the servomotor will not
provide any data that could indicate its condition. Second
an opportunity: CRs are moved in banks (groups of two or
more rods) and these banks are distributed throughout the re-
actor core to manage the power profile. For the BWRX-300,
this means that several FMCRDs are commanded to make the
same adjustment in concert. This coordinated motion across
multiple FMCRD servomotors provides a local population of
systems that should be working effectively identically (see
Fig. 8). We propose to leverage this coordinated operation to
monitor the health of each servomotor in the bank, hence, the
"within-bank" analyses.

This research aims to use deep neural networks to detect, iso-
late, and diagnose three types of faults within nuclear reactor
control rod drive (CRD) mechanisms. These mechanisms are
important for accurately controlling the insertion level of the
control rods, which in turn regulates the thermal power out-
put of the reactor, allowing dynamic operations and ensuring
safety.

Two sensed properties were analyzed: the position of the CRs
over time and the torque being delivered by the servomotor.
An autoencoder is trained using these two types of data col-

lected from a healthy FMCRD system. This autoencoder then
attempts to recreate data for another healthy system. The re-
construction error of the healthy system serves as a baseline
when running a faulty system; the anomalies should lead to
substantially higher reconstruction errors, indicating the pres-
ence of a fault. By analyzing the reconstruction error of each
rod/servomotor within the bank, we can detect not only that
there is a faulty rod/servomotor combination in the bank, but
which rod’s FMCRD is not functioning normally. The data
used in this study were acquired from a simulated FMCRD
model, which consists of a servomotor and a ball screw sys-
tem that are interconnected (Subramanian et al., 2023). The
described model was used to generate data for this work sep-
arate from those described in the reference. The three types
of simulated faults are short circuits (electrical), ball screw
wear, and ball screw jam. The ball screw is a part of the
drive mechanism that is magnetically coupled to the motor
and causes linear rod motion from the rotation of the motor
rotor. The wear and jam faults are both mechanical faults,
the former simulated as a gradual load increase and the latter
simulated as an instant large increase in load.

1.1. Motivation and Literature Review

Due to their compact size and flexible operations, small mod-
ular reactors (SMRs) are currently attracting research inter-
ests, private sector funding, and state support, but none is
currently operational in the US with the reported first planned
operation in 2029 (AP News, Accessed: Oct. 19, 2023; En-
ergy.gov, Accessed: Oct. 19, 2023). The proposed drive
mechanism in GE-Hitachi’s BWRX-300 SMR is an electri-
cally driven FMCRD. Flexible operations of the SMRs would
require heavy usage of their drive mechanisms which makes
the mechanisms key maintenance targets. The ability to de-
tect faults easily and accurately in these motors can signif-
icantly contribute to the economic viability of the SMR. In
addition, reduced SMR operation and maintenance (O&M)
costs can firmly support the role of the world nuclear fleet in
providing global energy security.

The results of this work can be of immense relevance in the
maintenance and reliability of nuclear plants. Real-time mon-
itoring of the equipment becomes helpful in making predic-
tive maintenance more efficient. Outputs of the fault detec-
tion models may also be passed as inputs to prognostics mod-
els for the estimation of the remaining useful life of the plant.
Beyond these, any machinery with rotating parts, intermit-
tent operations, and similar fault behaviors such as the yaw
control of wind turbines may be able to employ the approach
explored in this work.

Although some research efforts have gone towards fault de-
tection and diagnostics (FDD) of control rod drives (CRDs)
(Jie et al., 2019), only a few focus on FMCRDs. One pub-
lished work for fault detection in FMCRDs monitored dis-
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placement and used a purely statistical thresholding approach
for anomaly detection. A threshold was placed on the aver-
age difference between the demanded positions and the actual
positions of the rods in a bank. This average difference in a
bank of rods was expected to vary between healthy and faulty
banks (Fullilove et al., 2022). In that attempt, only one fault
type (short-circuit) was detected (Fullilove et al., 2022). An-
other more recent work applied principal component analysis
(PCA) to the anomaly detection of FMCRDs where T-squared
statistics and Q-statistics were employed for anomaly detec-
tion (Ifeanyi et al., 2023). In this second paper, the observa-
tion period had to be increased to include more data points
in the training data to make detection and isolation possible
(Ifeanyi et al., 2023). The approach in this current paper aims
to learn complex relationships between variables and poten-
tially detect all the fault types with fewer observations in the
training data and a limited number of samples. Additionally,
this paper completes the FDD cycle of fault detection, isola-
tion, and diagnostics on this highly underrepresented system
in the literature.

