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ABSTRACT

Rotating machines are widely used in several fields such as
railways, renewable energies, robotics, etc. This diversity of
application implies a large variety of faults of critical com-
ponents susceptible to fail. For this purpose, prognostics and
health management (PHM) is deployed to effectively monitor
these components through the detection, diagnostics as well
as prognostics of faults. In the literature, there exist numerous
methods to ensure the above monitoring activities. However,
few of them consider different failure types using heteroge-
neous data and various operating conditions. Also, there are
no dominant methods that can be generalized for monitor-
ing. For this reason, the genericity of these methods and their
applicability in several systems is a crucial issue. To help re-
searchers to achieve the above challenges, this paper presents
a detailed description of data sources from experimental test
benches. These data sets correspond to different case studies
that monitor the health states of multiple critical components
in various operating conditions using numerous sensors.

Keywords: Prognostics and health management, Condition
monitoring, Open data science, Data processing, Health in-
dicator, Fault detection and diagnostics, Electrical machines,
Rotating machines, Mechanical faults, Electrical faults.
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1. INTRODUCTION

Nowadays, rotating machines are used in different applica-
tions such as transport, energy production, robotics, and the
manufacturing industry (Lee et al., 2015; M. Soualhi, Nguyen,
& Medjaher, 2020; Shi et al., 2022). Depending on the area
of application of these machines, they undergo several types
of failures (Kim et al., 2017). In fact, a rotating machine is
the seat of dynamic forces of mechanical origin generated by
moving parts. For example, an imbalance in the rotating shaft
can cause an imbalance fault (sinusoidal excitation) (Lee et
al., 2014), and chipping on a ball bearing track can lead to
a shock (impulse excitation) when each ball passes over the
fault (Ali et al., 2015). These forces cause vibrations as well
as modifications in the signature of certain physical parame-
ters. These parameters are measured by sensors and the ob-
tained data are used to monitor the machine. Among them,
one can cite current, voltage, force, vibration, temperature,
speed, torque, and force. These measurements are injected
into monitoring algorithms such as Prognostics and Health
Management (PHM) to reveal the health state of the machine
through the extraction of useful information named Health In-
dicators (HI) (Wang et al., 2017; A. Soualhi et al., 2014). The
relevance of these indicators depends essentially on the posi-
tion of the sensor and the surrounding noise, the availability
and quality of data, and the operating conditions of the ma-
chine (Liu et al., 2015; Cuguero-Escofet et al., 2017; Gougam
et al., 2019). Furthermore, the fault indicators of a component
(bearing, motor, gear, belt, etc.) depend also on several fac-

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2023 1

https://doi.org/10.36001/IJPHM.2023.v14i2.3497


INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

tors such as the rotation speed, the load or the composition
of the rotating machine (Adel et al., 2022). All of these fac-
tors can negatively impact the quality of the HI by generating
false alarms (de Jonge et al., 2017).

To remedy this problem, some research works focused on the
implementation of effective maintenance strategies based on
reliable and automated fault detection, diagnostic, and prog-
nostic algorithms (Souahli & Razik, 2020a,b). These strate-
gies are Condition-Based Maintenance (CBM) and Predic-
tive Maintenance (PM) (Chiachı́o et al., 2015; Strangas et al.,
2021). In CBM, the interventions are executed depending on
the current health state of the machine which can be observed
on the HI (Kim et al., 2017; Benaggoune et al., 2022). When
the HI of the machine reaches a defined threshold (critical
state), the risk is considered significant and a maintenance
action is scheduled (Caballé et al., 2015). In general, the
threshold can be defined by standards or by experts through-
out empirical experiments analysis (M. Soualhi, Nguyen, et
al., 2022). Hence, CBM offers then the possibility of schedul-
ing maintenance actions only when the machine’s health state
is considered out of nominal requirements, reducing there-
fore unnecessary replacements. In PM, the evolution of the
HI is tracked in time to predict when they reach the failure
threshold and to estimate the Remaining Useful Life (RUL)
before the machine fails (Tamssaouet et al., 2021; Gougam
et al., 2020). In this case, the maintenance interventions are
then scheduled earlier based on the estimated RUL (de Pa-
ter & Mitici, 2021; Gouriveau et al., 2016). PM differs then
from CBM by the prediction action of the HI, passing from
the observed actual health state to the predicted health state.

However, in both maintenance strategies, experimental data
are required to validate the models and the algorithms de-
veloped by PHM researchers and industrial practitioners. In
this context, the experimental data can come from different
sources, such as laboratory tests, field tests, or numerical sim-
ulations in order to create a benchmark data set (Sinha & Elb-
hbah, 2013). A benchmark data set is a set of physical mea-
surements used to evaluate and compare the performance of
PHM algorithms. Having good benchmark data sets is impor-
tant for the following reasons:

• Performance evaluation: A well-designed benchmarking
data set allows objective evaluation of the performance
of different PHM algorithms and methods;

• Comparison: Good benchmark data sets makes it pos-
sible to compare the results of different algorithms and
methods, which helps identify their strengths and weak-
nesses;

• Repeatability: Having a standard benchmark data set en-
ables researchers and practitioners to reproduce and vali-
date the results of others, which is essential for the devel-
opment and improvement of data-driven PHM methods;

