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ABSTRACT (PHM) community because it has a broad applicability but
.eit still needs a debnitive approach. This problem is assumed
t be tractable using reams of data through a statistics-based

in operational data for nominal (i.e., non-parametric) subsys- ; ~ .
. . ' : erspective. However, thereOs no canonical approach to effec-
tem event signals using unsupervised Deep Learning tech- ; : .
; : o . Ively process nominal events like these records. Specibcally,
niques. Firstly, it builds a neural convolutional framework

to extract both intrasubsystem and intersubsystem patten%]ereoS a lack of consensus and methodology on algorithm

This is done by applying banks of voxel blters on the Charte(izléec\t]mnzgnl%fferent scenarigsiuang, B., Di, Y., Jin, C., and
data. Secondly, it generalizes the learned embedded regu-"""" '
larity of a Variational Autoencoder manifold by merging la- Subsystem event data are generally available through time-
tent space-overlapping deviations with non-overlapping syrstamped nominal variables where typically no single message
thetic irregularities. Contingencies like novel data, modelis decisive to raise an alarm. Thus, the density of information
drift, etc., are therefore seamlessly managed by the proposeési low, along with the sparsity of this representation. These
data-augmented approach. Finally, it creates a smooth diagharacteristics pose challenging encoding questions to the
nosis probabilistic function on the ensuing low-dimensionalPHM engineers who are responsible for designing rules and
distributed representation. The resulting enhanced solutioprocedures to diagnose anomalies in this environment. Such
warrants analytically strong tools for a critical industrial en-nominal event data have been commonly tackled as discrete-
vironment. It also facilitates its hierarchical integrability, and valued variables using counts of their occurrences in a sliding-
provides visually interpretable insights of the degraded conditime window, followed by a supervised learning scheme such
tion hazard to increase the conbdence in its predictions. Thigs a Support Vector Machine or a Random Fog8atmmouri,
strategy has been validated with eight pairwise-interrelatetlV., Céme, E., Oukhellou, L., Aknin, P., and Fonlladosa, C.-E.,
subsystems from high-speed trains. Its outcome also leads #014). After the Deep Learning revoluti¢8ejnowski, T. J.,

further reliable explainability from a causal perspective. 2018), though, the recent state of the art in Anomaly Detection
for PHM is dominated by the successive transformation of
1. INTRODUCTION representations using Autoencoders, which are unsupervised

. . . . _neural networks that exploit the autoassociations in the data
Anomalies are signs of a strange system condition that inhe: . : : ; X

. through a dense and efbcient low-dimensional information-
ently represent a Baw, a degraded state, a fault, or a failure

and discovering them is of utmost importance to ensure tthmpres;ed embedded spgeimk, O., Wang, Q., Svess,
. ! X . F/I Dersin, P., Lee, W.-J., and Ducoffe, M., 2020).

correct operation of a physical machine. The detection o

anomalies using subsystem-event data is regarded as a tradifferent solutions have been developed to address specibc

tional problem in the Prognostics and Health Managemenproblems. For example, to counter the adverse effect of faulty

Alexandre Trilla et al. This is an open-access article distributed under thé:jata shortage and_be robus_t to different operating conditions,

terms of the Creative Commons Attribution 3.0 United States License, whictAN EXtreme Learning Machine-based Autoencoder has been

permits unrestricted use, distribution, and reproduction in any medium, pradsed to blend data from different sources conserving their
vided the original author and source are credited.
https://doi.org/10.36001/IJPHM.2023.v14i1.3431

International Journal of Prognostics and Health Management, ISSN2153-2648, 2023 1



INTERNATIONAL JOURNAL OF PROGNOSTICS ANDHEALTH MANAGEMENT

homothety, and then its embedding has been used to classitpmowledge, and the measurable key performance indicators
the anomaly(Michau, G., and Fink, O., 2019). Similarly, to quantify the expected detection success in the peld. Addi-
for such open-set problems where the knowledge of all faultionally, the ISO 13374 standard has been observed to design
types may be incomplete at training time, the manifold ofthe proposed solutioSO, 2003). What follows is a brief

an adjusted Variational Autoencoders has been (8gds  description of the main modules that have been implemented:

Chao, M., Adey,. B, T .a”‘?' F!nk, 0., 2019). Also in this pa¢y Acquisition The operational events have been logged
topology-preserving similarity line, further tweaks on the ob- using the Train Control Management System (TCMS),

jectiv_e crit_eria to obtain a re_g_ular latent space have led to the which is the on-board computer that sniffs the backbone
consideration of Self-Organizing Maps within a Deep Autoen- network of the train

coder(Forest, F., Lebbah, M., Azzag, H., and Lacaille, J., . .
( J pata Manipulation The subsystem event-data have been
binarized into a logic-like waveform and arranged onto a

Autoencoder has also been used to get continuous probabilities )
charted geometric space.

on machine health condition instead of the sudden evolution
that is directly experienced when machines deg(&tenhid, State Detection The data-space has been transformed with
N., and Ghosh, A., 2019). In light of all these approaches, Plters and modeled using a probabilistic generative ap-
it is clear that Autoencoders have generally been used with ~ Proach with latent variables. Additionally, synthetic data
success as feature extractors and anomaly detectors for diverse have been produced to enrich the model and generalize
applicationgFarzad, A., and Gulliver, A., 2020; Dangut, M. the diagnosis solution, which has been devised as a di-
D., Skaf, Z., and Jennions, |., 2020). Particularly, one of the ~ chotomous classiber.

most promising environments for this technique is found wherAdvisory Generation Hazard maps have been produced to
the input data gets represented as an image and a convolu- provide visual feedback of the degradation zones that are
tional Autoencoder architecture is deployétid, A., Clerc, likely to generate anomalies.