Several anomaly detection techniques have been used over
the years including classification-based, clustering-based, near-
est neighbor-based, and statistical approaches (Chandola &
Banerjee, n.d.). For this paper, fault detection will be done
by classifying a bank of control rods as faulty or healthy.
Anomaly detection can be done with both traditional machine
learning techniques and more advanced deep learning meth-
ods (Chalapathy & Chawla, 2019). In the application of deep
learning, autoencoders are the most widely used architectures
in anomaly detection and fault isolation with regard to prog-
nostics and health management (PHM) (Rezaeianjouybari &
Shang, 2020). Autoencoder reconstruction has been used for
anomaly detection in industrial motors (Givnan et al., 2022)
and variational autoencoders have been applied to detect anoma-
lies in electric drives (Shim et al., 2022). Due to their wide
acceptance and high success rates in similar applications, a
variant of the autoencoder was the choice architecture in this
work for fault isolation. With regard to fault detection, a
specifically structured deep learning classification model was
employed in this work. Deep learning models have the added
advantage of not strictly requiring feature engineering to un-
cover complex relationships (Ahmed et al., 2023). Further-
more, autoencoders are especially good at extracting useful
information due to the constraints of the code layer (Chen et
al., 2018; Goodge et al., 2021) and this is required for the
investigated unique application given the intermittent opera-
tions of the servomotors explained in section 2 and the limited
number of samples available for this work. 1-dimensional
convolutional neural network (1D-CNN)–based autoencoders
were used in place of the regular fully connected layer-based
autoencoders to retain the temporal relationships in the input
data. The suggested method’s capacity to simultaneously ac-
count for the temporal dependency of each sensor variable

and the nonlinear correlations between several sensor vari-
ables is one of its main advantages over the aforementioned
statistical methods.

With respect to fault diagnostics of motors, there are many
approaches that have been employed in the past but the most
common, by far, is motor current signature analysis (MCSA).
In MCSA the properties of the current signal of the motor are
analyzed and referenced with established behaviors for dif-
ferent fault types to classify the investigated fault (Mehala &
Dahiya, 2007; Jung et al., 2006; Messaoudi & Sbita, 2010).
The drawback of this approach is that it becomes difficult to
classify faults without previously established behaviors. In
addition, more than one fault can have very similar character-
istics, leading to an increased chance of incorrect diagnosis.
On top of that, it requires the monitoring of motor current,
therefore, making classification impossible where the current
signals are not monitored. As a result of these challenges,
more recent techniques have focused on the application of
neural networks in the area of induction motor fault diagnos-
tics (Kowalski & Orlowska-Kowalska, 2003). For these tech-
niques, other signals such as vibration signals may be inves-
tigated for the purpose of fault diagnostics. Other researchers
have tried to diagnose motor faults by applying Fuzzy Logic-
based techniques either as precursors to other diagnostic tech-
niques or as the main diagnostics algorithm (Zhongming &
Bin, 2000). Not much work was found for diagnostics in
FMCRDs and no known published work has discussed ap-
plication in within-bank analysis. In this work, a 1D-CNN-
based classification model was applied to attempt diagnostics
within banks of FMCRDs. 1D-CNNs have proved useful for
fault diagnosis where the input signals are sequences (Tang et
al., 2020; Eren et al., 2019; Azizjon et al., 2020), hence, their
application throughout this paper.

This paper presents the development and evaluation of a con-
dition monitoring framework for monitoring the health of each
FMCRD servomotor in a bank of CRs. Section 2 describes
the data used in considerable detail whereas section 3 takes a
deep dive into the various methods employed to achieve the
set goals of this research. Section 4 outlines the outcomes of
these different approaches and discusses their implications.
Finally, section 5 gives a summary of the work and proposes
areas for future investigation. The term ’faulty rods’ used
throughout this paper more appropriately refers to the faulty
drive mechanisms of the control rod drive system. Although
this terminology may not precisely reflect the technical as-
pect, it has been retained to aid readers’ comprehension and
facilitate their visualization of the system’s operation.