Benchmark data sets are therefore necessary to assess the per-
formance of maintenance tasks Ramasso & Saxena (2014);
H. Zhang et al. (2022). Indeed, industrial companies need
hard evidence that the technologies offered can detect current
abnormalities, predict future failures, and help plan mainte-
nance interventions (Ramasso & Saxena, 2014). Experimen-
tal data are often expensive and difficult to obtain, so it is
important to ensure that they are relevant and reliable. Poor
quality data can lead to erroneous conclusions or inaccurate
predictions, which can have costly and potentially danger-
ous consequences, especially in industries where safety is a
significant concern, such as nuclear, aerospace, energy, and
transportation. The creation of a benchmark data set involves
case studies implementing different types of faults to enable
researchers to test their models and algorithms (Vachtsevanos
et al., 2006; Goel et al., 2022). These data can be exploited
to know the real conditions under which the faults occur and
to measure their impact on the performance of the machine.
The defects can include mechanical failures, electronic fail-
ures, fluid leakages, disruptions in manufacturing processes,
etc (Saxena, Goebel, et al., 2008; M. Soualhi, Nguyen, &
Medjaher, 2020). The data can also be used to train and
test fault detection, diagnostic and prognostic methods to im-
prove their accuracy, robustness, and repeatability (L. Zhang
et al., 2019). In addition, these data are also important to as-
sess the effectiveness of maintenance strategies. They can be
exploited to evaluate the impact of the interventions on the
machine lifespan, its availability, and the maintenance costs
(Campbell et al., 2016).

To ensure the good quality of a benchmark data set, it is im-
portant to clearly define the objectives of the case study and
plan the experiments accordingly. It is also important to have
quality control procedures to ensure the reliability and va-
lidity of the data Omri et al. (2021). This may include the
use of accurate and repeatable measurement techniques, stan-
dardized protocols for sampling and data analysis, and cross-
validation testing to verify data consistency Sant’Ana et al.
(2016). Additionally, it is important to collect data over a
long enough period of time to allow meaningful statistical
analysis and to ensure that the environmental and operational
conditions are varied enough to cover a range of fault scenar-
ios (Kibria et al., 2018).

In conclusion, good benchmark data sets play a crucial role in
advancing the field of data-driven methods for fault diagnosis
and prognosis Nguyen et al. (2022). They provide a common
standard for the evaluation, comparison, and improvement of
algorithms and systems.

Therefore, this paper contributes to the development of PHM
research and the dissemination of more reliable and accurate
results for different rotating machinery applications in the in-
dustry. It provides in Section 2 a comprehensive review of
existing data sets for PHM, highlighting both the advantages
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and limitations of these data sets. Then, it presents in Sec-
tion 3 new reliable benchmark data sets for researchers and
practitioners to develop and evaluate PHM solutions. It also
provides valuable information on the experimental settings
used to collect the data. By using this information as a guide,
industrial practitioners can build their own test benches for
their specific case studies. Finally, preliminary works con-
ducted with these new data sets are summarized. These will
serve as a resource for future researchers to explore the dif-
ferent developments, data used and compare their own results
and improve their own PHM approaches.

2. EXISTING BENCHMARK DATA SETS FOR PHM OF
ROTATING MACHINE IN INDUSTRY

As mentioned in the previous section, benchmark data sets
are essential to develop and evaluate PHM techniques. These
data sets provide a standardized platform for researchers to
compare and improve their algorithms, making it easier to
identify the most effective and accurate tools and methods.
Table 1 summarizes several widely used benchmark data sets
for PHM of the rotating machine applications in industry, in-
cluding the Bearing Data Center at Case Western Reserve
University (CWRU), the NASA Prognostics Center of Excel-
lence, and the IMS Center at the University of Cincinnati.
These data sets contain information about various types of
rotating machines, such as motors, generators, and turbines.
As shown in Table 1, the majority of the benchmark data
sets are primarily concerned with bearing faults. It is worth
noting that the dominance of literature on bearing faults in
PHM may be attributed to the importance of bearings as crit-
ical components in various industrial systems. Among these
data sets, the CWRU, MFPT, and Paderborn University data
sets investigate different types of bearing faults, whereas the
FEMTO-ST, XJTU-SY, and IMS data sets consider the bear-
ing degradation process during accelerated tests. Besides, re-
searchers can leverage the CWRU and FEMTO-ST data sets
to develop algorithms that account for the impacts of differ-
ent operating conditions, such as variations in load and speed.
Along with the bearing faults, several other fault types of ro-
tating machines in the industry have been investigated. For
example is the data sets of milling machines (NASA Milling
data set and PHM10-CNC Milling machines), which consist
of measurements from the milling machine performing var-
ious cutting operations. These data sets are used to develop
algorithms for tool wear monitoring and prediction, a criti-
cal aspect of CNC machining operations. They provide re-
searchers with valuable resources to evaluate the effective-
ness of the proposed condition monitoring and prognostics
methods for applications in industrial manufacturing and ma-
chining processes. Another significant application area of
PHM is aircraft engines, where crucial components like tur-
bofan engines must be continuously monitored to detect, di-
agnose, and predict their potential faults to ensure safe and

reliable operation. Several benchmark data sets are available
for researchers to develop and evaluate PHM methods for tur-
bofan engines. One such data set is the CMPAPSS-2008 data
set, which includes measurements from different turbofan en-
gines under different combinations of operating conditions
and fault modes. Similarly, the PHM-2008 data set was pro-
vided for the data challenge held at the 1st International Con-
ference on Prognostics and Health Management (PHM08).
One of the significant advantages of these data sets is their di-
verse range of sensors that provide different types of measure-
ments. This diversity enables researchers to choose the rele-
vant measurements for their specific PHM algorithms and fil-
ter out irrelevant or noisy data. Furthermore, the heterogene-
ity of the data sets presents an opportunity for researchers to
develop approaches for handling heterogeneous data sources.
Although the diversity and heterogeneity make CMAPSS-
2008 and PHM-2008 become valuable resources for PHM
researchers to develop and test their algorithms for applica-
tions where data may come from different sensors or sources,
they are simulation-based data and thus may not accurately
reflect real-world conditions. To overcome this drawback, the
CMAPSS-2021 data set has been recently introduced. It pro-
vides synthetic run-to-failure degradation trajectories for nine
turbofan engines with different initial health conditions. The
engines were subjected to real flight conditions, which were
recorded onboard a commercial jet, and these data were used
as input to the C-MAPSS model. This data set enables re-
searchers to develop and evaluate PHM methods for a range
of faults and real-world operating conditions, which can be
challenging to capture through experimentation alone. How-
ever, similar to CMAPSS-2008 and PHM-2008 data sets, one
of its significant limitations is the anonymization of the data.
This means that no information about the sensors used or the
sampling frequency is available. This lack of information can
be problematic for researchers and practitioners who want to
integrate aero-domain knowledge into their machine-learning
models. Additionally, the absence of sensor information and
sampling frequency can make it challenging to interpret the
results of the PHM algorithms, as the data may be noisy or
irrelevant.

