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ABSTRACT 

Aiming to precisely identify a compound fault of rolling 

bearing, the paper has contributed a fault characteristic 

enhancement method by combing entropy weight method 

(EWM) and intrinsic time scale decomposition (ITD). Firstly, 

to effectively segregate frequency components in vibration 

signals, proper rotation components (PRCs) were obtained 

by decomposing vibration signals based on ITD. Secondly, 

in view of the fact that amplitude, variance and correlation 

coefficient vary greatly in a bearing fault accompanied by 

impact components, parameter evaluation indexes were 

brought in to depict the fault characteristics of PRCs, 

including average, variance, correlation coefficient, margin 

factor, kurtosis, impulse factor, peak factor and so on. Thirdly, 

weight coefficient of each parameter index was calculated by 

entropy weight method and the characteristics of each PRC 

highlighted based on that. Finally, the signals were 

reconstructed according to the PRCs whose characteristics 

had been enhanced. Meanwhile reconstructed signals were 

denoised with singular differential spectrum (SDS) to reduce 

the influence of noise components, and then the type of 

compound fault was distinguished grounded on the 

frequency spectrum. To further prove the efficiency of 

proposed method, it is compared with other methods (SDS, 

ITD + entropy method). The result indicates that the 

proposed method can further highlight the characteristic 

information of compound faults of bearing and embody more 

exact identification and judgment on the type of faults. 

1. INTRODUCTION 

1.1. Background 

As an important component of rotary machinery, rolling 

bearing is closely linked with the running state of equipment 

(Zhao Lei et al., 2018). If it fails to recognize a bearing fault 

in time, it will probably result in the damage of equipment 

causing serious economic loss and even personal injury. 

Therefore, it is crucial to correctly extract the fault 

information of bearing. Due to the influence of noise from 

environment and complexity of structure, when a fault 

happens in rolling bearing, its vibration signals are strongly 

linear and contains impulse components (Mingyue Yu and 

Xiang Pan, 2020), which largely increases the difficulty of 

extraction of fault characteristics. Therefore, the fault feature 

information contained in the signal is enhanced to further 

highlight the fault feature contained in the sensitive fault 

component signal, which can better extract the fault 

characteristics of rolling bearing and precisely identify a 

fault type (Zhou Yiwen et al., 2020).  

1.2. Related Works 

The study based on signal decomposition algorithm is an 

important direction in the research of fault diagnosis of 

rolling bearing. Common signal decomposition algorithms 

include wavelet transform (Guo Dazhi et al., 2021), 

empirical mode decomposition (EMD) (Debiao Meng et al., 

2022), variational mode decomposition (VMD) (Deng 

Linfeng, Zhang Aihua et al., 2022), intrinsic time scale 

decomposition (ITD) (Ding Jiakai et al., 2022) and so on. 

ITD algorithm manages to exactly extract the dynamic 

properties of non-stationary signal at higher speed and sees a 

rather wide application in fault diagnosis of bearing (Liu 

Feng et al., 2021). Fei Wang et al (2017) proposed a fault 

classification approach based on ITD and extreme learning 
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machine (ELM). Gao Yajuan et al (2019) proposed the 

combination of ITD and kernel principal component analysis 

to detect bearing faults. Pan Xiang et al (2021) brought 

forward the approach combining ITD and autocorrelation 

function to reconstruct rotation components obtained from 

ITD and calculate its autocorrelation function, and thereby 

extracted the characteristic information of bearing fault.  

Signal parameter evaluation index is capable to measure and 

describe various characteristic information. Among them, 

kurtosis, impulse factor and peak factor can make better 

description of impact characteristics of signal; variance is 

designed to reflect the dispersion of signals; correlation 

coefficient exists as an index to determine the correlation 

among data; margin factor is often used to detect the wear 

degree of machine and its physical significance is similar to 

peak factor and impulse factor; average can represent the 

energy and intensity of signal. These index parameters all 

have certain applications in fault identification field of 

bearing. The original concept of entropy was about a single-

flowing and irreversible energy transfer process (Zhang Yan, 

2009) and gradually came into 3 thoughts, thermodynamic 

entropy, statistical entropy and information entropy. Entropy 

weight method (Li Hongxian et al., 2019) is a classical 

method to calculate the weight of multiple indexes. The 

method is dependent on entropy to evaluate the discrete 

degree of index in such a way that the greater discrete degree 

is, the more influence an index has on the evaluation of 

comprehensive data. Due to being less demanding to data 

and easy to manage, entropy weight method has been widely 

applied to multiple fields of engineering technology, such as 

comprehensive evaluation of engineering construction risks, 

evaluation of logistic development indexes, land use 

efficiency and so on. As for fault diagnosis, entropy weight 

method is mainly used for fault diagnosis of transformer, 

bearing and modular machine tool (Wang Hao et al., 2016). 

Yang Zhifei et al., (2017) fused the signals with entropy 

weight method and subjected them to variational modal 

decomposition and studied the optimal frequency band, 

which was screened out, and effectively extracted the fault 

characteristics of bearing. Entropy weight method was used 

in the paper to calculate the parameter evaluation index when 

a compound fault of rolling bearing occurred.  

Singular value decomposition (SVD) (Li hua et al., 2020), a 

classical orthogonal decompose method (Li Hua et al., 2021), 

has been vastly applied to multiple fields of signal processing. 

Dong Shaojiang et al., (2022) precisely extracted the 

characteristic frequency of bearing fault by blending SVD 

algorithm, sliding window linear regression and multi-

attention mechanism deep neural network. Zou Tiangang et 

al., (2021) proposed a fault diagnosis method for rolling 

bearing based on the combination of singular spectral 

decomposition, SVD and frequency weight energy operator. 