2. DATA SET

The data for this project are derived from a Matlab Simulink
model of an FMCRD (Fullilove et al., 2022). These data
show the responses of control rod banks to position change
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Figure 2. Hierarchical structure of the input data.

demands during a ten-second maneuver (see Fig. 3). The
electromagnetic torques in Newton-meters of the servomo-
tors in the bank are measured as one variable whereas the
attained displacements of the rods, in centimeters, are mon-
itored as the second variable. For each variable, there are
twelve batches of data (Fig. 2), each with a different mo-
tion profile across the observed period. Each batch of data
has four banks: one healthy bank of rods and three problem-
atic banks, one for each tested fault type. Each bank has ten
rods, with the healthy banks having ten healthy rods and the
faulty banks having one faulty rod arbitrarily placed in posi-
tion ’10’. Fig. 2 shows the breakdown of the data with some
components deliberately missing because it was intended as
a summary. The ’Torque’ branch shows the total number of
rods and the total number of banks in any batch, even though
it was only illustrated for batch ’2’. These totals are evenly
distributed such that any one bank has ten rods as illustrated
on bank ’1’ of batch ’2’ in the ’Position’ branch.

Furthermore, each rod has five hundred thousand (500,001
including the starting point) observations for each measured
parameter for a ten-second maneuver collected at a sampling
rate of 50kHz. Sequence data from each bank of ten (10)
rods with ten-second sequences (500001 data points) of po-
sition or torque is treated as one sample in this work. In
other words, the input shape is (x, 500001, 10) where x repre-
sents the number of banks (samples). Simulations were run to
collect data from forty-eight (48) simulated bank operations,
twelve (12) for each of the four (4) health categories: healthy
(no fault); short-circuit fault; ramp fault; and step fault.

What constitutes training and test sets varied for the different
tasks and will be explained in the appropriate sections. For all
test cases with a single fault, the faulty rod was in the same
variable index (’10’) of the bank for ease of reading, but could
realistically appear in any index without impacting the perfor-
mance of the detection and isolation routines. To demonstrate
the independence of the rod position index, the indexes of the
faulty rods were varied for the isolation of multiple faults in
a bank.

Each batch of the data has a different position demand pro-

file and the profile for the healthy bank of batch ’1’ is seen in
Fig. 3 a) along with the corresponding torque behavior in Fig.
3 c). For brevity, this section specifically discusses the be-
havior of batch ’1’, although similar patterns were observed
in the healthy banks of all other batches (see Fig. 3 b) and
d)). One second into the observation of batch ’1’, a position
change demand was made, and the rods of that bank gradu-
ally ascended to the demanded position of around 1.735 cm
where an overshoot occurred before settling at the demanded
position. As soon as another request to ascend was made at
the 5th second, the gradual movement occurred with another
equilibrium settling required. These periods where the rods
in the bank are moving to achieve the desired position repre-
sent the operating periods of the drive mechanism. Since the
servomotor only operates for a fraction of the observation pe-
riod, the data points from the rod position signals with useful
information for fault detection are limited, therefore, compli-
cating the FDD tasks. Position demand is instantaneous as
shown by the step profile in Fig. 3 whereas actual rod move-
ments are gradual, resulting in a time lag between actual and
demanded positions. The torque signal shows that a sharp
change in torque is experienced during the transient periods
just after a position demand is made and where equilibrium
settling is required. These short-duration transient periods
highlight where the motors are being called to action and in-
dicate the useful points of torque variations to be monitored
for the FDD tasks. Note that Fig. 3 illustrates the key points
with a single rod’s profile, however, all rods in the healthy
bank will have the same profile for both variables leading to
overlapping lines as seen in Fig. 8 for position and torque.
Fig. 3 b) and d) simply illustrate how these demand profiles
vary from batch to batch as a different profile is seen in batch
’2’ but with similar behaviors and torque-position relation-
ships.

3. TECHNICAL APPROACH

In order to train a model for differentiating between healthy
and faulty FMCRDs, first, a model needs to be constructed
and the input data needs to be decided. The input data shown
in Fig. 2 are the monitored torque and position values of the
rods in a bank. The inputs are banks of sequences of posi-
tion or torque signals as described in section 2. Because of
the desire to process the input as a collection of sequences,
all the models used for the different tests only had 1D-CNN
layers with the output layers chosen based on the tasks to be
performed.

3.1. Fault Detection

In this work, detection was treated as a classification task
where the input banks were classified as either faulty or healthy.
An encoder-decoder (E-D) structure (see Fig.4) was selected
for this task. E-D structures are popular for applications that
require constraining the network to potentially force the learn-
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a) b)

c) d)

Figure 3. Position and torque profiles of single rods/servomotors in the healthy bank of a batch. a) - Batch 1 position; b) - Batch
2 position; c) - Batch 1 Torque; d) - Batch 2 torque

ing of the most important information in the data such as in
autoencoders for denoising applications (Vincent et al., 2008)
and image segmentation with the popular U-Net CNN struc-
ture (Yin et al., 2022). Since there are different types of faults
in the faulty class, learning the most important information is
useful for generalization within this class while differentiat-
ing it from the healthy class, hence, the E-D structure choice.
This is also especially important since there are only a few ex-
amples in each class and data augmentation was not desired
in this work. The final layer of the model has two dense neu-
rons with a softmax activation function because there are
two classes of interest here. An alternative would have been
to have one output neuron with a sigmoid activation but the
multiple neurons were chosen so that the model can be easily
adapted for other tasks in this work. The employed network
has about 18,400 trainable parameters which makes it rela-
tively small given the complexity of the task and the limited
data samples.