To provide data for other industrial applications, the Inter-
national Conferences on PHM organized data challenges in
2011, 2018, and 2021 providing data for other industrial ap-
plications, such as the detection of cup anemometer faults,
diagnostics and prognostics of ion mill etching system faults,
and diagnostics of rock drill machine faults. These data can
help researchers developing and testing their algorithms in
different applications, contributing to the advancement of PHM
in various application domains. However, the major limita-
tion of these data sets is the lack of detailed experimental
settings. Therefore, without these informations, it becomes
difficult to design algorithms that consider the specific oper-
ating conditions of the machines.
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Table 1. Open Benchmark data sets.

data set Main objectives Characteristics
CWRU data set (click here) Diagnostics of bearing faults Vibration signals. 16-channel digital

audio tape recorder for data acquisi-
tion. Sampling frequency of 12kHz
and 48kHz. Motor loads from 0 to
3 horsepower, with motor speeds of
1720 to 1797rpm.

Paderborn University data set (click
here)

Diagnostics of bearing faults Synchronously measured motor
currents and vibration signals (high
resolution). Sampling frequency of
64kHz. Supportive measurement
of speed, torque, radial load, and
temperature. Four different operating
conditions. 20 measurements of 4
seconds each for each settings.

FEMTO-ST data set (click here) Prognostics of bearing faults Temperature and vibration signals.
Vibration signals were recorded every
10 seconds with sampling frequency
25.6kHz. 17 run-to-failure data under
three different operating conditions,
but unknown faulty mode of the failed
bearing under each test, Nectoux et al.
(2012).

MFPT data set (click here) Diagnostics and prognostics of bear-
ing faults

Data (vibration signals) from a bear-
ing test rig: nominal bearing data,
outer and inner race faults at various
loads (0–1334 N bearing load), and
three real-world fault. Input shaft rate
of 25Hz. Baseline conditions: sam-
ple rate of 97,656 samples per second
(sps), for 6 seconds. Faulty condi-
tions: sample rate of 48,828 sps, for
3 seconds.

IMS data set (click here) Prognostics of bearing faults Vibration signals: 1-second recorded
at specific intervals. Sampling rate of
20kHz. Run-to-failure data. 4 test
bearings mounted on one shaft driven
by an AC motor and coupled by rub
belt. Motor speed of 2000rpm.

XJTU-SY Bearing data set (click
here)

Prognostics of bearing faults Vibration signals (horizontal and
vertical accelerometers). Sampling
rate of 25.6kHz for 1.28 seconds of
every minute. Run-to-failure data of
5 bearings LDK UER204. 3 differ-
ent operating conditions (different ro-
tating speeds and radial force).
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NASA Milling data set (click here) Prognostics of milling tool’s faults Acoustic emissions, vibrations and
current signals. Sampling rate of
250Hz. Run-to-failure data of sixteen
milling tools of MC-510V milling
center. 8 different operating condi-
tions (different depth of cut, feed rate
and material).

PHM10-CNC Milling machines
(click here)

Prognostics of high-speed milling ma-
chine’s fault

Dynamometer, accelerometer, and
acoustic emission data. Six individ-
ual cutter records. The spindle speed
of the cutter was 10400rpm; feed rate
was 1555 mm/min; Y depth of cut (ra-
dial) was 0.125 mm; Z depth of cut
(axial) was 0.2 mm. Data were ac-
quired at 50kHz/channel.

CMAPSS-2008 (click here) Prognostics of turbofan engines faults Multivariate time series (21 sen-
sors) from different engines. Each en-
gine starts with different degrees of
initial wear and manufacturing varia-
tion and works under three operational
settings. No information about the
sampling frequency.

PHM-2008 (click here) Prognostics of turbofan engines faults Similar to the one posted above.
Data challenge competition held at the
international conference PHM08. The
true Remaining Useful Life (RUL)
values are not revealed.

CMAPSS-2021 (click here) Prognostics of turbofan engines’faults Similar to CMAPSS-2008. New re-
alistic data set of run-to-failure trajec-
tories for a small fleet of aircraft en-
gines under realistic flight conditions.

PHM11 Data Challenge (click here) Detection of cup Anemometer’s fault Anemometers, a weather vane, and
a temperature sensor. Each sen-
sor measures data over a 10-minute
period and reports the average, stan-
dard deviation, minimum and maxi-
mum value over that 10-minute pe-
riod.

PHM18 Data Challenge (click here) Diagnostics and Prognostics of Ion
Mill Etching System’s fault

Multivariate time series (5 sensors).
No information about sampling fre-
quency. The system works under dif-
ferent operating settings. Three dif-
ferent failure modes of interest: flow
cool pressure dropped below the limit,
flow cool pressure too high check flow
cool pump, and flow cool leak.