This method can effectively recognize a typical rolling 

bearing fault, highlight fault characteristics and improve 

fault diagnosis effect. Gougam Fawzi et al., (2020) brought 

forward the combination of 2 times domain features, SVD 

and fuzz logical system and made effective extraction of fault 

characteristic frequency of bearing. Singular value 

decomposition differential spectrum (SDS), a classical noise 

reduction method (Te Han et al., 2016), can eliminate the 

interference of strong noise and make extraction of fault 

information more precise (Jun Ma et al., 2018). 

It can be seen that scholars from a pretty wide range of fields 

have made great efforts to implement precise identification 

of bearing faults. 

1.3. Method 

In an attempt to precisely identify a compound fault of 

rolling bearing, the paper combines ITD and entropy weight 

method, entropy weight method and typical signal evaluation 

indexes are used to obtain weight coefficients of component 

signals which are used as the basis to strengthen the 

characteristics of each PRC. To further reduce the influence 

of noise, the paper makes use of excellent denoising ability 

of SDS to reduce the noise of reconstructed signals after 

feature enhancement. The result has indicated that the 

proposed method is capable of precisely extracting the 

characteristic information of compound faults of rolling 

bearing. 

2. ALGORITHM 

2.1. Intrinsic time scale decomposition 

Intrinsic time scale decomposition (ITD) can decompose 

non-stationary signals into the sum of multiple proper 

rotation components (PRCs) and a residual trend component. 

The process is shown as follow (Xueli An et al., 2012; Berlin, 

Lu Chao et al., 2015): 

Step 1：Set input vibration signal is 𝑋  and locate all the 

extreme points 𝑋𝑘 in the signal, and record the time slot of 

them and substitute into formula (1): 

𝐿𝑘+1 = 𝛼 [𝑋𝑘 + (
𝜏𝑘+1−𝜏𝑘

𝜏𝑘+2−𝜏𝑘
) (𝑋𝑘+2 − 𝑋𝑘)] + (1 − 𝛼)𝑋𝑘+1 (1) 

in this formula: 𝑘 = 1,2, … ,𝑀 − 2，𝛼 = 0.5. 

Step 2：The formula of piecewise linear extraction operator 

is as follow: 

𝐿 = 𝐿𝑘 + (
𝐿𝑘+1−𝐿𝑘

𝐿𝑘+2−𝐿𝑘
) + (𝑋𝑡 − 𝑋𝑘)                    (2) 

Step 3： The formula of signal decomposition is as follow： 

𝑋𝑡 = 𝐿𝑡 + 𝐻𝑡 = 𝐻𝑡 + (𝐻 + 𝐿)𝐿𝑡 = 𝐻 ∑ 𝐿𝑡
𝑘𝑃−1

𝑘=0 + 𝐿𝑡
𝑃  (3) 

In the formula 𝑡 ∈ (𝜏𝑘 , 𝜏𝑘+1) , 𝑋𝑡  represents input sampling 

signal, 𝐿𝑡  baseline component, 𝐻𝑡   intrinsic rotation 

component, L piecewise linear extraction operator, 𝐻 

intrinsic rotation component of highest frequency and P 

number of iterations.  
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2.2. Entropy-based weight method 

Information entropy can be used to determine the chaos and 

randomness of signal and information entropy of signal 

index can judge the extent of chaos of index (Wang Hao et 

al., 2016). When the extent of chaos is larger, the influence 

of index will have greater influence (weight) on 

comprehensive evaluation of system and related information 

entropy be smaller. It is being based on this principle that 

entropy weight method (EWM) can be used to evaluate a 

signal index. The detailed process of EWM is as follow (Wu 

Yu et al., 2020): 

Step 1：Choose required parameter evaluation indexes. Set 

the total number of chosen parameter evaluation indexes is n 

and each vibration corresponds to n indexes. Given there are 

m groups of data, label the j-th index from i-th data group as 

𝑥𝑖𝑗,(𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛  ) and all the indexes of data 

make up matrix A: 

A = [

𝑥11   𝑥12   ⋯   𝑥1𝑛   
𝑥21   𝑥22    ⋯   𝑥2𝑛

⋮         ⋮             ⋮
𝑥𝑚1   𝑥𝑚2   ⋯   𝑥𝑚𝑛   

]  (𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛) (4) 

Calculate 𝑃𝑖𝑗, the proportion of j-th index 𝑥𝑖𝑗  from i-th data 

group in the j-th indexes of all data; 

𝑃𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

        (𝑗 = 1,… , 𝑛)                              (5) 

All 𝑃𝑖𝑗  forms matrix P:                                                                                                                           

 P =

[
 
 
 
𝑃11   𝑃12   ⋯   𝑃1𝑛   

𝑃21   𝑃22   ⋯   𝑃 2𝑛           

⋮         ⋮               ⋮
𝑃𝑚1   𝑃𝑚2   ⋯   𝑃𝑚𝑛   ]

 
 
 

                                       (6) 

 Step 2: Calculate 𝑒𝑗 , the information entropy of j-th 

index: 

𝑒𝑗 = −𝑘 ∑ 𝑝𝑖𝑗 ln(𝑝𝑖𝑗)
𝑚
𝑖=1                                  (7) 

In this formula ： 𝑘 =
1

ln(𝑚)
> 0。 

Step 3: Calculate 𝑑𝑗 , the information entropy 

redundancy rate of j-th index: 

𝑑𝑗 = 1 − 𝑒𝑗                                        (8) 

Step 4: Calculate 𝑤𝑗 , the weight of j-th index: 

𝑤𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

                                        (9) 

Step 5: Calculate s, comprehensive evaluation value 

matrix of each index:  

 S = [

𝑠1

𝑠2

⋮
𝑠𝑚

] =

[
 
 
 