G., Mansouri, B., and Roux, S., 2021; Rodriguez Garcia, G.,

Michau, G., Ducoffe, M., Sen Gupta, J., and Fink, O., 2021). 2.1. Subsystem Event Dataset

This work uniPes the former successful ideas under the sanWhile the trains are in commercial service, their on-board
framework, and builds a novel value-added solution for mainsubsystems generate messages about their operation according
tainers to detect rolling-stock anomalies in a high-speed raito some predebned rules driven by specibc events designed
way environment usingnly operational data To this end, by their suppliers and manufacturers. These messages are
a generative approach is considered as its main componetfien logged by the TCMS, which is continuously monitoring
being the most expressive probabilistic technique to modethem. In this work, a dump of subsystem logs (syslogs) for a
the complexity of the problem at hand. Moreover, this modeWhole year has been collected from a high-speed rolling stock
naturally enables the production of synthetic data to face th@latform. What follows are some descriptive statistics of these
shortage of anomalies that is typically found in a real-worldrecords to better understand the nature of these longitudinal
commercial transport service. And bnally, observing the indata.

dustrial requi_rement of an interp_retal_)le _safety-critical PHMThe dataset amounts to 4.8M events distributed across the
system and its connection o visualizati@iflattar, H. M., 0y iple train units in the Reet throughout the year, see Fig-
Elminir, H. K'_’ and R'aq' A. M., 2016), hazard Maps ar€ €Xy,re 1. There are two main modes in this distribution: trains
tracted to bl,'”ld trust W'th,the customers and increase theif generated around 70k events, and trains that generated
conbdence in this innovative approach. around 110k events. This may be due to different mission

The article is organized as follows: Section 2 describes th@roPles to balance the load of the service.

logged multl-subsyste_m operational (_event d_ataset _ar!d thf’q’nese subsystem event data are essentially nominal, i.e., non-
framework to process it based on a Hierarchical Va”at'onabarametric They are debned by a specibc subsystem/train
Autoencoder. Section 3 shows the diagnosis results obtaingge niincation code and the timestamp of occurrence. Addition-
in terms of Anomaly Detection (i.e., a classiPcation objective); there are some context variables like the GPS location
Section 4 discusses the general interpretability insights thaf, 5 may pe useful to display operational details, and eventu-
may be extracted, which are mostly based on causality, angly 14 help fathom the potential reasons that may explain a
Section 5 concludes the work with some future avenues Oéiven event pattern. For example, Figure 2 displays the evolu-

Improvement. tion of monthly event counts showing seasonal patterns: this
function is Rat around 9k average unit events for half of the
year, and plunges in the spring and the fall. Figure 3 displays
This section describes the data that have been used to ledfie evolution of weekly events, showing that the service peak

and exploit the anomaly model, the strategy to obtain thids on Thursday (busy business day) while the trough is on
Sunday (late weekend). Finally, Figure 4 displays the event

2. MATERIALS AND METHOD
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Figure 1. Histogram of the total event count per train unit,

showing two main modes as humps in the kernel density esti- Figure 3. Weekly evolution of event counts.
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Figure 4. Evolution of event counts given the location.

Figure 2. Monthly evolution of event counts.

describes how this point has been particularly considered in

evolution regarding the train location on the line, showing thatthls research.

the capital is the area where the majority of the events are, .

. .2. Anomaly Detection Framework
generated, and the counts decrease exponentially on the moré
distant destinations. This section describes the solution that has been designed to

. . . .d{atect anomalies in operational data using nominal subsystem
Regarding the specibc subsystems that issue messages into . . )
: ; . events. Figure 7 shows its modular framework, where its
the network, Figure 5 displays their total arrangement. Ad; : : .
o o functional blocks are shown in boldface, and the details of
ditionally, for each of them, a power law debnes its internal, " . ; : ;
- ! . their implementation are further described in the following
distribution of events, see Figure 6 for the Traction subsystem !
. . stsectlons.
shown as an example. Note that there exists some functiona
spillover among the subsystems, for instance, between th 5 .
Traction and the Brake. The rolling stock platform of use hereiz'l' Event-Voxel Data Fusion
equips a blended braking system by which the traction motom a PHM environment, the data that can reliably contain
is both used to put the train into motion and also to stop itinformation about the failure of a machine is typically scarce.
This explains why braking events can be found in the TractionTherefore, all the data sources that may be within reach are
subsystem stream, e.g., OTraction/Brake Train Line Fault@vised to be collected and exploited, especially if a statistics-
ORegenerative Brake DefectO, etc. This mixed nature of evdyased approach is target@@elman, A., 2021). However, the
occurrence justibes the importance of building a frameworkvorkload for data selection and Pltering is signibcant with

able to blend data from different sources. The next sectioheterogeneous and complex datasets, especially in inference-
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Figure 5. Ranked total event counts given the subsystems.

based classibcation problems like Anomaly Detecflénang,
B., Di, Y., Jin, C., and Lee, J., 2017). In light of this scenario,
there is a need to develop an automatic approach to represe: ..

and fuse different data from distinct origifidu, X., Eklund,
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Figure 6. Histogram of the top 30 frequency-ranked events for

N., and Goebel, K., 2007), i.e., concurrent intrasubsystem a$e Traction subsystem.
well as intersubsystem sources. The proposed process to attain
this goal is described as follows.