PHM21 Data Challenge (click here) Diagnostics of rock drill machine’s
fault

Pressure sensor data. No informa-
tion about the sampling frequency.
The training data set contains data
from 10 different failure modes and
one healthy class.
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Overall, while the data sets presented in Table 1 offer valuable
resources for PHM research, it is essential to consider their
limitations and drawbacks to ensure that the algorithms devel-
oped using these data sets can be effectively applied to real-
world industrial applications. One of their major limits is,
despite the industrial practitioners appreciate the importance
of PHM of rotating machines, and due to the data security is-
sue, almost studies in literature use data from laboratory test
benches. Additionally, it is worth noting the lack of diversity
in the fault types and the operating conditions of these data
sets Magnus & Jing (2019). For instance, those on bearings
focus primarily on bearing faults, which limits their applica-
bility to other types of components or systems. Hence, the
study of combined faults and their severity is still rare. This
can also hinder the applicability of the developed algorithms
under practical settings, where combined faults and operating
conditions may arise. Moreover, one can notice that the avail-
ability of abundant information obtained through high sam-
pling rates has proved crucial for effective fault detection and
diagnosis of rotating machines, particularly in the context of
vibration data analysis. Several works exploit frequencies be-
tween 20kHz and 64kHz for efficient information extraction
on system health, we can cite Jiang et al. (2022) which pro-
pose 20kHz for gear and bearing monitoring, while in Zarei et
al. (2014); Golafshan & Sanliturk (2016) the authors propose
32kHz for bearing monitoring, and 50kHz for gear monitor-
ing in Ooijevaar et al. (2019). In Chen et al. (2018), the sam-
pling frequency is fixed 64kHz for bearing monitoring. How-
ever, the application of these sampling rates to the analysis
of other types of data, such as current, voltage or other rele-
vant parameters, is relatively less investigated. Therefore, the
development of data sets covering a wider range of faults and
operating conditions with high sampling rates across multiple
data types can aid tin the advancement of PHM research and
the practical implementation of PHM algorithms.

3. DESCRIPTION OF NEW BENCHMARK DATA SETS

In this section, different data sets (DATA-PHM) of test benches
used for monitoring multiple faults in rotating machines are
presented. The presentation of these test benches is classified
into two categories: 1) test benches for the monitoring of ro-
tating motors and 2) test benches for monitoring the systems
connected to the motor.

First, subsection 3.1 presents a data set on monitoring of mo-
tor rotor faults while subsection 3.2 presents monitoring data
of motor stator faults. Then, a data set related to the health
monitoring of bearings and gears of a gearbox connected to a
motor is presented in subsection 3.3. After that, monitoring
data of a machining tool placed at a spindle motor in a multi-
axis robot are described in subsection 3.4 while a data set on
rotating shaft monitoring of each robot axis is presented in
subsection 3.5. Finally, subsection 3.6 is dedicated for sum-
marizing the proposed data sets as well as the publications

using these data sets.

3.1. AMPERE data set: detection and diagnostics of mo-
tor rotor faults

The AMPERE laboratory test bench is designed to monitor
two parts, 1) monitor the rotor of the motor and 2) monitor
the stator of the motor. Hence, there are two sets of data cor-
responding to the two different monitoring cases mentioned
above. The first data set concerns the monitoring of the elec-
trical bars and the bearing at the rotor level with data from
the inverter output. The second data set corresponds to the
monitoring of the motor stator windings with data collected
from the power grid.

This test bench is composed of a three-phase inverter to sup-
ply and control a 5.5kW electric motor (see Table 2). The
motor used is a squirrel cage motor and its rotating shaft is
connected to an electromagnetic brake which operates as a
load on the motor. This brake, achieved at a nominal speed,
is designed to dissipate a maximum power of 5kW with a
maximum brake torque of 100N.m. The overall view of the
test bench is shown in the Appendix section.

Table 2. Characteristics of the AMPERE test bench motor.

Characteristic parameters Value
Protection class (IP) 55
Normalized operating temperature 40°C
Nominal voltage between phases 400V
Power supply frequency 50Hz
Nominal speed 1440rpm
Nominal power output 5.5kW
Power factor 0.84
Nominal current 11.4A
Number of pole pairs (p) 2
Stator resistance per phase 1.315 Ω
Number of rotor slots (Nr) 28
The number of slots on the stator (Ns) 48

The whole test bench is equipped with several heterogeneous
sensors placed at different positions. There are three-phase
current and voltage sensors corresponding to the three phases
of the motor. Furthermore, three separate accelerometers are
placed on the motor. The first one is in the vertical direction
on the opposite side of the coupling. The second one is in
a parallel direction to the motor axis on the opposite side of
the coupling. The last one is in a horizontal direction and
perpendicular to the motor axis on the opposite side of the
coupling. Finally, an encoder placed at the output of the brake
is used to measure the rotation speed. The acquisition system,
Odyssey Gould Nicolet, used to measure these signals has
eight differential inputs, known as fast channels, which can be
sampled at up to 10MHz on 14 bits. These inputs were used
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to measure the voltages as well as the currents. In addition,
there are eight common mode inputs, called slow channels,
on which the sampling frequency can reach 1M on 16 bits.
One of these eight inputs was used to measure the rotation
speed. Then, three inputs are reserved for accelerometers to
measure the vibration. Figure 1 shows a scheme of the test
bench that highlights the different connections and sensors
mentioned above.

Induction motor

 Odyssey Gould Nicolet

Supply grid

Inverter

Voltage 
sensors

Current
sensors

Electromagnetic
brake

50 Hz, 400 V

Coupling

Accelerometers

Encoder

Direct current
supply

Motor shaft

Figure 1. AMPERE test bench scheme.