𝑃11   𝑃12  ⋯   𝑃1𝑛   

𝑃21   𝑃22   ⋯   𝑃 2𝑛           

⋮         ⋮               ⋮
𝑃𝑚1   𝑃𝑚2   ⋯   𝑃𝑚𝑛   ]

 
 
 

[

𝑤1

𝑤2

⋮
𝑤𝑛

]               (10) 

Step 6: Strengthen the characteristics of component 

signal and heightened signal is 𝑌𝑖: 

  𝑌𝑖 = 𝑠𝑖 ∗ 𝑃𝑅𝐶𝑖                                (11) 

Step 7: Reconstruct signals according to characteristic-

enhanced component signals and recon-structed signal is 𝑌: 

 𝑌 = ∑ 𝑌𝑖
𝑚
𝑖=1                                     (12) 

2.3. Bearing fault feature frequency 

A bearing fault is often accompanied by the characteristic 

frequency related with different kinds of fault. For that, a 

fault type of bearing can be judged by calculating its 

characteristic frequency (Yuan Zhe et al., 2019). According 

to definition of paper, fault feature frequency in inner-ring, 

outer-ring, rolling-element and retainer is represented by 𝑓𝑖, 

𝑓𝑜 , 𝑓𝑏  and 𝑓𝑐 , respectively; rotation frequency 𝑓𝑟  and rotate 

speed 𝑓𝑛 . N represents the number of balls, D bearing 

diameter and d rolling ball diameter. Then, characteristic of 

rolling can be calculated by formula (13) – (17), which is 

shown as follow: 

Rotate frequency: 

                  𝑓𝑟 = 𝑓𝑛/60                                    (13) 

Inner-ring fault feature frequency:  

𝑓𝑖 =
1

2
∗ 𝑁 ∗ (1 +

𝑑

𝐷
) ∗ 𝑓𝑟           (14) 

Outer-ring fault feature frequency:  

 𝑓𝑜 =
1

2
∗ 𝑁 ∗ (1 −

𝑑

𝐷
) ∗ 𝑓𝑟                           (15) 

Rolling-element fault feature frequency: 

𝑓𝑏 =
𝐷

2∗𝑑
∗ (1 −

𝑑

𝐷
)2 ∗ 𝑓𝑟           (16) 

Holder fault feature frequency: 

𝑓𝑐 =
1

2(1−
𝑑

𝐷
)
∗ 𝑓𝑟                (17) 

3. COMPONENT SIGNAL FEATURE ENHANCEMENT BASED 

ON EWM- PROPOSED METHOD 

The paper blends ITD and EWM to strengthen the compound 

fault characteristics of rolling bearing. In view of the 

characteristics of vibration signals when a bearing fault 

occurs, the paper selects average, variance, correlation 

coefficient, margin factor, kurtosis, impulse factor, and peak 

factor as evaluation indexes. The conceptual framework of 

proposed method as is shown in Fig 1. For the convenience 

of presentation, the symbols in Table 1 will prevail in the 

description of comprehensive weight of indexes. Concretely, 

𝑊𝐾 represents the comprehensive weight of kurtosis.
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Detailed steps are as follow: 

Step 1:  Decompose original vibration acceleration signals 

into 4 layers (Mingyue Yu and Xiang Pan, 2020; Pan Xiang 

et al., 2021) based on ITD and corresponding PRCs are 

obtained; 

Step 2: Calculate the signal evaluation index of PRC in each 

layer, including average, variance, correlation coefficient, 

margin factor, kurtosis, impulse factor and peak factor; 

Step 3: According to entropy weight method (eq. 4-10), 

calculate the comprehensive weight of each evaluation index; 

Step 4: According to comprehensive weight calculated above, 

strengthen the characteristics of component signals and 

reconstruct the enhanced signals; 

Step 5: Denoise reconstructed signals based on singular 

value difference spectrum. Meanwhile, extract 

characteristics of compound faults of bearing and identify the 

type according to the frequency spectrum of denoised signals. 

4. COMPOUND FAULT IDENTIFICATION FOR ROLLING 

BEARINGS 

4.1. Rolling bearing compound faults experiment 

All the data of paper originates from the tester of rolling 

bearing of aero-engine shown in Fig 2. The tester mainly 

consists of drive motor, step-up gear box, lubricating system, 

rolling bearing and retainer. The tester can simulate different 

types of bearing faults, including single and compound. In 

the experiment, vibration acceleration sensors are fixed to the 

horizontal and vertical positions on the left-sided bearing 

seat. Electrical vortex sensor is applied for speed 

measurement and fixed to the right of tester. Specific sensor 

installation positions and corresponding channel number 

(CH1 – CH4) is shown in Fig 2. A bearing is cut by electric 

spark and the depth is 0.2mm. The number of rolling 

elements is represented by N, N = 7; diameter of rolling 

element, d = 9.6mm; diameter of bearing, D = 36mm. Fig 3 

corresponds to the bearings in different compound faults: 3(a) 

compound faults of inner ring and rolling element; 3(b) outer 

and inner ring; 3(c) outer ring and rolling element; 3(d) outer 

ring, inner ring and rolling element. 

 

 

 

 

indexes 

 

symbols 

Kurtosis 
Correlation 

Coefficient 

Margin 

Factor  
Variance 

Impulse 

Factor  

Peak 

Factor  
Average 

 𝑊𝐾  𝑊𝑐 𝑊𝑀 𝑊𝑉 𝑊𝐼 𝑊𝑝  𝑊𝐴 

ITD 

PRCs 
 

Re-S 

SVS FFT 
Fault  

identify 

Raw vibration signal 

Fig 1. Method flow diagram. Note: ITD, intrinsic time scale decomposition; PRCs, proper rotation 

components; Re-s, reconstruct signal; SDS, singular value decomposition differential spectrum. 