Initially, the data from the timestamped subsystem events
are massively processed using regular expressions to extract
the key-value pairs and conf3ate similar logs into matching
clusters(Du, M., Li, F., Zheng, G., and Srikumar, V., 2017).
Additionally, they are segmented into train units and 24-hour
time sets that align with the commercial transport schedule,
yielding around 20k instances within the dataset. Also, the
coordination with the maintenance activities runs at the day-by-
day level, thus the decisions are made by the Operations Team
within this time frame. Finally, the resulting sets undergo the
subsequent series of dimensional (D) transformations:

1D:

2D:

Nominal Event to Parametric Time Series The nature

of the nominal event data is Prst transformed into a timey -
series of binary parametric variables using a spreading
blter (Hu, X., Eklund, N., and Goebel, K., 2007). The
resulting time-dilated data resemble the pulse signals of

a logic circuit that can be further analyzed because they
represent useful information for health management such
as the time between ever{tsie, V. J., Tsui, K. L., Xie,

M., and Goh, T. N., 2010). The resolution in time adopted

G., Ducoffe, M., Sen Gupta, J., and Fink, O., 2021; Eid,
A., Clerc, G., Mansouri, B., and Roux, S., 2021). In
this work, the 30 most frequent events per subsystem are
considered. To see how this representation is effective to
display different degradation conditions, Figure 8 shows
a Normal instance chart of Traction subsystem behavior.
In this representation, only the most frequent events at
the top of the rank get generated sparsely. In contrast,
Figure 9 shows an Anomaly instance chart. In this case,
many events get generated concurrently, also in the infre-
guent event space. These two plots show the two extremes
of the degradation spectrum. For predictive maintenance
purposes, the interesting analysis lies in the transition
phase, especially around the incipient point of failure.

Intersubsystem Diversity The last step in the represen-
tation of the multiple subsystem data adds a new dimen-
sion where different charts may be stacked. This approach
clearly shows the concurrent nature of event observation
among the different generators. In this work, pairwise-
interrelated subsystems such as the Traction and Brake
example are considered.

in this work is of 30 minutes, i.e., 48 time slices per day. |, the proposed volumetric representation, the smallest quan-

Intrasubsystem Diversity To illustrate the information

tum of data is therefore given by a voxel of time, intrasubsys-

that a single subsystem generates by itself, e.g., see Figm and intersubsystem binary event occurrence. These voxels
ure 6, a bidimensional image-like representation is proare then arranged into a tensor of size (30,48,2) that is suitable
posed. Such charted data organization can display corfer exploitation with a Deep Learning model, as is described
plex patterns such as correlations, recursive behaviors) the next section, to extract the relevant dynamic (i.e., time
or spectral componen{Rodriguez Garcia, G., Michau, evolving) data characteristics between the thirty most frequent
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Figure 7. Diagram of the proposed Anomaly Detection framework. Plot (a) depicts the expected distribution of the Reconstruction
Error. Plot (b) depicts the expected representation on the augmented latent space. This design is mostly focused on training the
solution. Regarding its industrial deployment, the data path for its straightforward diagnosis evaluation is displayed as a thick
dashed line connecting the manifold in the Variational Autoencoder with the Multilayer Perceptron to estimate the probability of
anomaly.
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Figure 8. Chart representation of a Normal condition patternFigure 9. Chart representation of an Anomaly condition pat-
tern.

events for two related subsystems (e.g., the Traction and th[e . . .
Brake). egrated approach working on unsupervised categorical data

X like regular operational evenfslancock, J. T., and Khosh-
goftaar, T. M., 2020). At its core, the VAE is a variational
Bayesian metho@Doersch, C., 2016), and given that the

A Variational Autoencoder (VAE) is a probabilistic approach Bayesian theory rests on an axiomatic foundation, the VAE is
that is used to represent the process of data generation. Thearanteed to have quantitative coherence that other methods
VAE provides a principled framework for learning deep latent-do not havegDuda, R. O., Hart, P. E., and Stork, D. G., 2001).
variable encoding modef3(z), and the corresponding decod- Moreover, adding random noise and regarding a denoising
ing inference model&ingma, D. P., and Welling, M., 2019). learning schedule is helpful to secure a good generalization
This method is a key enabler to implement the proposed irperformance of the model and enable its reuse for pretraining

2.2.2. Denoising Variational Autoencoder
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on downstream tasK&rhan, D., Manzagol, P.-A., Bengio, Y., setto 2 dimensions for representational purposes, is amenable
Bengio, S., and Vincent, P., 2009). to the visual interpretation of the hazardous anomaly zones.