All acquisitions are performed in the permanent mode over
a period of 5 seconds with a sampling frequency of 20kHz.
The data are stored in .mat and .csv files with 11 columns.
Column 1 represents the time steps (t) acquisition. Columns
2 to 4 represent the three-phase voltage signals (Va, Vb, Vc).
Columns 5 to 7 are the three-phase current signals (Ia, Ib,
Ic). Column 8 is the speed (S) while the last three columns,
from columns 9 to 11, are for the three accelerometers (Acca,
Accy , Accz).

Regarding the monitoring data set of the electrical bars and
the motor bearing, 25 experiments are carried out with data
collected at the output of the inverter. In detail, there are 5
different experiments (health states) of the motor, a healthy
state with a healthy rotor, breakage of one rotor bar, breakage
of three rotor bars, breakages of four rotor bars, and a de-
graded bearing. The broken rotor bars was made by creating
holes in bar conductors, 1 hole for 1 broken bar, 3 holes for
3 broken bars, and so on. Regarding the bearing degradation,
the damage is caused when an electric current flows through
the bearing, i.e. from one ring to another via the rolling el-
ements. In each health state, 5 operating conditions which
are load levels (0%, 25%, 50%, 75% and 100%) represent-
ing the resistant torque generated by the brake, were applied
separately in each experiment.

To calculate the numerical torque value, we can estimate the

numerical value of the load level on the basis of the motor’s
nominal values. In this test bench, the nominal motor data
is a power of 5.5kW with a speed of 1440rpm, therefore the
100% load level of this motor is a resistant torque equal to
32N.m. The remaining load level values can be deduced us-
ing the proportion method. The overall experiment details are
summarized in Appendix, Table 5.

3.2. AMPERE data set: detection and diagnostics of mo-
tor stator faults

As mentioned in the above subsection, there are two data sets
corresponding to two different condition monitoring studies.
In this subsection, the data from the power grid supply for
monitoring the stator behavior is studied In this case, different
resistances are added to one of the stator windings in order to
reproduce a short circuit between the windings of the b-phase
of the motor and cause an unbalance supply. Besides, the
composition of the test bench remains unchanged from what
has been described in subsection 3.1. Also, the data collection
procedure remains the same, i.e. the sampling frequency is
equal to 20kHz with an acquisition period/file of 5 seconds in
.mat files. In these files, column 1 represents the acquisition
time (t). Columns 2 to 4 represent the voltage measurements
(Va, Vb, Vc). Columns 5 to 7 contain the signals of the three-
phase currents (Ia, Ib, Ic). Column 8 is for the instantaneous
motor rotation speed (S) while columns 9 to 11 are for the
accelerometers (Accx, Accy , Accz).

In total, 25 experiments were performed for monitoring the
stator power supply with data collected from the supply grid.
There are 5 different health states of the motor: a healthy state
of the stator and four states representing different unbalanced
supply levels of 5%, 10%, 20%, and 40%. In each health
state, 5 load levels, 0%, 25%, 50%, 75%, and 100% gen-
erated by the brake were applied separately for each health
state. Here, similarly to rotor fault conditions, the 100% load
level is equal to 32N.m. The overall experiment details are
summarized in Appendix, Table 6.

3.3. LASPI data set: detection and diagnostics of bear-
ing, gear and combined faults of gearbox

The LASPI test bench is used for monitoring the bearing and
gear faults of a gearbox. It is composed of a three-phase in-
verter to supply and control a three-phase induction motor
of 1.5kW. This latter motor drives a gearbox on which the
components of the study are positioned. Also, there is an
electromagnetic brake connected to the gearbox. This latter
component is used to simulate a load on the motor. The mo-
tor characteristics are presented in Table 3, and the overall
view of the test bench is shown in Appendix, Figure 6. In
detail, the gearbox has three shafts, the input shaft, the inter-
mediate shaft, and the output shaft. The studied components
are placed in the intermediate shaft as shown in the diagram
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of Figure 6. The input shaft, which is directly connected to
the rotating shaft of the motor, has one gear and two bearings
installed on each side of the gearbox.

Table 3. Characteristics of the LASPI test bench motor.

Characteristic parameters Value
Protection class (IP) 43
Normalized operating temperature 40°C
Nominal voltage between phases 380V
Power supply frequency 50Hz
Nominal speed 2850rpm
Nominal power output 1.5kW
Power factor 0.80
Nominal current 11.4A

The gear is installed at the brake side and contains 29 teeth.
The two bearings contain 9 rolling balls with a diameter of
0.3125 inches, a pitch diameter of 1.5157 inches, and a con-
tact angle equal to 0.

Besides, the intermediate shaft has two bearings, with the
same characteristics as the ones of the input shaft, and two
gears. The first gear installed on the motor side has 36 teeth
while the gear installed in the brake side has 100 teeth. Fi-
nally, the output shaft which is directly connected to the elec-
tromagnetic brake has the same bearings as the previous ones
and a gear installed on the motor side with 90 teeth.

This test bench is equipped with different sensors and an ac-
quisition system to collect the monitoring data. It has three
current and voltage sensors, placed at the output of the in-
verter that supplies the motor, and an accelerometer placed
as near as possible to the studied components of the inter-
mediate shaft. The data acquisition is performed by National
Instrument 9234 cards. The overall scheme of the test bench
is given in Figure 2.

Supply grid

Inverter

Induction motor

Two acquisition cards of 
National Instruments 9234

Voltage 
sensors

Current 
sensors

Direct current 
supply

50 Hz, 400 V

Coupling

Accelerometer

Bearings Gears
Input 
shaft

Output 
shaft

Intermediate 
shaft

Bearing and gear of experiments

9 balls

100 teeth
36 teeth

29 teeth

90 teeth

Electromagnetic 
brake

Figure 2. LASPI test bench scheme.