The first and most important step is to detect whether or not
a fault has occurred in a control rod bank. As mentioned

Figure 4. Model for detection tasks - Encoder-Decoder struc-
ture

in section 2, data is separated by fault type (Healthy/None,
Short-Circuit, Ramp, and Step). There are twelve batches of
data with four banks per batch and ten rods per bank. For the
detection task, four tests were done; the first three involved
having a faulty class that only included each of the three fault
types, and a fourth test combined all the fault types in the
faulty class. Confusion matrices were used to evaluate model
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detection performance. For the different tests, the total data
size varied but the split between training, validation, and final
test sets were kept consistent at 70%, 15%, and 15% respec-
tively. These splits were stratified to ensure proportionate rep-
resentations from each class. For the individual fault detec-
tion tests, the total available data per sensed signal type was
from twenty-four banks (twelve healthy and twelve faulty)
whereas data from forty-eight banks were available for the
combined fault tests (twelve healthy and twelve each for the
three fault classes). Using displacement data has shown po-
tential based on literature, where residuals between demanded
positions and actual rod positions were monitored (Fullilove
et al., 2022). However, in this research, good results were not
obtained with position signals, so most of the results for this
task and all other tasks place a firm focus on torque signals.

3.2. Fault Isolation

One way to isolate faults is to reconstruct inputs with a prop-
erly trained model while monitoring the deviation of these
reconstructions (Cartocci et al., 2021; Yan et al., 2018) dur-
ing tests. A model architecture that is highly employed for
this purpose is the autoencoder (Liang et al., 2020), hence, its
selection here. The isolation of faults was done by analyzing
the errors of autoencoders that were trained to reconstruct the
input banks. As a result, isolation was a regression task and
the output layer was the same size as the input. Fig. 5 shows
the employed model structure for the different tasks under
this category and the small dimension of the latent space (’2’)
was selected because the relevant information in the data is
expected to be captured by a few neurons since all the rods in
a bank always move in the same way in response to the same
position demand. The model has five hidden layers and 5,292
parameters making it a relatively small deep learning model.

Figure 5. Autoencoder for the isolation tasks

For each of the different isolation tests done, the model was
trained on the healthy data before predicting the faulty data
(test set). The test was first done on a single batch which
had 4 banks before testing with the twelve batches, multiple
faults in a bank, and a varied number of rods in a bank. Re-
construction errors for each rod were compared by taking the

mean error across samples for each rod, and a noticeably high
reconstruction error indicates a faulty rod. In other words, of
all the rods, the maximum contributors to reconstruction error
for all samples were identified as the faulty rods. This means
that the model was simultaneously detecting the fault and iso-
lating the faulty rod. For visualization and model evaluation,
maximum contributor plots were generated.

3.2.1. Single Batch Tests

We prefer to manage the amount of data needed to train an
accurate model, so the first tests tried to use single batches
of data rather than all six together. For one of the batches
tested, the reconstruction errors for each rod can be found in
Fig. 13 in section 4. It was found that using data from a
single batch is effective for finding all the faults but requires
a long model training time, so we proceed by using all twelve
batches together to effectively increase the sample size and
potentially reduce training time.

3.2.2. Combined Batch Tests

For the next set of tests, all twelve batches were merged prior
to processing, but otherwise, model training and testing were
conducted as in the single batch test. The model used was
also unchanged. The reconstruction errors when using all
twelve batches are found in Fig. 15 in section 4. Because
this technique was capable of detecting all fault types, test-
ing was then conducted in order to optimize the process and
expand its usefulness.

3.2.3. Detecting Multiple Faults

The first test of the previously trained model was to check
the robustness of the system by providing data that has mul-
tiple faulty rods, including different fault types. Data from
rods was reorganized in order to create a bank that contained
both a Ramp Fault and a Step Fault. Additionally, a bank
was created that had a faulty rod of each type. These multi-
fault banks were fed into the trained model, which was able
to highlight each of the faulty rods.