Calculate parameters 

indexes of PRCs 

Calculate weighting of 

indexes  

Table 1. The symbols prevail in the description of comprehensive weight of indexes 
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4.2. Case 1 

To verify the effectiveness of proposed method, randomly 

choose the data of compound faults of inner ring, outer ring 

and rolling element for analysis. This state is related with 

rotate speed 1875r/min and rotate frequency 𝑓𝑟  is 31.3Hz. 

The characteristic frequencies of the bearing are as follow: 

Inner-ring fault feature frequency 𝑓𝑖  is 138.5Hz, outer-ring 

fault feature frequency 𝑓𝑜  is 80.2Hz, rolling-element fault 

feature frequency 𝑓𝑏  is 54.4Hz, holder fault feature 

frequency 𝑓𝑐 is 11.5Hz. 

4.2.1. Comparison method: SDS 

Firstly, signals are denoised based on singular value 

difference spectrum and the result as is shown in Fig 4. Fig 

4(a1) shows original vibration acceleration signal; Fig 4(a2) 

and Fig 4(a3) corresponds to the frequency spectrum and its 

local enlargement; Fig 4(b1) is the result of singular value 

difference spectrum denoising of acceleration signals; Fig 

4(b2) and Fig 4(b3) is the frequency spectrum of Fig 4(b1) 

and its local enlargement. 
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Fig 2. Aero-engine rotor-rolling bearing experimental rig 

 

Fig 3. Compound faults of rolling bearing 
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Analysis of Fig 4(a3) and (b3) reveals that no matter the 

frequency spectrum of original signal or denoised signals by 

singular value difference spectrum, they have the following 

features: 

⚫ Noise components are evident; 

⚫ Most of frequency components correspond to the 

multiples of rotation frequency (for example, frequency 

components 287Hz and 1001Hz correspond to the 9x, 

and 32x of 𝑓𝑟 ), which is irrelevant with faults of the 

bearing; 

⚫ There is the frequency component 800.8Hz, equal to 10x 

of 𝑓𝑜; 

⚫ No evident frequency component corresponding to the 

type of compound fault has been found (this state is 

related with the compound fault of inner ring, outer ring 

and rolling element). 

Namely, the method directly based on singular value 

difference spectrum, when a compound fault of inner race, 

outer race and rolling element occurs, the above method can 

only capture the fuzzy feature frequency of outer race and 

not the feature frequency of inner race and rolling element 

corresponding to bearing fault. The evaluation on compound 

faults of bearing is not precise. 

4.2.2. Proposed method 

To prove the efficiency of proposed method, the paper will 

analyze the data from section 4.2.1 (the compound faults of 

inner ring combined with outer ring and rolling element) 

based on the proposed method, the result as is shown in Figs 

5 – 6. Fig 5(a) shows the PRCs of Fig 4(a1) after ITD. Fig 

5(b) shows the function value of signal evaluation index 

related with each component signal. Fig 5(c) shows the 

comprehensive weight value of each evaluation index 

obtained by entropy weight method according to Fig 5(b) and 

Table 2. Table 2 shows the comprehensive weight value of 

each evaluation index obtained by entropy weight method. 

Table 3 provides the proportion value of each evaluation 

index for PRC obtained by formula (5). Table 4 and Fig 5(d) 

shows the component signals obtained after characteristic 

enhancement to each PRC according to formula (10) – (11). 

Fig 5(e) and (f) corresponds to reconstructed signal and its 

frequency spectrum obtained from Fig 5(d). Fig 5(f1) and 

(f2) is the local enlargement of frequency spectrum of Fig 

5(f).
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(a) PRCs of Fig 4(a1) by ITD 

 

 

Fig 4. Compound faults feature extraction of bearing - SDS - inner ring + rolling element + outer ring faults 
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           P-value 

PRCs 
Kurtosis 

Correlation 

coefficient 

Margin 

factor 
Variance 

Impulse 

factor 

Peak 

factor 
Average 

PRC1 0.2387 0.3217 0.2510 0.5483 0.2630 0.2748 0.4636 

PRC2 0.2807 0.2868 0.2791 0.1973 0.2713 0.2614 0.0118 

PRC3 0.2526 0.2452 0.2542 0.2219 0.2492 0.2448 0.4183 

PRC4 0.2280 0.1464 0.2156 0.0324 0.2165 0.2189 0.1062 

         W-value 

PRCs 
𝑊𝐾  𝑊𝑐 𝑊𝑀 𝑊𝑉 𝑊𝐼 𝑊𝑝  𝑊𝐴 

PRC1-PRC4 0.0043 0.0520 0.0058 0.4057 0.0050 0.0049 0.5223 

  𝑌1 (𝑊𝐾*0.2387+𝑊𝐶*0.3217+𝑊𝑀*0.2510+𝑊𝑉*0.5483+𝑊𝐼*0.2630+𝑊𝑃*0.2748+𝑊𝐴*0.4636) *PRC1 

  𝑌2 (𝑊𝐾*0.2807+𝑊𝐶*0.2868+𝑊𝑀*0.2791+𝑊𝑉*0.1973+𝑊𝐼*0.2713+𝑊𝑃*0.2614+𝑊𝐴*0.0118) *PRC2 

  𝑌3 (𝑊𝐾*0.2526+𝑊𝐶*0.2452+𝑊𝑀*0.2542+𝑊𝑉*0.2219+𝑊𝐼*0.2492+𝑊𝑃*0.2448+𝑊𝐴*0.4184) *PRC3 

 𝑌4 (𝑊𝐾*0.2280+𝑊𝐶*0.1464+𝑊𝑀*0.2156+𝑊𝑉*0.0324+𝑊𝐼*0.2165+𝑊𝑃*0.2189+𝑊𝐴*0.1062) *PRC4 
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(b) The function value of signal evaluation index  
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Table 4. Component signals after characteristic enhancement of PRCs - 𝑌𝑖    