The VAE fundamentally maximizes the probability of the dataThIS 'S extremely u_seful be_cause the similarity n high di-
mensional spaces is meaningl¢ssfferman, C., Mitter, S.,

u_nde_r the entire generaiive process, i.e., thr_oug_h the compr%sﬁd Narayanan, H., 2016). Moreover, limiting the expressive-
sion in the embedded latent space. Its objective function is

the Evidence Lower Bound (ELBO), see Eq. (1), white ness of this bottleneck layer helps to compress the data and

is the Kullback-Leibler divergence. The three main factor thus retain its most mean.mgf.ul attributes, W.h'Ch s likely to
E)e helpful for the generalization of the solution and prevent

that d_el_Dne the |mple_>mentat|on of th_e ELBO for the propose overbtting. Finally, given that stochasticity is inherent in the
Denoising VAE are listed as follows: . . :
sampling process on the manifold (here this can be taken for a

sort of injected latent noise), further improved performance is
expectedIim, D. J., Ahn, S., Memisevic, R., and Bengio, Y.,
2017). The source of this variation could be physically found
¥ Latent Space Manifold: Multivariate Normal Distribu-  in the seed of the random number generator, e.g., a timer.

tion

¥ Encoding/Decoding Functior3: Convolutional Neural
Networks

Regarding the objective loss function, most PHM approaches
¥ Reconstruction Error/Loss: Binary Cross-Entropy dealing with parametric data assume Gaussian or Laplacian er-
ror likelihood distributions and thus consider Mean Squared or
Mean Absolute Error (MAE) metrics to train and evaluate their
_ " performancéRodriguez Garcia, G., Michau, G., Ducoffe, M.,
ELBO (X, Q) =Ea ollogP (X [2)]1 KLIQ()"P(2IX)] g0 ' inta 3., and Fink, O., 2021). MAE is especially robust
=Ez q[logP (X [2)]! to outliers in time series dathai, G., Chang, W.-C., Yang,
Ez qllogQ(2) ! logP (z|X)] Y., and Liu, H., 2018), thus helping in the modeling of the
(1)  regular operational condition. Nevertheless, for the current
Regarding the encoding, the representation of the I,]c)rnir1£vent-based_ scenarip, interprgting binary df_;lta as probabilisti(_:
targets and introducing classibcation metrics such as the Bi-

event datX into 3D binary voxels arranged into tensors natu- - :
rally leads to their effective exploitation through a deep convo@"Y Cross Eniropy leads 1o faster training as well as improved

lutional neural framework. Expressive complex functions ingenerallze}tlo_r(&mgrd, P. ., Steinkraus, D., and Pla_tt, J.C.,
Q are to be learned with the embedded non-linearities, whicr_‘?oos)' This |'mpI|C|tIy assumes that.the reconstruction error
are introduced by the Rectibed Linear Unit (ReLU) activation” the ELBO is Bernoulli distribute@Sicks, R., Korn, R., and
function, and the weight-sharing strategy of its blters help the chwaar, S., 2020).

resulting network to not overbt the data. Moreover, events arginally, to complete the description of the VAE proposed in
well-aligned at similar scales, which results in less variatiorthis work, Table 1 shows some further details about the internal
in the critical datgKanazawa, A., Sharma, A., and Jacobs, D.structure and parameters for the Encoder part (note that the
2014). Finally, introducing random noise at this stage (e.gDecoder simply mirrors and unwinds this given conbguration).
through a few voxel value Bips) plays an important role in|n total, the VAE comprises over 120k trainable parameters.
achieving good generalization performance: it makes nearby

data points in the low dimensional manifold robust against2.2.3. Synthetic Data Augmentation

the presence of small deviations in the high dimensional ob- L -
servation spacgVincent, P., Larochelle, H., Bengio, Y., and To enhance the out-of-distribution generalizability and the

Manzagol, P. A., 2008). This variation could be physica“yrobustness of the proposed solution, the available data is aug-

interpreted as the thermal noise in the sensors that eventuaffjented- Th(;s g'VeE rnse ;0 r":‘ Sl_et _ofdsynthe;tmbmstandces that
generate the events in the subsystems. are expected to go beyond the limited set of observed anoma-

lies. This strategy is increasingly gaining adoption in the
Regarding the learned embedding, each dimension of the latefdustry(Strickland, E., 2022), where the assets are typically
random variable is assumed to be independent of each othebvermaintained to minimize the risk of a service-affecting
(i.e., they are factorized) and modeled by a univariate Gaussiafjlure.

distribution whose parameters (i.e., the mean and the variancerz h _ : h f noi d
are obtained by the non-linear neural encoding funoios " the previous section, the management of noise was de-

a result, the latent space displays enough smooth regularity t%cribed (anng with the introduction of_a denoising strategy) for
be considered as a manifold. Specibcally, a manifold is a topgerformance improvement purpos¥ncent, P., Larochelle,
logical space that is locally Euclide4Bredon, G. E., 1995). H- Lajoie, L., Bengio, Y., and Manzagol, P.-A., 2010). Addi-
This low-dimensional geometric analysis makes it Computa'[_lonally, the data is here transformed by considering shifts in

tionally advantageous compared to the high dimensional inpuiMme: @lso known as translations. Convolutional Neural Net-
Additionally, this latent distributed representation, which jsworks are not naturally invariant to translations, but they can
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Table 1. VAE Encoder structure parameter chart.