All acquisitions are performed in the permanent mode over a
period of 10 seconds with a sampling frequency of 25.6 kHz.
The data are stored in .csv files with 7 columns. Columns 1 to
3 represent the three-phase current signals (Ia, Ib, Ic) with a
reduced gain of 100. Column 4 represents the vibration signal
(Acc) with a sensitivity of 100 mV/g. The last columns, from
5 to 7, represent the voltage signals of the three phases (Va,
Vb, Vc) with a reduction gain of 200. Based on the test bench
instrumentation mentioned above, 84 experiments were con-
ducted to monitor separately the bearing and the gear faults,
as well as their combination. In detail, 7 health states are
studied: healthy states of the bearing and the gear, a gear sur-
face fault, a gear half-tooth breakage fault, a bearing inner
ring fault, a bearing outer ring fault, combined faults between
the gear surface fault and the bearing inner ring fault, and fi-
nally combined faults between the gear half-tooth breakage
fault and the bearing outer ring fault. Note that the LASPI
case study is a didactic platform that is delivered with com-
ponents that already contain a defect, so that only the original
component needs to be replaced by the damaged one. In ad-
dition to these health states, each state is tested under three
different rotating speeds separately, 1500rpm, 2100rpm, and
2700rpm, and at each speed four load levels, 0%, 25%, 50%,
and 75%, are also performed separately. To obtain the load
level value at the 75%, it is necessary to first calculate the
load value at 100% using the nominal motor characteristics,
i.e. 1.5kW power and 2850rpm, producing a resistant torque
of 5N.m. Then, the proportion method can be utilized to de-
duce the load at the 75% level and the remaining ones. The
experiment details are summarized in Appendix, Table 7.

3.4. METALLICADOUR robot-tool data set

The test bench of METALLICADOUR Technology Transfer
Center is designed for two purposes: 1) monitoring the health
state of a machining tool mounted on the motor spindle at
the end of the robot axis and 2) monitoring drifts of the robot
axes. In this subsection, the data set related to the monitoring
of the machining tools is presented. The robot in use is an
ABB 6660 having six axes of rotation (6 arms), each axis be-
ing an alternative servo-motor. A three-phase motor carrying
the machining tool is mounted at the end of the sixth axis. The
cutting tool is used for machining aluminum pieces and con-
tains three cutting edges. Regarding the manufacturing piece,
it consists of a small aluminum part used in aeronautic indus-
try. Behind the robot, an IRC5 controller is used to power
and control its axes. An inverter is also used to power the
machining spindle. An overview of the test bench is shown
in Appendix, in Figure 7.

This test bench is equipped with different types of sensors.
Three current sensors are placed at the output of the inverter,
and correspond to each phase of the tool spindle. On the
flange of the machining spindle, as close as possible to the
machining unit, a three-axis accelerometer (x-axis, y-axis,

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2023 8



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

and z-axis) is also placed. Finally, a three-axis force and
torque sensor is installed between the sixth axis of the robot
and the machining spindle. The motor characteristics and test
bench scheme are presented in Table 4 Figure 3, respectively.

Table 4. Characteristics of the METALLICADOUR test
bench spindle motor.

Characteristic parameters Value
Nominal voltage between phases 380V
Power supply frequency 50Hz
Nominal speed 18000rpm
Nominal power output 44kW
Power factor 0.84
Nominal current 22A
Number of pole pairs (p) 2

Supply grid

Current
sensors

50 Hz, 400 V

Encoders

Axis 1

Axis 2

Axis 3

Axis 4

Axis 5

Axis 6

Vibration 
sensor

Spindle motor

Machining unit

Work piece

Spindle
motor

inverter

Robot 
controller

Force & torque 
sensor

Acquisition cards of National 
Instruments 9234, 9215, 9205

Supply
motors

Figure 3. METALLICADOUR test bench scheme.

The monitoring data are collected over a period of 5 seconds
with a sampling frequency equal to 25.6kHz and are stored
in .csv files with 12 columns. Columns 1 to 3 represent the
three-phase current signals (Ia, Ib, Ic), columns 4 to 6 corre-
spond to the three-axis force signals (Fx, Fx, Fz), columns
7 to 9 are for the three-axis torque signals (Tx, Ty , Tz), and
columns 10 to 12 are for the three-axis accelerometer (Accx,
Accy , Accz).

Concerning the tool monitoring, 16 experiments were per-
formed to collect the data. In total, 4 tool states were stud-
ied: a healthy state of the tool, a tool surface damage, a tool
flack damage, and a tool broken tooth. The three faulty tools
are three different tools already used for machining aluminum
parts. After each machining operation, a 3D measuring sys-
tem called ALICONA, which reconstructs the image of the
tool edge, was used to quantify with experts the state of the
tool (defect 1, defect 2, etc.). For example, a tool was used
for 6 machining operations before the experts, with the help

of the ALICONA imaging system, determined that the tool
had reached a first level of degradation. In each health state, 4
operating condition were investigated separately by varying 3
parameters separately: cutting depth, spindle speed and spin-
dle feed rate. The conducted experiments are summarized in
Table 8.

3.5. METALLICADOUR robot-axes data set

As mentioned in the previous subsection, this data set is ded-
icated to the monitoring of robot axes drifts where the motion
of each axis is performed by an alternating current servomo-
tor. However, in this application, the robot is used for machin-
ing aluminum parts, consisting of a labyrinth shape aiming to
move all the robot axes, which is a different shape than the
previous one (see Figure 8).

The previously installed sensors (current, force, torque and
vibration) related to the machining tool are still valid. How-
ever, new data related to the displacement of each axis are ad-
ditionally collected in this study. They are the position data
from the encoders placed on the rotating shaft of each axis.