  

(c) The weight value of each evaluation index  

 

 

 

 

variance

40.6% Average 

52.2% 

Table 2. The proportion of each evaluation index of the component signals-Eq. (5) 

 

kurtosis correlation coefficient

margin factor variance

impulse factor peak factor

average

impulse

factor0.5%

Margin

factor 5.8%

Correlation

coefficient 5.2%
Kurtosis

0.4%

variance

40.6%

Average

52.2%

Peak factor

0.5%

 Table 3. The weight value of each evaluation index in this signal - Eq. (9) 
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Fig 5. Bearing compound faults feature extraction - ITD+EWM 
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(e) Reconstruct signal according to (d) 

 

(f) Spectrum of (e) 

 

 

(d) Component signals after characteristic enhancement of (a) by proposed method 
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Fig 6. Time domain and frequency domain diagram of proposed method 

(a) Denoised signal of Fig 5(e) by SDS 
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(b) Spectrum of (a) 
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On the frequency spectrum of signal obtained by the 

combination of ITD and entropy weight method (no 

denoising), an analysis of Fig 5(f1) and (f2) can reveal the 

following characteristics: 

⚫ Evident noise components exist in great number; 

⚫ There exist 286.9Hz and 966Hz frequency, which 

correspond to the 9x and 31x of 𝑓𝑟; 

⚫ There is 197.8Hz frequency component ((197.8+31.3-

11.5)/4=54.4Hz), which corresponds to the 4x of 𝑓𝑏; 

⚫ There is 800.8Hz frequency component 

(800.8Hz/10=80Hz), which matches with 10x of 𝑓𝑜 

(characteristic frequency of outer ring fault). 

It is obvious that the combination of ITD and entropy weight 

method can obtain the characteristic frequency relative to the 

type of bearing fault and judge the type of fault. But, in the 

frequency spectrum of signal, noise components are very 

obvious, and some frequency components are already 

overwhelmed by noise, which is disadvantageous to 

identification of fault.  

To further reduce the influence of noise, noise reduction is 

implemented based on singular value difference spectrum. 

The result as is shown in Fig 6. Fig 6(a) and (b) are the time 

domain and frequency spectrum of signal after singular value 

difference spectrum denoising of Fig 5(e). 

From the analysis of Fig 6(b), the frequency spectrum of 

signal obtained by the proposed method of paper, it can be 

found that: 

⚫ Noise components are sharply decreased; 

 

 

⚫ There are two frequency components: 73.24Hz, equal to 

the sum of 1x of 𝑓𝑏  and 1x of 𝑓𝑟  subtracting 1x of 

𝑓𝑐 (73.24-31.3+11.5=53.4Hz) and 943.6Hz, the sum of 

17x of 𝑓𝑏  and 2x of 𝑓𝑐  ((943.6-11.5*2)/17=54.2Hz). 

These frequencies correspond to the fault feature 

frequency of rolling element of bearing; 

⚫ 1556Hz, 11x of 𝑓𝑖  adding 1x of 𝑓𝑟  ((1556-

31.3)/11=138.6Hz), which is consistent with fault 

feature frequency of inner ring; 

⚫ 1289Hz (1289Hz/16=80.6Hz), 16x of 𝑓𝑜 , which is 

consistent with fault feature frequency of outer ring. 

These frequencies are helpful to judge the occurrence of a 

compound fault among inner ring, outer ring and rolling 

element, which is consistent with actual fault type of bearing. 

Namely, there exists a perfect matching between the above 

frequency components and the compound fault types of 

bearing. That means the proposed method of paper can 

greatly reduce the noise, precisely draw the characteristic 

frequency of bearing matching the type of compound fault 

and make a correct judgment. 

5. ANALYSIS THE EFFECTIVENESS OF PROPOSED METHOD 

UNDER OTHER COMPOSITE FAULT TYPES 

To take a further step to verify the efficiency of proposed 

method, the signals from other 3 types of compound faults 

were chosen for analysis. These faults include: 1) inner ring 

and rolling element; 2) outer ring and inner ring; 3) outer ring 

and rolling element. The result is shown in Figs 7 - 9. The 

characteristic frequency of each fault mode is shown in Table 

5 in the following. 

 

 

 

 

 

 

 

 

 

5.1. Inner ring and rolling element faults analysis 

Fig 7(a) and (b) are the time domain and frequency spectrum 

of signal from compound fault between inner ring and rolling 

element; Fig 8 shows the PRCs of Fig 7(a) after ITD. Fig 9 

shows the function value of signal evaluation index related 

with each component signal. Table 6 provides the proportion 

value of each evaluation index for PRC obtained by formula 

(5). Fig 10 shows the comprehensive weight value of each 

evaluation index obtained by entropy weight method 

according to Fig 9 and Table 6, and the specific values as are 

shown in Table 7. Table 8 and Fig 11 shows the component 

signals obtained after characteristic enhancement to each 

PRC component signal according to formula (10) – (11). Fig 

12(a) and (b) are the time domain and frequency spectrum of 

signal after singular value difference spectrum denoising of 

Fig 11. 