Layer Name Type Filter Stride Amount Activation Output Shape Parameters
Event Voxel Input Linear (30, 48, 2) 0
Shallow Receptive  Conv2D  (3,3) 2 32 RelLU (15, 24, 32) 608
Deep Receptive Conv2D  (3,3) 3 64 RelLU (5, 8, 64) 18496
Sparse Vector Flatten (2560) 0
Dense Vector Dense RelLU (16) 40976
Latent Mean Dense Linear 2) 34
Latent Variance Dense Linear 2) 34

acquire this feature if such transformation is embedded in thé&ron (MLP) neural network is hierarchically introduced on the
data strategyBiscione, V., and Bowers, J. S., 2021), especiallymanifold z to directly estimate the probability of Anomaly
when no Pooling layers are introduced in the pipe(iBkaman, pa, see Eq. (2) for a matrix notation of this classibcation func-
A., and Dokmanic, I., 2021), as is the case here. Eventuallyion, whereW are the input (I) and hidden (H) transformation
the data are separated into Normal and Anomaly groups amatrices, andj is a non-linearity bounded between 0 and 1
cording to their amount of reconstruction error, which is asuch as the logistic sigmoid function. The computed prob-
reliable indicator to detect anomalies when its value is over thability enables considering decision theory criteria such as
99th percentildRodriguez Garcia, G., Michau, G., Ducoffe, the management of risk driven by the reject option, and also
M., Sen Gupta, J., and Fink, O., 2021). What follows is thefacilitates its combination within more integrated probabilistic
description of the synthetic generation process based on inteselutions (Bishop, C. M., 2006).

polation and extrapolation driven by this anomalous condition
distinction, all of which take place in the latent space manifold
that has been designed to exhibit enough regularity to perform
these operations.

Pa(2) = 9(Wh (9(Wi 2))) )

Well-regularized MLPOs signibcantly outperform recent state-
The few instances that are regarded as anomalous, i.e., th&the-art specialized architectur@éadra, A., Lindauer, M.,
ones that display a large reconstruction error, comprise thelutter, F., and Grabocka, J., 2021). Functionally, the MLP
minority class as they lie on the long tail of the loss distribuferforms a non-linear logistic regression that learns the tessel-
tion. This data imbalance can cause learning problems arlation of the latent space and decouples the two degradation
result in skewed outcomes. To counter this adverse situation, @nditions. This objective is attained by the contrastive char-
combination of oversampling for the minority (i.e., Anomaly) acter of the cross-entropy lo@ishosla, P., Teterwak, P., Wang,
class and undersampling for the majority (i.e., Normal) clas€., Sarna, A, Tian, Y., Isola, P., Maschinot, A, Liu, C., and
achieves better classiber performaiChawla, N. V., and Krishnan, D., 2020), which is fueled by the thresholded recon-
Bowyer, K. W., 2002). Specibcally, the method for oversamstruction error that is incorporated explicitly as a binary target
pling the minority class involves linearly interpolating among within a supervised training proce@isingma, D. P., Rezende,
the nearest neighbors, which thus creates similar syntheti. J., Mohamed, S., and Welling, M., 2014).

examples.

. . . o R 2.2.5. Confidence Index
Finally, generative models like the VAE give rise to OfantasyO

data whose probability distribution is the same as that of the obFo close the design of an industrial system, indicating the
served datgBishop, C. M., 2006). This principle is exploited amount of trust in the systemOs outcome is useful for the
here outside the main cluster of Normal data as a grid of noréonsumer of this information. This goal is related to the esti-
overlapping instances deployed on the latent sijdedé, D.,  mation of the uncertainty in the given solution. In this paper,
2011). In PHM, particularly, this extrapolation-based approactthe smoothness of the probabilistic anomaly detection func-
was originally inspired by the natural immune syst@@iu,  tion pa is exploited as follows: the Conbdence Index (Cl) is
H., Eklund, N., Hu, X., Yan, W., and lyer, N., 2008), and thus ultimately described by the rate of its change. This inherently

there is sensible evidence to believe in its effectiveness.  implies that the transition zones are unstable and uncertain,
while the plateaus are stable and certain. Given that the detec-
2.2.4. Hierarchical Probabilistic Detection tion function depends on the distributed representation of the

B d the plain discriminative f ion introduced by th bidimensional manifola (that is locally Euclidean), the mag-
eyond the plain discriminative function introduced by t € nitude of its vector derivativé = (Mz 4,1z ) is what

amount of reconstruction error, prov_|d|ng a pne-grained 855 taken for reference to indicate conpdence in the prediction,
sessment of the stage of degradation is advantageous to avoi - Eq. (3). Finally, a unitary bound on the resulting Cl is
sudden evolution from Normal to Anomaly conditigiBhahid, introduéed f.or normélized advisory purposes

N., and Ghosh, A., 2019). To this end, a Multilayer Percep-
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Cl(z)=1.0! min("# pa(2)",1.0) 3)

8000 Reconstruction

. == 99th Percentile
2.3. Performance Evaluation 7000 4

In most real-world settings, the probability of an anomaly is o {
expected to be only slightly greater than zé/du, R., and
Keogh, E., 2021). In this sense, the purpose of this section i
to validate that the proposed probabilistic approach effectivel
modelsthe degradation of the rolling stock using nominal
subsystem events. As a result, the probability of Anomaly
must be strictly higher for the degraded condition than for the 20001
Normal (i.e., regular) condition. To do so, a balanced samplc ;|
of validation data is obtained after the discrimination deter
mined by the amount of reconstruction error, see Section 2.2. 0 50 100 150 s
10% of the anomalous instances are included in this hold-ot BCE

validation sample, which amounts to 120 examples in total.