3.2.4. Minimizing Number of Rods

Finally, the limits of the model’s capabilities were tested by
providing fewer than ten (10) rods to train and test on. This
was done by simply using only two or three rods from the
combined twelve-batch data set. Of these rods, one belonged
to the fault mode being tested (one of the three Faults), whereas
the other one or two were healthy rods. These required build-
ing and training another model with the same structure as be-
fore but with adjusted input sizes. The reconstruction errors
were then evaluated to see if the faulty rods could be identi-
fied.
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3.3. Fault Diagnosis

With a faulty rod isolated, it can also be helpful to an oper-
ator to know the most likely type of fault present, given that
there are different causes of faulty behavior. Diagnostics was
also a classification task and a 1D-CNN-based classifier with
seven hidden sequential layers was constructed to complete
this task. The network was used to classify the rods in cases
of single faults in a bank. It was a three-class classification
since each bank was classified according to the class of its
faulty rod. Subsequently, the problem was made a little more
complicated as a four-class problem by including the healthy
banks to serve as a backup detector so that any wrongly clas-
sified healthy bank could be captured. Fig. 6 shows the E-D
structured classifier used but subjectively better results were
obtained by first extracting features from the input data with
an autoencoder (see Fig. 7). This additional encoding by the
autoencoder with a latent dimension of ’3’ or ’4’, depending
on the task performed, was expected to extract only the rele-
vant information for distinguishing between the investigated
classes. The layer used in the bank classifier before the output
0dense0 layer is the 0global_max_pooling0 layer in place of
the more common 0flatten0 and 0max_pooling0 layers. The
0global_max_pooling0 layer was used with the assumption
that less complicated features are required to distinguish be-
tween the banks of each class compared to distinguishing be-
tween rods. This choice of layer potentially makes the bank
classifier model more computationally efficient. The output
is a fully connected layer with three or four neurons, and the
0soft_max0 activation function to cater to the classes of in-
terest. In terms of the input data, thirty-six banks were avail-
able for the three-class problem but all forty-eight banks were
used for the four-class task. The training, validation, and test
splits were in the same proportion as in the detection tasks.

Figure 6. The fault classification model - Encoder-Decoder
structure.

4. RESULTS

In this section, three types of figures are frequently used to
display test outcomes. The bar charts show the distribution of
contribution to the reconstruction error by each rod. If a bank
is healthy, low values of reconstruction error are observed and
the distribution is roughly even across the rods, indicating that

Figure 7. The diagnostics model with feature extraction from
an autoencoder.

no particular rod is faulty. Faulty rods will have a noticeably
higher reconstruction error than the other rods. The horizon-
tal axis of these bar charts represents the different rods in the
tested banks whereas the vertical axis is a measure of recon-
struction error.

a)

b)

Figure 8. Monitored variables of the 10 rods in the healthy
bank of batch ’4’. a) - the position profile and b) - the torque
profile of the bank.

To emphasize the isolation, a state classification (isolation)

7



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

a) b)

c) d)

Figure 9. Fault detection with torque variable. a) Short-circuit Fault; b) Ramp Fault; c) Step Fault; d) All faults

plot was used to classify each rod in the tested banks as either
faulty (class ’1’) or not (class ’0’). The criterion for these
state classifications is based on the reconstruction errors and
is elucidated in section 4.3. For the detection and diagnostics
tasks, confusion matrices were used to evaluate the results.

4.1. Data Inspection

The positions and torque values for all ten rod/motor combi-
nations in the healthy bank of batch ’4’ are shown in Fig. 8.
As expected for a healthy bank, all ten combinations behave
similarly, leading to almost entirely overlapping data lines.
The ten rods have the same position profile and the ten mo-
tors have the same torque profile. In this batch, changing
demands caused the rods to move from their starting position
at 1.7cm down to 1.6cm, then briefly back to 1.7cm before
going up to 1.8cm, and so on. It can be seen that the spikes
in torque correspond to the times at which movement is be-
ginning or settling is occurring. These spikes in torque cor-
respond to periods where the servomotors are being called to
action and the periods of gradual rise or fall in positions cor-
respond to active servomotor periods as explained in section

2. As seen, torque is more steady during active motor periods
and around zero during non-active periods where a particular
position is maintained for a prolonged period. These steady
and zero-torque periods do not provide useful information for
FDD tasks.