 

Fault mode Rotate speed 
Rotate 

frequency 𝑓𝑟 

Characteristic frequency (Hz) 

Holder

𝑓𝑐 

Rolling 

element𝑓𝑏 

Inner 

ring𝑓𝑖  

Outer ring 

𝑓𝑜 

inner ring and rolling element 1812.7r/min 30.2Hz 11.1 52.6 133.9 77.5 

outer ring and inner ring 1519.0r/min 25.3Hz 9.3 44.1 112.2 65.0 

outer ring and rolling element 1812.7r/min 30.2Hz 11.1 52.6 133.9 77.5 

Table 5. The characteristic frequency of each fault mode 

 

Table 5. The characteristic frequency of each fault mode 
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average
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(a) Horizontal acceleration signal 

 

 

 

(a1) Horizontal acceleration signal- 

inner ring + ball bearing faults 

 

 

(b) Spectrum of (a) 

 

 

 

(a2) Spectrum of (a1) 

 

 

Fig 8. PRCs of Fig 7(a) by ITD 
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(b) PRCs of (a1) by ITD 
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Fig 9. The function value of signal evaluation index Fig 10. The weight value of each evaluation index 

kurtosis correlation coefficient

margin factor variance

impulse factor peak factor

average

impulse

factor2%

Kurtosis 1.9%

average

35.4%

variance

50%

Peak factor

1.9%

Correlation

Coefficient6.9%

Margin

factor1.8%

Fig 7. Time domain and frequency domain diagram of original signal 

 

 

 

(a2) Spectrum of (a1) 
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P-value 

PRCs 
Kurtosis 

Correlation 

Coefficient 

Margin 

Factor 
Variance 

Impulse 

Factor 

Peak 

Factor 
Average 

PRC1 0.2830 0.3862 0.2839 0.6692 0.2916 0.2950 0.2848 

PRC2 0.2891 0.2583 0.2717 0.1216 0.2676 0.2601 0.0624 

PRC3 0.1774 0.2117 0.1750 0.1787 0.1725 0.1750 0.5634 

PRC4 0.2505 0.1438 0.2694 0.0305 0.2683 0.2699 0.0893 

W-value 

PRCs 
𝑊𝐾  𝑊𝑐 𝑊𝑀 𝑊𝑉 𝑊𝐼 𝑊𝑝  𝑊𝐴 

PRC1-PRC4 0.0187 0.0690 0.0184 0.5003 0.0202 0.0194 0.3540 

𝑌1 (𝑊𝐾*0.2830+𝑊𝐶*0.3862+𝑊𝑀*0.2839+𝑊𝑉*0.6692+𝑊𝐼*0.2916+𝑊𝑃*0.2950+𝑊𝐴*0.2848) *PRC1 

𝑌2 (𝑊𝐾*0.2891+𝑊𝐶*0.2583+𝑊𝑀*0.2717+𝑊𝑉*0.1216+𝑊𝐼*0.2676+𝑊𝑃*0.2601+𝑊𝐴*0.0624) *PRC2 

𝑌3 (𝑊𝐾*0.1774+𝑊𝐶*0.2117+𝑊𝑀*0.1750+𝑊𝑉*0.1787+𝑊𝐼*0.1725+𝑊𝑃*0.1750+𝑊𝐴*0.5634) *PRC3 

𝑌4 (𝑊𝐾*0.2505+𝑊𝐶*0.1438+𝑊𝑀*0.2694+𝑊𝑉*0.0305+𝑊𝐼*0.2683+𝑊𝑃*0.2699+𝑊𝐴*0.0893) *PRC4 

Fig 11. Component signals after characteristic enhancement of Fig 8 by proposed method 

 

Fig 12. Component signals after characteristic enhancement of Fig 10(b) 
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Table 8. Component signals after characteristic enhancement of PRCs -𝑌𝑖     

 

 

Table 8. Component signals after characteristic enhancement of PRCs -𝑌𝑖     

 

Table 7. The weight value of each evaluation index in this signal - Eq. (9) 

 

Table 6. The proportion of each evaluation index of the component signals - Eq. (5)  

 

Table 6. The proportion of each evaluation index of the component signals - Eq. (5) 

- inner ring + ball bearing faults 
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 Fig 12(b) shows the evident fault characteristic frequency 

extracted from the frequency spectrum treated by the 

proposed method of paper: 

⚫ There exists a frequency component 802Hz which 

corresponds to the 6x of 𝑓𝑖 (802/6=133.6Hz); 

⚫ 1222Hz, the sum of 23x of 𝑓𝑏  and 1x of 𝑓𝑐  ((1222-

11.1)/23=52.6Hz); 

⚫ 1278Hz, the sum of 24x of 𝑓𝑏 and 1x of 𝑓𝑟 subtracting 

1x of 𝑓𝑐 ((1278-30.2+11.1)/24=52.5Hz); 

⚫ 1698Hz, the sum of 32x of 𝑓𝑏 and 1x of 𝑓𝑟 subtracting 

2x of 𝑓𝑐 ((1698-30.2+11.1*2)/32=52.8Hz). 

It can be found from the above analysis that when a 

compound fault of inner race and rolling element takes place, 

the proposed method of paper can still effectively eliminate 

the influence of noise and successfully extract the fault 

feature frequency related to a specific type. Thus, the method 

can be used to correctly judge a type of compound bearing 

fault.  

5.2. Outer ring + inner ring faults analysis 

Fig 13(a) and (b) corresponds to the time domain and 

frequency spectrum of signal from compound fault between 

outer ring and inner ring. Fig 14 shows the PRCs of Fig 13(a) 

after ITD. Fig 15 shows the function value of signal 

evaluation index related with each component signal. Table 

9 provides the proportion value of each evaluation index for 

PRC obtained by formula (5). Fig 16 shows the 

comprehensive weight value of each evaluation index 

obtained by entropy weight method according to Fig 15 and 

Table 9, and the specific values as are shown in Table 10. 