The data set related to robot tool sensors are collected over
a period of 5 seconds with a sampling frequency of 25.6kHz
in .csv files with 12 columns, while the position data of each
axis of the robot are collected with a sampling frequency of
41.6Hz in .xlsx files with 9 columns. The 12 columns of the
tool data are the three-phase current, the three-axis force, the
three-axis torque and the three-axis vibration signals. In the
.xlsx files, column 1 is the time step (t) acquisition, columns 2
to 7 are the position data from axis 1 to axis 6 (Pa1, Pa2, Pa3,
Pa4, Pa5, Pa6) columns 8 to 10 are the x, y, and z coordinates
of the tool center position (Ptx, Pty , Ptz) relative to the object
coordinates (user coordinates), and columns 11 and 12 are
the index of the machining start time Itm, and the index ac-
quisition trigger Ita, respectively. These last two parameters
are equal to 0 or 1. Zero value in both cases means that the
activity of the machining and acquisition has not yet started.
Otherwise, one value means that the machining process has
started and the acquisition has been initiated.

In total, 14 experiments were conducted. The first group of
experiments contains one healthy state of the robot without
any drifts (the reference case) and 6 experiments with single
drifts on each axis. The second group of experiments con-
tains another healthy state without drifts and 6 health states
with combined drifts between the robot axes, e.g. drifts in
both axis 4 and axis 6 simultaneously. These experiments are
summarized in Appendix, Table 9.

3.6. Summary of related publications

The proposed data sets has been the subject of several works
published in the literature. These works have mainly focused
on the development of data processing methods for the con-
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struction of health indicators and/or diagnostic tools based on
classification algorithms. The common body of work sug-
gests that the data set can be used to extract meaningful infor-
mation, which allows the identification and proposal of new
monitoring models. In addition, these studies have demon-
strated the potential of the data set to improve diagnostic ac-
curacy and enable more precise and customized management
recommendations. A summary of these published works is
presented in Appendix, Table 10. Moreover, future users and
contributors who use these data sets will be able to exploit the
obtained results from the works mentioned in Table 10 with
the associated metrics to evaluate the performance of their
new approaches. Note that contributors are free to use their
own metric or already existing ones for the evaluation of their
approaches (Saxena, Celaya, et al., 2008).

The data sets presented above in this paper are available on
the web and have been grouped into a collection by the labo-
ratory that generated them. The collection is accessible through
the link below (DATA-PHM). Grouping these data sets into
a single collection makes it easier for researchers to access
all the data and perform their own monitoring algorithms.
For those interested in accessing separately the data sets, we
have provided the DOI link for each one. The first DOI link
(DATA-AMPERE) is for the AMPERE laboratory, which pro-
vides data for stator and rotor monitoring of an electric motor.
The second DOI link (DATA-LASPI) concerns the LASPI
laboratory, it provides data for monitoring gearbox system.
Finally, METTALICADOUR center provides data for mon-
itoring multi-axis robot and are accecible through the third
DOI link (DATA-METALLICADOUR).

4. CONCLUSION

This paper reviewed existing open benchmark data sets for
Prognostics and Health Management (PHM) of rotating ma-
chines and presented newly developed ones. The review has
shown that the existing open data sets have provided valuable
resources for testing and evaluating the effectiveness of con-
dition monitoring for fault detection, diagnostics, and prog-
nostic methods. However, in this review, certain limitations
associated with these data sets were identified. One such lim-
itation is the lack of information about the experimental set-
ting, which can discourage PHM practitioners who wish to
replicate these experiments. Moreover, the existing data sets
also lack diversity in terms of fault types and operating condi-
tions. These limitations highlighted the need for new bench-
mark data sets that cover a wider range of fault types and
operating conditions and provide comprehensive information
about the experimental settings. This valuable information on
the experimental settings can guide researchers and industrial
practitioners in constructing their own test benches to collect
data that are specific to their case studies.

In addition, the works already developed on the proposed data

sets has led to significant progress in the data processing al-
gorithms for fault detection and diagnostics. We have used
these data to develop and test innovative PHM solutions with
promising results. The availability of this public data set has
facilitated collaboration and knowledge-sharing across the in-
dustry, leading to improved performance, efficiency, and sus-
tainability of industrial operations. We believe that the con-
tinued use and exploration of these data will drive further
innovation in the field and contribute to the development of
more reliable and effective maintenance strategies. We en-
courage researchers and industries to exploit these data and
other public data sets to enhance maintenance practices and
ensure the longevity of industrial systems. Note that we are
continuously updating our data collection with new informa-
tion and data, and we welcome contributors who wish to share
their ideas and new data with us for open access. If you would
like to contribute to this project please feel free to contact the
corresponding author by email.
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APPENDIX

Squirrel rotor motor

AMPERE test bench 1 Broken rotor barHealthy rotor Aging bearing 3 Broken rotor bars 4 Broken rotor bars
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Figure 4. AMPERE test bench for health monitoring of motor rotor faults.

Table 5. Overall view of AMPERE motor rotor experiments.

Monitoring experiments of motor rotor

System state Monitoring parameters Operating conditions Acquisition parameters
Speed (Hz) Load level (%) Fs (kHz) Extension Time/file (s)

E1: Healthy state Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5
E2: 1 broken bar Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5
E3: 3 broken bars Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5
E4: 4 broken bars Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5
E4: Bearing fault Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5

Squirrel stator motor

Current sensor Voltage sensor

AMPERE test bench 10% unbalanceHealthy winding 5% unbalance

Vibration sensor

20% unbalance 40% unbalance

Stator winding

R1 R2 R3 R4

Encoder sensor

Figure 5. AMPERE test bench for health monitoring of motor stator faults.

Table 6. Overall view of AMPERE motor stator experiments.

