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ABSTRACT

Accurate estimation of the remaining useful life (RUL) is
a key component of condition-based maintenance (CBM)
and prognosis and health management (PHM). Data-based
models for the estimation of RUL are of particular interest
because expert knowledge of systems is not always available,
and physical modeling is often not feasible. Additionally,
using data-based models, which make decisions based on
raw sensor data, allow features to be learned instead of man-
ually determined. In this work, deep convolutional neural
network (CNN) architectures are investigated for their abil-
ity to estimate the RUL of turbofan engines. To improve
the accuracy of the models, CNN architectures, which have
proven successful in image classification, are implemented
and tested. Specifically, the blocks used in the Visual Ge-
ometry Group (VGG) architecture, inception modules used
in the GoogLeNet architecture, and residual blocks used in
the ResNet architecture are incorporated. To account for
varying flight lengths, the input to the models is a window of
time series data collected from the engine under test. Win-
dow locations at the climb, cruise, and descent stages are
considered. To further improve the RUL estimations, mul-
tiple overlapping windows at each location are used. This
increases the amount of training data available and is found
to increase the accuracy of the resulting RUL estimations by
averaging the estimates from all overlapping segments. The
model is trained and tested using the new Commercial Mod-
ular Aero-Propulsion System Simulation (N-CMAPSS) data
set, and high prognosis accuracy was achieved. This work
expands on the model developed and used in the 2021 PHM
Society Data Challenge, which received second place.
Nathaniel DeVol et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Remaining useful life (RUL) is the remaining time for which
an asset will be productive (Si, Wang, Hu, & Zhou, 2011),
and the RUL is a key component of condition-based mainte-
nance (CBM) and prognosis and health management (PHM)
(Jardine, Lin, & Banjevic, 2006). Knowing the RUL of an
asset allows for the optimal scheduling of maintenance and
ordering of spare parts, which can reduce asset downtime and
increase profitability. RUL estimation also has safety and en-
vironmental implications by preventing failures that could put
users in danger and extending the life of an asset, thereby re-
ducing the need for new equipment (Si et al., 2011).

While the RUL of an asset is affected by many variables
and cannot be exactly known, there are several modeling
techniques for estimating the RUL. The three primary ap-
proaches for estimating the RUL of an asset are: physics-
based, data-based, and hybrid (Sikorska, Hodkiewicz, &
Ma, 2011). Physics-based methods create a model of the
system using an in-depth understanding of the underlying
processes. While physics-based models have been shown
to be successful (Bolander, Qiu, Eklund, Hindle, & Rosen-
feld, 2009), they are often prohibitive due to the time and
system understanding required to create them. Additionally,
physics-based models tend to be specific to a failure mode,
and failure modes must be well understood a priori (Sikorska
et al., 2011). Data-based methods, including statistical and
artificial intelligence (AI) methods, do not require knowledge
of the underlying systems, but instead rely on the availability
of a data set that captures the performance of the system.
Finally, hybrid models merge these two approaches to reduce
the underlying knowledge and data requirements of the two
individual methods (Sikorska et al., 2011). While hybrid
approaches work in some applications (Kong et al., 2020),
they increase the modeling complexity by requiring the two
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models to be developed and merged.

In this work, modeling methodologies for estimating the
RUL of turbofan engines are investigated. This was orig-
inally completed as part of the 2021 PHM Society Data
Challenge, which used the new Commercial Modular Aero-
Propulsion System Simulation (N-CMAPSS) data set (Chao,
Kulkarni, Goebel, & Fink, 2021). This data set contains
a large amount of run-to-failure data, so this work takes a
data-based approach. Past research on the original CMAPSS
data set demonstrated the applicability of convolutional neu-
ral networks (CNNs) (Li, Ding, & Sun, 2018; H. Yang,
Zhao, Jiang, Sun, & Mei, 2019), long short-term memory
(LSTM) (da Costa, Akeay, Zhang, & Kaymak, 2019; Zheng,
Ristovski, Farahat, & Gupta, 2017; Wu et al., 2020), and hy-
brid methods, which merge CNN and LSTM (Zhao, Huang,
Li, & Iqbal, 2020) for RUL estimation. The use of con-
volutions allows for a reduction of the number of model
parameters relative to a neural network without convolutions
and aids in the extraction of features (Albawi, Mohammed,
& Al-Zawi, 2017). Additionally, convolution layers have
the ability to realize complex relationships between different
sensor readings. Specifically, this work focuses on applying
CNN architectures developed for image classification to RUL
estimation. Image classification architectures are of interest
because if they can be leveraged for RUL estimation, then
they have the potential to quickly advance the field of prog-
nostics. Additionally, the theoretical justifications for using
CNN on images, including the ability for filters to be learned
and applied across an entire image, also apply to sensor data.

The rest of the paper is organized as follows. In section 2,
the problem is introduced and the data set is described. In
section 3, the methodology is detailed, including the data pre-
processing and model architecture. Section 4 details the re-
sults of each trained model. Finally, sections 5 and 6, contain
discussion and conclusions.

2. PROBLEM DESCRIPTION

The work was initiated as part of the 2021 PHM Society Data
Challenge. The challenge description is thus the same as
the problem description presented in this section. This work
builds on the result of the Data Challenge (DeVol, Saldana,
Fu, & Woodruff, 2021) by including results from multiple
model architectures and various model inputs including the
flight stage and incorporating multiple windowed inputs.

2.1. Data Set Description

In this work, the new Commercial Modular Aero-Propulsion
System Simulation (N-CMAPSS) data set is used to test a
data-driven method for RUL estimation. This data set con-
tains realistic run-to-failure data of turbofan engines (Chao
et al., 2021). The N-CMAPSS data set offers higher fidelity
data than the original CMAPSS data set by incorporating real

recorded flight conditions and relating the degradation pro-
cess to its operation history to extend the degradation model
(Chao et al., 2021).