Table 11 and Fig 17 shows the component signals obtained 

after characteristic enhancement to each PRC component 

signal according to formula (10) – (11). Fig 18(a) and (b) are 

the time domain and frequency spectrum of signal after 

singular value difference spectrum denoising of Fig 17. Fig 

18(c) is the local enlargement of Fig 18(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Horizontal acceleration signal  

 

 

(a1) Horizontal acceleration signal 

- outer ring + inner ring faults 

 

(b) Spectrum of (a) 
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(a) Horizontal acceleration signal  

 

 

(f) Horizontal acceleration signal 

- inner ring + ball bearing faults 
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1222Hz 

 

1222Hz 

1698Hz 

 

1698Hz 

Fig 12. Time domain and frequency domain diagram of 

proposed method - inner ring + rolling element faults 

 

Fig 13. Time domain and frequency domain diagram of 

original signal 

 

 

 

(a2) Spectrum of (a1) 
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P-value 

PRCs 
Kurtosis 

Correlation 

Coefficient 

Margin 

Factor 
Variance 

Impulse 

Factor 

Peak 

Factor 
Average 

PRC1 0.2795 0.2783 0.2569 0.4360 0.2653 0.2694 0.3979 

PRC2 0.3082 0.2791 0.2873 0.2045 0.2762 0.2598 0.2890 

PRC3 0.1674 0.3260 0.1795 0.2963 0.1794 0.1867 0.0903 

PRC4 0.2448 0.1166 0.2763 0.0632 0.2791 0.2841 0.2228 

 

 

 

 

 

 

 

 

         W-value 

PRCs 
𝑊𝐾  𝑊𝑐 𝑊𝑀 𝑊𝑉 𝑊𝐼  𝑊𝑝  𝑊𝐴 

PRC1-PRC4 0.0591 0.1465 0.0381 0.4149 0.0364 0.0300 0.2749 
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Fig 14. PRCs of Fig 13(a) by ITD 

 

 

(b) PRCs of (a1) by ITD 

 

 t/s 

 

 t/s 

Fig 15. The function value of signal evaluation index  

Table 9. The proportion of each evaluation index of the component signals - Eq. (5) 

 

Table 9. The proportion of each evaluation index of the component signals - Eq. (5) - outer ring + inner ring faults 

kurtosis correlation coefficient

margin factor variance

impulse factor peak factor

average

margin

factor3.8%
variance

41.5%

impulse

factor3.6%

peak

factor3%

average

27.5%

Fig 16. The weight value of each evaluation index  

Correlation 

Coefficient14.7% 

kurtosis5.9% 

Table 10. The weight value of each evaluation index in this signal - Eq. (9) 

 

Table 9. The proportion of each evaluation index of the component signals 

- Eq. (5) - outer ring + inner ring faults 
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Fig 18. Time domain and frequency domain diagram of proposed method - outer ring + inner ring faults 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be known from the analysis of Fig 18(c) that: 

⚫ At the spot of 1283Hz (1283Hz/20=64.2Hz), it meets the 

20x of 𝑓𝑜; 

⚫ There exists a frequency component 64.7Hz which 

corresponds to the 1x of 𝑓𝑜; 

⚫ 72Hz, the sum of 1x of 𝑓𝑖 and 1x of 𝑓𝑟 subtracting the 2x 

of 𝑓𝑐 ((72+25.3*2-9.3)/6=113.3Hz); 

⚫ 1217Hz, the 48x of 𝑓𝑟. 

It can be known from above analysis that when a compound 

fault of outer and inner race occurs and the rotate speed 

differs section 5.1 and 5.3’s, the method of paper can still 

successfully extract the feature frequency pertinent to the 

type of fault and effectively reduce the interference of noise. 

5.3. Outer ring + rolling element faults analysis 

Fig 19(a) and (b) corresponds to the time domain and 

frequency spectrum of signal from compound fault between 

outer ring and rolling element; Fig 20 shows the PRCs of Fig 

9(a) after ITD. Fig 21 shows the function value of signal 

evaluation index related with each component signal. Table 

12 provides the proportion value of each evaluation index for 

PRC obtained by formula (5). Fig 22 shows the 

comprehensive weight value of each evaluation index 

obtained by entropy weight method according to Fig 21 and 

Table 12, and the specific values as are shown in Table 13. 

𝑌1 (𝑊𝐾*0.2795+𝑊𝐶*0.2783+𝑊𝑀*0.2569+𝑊𝑉*0.4360+𝑊𝐼*0.2653+𝑊𝑃*0.2694+𝑊𝐴*0.3979) *PRC1 

𝑌2 (𝑊𝐾*0.3082+𝑊𝐶*0.2791+𝑊𝑀*0.2873+𝑊𝑉*0.2045+𝑊𝐼*0.2762+𝑊𝑃*0.2598+𝑊𝐴*0.2890) *PRC2 

𝑌3 (𝑊𝐾*0.1674+𝑊𝐶*0.3260+𝑊𝑀*0.1795+𝑊𝑉*0.2963+𝑊𝐼*0.1794+𝑊𝑃*0.1867+𝑊𝐴*0.0903) *PRC3 

𝑌4 (𝑊𝐾*0.2448+𝑊𝐶*0.1166+𝑊𝑀*0.2763+𝑊𝑉*0.0632+𝑊𝐼*0.2791+𝑊𝑃*0.2841+𝑊𝐴*0.2228) *PRC4 
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Fig 17. Component signals after characteristic enhancement of Fig 14 by proposed method 

 

Fig 16. Component signals after characteristic enhancement of Fig 14(b) 
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(a) Horizontal acceleration signal 

 

 

(f) Horizontal acceleration signal - outer 

ring + inner ring faults 
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Table 11. Component signals after characteristic enhancement of PRCs -𝑌𝑖 

 

Table 11. Component signals after characteristic enhancement of PRCs -𝑌𝑖      
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Table 14 and Fig 23 shows the component signals obtained 

after characteristic enhancement to each PRC component 

signal according to formula (10) – (11). Fig 24(a) and (b) are 

the time domain and frequency spectrum of signal after 

singular value difference spectrum denoising of Fig 23.
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Fig 21. The function value of signal evaluation index 
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Fig 20. PRCs of Fig 19(a) by ITD 