Monitoring experiments of motor rotor

System state Monitoring parameters Operating conditions Acquisition parameters
Speed (Hz) Load level (%) Fs (kHz) Extension Time/file (s)

E1: Healthy state Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5
E2: 05% unbalance Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5
E3: 10% unbalance Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5
E4: 20% unbalance Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5
E5: 40% unbalance Current, voltage, vibration, speed 24 0, 25, 50, 75, 100 20 .mat, .csv 5

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2023 13



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Gearbox
Bearing and gear

Current sensor Voltage sensor

LASPI test bench Healthy bearing Surface damageInner race defect ½ Tooth brokenHealthy gear Outer race defect

Vibration sensor

Figure 6. LASPI test bench for health monitoring of bearing and gear components.

Table 7. Overall view of LASPI motor experiments.

Monitoring experiments of gearbox system

System state Monitoring parameters Operating conditions Acquisition parameters
Speed (Hz) Load level (%) Fs (kHz) Extension Time/file (s)

E1: Healthy state Current, voltage, vibration 25, 35, 45 0, 25, 50, 75 25.6 .csv 10
E2: Gear surface damage Current, voltage, vibration 25, 35, 45 0, 25, 50, 75 25.6 .csv 10
E3: Gear 1/2 tooth broken Current, voltage, vibration 25, 35, 45 0, 25, 50, 75 25.6 .csv 10
E4: Bearing outer ring fault Current, voltage, vibration 25, 35, 45 0, 25, 50, 75 25.6 .csv 10
E5: Bearing inner ring fault Current, voltage, vibration 25, 35, 45 0, 25, 50, 75 25.6 .csv 10
E6: E2 & E5 Current, voltage, vibration 25, 35, 45 0, 25, 50, 75 25.6 .csv 10
E7: E3 & E4 Current, voltage, vibration 25, 35, 45 0, 25, 50, 75 25.6 .csv 10

Spindle motor

Machining tool unit

(Flat-end mill) 

Current sensor Force and torque sensorVibration sensor Healthy Surface damage Flack damage Broken toothMETALLICADOUR test bench

Figure 7. METALLICADOUR test bench for health monitoring of machining tool units.

Table 8. Overall view of METALLICADOUR spindle motor cutting tool experiments.

Monitoring experiments of motor rotor

System state Monitoring parameters
Operating conditions Acquisition parameters

Speed Depth Feed rate Fs File Time/file
(Hz) (mm) (mm/mn) (kHz) extension (s)

E1: Healthy state Current, vibration, force, torque 233, 300 5, 10 1890, 2730 25.6 .csv 5
E2: Tool surface damage Current, vibration, force, torque 233, 300 5, 10 1890, 2730 25.6 .csv 5
E3: Tool flack damage Current, vibration, force, torque 233, 300 5, 10 1890, 2730 25.6 .csv 5
E4: Tool broken tooth Current, vibration, force, torque 233, 300 5, 10 1890, 2730 25.6 .csv 5
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METALLICADOUR test bench

Axis 2

Axis 1

Axis 3

Axis 4

Axis 6
Axis 5

Workpiece

Spindle motor

Axis motor Encoder sensor

Current sensor Force/torque sensorVibration sensor IRC controller

Figure 8. METALLICADOUR test bench for robot axes health monitoring.

Table 9. Overall view of METALLICADOUR axis drifts experiments.

Monitoring experiments of motor rotor

System state Monitoring parameters
Operating conditions Acquisition parameters

Speed Depth Feed rate Degree of Fs tool Fs axis File Time/file
(Hz) (mm) (mm/mn) drifts (°) (kHz) (Hz) extension (s)

First group of experiments including unique drifts/axis

E1: Healthy state 1
Position, current, force,
torque, vibration 150 5 648 - 25.6 41.6

.csv
.xlsx

5
60

E2: Drifts in axis 1
Position, current, force,
torque, vibration 150 5 648 +0.065 25.6 41.6

.csv
.xlsx

5
60

E3: Drifts in axis 2
Position, current, force,
torque, vibration 150 5 648 +0.120 25.6 41.6

.csv
.xlsx

5
60

E4: Drifts in axis 3
Position, current, force,
torque, vibration 150 5 648 +0.080 25.6 41.6

.csv
.xlsx

5
60

E5: Drifts in axis 4
Position, current, force,
torque, vibration 150 5 648 +0.085 25.6 41.6

.csv
.xlsx

5
60

E6: Drifts in axis 5
Position, current, force,
torque, vibration 150 5 648 +0.120 25.6 41.6

.csv
.xlsx

5
60

E7: Drifts in axis 6
Position, current, force,
torque, vibration 150 5 648 +0.155 25.6 41.6

.csv
.xlsx

5
60

Second group of experiments including combined drifts/axis

E8: Healthy state 2
Position, current, force,
torque, vibration 150 5 648 - 25.6 41.6

.csv
.xlsx

5
60

E9: E2 & E5
Position, current, force,
torque, vibration 150 5 648

+0.012
-0.04 25.6 41.6

.csv
.xlsx

5
60

E10: E3 & E5
Position, current, force,
torque, vibration 150 5 648

+0.120
+0.04 25.6 41.6

.csv
.xlsx

5
60

E11: E4 & E7
Position, current, force,
torque, vibration 150 5 648

-0.04
+0.155 25.6 41.6

.csv
.xlsx

5
60

E12: E5 & E6
Position, current, force,
torque, vibration 150 5 648

+0.155
-0.04 25.6 41.6

.csv
.xlsx

5
60

E13: E6 & E3
Position, current, force,
torque, vibration 150 5 648

+0.04
-0.040 25.6 41.6

.csv
.xlsx

5
60

E14: E7 & E5
Position, current, force,
torque, vibration 150 5 648

+0.18
-0.080 25.6 41.6

.csv
.xlsx

5
60
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