5000 -

Instances
IS
o
o
o

3000 A

Figure 10. Histogram of the Binary Cross Entropy (BCE)
The key performance indicators for this evaluation are driverReconstruction Error along with the 99th percentile threshold.
by the probability of Anomalya for both the Normal and the The plot roughly matches the expected distribution of this
Anomaly evaluation sample. Gaussianity in the distributioné‘oss’ see Figure 7(a).

is assumed for statistical convenience, because the probability

is a bounded quantity betwe@randl. Also, the customary

minimum of 30 instances to reliably estimate the two statisti-3- RESULTS

cal moments of this distribution type (i.e., the mean and theqig section presents the results obtained with the proposed
variance) are guaranteed in the evaluation sarfi@feune,  anomaly Detection approach based on operational subsystem
M., 2010). The signibcance of their mean average differenceg, ent gata. Figure 10 shows an example of the the distribution
IS determmeq by t.he Studen_thst(Gosset, W S.,.1908). . of degradation provided by the histogram of the Reconstruc-
Further classiPcation evaluation can be easily attained by igg; Error/L oss. The mass of this distribution is largely skewed
troducmg a threshold to discretize the probabilistic demsmnmward the lower end, and it decays exponentially as the in-
which may also help to manage the potential réject optiony,nces hecome increasingly anomalous (this is the expected
The specibc value of this threshold is typically sedat i.e.,  panayior at the Beet level). A statistical threshold over the 99th

in the m|ddLe of its rar:jge. T_Ze PLeC!S'@” andf RelcaIIR _ percentile is used to separate the Normal from the Anomaly
measures that succeed consider the impact of False POsitiyg, jitions, This criterion works well in the real world to spot

FP and False NegativEN errors respectively with regards actual anomaliefRodriguez Garcia, G., Michau, G., Ducoffe,
to the True Positive P successes, which are all to be found M., Sen Gupta, J., and Fink, O., 2021). Moreover, on this

in the confusion matrix, see Eq. (4). distribution there seem to be two modes of behavior, a small
one that aligns with the zero origin, and a large one that is
_ TP __ TP (4) Somewnhat shifted. This may be associated with the different
TP+ FP TP+ FN regimes of the trains, e.g., low-speed maneuvering close to the
depot/station (i.e., the low volume of records) and high-speed

Finally, the limitations of the proposed VAE-based Anomalyintercity transit (.., the majority of the records)
e ' '

Detection approach debne the epistemic uncertainty in th
model. To determine the range of their impact on the diDelving deep into the internal operation of the system, Fig-
agnosis performance, the following evaluation environmentsire 11 shows the tessellation of the bidimensional latent man-
are considered (for practical experimental purposes, only th#old. In this hazard map, the decision boundary (ipa.,=
subsystems that generate most of the events are taken irfdcb) wraps the instances that are deemed to be Normal, and
consideration in this work): leaves out the ones that belong to the Anomaly category or
¥ Locomotion: Traction + Brake the synthetlt_: outller_s. Addl_t|onally, Figure 1_2 dlsplays the

conbdence in the diagnostic, which essentially depicts the
¥ Indoors: Heating, Ventilation, and Air Conditioning silhouette of the Normal region. As expected, the transition

(HVAC) + Doors zone is the most uncertain point.

¥ Bogie: Tilting System + Wheel Slip Prot-etctmn (WSP) Finally, Table 2 shows the performance of the Anomaly Detec-
¥ Energy: Transformer (Transf.) + Auxiliary Converter tion approach for each of the evaluation environments. In all
(Aux. Conv.) cases, the average probability of abnormality for the Anomaly
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A Figure 12. Conbdence Index shown on the latent manifold
related to Figure 11.
Figure 11. Tessellation of the latent manifold on the learned
bidimensional embedding = (z1,22). The probabilistic
anomaly decision boundary is showrpat(z) = 0.5, which
is the random guess on a dichotomic classibcation probler
Note that while the latent space is continuous, the evaluatio 1.01
points are necessarily discrete, and a visually dense grid h:i
been used here to display the Normal closed region. Whils
a continuous function approximating this boundary is likely
to be faithful to reality, only the spots that have been actually
evaluated are represented. The plot matches the expect
distribution of this embedded space, see Figure 7(b).

0.99

Performance
o
©

I
<

condition is signibcantly greater than for the Normal regu:
lar case. The resulting range of classiPcation performanc o Accuracy
indicators lies around 80%, which is similar to a historical —&— Precision
baseline obtained on comparable d@ammouri, W., @me, 05 = Recals , , , ,
E., Oukhellou, L., Aknin, P., and Fonlladosa, C.-E., 2014) o=t 107 Delc(i)s_i;nThreig;lsd 07 107

See Figure 13 for the impact of the decision criterion on the

types of error displayed by the system. A smaller thresholdkigyre 13. Precision and Recall curves driven by the sensitivity
value drives the system toward conservatism (i.e., high Recabf the Decision Threshold. Accuracy is also shown here only
at the expense of false alarms), while a greater value yield®r reference as the total rate of correct classibcations.

an eager behavior (i.e., high Precision at the risk of missing a

failure).