 

 

(b) PRCs of (a1) by ITD 
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impulse

factor5.3 %
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factor3.8 %

average

43.2 %

Fig 22. The weight value of each evaluation index                                                                         

margin 

factor5.6 % 

Fig 19. Time domain and frequency domain diagram of original signal 
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        P-value 

PRCs 
Kurtosis 

Correlation 

Coefficient 

Margin 

Factor 
Variance 

Impulse 

Factor 

Peak 

Factor 
Average 

PRC1 0.4493 0.2785 0.3666 0.3478 0.3737 0.3595 0.0870 

PRC2 0.2363 0.3294 0.2660 0.4001 0.2457 0.2289 0.5773 

PRC3 0.1795 0.2983 0.2214 0.2159 0.2256 0.2386 0.3103 

PRC4 0.1349 0.0938 0.1460 0.0362 0.1550 0.1730 0.0255 

         W-value 

PRCs 
𝑊𝐾  𝑊𝑐 𝑊𝑀 𝑊𝑉 𝑊𝐼  𝑊𝑝  𝑊𝐴 

PRC1-PRC4 0.1159 0.0882 0.0555 0.2175 0.0526 0.0384 0.4320 

𝑌1 (𝑊𝐾*0.4492+𝑊𝐶*0.2785+𝑊𝑀*0.3666+𝑊𝑉*0.3478+𝑊𝐼*0.3737+𝑊𝑃*0.3595+𝑊𝐴*0.0870) * PRC1 

𝑌2 (𝑊𝐾*0.2363+𝑊𝐶*0.3294+𝑊𝑀*0.2660+𝑊𝑉*0.4001+𝑊𝐼*0.2457+𝑊𝑃*0.2289+𝑊𝐴*0.5773) * PRC2 

𝑌3 (𝑊𝐾*0.1795+𝑊𝐶*0.2983+𝑊𝑀*0.2214+𝑊𝑉*0.2159+𝑊𝐼*0.2256+𝑊𝑃*0.2386+𝑊𝐴*0.3103) * PRC3 

𝑌4 (𝑊𝐾*0.1349+𝑊𝐶*0.0938+𝑊𝑀*0.1460+𝑊𝑉*0.0362+𝑊𝐼*0.1550+𝑊𝑃*0.1730+𝑊𝐴*0.0255) * PRC4 

Table 12. The proportion of each evaluation index of the component signals - Eq. (5) 

 

Table 12. The proportion of each evaluation index of the component signals - Eq. (5) 

- outer ring + ball bearing faults 

Table 14. Component signals after characteristic enhancement of PRCs - 𝑌𝑖    

 

Table 14. Component signals after characteristic enhancement of PRCs - 𝑌𝑖    

Fig 23. Component signals after characteristic enhancement of Fig 20 by proposed method 

 

Fig 20. Component signals after characteristic enhancement of Fig 18(b)  
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(b) Spectrum of (a) 
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Table 13. The weight value of each evaluation index in this signal - Eq. (9) 

 

Fig 24. Time domain and frequency domain diagram of proposed method - outer ring + rolling element faults 
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It can be known from Fig 24(b) that: 

⚫ There exists a frequency component 73.24Hz, equal to 

the sum of 1x of 𝑓𝑏 and 1x 𝑓𝑟 subtracting 1x 𝑓𝑐 (73.24-

31.3+11.5=53.4Hz); 

⚫ 2427Hz, 46x of 𝑓𝑏 (2427/46=52.8Hz); 

⚫ 2573Hz (2573Hz/33=78.0Hz), consistent with the 33x 

of 𝑓𝑜 . 

It can be known from the analysis of Fig 9 that when a 

compound fault of outer race and rolling element occurred, 

the proposed method can not only effectively reduce the 

interference of noise, but also correctly extract the fault 

feature frequency of outer race and rolling element and 

recognize the type of compound fault. 

It can be known that in different compound faults of bearing, 

the proposed method can equally reduce the influence of 

noise. According to the signal frequency spectrum, the 

method can extract the characteristic frequency consistent 

with the type of compound faults and then make precise 

judgment.  

6. CONCLUSION 

To solve the difficulty of single signal evaluation index to 

manifest characteristic information of compound faults of 

rolling bearing, this method has combined multiple indexes 

and proposed the fault characteristic enhancement method 

mixing ITD algorithm and entropy weight method. To further 

lessen the influence of noise, SDS is recruited to denoise the 

signals. The following conclusions can be drawn: 

⚫ By taking advantage of average and variance 

information of signal in a bearing fault and the impact 

components in fault signals, the paper has chosen 7 

signal evaluation indexes to depict the compound fault 

characteristic information of bearing; 

⚫ By blending entropy weight method and ITD algorithm 

and calculating comprehensive weight of multiple signal 

evaluation indexes, the proposed method can embody 

the enhancement of fault characteristic information of 

component signals, effectively draw the characteristic 

frequency of compound faults and correctly determine 

on a fault type; 

⚫ The proposed method is capable to effectively restrain 

noise components and is sensitive to various compound 

faults of rolling bearing. This method can work on 

multiple compound fault types, including the faults 

among outer and inner ring and rolling element, inner 

ring and rolling element, outer ring and inner ring, outer 

ring and rolling element.  
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NOMENCLATURE 

PRCs           proper rotation components 

EWM           entropy-based weight method 

ITD              intrinsic time scale decomposition 

SDS             singular differential spectrum 

SVD             singular value decomposition 

𝑓𝑟               rotate frequency 

𝑓𝑖                 inner-ring fault feature frequency 
𝑓𝑜                outer-ring fault feature frequency 

𝑓𝑏                rolling-element fault feature frequency 

𝑓𝑐              holder fault feature frequency 
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