4.2. Detection

4.2.1. Torque Analysis

With torque, the classifier was able to consistently detect all
the faults as shown in Fig. 9 where a), b), and c) show de-
tections when the test sets only contain one type of fault in
the faulty class. This was done to mimic realistic conditions
where maintenance of only a specific fault type is of inter-
est at the time. It also evaluates the model under conditions
of class balance. In Fig. 9 d) all fault types are included in
the faulty class and they were all correctly detected as faulty.
One healthy bank was, however, incorrectly categorized as
faulty. Although undesired, this is not detrimental since di-
agnostics will be carried out to check the fault types of the
detected faults and including a ’no-fault’ class in diagnostics
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a) b)

c) d)

Figure 10. Fault detection with position variable to demonstrate that position is not suitable for the investigated system. a)
Short-circuit Fault; b) Ramp Fault; c) Step Fault; d) All faults.

will capture the false detections. It would have been detri-
mental if a faulty bank were categorized as healthy since un-
detected faults could lead to bigger plant-wide problems that
could further lead to prolonged loss of operations.

4.2.2. Position Analysis

Using the E-D structured classifier with positional data does
not show a significant distinction between the healthy and the
faulty banks. This can be seen in Fig. 10, where all the banks
in a test set are classified as a single class. This indicates that
the model is unable to learn to distinguish between a healthy
rod and a faulty rod, so the position is unlikely to be a useful
input for the model. It makes sense that this might be the
case given that when inspecting the raw position data of a
faulty bank (see Fig. 11 a)), it is indistinguishable from a
healthy profile, and all rod displacements overlap entirely. A
feedback control system that allows the rods to ride through
faults to achieve the demanded positions was included in the
simulated FMCRD system and is likely responsible for the
observed characteristic in Fig. 11 a).

On the other hand, inspecting raw torque signals highlights
a difference between the healthy and faulty torque profiles in
the same batch. These differences occur mostly during the
short spikes as expected and may appear subtle to the human
eyes. Upon selecting a region of interest highlighted by the
dashed line in Fig. 11 b), and zooming into the region, the
differences become more apparent as indicated by the arrow-
heads in Fig. 12 where a shift in rod 10’s torque signal is
seen (same legend as in Fig. 11 b)). These subtle differences
shown for a particular section are repeated throughout the ob-
servation period and are captured by the features learned by
the employed deep learning models. As a result, all other tests
are focused on the torque variable only.

4.3. Isolation

Two plot types were used to evaluate performance in this sec-
tion: the fault contribution plot that displays the mean recon-
struction error per rod across samples; and the fault isolation
plot that identifies the faulty rods by simply predicting either
’0’ for no fault or ’1’ for a fault on each rod. The isolation
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a)

b)

Figure 11. Position and torque profiles of a faulty bank in
batch ’4’ with step fault. Dashed lines mark a region of inter-
est. a) Position; b) Torque.

a) b)

Figure 12. Zoomed in sections of the torque profiles of dif-
ferent banks in batch ’4’. a) Healthy; b) Step Fault. Legend
from Fig. 11 b) applies.

plot was created using a threshold-based rod classification
approach. The threshold can be calculated as threshold =

factor ⇤MRE where MRE is the mean reconstruction er-
ror of the healthy validation bank. The factor should be
positive and greater than ’1’ meaning that a rod is isolated
only if its reconstruction error is higher than the mean recon-
struction error of the healthy bank’s rods. The factors used
to multiply the mean error of the healthy bank can be var-
ied depending on the fault type or optimized to be the same
across classes. However, in this study, any control rod in a
given bank with a reconstruction error surpassing two times
the median of that bank’s errors was considered faulty. This
method utilizes each test bank’s median as the threshold for
classification, providing a potentially more tailored criterion
for isolating possible faults.

a) b)

c) d)

e) f)

g) h)

Figure 13. Fault isolation in a single batch with torque vari-
able. Reconstruction error distributions are on the left and
isolation plots are on the right. a) and b) - healthy; c) and d) -
short circuit fault; e) and f) - step fault; g) and h) - ramp fault.
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4.3.1. Single Batch Tests

Using torque data, a single batch is input into the model for
training and testing. Since there is only one healthy bank in
a batch, it was the sole training sample and no validation was
used. The three faulty banks were then tested one after the
other. Note that although results are only shown for batch
’5’, other batches have also been tested and produced very
similar results.

When analyzing the data found in Fig. 13, it can be seen that
the healthy data is processed correctly. All rods have similar
reconstruction errors and as expected, no rod was isolated,
both of which indicate a healthy bank. Additionally, the short
fault output clearly shows a higher reconstruction error for
rod 10 and a correct fault prediction, indicating a fault on rod
10. The correct rods were also isolated for the banks with step
and ramp faults. This is an improvement on an existing statis-
tical isolation method (Ifeanyi et al., 2023) since the current
method required a sample with six times fewer data points to
achieve the same consistent results.