0.6

hindsight, though, simplibcations to the proposed approach
could now be found, but these seem unlikely to be have been
4. DISCUSSION . A .

devised initially with the data only.
This section addresses some typical qualms about time-seri
based anomaly detection, and provides insights into its inte

pretability from a causal perspective.

?’%rhaps one aspect worth discussing here is the noise in the la-
Bels, which is a pervasive problem in the Peld because manual
expert-labeling of each instance at a large scale is not feasi-
ble (Kim, S., Choi, K., Choi, H.-S., Lee, B., and Yoon, S.,
2022). This work, albeit framed in an unsupervised learning
Conventional performance indicators for anomaly detectiorsetting, relies on the signal reconstruction error aisrgoerfect
methods based on time-series data can sometimes be misleadrrogatefor the ground truth, which is used to estimate the
ing (Wu, R., and Keogh, E., 2021). This happens, for exampleprobability of Anomaly with the cross-entropy loss. Here, the
when the signals are so trivial that a single descriptive statisti®9th percentile loss drives this discriminative labeling crite-
such as the mean or the standard deviation sufbces to explaiion, motivated by its reported success to identify anomalies
them, or where the anomalies are directly found at the endh the real worldRodriguez Garcia, G., Michau, G., Ducoffe,

of the data sequence (e.g., on run-to-failure tests). None dfl., Sen Gupta, J., and Fink, O., 2021). However, if this high
these situations apply to the scenario tackled in this work. Irvalue is reduced, the detection results are likely to be differ-

4.1. Reliability
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Table 2. Detection performance driven by the probability of Anomaly, that is applied to the Normal (N) and Anomaly (A)
validation instances, taking into account their environments. Statistical paad standard deviatidhare computed, along
with the p-value of the signibcandetest, and the Precision/Recall values at the decision boundagy =10 .5.

Environment pa (N)[W! ] pa(A)[W! ] p-value Precision Recall

Locomotion 0.18/0.19 0.78/0.25 6e-28 0.92 0.83
Indoors 0.21/0.29 0.70/0.28 Te-15 0.82 0.71
Bogie 0.39/0.18 0.66/0.25 7e-10 0.72 0.60
Energy 0.23/0.20 0.76/0.34 7e-18 0.91 0.72

ent, perhaps affecting the capacity of the system to deal wittoward a semantically interpretable systeaysallydisentan-
instances increasingly similar to regular data. gled latent variables are needed. These can in fact be obtained
. . . . - from VAE models using an embedded layer to transform inde-
In such a hybrid learning environment, if the training data . :

is OcorruptedO with this pseudo-label, deep models such paesndent exogenous factors (i.e., the root causes) into causal

the VAE tend to overbt the noise, thereby achieving IOOOIa,endogenous ones (i.e., their effects) that correspond to causally

generalization performang¢€eng, L., Shu, S., Lin, Z., Lv, F,, related concepts in the daféang, M., Liu, F., Chen, Z., Shen,

Li, L., and An, B., 2020). This effect can be observed as a |’ Hao, J., and Wang, J., 2020). However, the data must

condition overlap in the latent space, see Figure 11, althougﬁlready contain sample-wise causal labels to learn this richer

this region also shows a lower Conbdence Index, see Figure 1r§presentatlon. In the absence of such cues, this section uses

Moreover, this Bernoulli-distributed error makes it difbcult aCausal Discovery approach to create a potential graphical

to identify out-of-distribution instances when there are Iotsdescrlptlon of the inherent causal structure.

of zeroes in the dat@¥ong, B. X., Pearce, T., and Brintrup, Considering that the available event subsystem data can be
A., 2020), as is the case with the sparse subsystem events, de@med as a multivariate time-series of binary variables, causal-
Figures 8 and 9. Nevertheless, when the ReLU is the onlity is expected to be observed as the precedence of events. To
non-linearity in the system (check Table 1), the loss curvatureapture their causal links, the Peter-Clark (PC) algorithm is
is immune to class-dependent label ndBatrini, G., Rozza, proposedSpirtes, P., Glymour, C., and Scheines, R., 2001).
A., Menon, A., Nock, R., and Qu, L., 2017), which increasesPC is a causal network learning algorithm that copes well

the conbdence in the proposed approach. with high dimensionality and can often also identify the di-
rection of contemporaneous linkRunge, J., Bathiany, S.,
4.2. Causal Explainability Bollt, E. et al,, 2019). It is one of the oldest algorithms that

Section 2.1 brieRRy described the blended braking system an@ consistent under i.i.d. sampling assuming no latent con-

the impact that one subsvstem has on another. i.e.. Brake & unders, i.e., all relevant variables need to be observed in the
np DSystel . o d:";\ta(Glymour, C., Zhang, K., and Spirtes, P., 2019). The PC
Traction. The Locomotion environment is very illustrative and

further interesting insights may be extracted. This section isalgprlthm starts by building a fully-meshed graph with aII' th.e
. L . . variables, and then evaluates the strength of the associations
dedicated to providing such explanations, especially form th

perspeciive of the inferred causali@aman, N., Apostolou, y testing their con(_jmonal independence using the_tlme-serles
. . data. Eventually, it removes those edges that display zero
E., Li, Y., and Oister, K., 2022). . . . . . . L
partial correlation. Finally, it applies a series of heuristics to
Causal inference is here motivated by the Kullback-Leiblemrient the links that remain giving them a causal direction, and
divergence, which is used in the objective function of thethe resulting graphical structure is provided.