4.3.2. Multiple Batch Tests

To adapt the model for a variety of applications, validating
the training and setting thresholds with the reconstruction of
the validation data is important. As a result, all the available
healthy banks across all the batches were used for training the
model. In this case, 9 samples were used for training and 3
samples for validation. The mean error of reconstructing the
validation data was used to calculate the isolation thresholds
of the test sets (faulty data). The loss profile of the model
training is seen in Fig. 14 where convergence at a low loss
value was quickly achieved around the 5th epoch. The vali-
dation loss closely followed the training loss, indicating that
a stable and generalizable performance is expected from the
model. The output from this test is found in Fig. 15.

Figure 14. Loss profile of the model trained with multiple
healthy samples

Looking at the reconstruction error plots indicates that the
model is functional. The healthy data shows a low and very
consistent error rate for all 10 rods, indicating no fault. The
plots for the short fault and step fault show rod 10 as hav-
ing a substantially higher reconstruction error than the other
9 rods, indicating a fault at that location. The output for the
step fault also shows rod 10 as having a higher reconstruction
error, meaning that the step fault is being detected and iso-
lated. Additionally, the isolation plots all correctly identify
the faulty rods.

a) b)

c) d)

e) f)

g) h)

Figure 15. Fault isolation with multiple batches of torque
variable. Reconstruction error distributions are on the left and
fault isolation plots are on the right. a) and b) - healthy; c) and
d) - short circuit fault; e) and f) - step fault, g) and h) - ramp
fault. ’CB’ stands for combined batches indicating that all the
samples from all the batches were used for this test.
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4.3.3. Isolating Multiple Faults

Given that the model is successful at finding a single faulty
rod within a bank, the next step is to further test its capabil-
ities by having it process a bank in which multiple rods are
exhibiting faulty behavior. This is an important test because
this scenario is possible in a real-world setting, and multiple
faulty rods would be even more harmful to operations than a
single faulty rod.

When there are two faulty rods in a bank, with the rod in po-
sition 5 being a ramp fault and the rod in position 10 being
a step fault, the model does its detection and isolation jobs
properly as shown in Fig. 16. The contribution plot shows
the isolation in terms of reconstruction error whereas the iso-
lation plot (right subplot) highlights the 2 anomalous rods in
the bank. In other words, if an operator has identified a faulty
bank and wants to know the anomalous rod/motor combina-
tion, this isolation plot may be used to narrow things down
without necessarily showing reconstruction values which may
be misleading due to the differences in error values for the
different fault types.

Fig. 17 displays the performance of the autoencoder when all
three fault types are present at different positions in a bank of
rods. As seen, all three faults are correctly isolated to their
sources, and the state classification plot further highlights the
equal importance of all faults. For this task, the autoencoder
isolated the faults better than the PCA approach (see Fig. 18)
previously applied (Ifeanyi et al., 2023) in literature where T2

statistics was monitored to detect and isolate faults. From the
statistical approach, it was difficult to isolate the step fault in
rod ’4’. The isolation of multiple faults from the statistical
method might have performed worse because the statistical
model treats each observation of the sequence as independent
which could lead to loss of vital temporal information. For
the PCA method, all six banks were treated as one long sam-
ple with six times the observation period used in this current
research so the model was focused on identifying one maxi-
mum contributor to fault.

a) b)

Figure 16. Ramp fault on rod 5 and step fault on rod 10

4.3.4. Minimizing Number of Rods

It is not usually the case in nuclear reactors that control rod
banks will contain 10 rods so it is important to test the per-

a) b)

Figure 17. Short fault on rod 1, ramp fault on rod 5, step fault
on rod 10

Figure 18. Results from a statistical approach for multiple
faults in a bank. S - short-circuit (rod 1); L - ramp (rod 9); LS
- step (rod 4).

formance of the proposed approach in cases where there are
fewer rods. Given that there are fewer variables involved, the
model was adjusted to have a latent dimension of 1 rather than
2.

Fig. 19 shows the fault isolation capability of the autoen-
coder approach where there are 3 rods with the faulty rods
located at rod 3. As seen, reconstruction errors are consistent
in the Healthy batch whereas all fault types are detected and
correctly isolated. As in previous tests, the Step Fault is the
hardest to detect.

When there are only 2 variables, it becomes difficult for the
model to differentiate between faulty and healthy rod/motor
combinations, as shown in Fig. 20. This is probably because
the latent dimension is encoding more information than nec-
essary for the discernment of the 2 variables and as a result,
adds noise to the prediction.