VAE, see Section 2.2.2. It turns out that this value is a suitl-n this analvsis. the tob 10 frequency-ranked events are con-
able measure of causal inBuer{danzing, D., Balduzzi, D., ySIS, b 9 4

Grosse-Wentrup, M., and Selkopf, B., 2013). Therefore, the sidered, 5 for each subsystem in the Locomotion environment,

guestion naturally arises: has the VAE automatically learned < Table 3. Event §|mult§ne|ty is expected, especially in the
any cause-effect relationships? presence of anomalies. Figure 14 shows the generated causal

graphical structure.

4.2.1. Graphical Causal Structure Based on these results, the subsystem interrelation between the
. . . . %rake and the Traction is mostly evident, e.g., rheostat over
In this work each dimension of the latent space is assume, : ) .
temperature (T1) is caused by a failure on the blended braking

to be an independent Gaussian, see Section 2.2.2 for furthégstem (B4 and B5) and on the fan of the heat exchanger
I

details. This design choice creates a disentangled representa: -

. . . . . 4). In some cases, though, these associations are not so

tion that is not necessarily causal, it has been introduced on : . )
ear-cut. For example, the 5th Traction event (i.e., T5), which

to allow a more complex joint distribution to be constructed . R ) P
from simpler componentishop, C. M., 2006). To progress specibcally refers to a OTraction/Brake fauItQ, is not caus_ed.by
T ' any of the most frequent Brake events according to the criteria

10
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Table 3. Description of the top-ranked subsystem events in the Locomotion environment.

Event Rank Traction (T) Brake (B)
1 Rheo Over Temperature Brake Supply Pressure High
2 Traction Boost Selected Parking Brake Applied Pressure Switch
3 Traction Eco Selected Main Line Pressure High
4 Heat Exchanger Fan Fault Application Error 1 (blending)
5 Traction/Brake Train Line Fault  PWM Signal 2 Dyn Brake Out of range

T4 T3

T _ Traction (T)
. Brake (B)
T5 T2 -

Tl

B5 L
’ Tl Bl T2 B2 T3 B3 T4 B4 T5 B5
Events {Subsystem}{Rank}
B4

Figure 15. Sensitivity analysis on the Locomotion environ-

ment. See Table 3 for further details. Assuming Normality for
Figure 14. Causal graph for the Locomotion environment, i.e the day-level average distributions, bar heights indicate their
including the Traction (T) and Brake (B) subsystems. Nodemean values, and whiskers indicate one standard deviation.
name code{Subsyster{ Rank. See Table 3 for further All the visually imperceptible bars actually have a negligible
details. Arrows indicate event association from cause to effecprobability in the order 00" 4.

o
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L

o
w
L
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Time-Averaged Probability of Anomaly

o
o

was detected by the former Causal Discovery approach (also
note that the VAE model implicitly assumed that the events
What is more, the graph shows some bidirected edges, e.gre independent). Here, a time-averaged analysis at the day
among B1, B2, and B3. This is likely to indicate the presencdevel of the top-ranking Locomotion events is performed, see
of an unobserved confounder, which reveals a limitation ofFigure 15.

the PC approach: since its outcome is a Markov equivalen

class, there is likely to be another (possibly better) graphica his sensitivity study shows that the impact of the Traction

representation that explains the same data. In fact, direct PC ba“?'y notlcea_ble_compared to the impact of the I_3rake,
especially regarding its three most frequent events, which are

application is not advised for the time series case, despite |th$0 the ones subject to an unobserved confounder. Taking

apparently good results, and other more involved methods,, ., . . s )
PP Y9 - L Il this extracted information into account, it could be stated
using more powerful statistical tests with time lags shoul o .
) that whenever an anomalous situation occurs and a Traction
be explored on top of iRunge, J., Nowack, P., Kretschmer, . o
event is generated, the actual root cause is likely to be found

M., Flaxman, S., and Sejdinovic, D., 2019). Additionally, on the Brake. However, causality at the model level cannot be
the subject matter experts should elucidate these effects and ) ' y

resolve the causal directionality conf3ict. However, the chxtrapolated to the real wor(@olnar, C., 2019). Itis a global

. . . . interpretation of the available observational (i.e., ambiguous)
algorithm serves well to make the point of the discussion, an o o ?
) . . . data. Unless further expert criteria are additionally considered,
its result constitutes a solid basis for further research.

these results may ultimately be driven by correlation, as this
point cannot yet be fully rejected. The contrapositive argument
that no-correlation implies no-causation could explain some of
In the context of this work, the sensitivity analysis of interestthese results, especially for the 4th and 5th event ranks, which
determines how the probability of Anomaly is affected bydisplay a null risk of Anomaly. In the end, both correlation
changes in the subsystem event data. This may help quantind convolution are linear shift-invariant operat(B®geliski,

the maximum bias that is reasonably expected for unmeasurdrl., 2022), and since the latter debnes the structure of the VAE,
confounding(Herran, M. A., and Robins, J. M., 2020), which it could also help elucidate this behavior.

of the PC Causal Discovery algorithm.

4.2.2. Sensitivity Analysis

11
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