The better fault detection performance from monitoring torque
as opposed to position signals may be because of the direct
relationship between current and torque. Motor Current Sig-
nature Analysis (MCSA), where the parameter changes of the
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a) b)

c) d)

e) f)

g) h)

Figure 19. Three rods in a bank. a) and b) - healthy; c) and
d) - short circuit fault; e) and f) - step fault, g) and h) - ramp
fault.

current signals are investigated to detect system flaws, is the
most used technique for fault detection and diagnostics of
motors in the nuclear sector. Torque is more likely to exhibit
these property changes in the current signal, which might ac-
count for the excellent torque performance as a variable. The
poor performance of the position signal, on the other hand, is
likely due to the ride-through capability and feedback control
of the simulated drive mechanism which tries to ensure that
the rods achieve their desired position even when faulty.

4.4. Fault Diagnostics

Other methods have been proposed for fault detection in a
bank so it becomes reasonable to subject only the faulty banks
to the identification test. The banks tested in this section con-
tain only one faulty rod. Using the E-D structured classifier,

a) b)

c) d)

Figure 20. Two rods in a bank. a) - healthy; b) - short fault;
c) - step fault; d) - ramp fault.

short-circuit and step faults were correctly diagnosed whereas
one bank with ramp fault was misclassified as a short-circuit
fault (see Fig. 21). This is highly undesirable since this is
a misclassification of a mechanical fault as an electrical one
and therefore directs maintenance to the wrong component.

Figure 21. Fault diagnosis of 3 classes with E-D structured
classifier

Since a highly undesired result was observed with the E-D
structured classifier alone, an autoencoder was attached to the
classifier (see Fig. 7) to potentially extract useful information
from the input data before classification. The latent dimen-
sion of the autoencoder is ’3’ and the result of this diagnos-
tics is shown in Fig. 22. In this case, there is still a misclas-
sification of ramp fault as step fault making the accuracy of
prediction the same as in the previous case but this misclas-
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sification is slightly more desirable than in the previous case
without the autoencoder. This is because the fault is still cor-
rectly identified as a mechanical fault and maintenance will
be directed to the appropriate components.

Figure 22. Fault diagnosis of 3 classes with autoencoder-fed
E-D structured classifier

During detection, it was observed that one healthy bank was
classified as faulty, so it is necessary to be able to handle this
detection scenario during diagnostics by including the ’no
fault’ or healthy class in the diagnostics. The autoencoder-fed
classifier was used for this task with a latent dimension of ’4’
and the result is shown in Fig. 23. In this case, all the healthy
banks were correctly diagnosed as desired and the rest of the
results are similar to the three-class task.

Figure 23. Fault diagnosis of 4 classes with autoencoder-fed
E-D structured classifier

Overall, the proposed diagnostics technique successfully di-

agnosed all faults with the ramp fault being the most difficult
to diagnose. This difficulty is possibly due to the slow build-
up of the fault over time making it more subtle and harder to
differentiate, especially with the intermittency of the system.

5. CONCLUSION

By using single and multiple batches of torque data to train
an autoencoder, analyzing the reconstruction errors of data
for each rod in a bank of FMCRD servomotors allows for
the accurate isolation of both mechanical and electrical faults
in this highly underinvestigated CRD system. The detection
and isolation system is capable of determining the individual
servomotor that is functioning abnormally and can even iso-
late multiple servomotors exhibiting different types of faults.
Fault isolation continues to function with as few as three con-
trol rods in a bank.

The autoencoder can more easily isolate electrical faults than
mechanical faults, in agreement with most methods employed
in the literature. The autoencoder, however, was capable of
isolating both electrical and mechanical faults. The easier
isolation of the electrical fault might be due to the low mag-
nitude of the step fault and the small gradient of the ramp
fault. Perhaps higher fault magnitude and gradients would
make them more perceptible to the model. To more easily
capture mechanical faults, it might be worth considering the
addition of torque sensors or sensors for measuring similar
properties in the BWRX-300 SMR.

As for fault type diagnostics, the results are promising using
the torque data. The employed approach worked reasonably
well when there was a single fault in a bank. Diagnosing
banks of multiple faults is an area that will be investigated in
the future.

For other future works, a different training strategy that would
focus on optimizing a model metric such as the F1 score or
Area under the receiver operating characteristics curve (AUC-
ROC) could be employed to improve detection performance
for this imbalanced scenario. These metrics inherently take
the imbalance of the classes into account as opposed to the
accuracy metric optimized in this work.
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