The data set models the failure trajectories of eight different
failure modes that affect either the efficiency or flow of one or
more of the sub-components of the engine. One of the failure
modes included in the N-CMAPSS data set was not included
in the 2021 PHM Society Data Challenge, so it was not used
in the development of the tested models. The seven failure
modes used in the data challenge are shown in Table 1. The
failure modes span across all the rotating sub-components:
fan, low-pressure compressor (LPC), high-pressure compres-
sor (HPC), high-pressure turbine (HPT), and low-pressure
turbine (LPT) and can affect either efficiency (E) or flow (F).

The flight durations are divided into three classes based on
their length, but this work considers them together by using
a window function, which is discussed in section 3. Each
flight has an unknown initial condition and is run to failure,
so the number of flights varies for each unit. Across all fail-
ure modes, the data set contained 90 units with data from a
combined 6,825 flights. The data file for each flight contains
scenario descriptors (w), measurements (xs), an RUL label
(y), and auxiliary data. The variables contained within the
scenario descriptors, measurements, and auxiliary data are
detailed in Tables 2, 3, and 4, respectively.

2.2. Problem Definition

The goal of this work is to develop a model that esti-
mates the RUL of a turbofan engine given a data set D =
{wi, xsi , yi}Ni=1, which contains run-to-failure data for N
total flights of turbofan engines subject to different failure
modes. The length of the sensory signals w and xs is not
constant between flights, so the model should be able to in-
corporate variable lengths of input data. The performance
of the model is evaluated using a combination of the root-
mean-square error (RMSE) and NASA’s scoring function
(Saxena, Goebel, Simon, & Eklund, 2008), calculated from
the actual (y) and predicted (ŷ) RUL values. RMSE is cal-
culated following Eq. (1), where mv⇤ is the number of test
samples. NASA’s scoring function (sc) is calculated using
Eq. (2), where ↵ is defined in Eq. (3). With ↵ defined this
way, under-estimations are preferable to over-estimations.
The values calculated in Eqs. (1) and (2) are combined using
Eq. (4) to get the final score. The values of each of these
equations as a function of the difference between the actual
and predicted RUL values is shown in Figure 1.

RMSE =

vuut 1

mv⇤

mv⇤X

j=1

(y(j) � ŷ(j))2 (1)
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Table 1. Overview of the data set.

Name # Units Fan LPC HPC HPT LPT
E F E F E F E F E F

DS01 10 X
DS03 15 X X X
DS04 10 X X
DS05 10 X X
DS06 10 X X X X
DS07 10 X X
DS08 25 X X X X X X X X X X

Table 2. Scenario descriptors (w)

Symbol Description Units
alt Altitude Units
Mach Flight Mach number -
TRA Throttle-resolver angle %
T2 Total temperature at fan inlet �R

Table 3. Measurements (xs)

Symbol Description Units
Wf Fuel flow pps
Nf Physical fan speed rpm
Nc Physical core speed rpm
T24 Total temperature at LPC outlet �R
T30 Total temperature at HPC outlet �R
T48 Total temperature at HPT outlet �R
T50 Total temperature at LPT outlet �R
P15 Total pressure in bypass-duct psia
P2 Total pressure at fan inlet psia
P21 Total pressure at fan outlet psia
P24 Total pressure at LPC outlet psia
Ps30 Total pressure at HPC outlet psia
P40 Total pressure at burner outlet psia
P50 Total pressure at LPT outlet psia

sc =
1

mv⇤

mv⇤X

j=1

exp(↵ ⇤ |y(j) � ŷ(j)|) (2)

↵ =

(
1
13 if y(j) � ŷ(j)  0
1
10 if y(j) � ŷ(j) > 0

(3)

score = 0.5 ⇤RMSE + 0.5 ⇤ sc (4)

Table 4. Auxiliary data

Symbol Description Units
unit Unit number -
cycle Flight cycle number -
Fc Flight class -
hs Health state -

Figure 1. Evaluation scores as a function of the difference
between the actual and predicted RUL values.

3. METHODOLOGY

3.1. Data Pre-Processing

In the data pre-processing phase, the scenario descriptors are
combined with the measurements. This is done because the
scenario descriptors can provide context to the measurement
readings. For the time series data of a flight, which contains
m values, the scenario descriptors w 2 Rm⇥4 and measure-
ments xs 2 Rm⇥14 are combined to form x 2 Rm⇥18.

The flight duration is not consistent across each flight, so the
length of each xs and w varies. To account for this, a win-
dowing function is used, which crops the measurement data
and scenario descriptors to a specified length. Multiple loca-
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tions for this window were considered, including the climb
(beginning), cruise (middle), and descent (end) portions of
the flight. After applying the window function, the length
of the input data is consistent, and the number of model pa-
rameters is reduced compared to a model that considers the
whole flight. Three window sizes of 30, 60, and 120 sam-
ples are considered. In addition to considering a single win-
dow of data from each flight, three consecutive windows with
50% overlap were also considered. This triples the amount
of training data by creating three training points from each
flight, which are each associated with the same RUL. Three
windows with 50% overlap were considered because the data
within each windowed segment is expected to be similar since
the outside segments are adjacent and share half of their data
with the middle section. This allows each of the three win-
dowed segments to be treated as separate training samples
with the same labels which would not be possible if more
dispersed windows were used.

Finally, the input data is standardized so that it has zero mean
and unit standard deviation. This is done independently for
each of the 18 features. The mean and standard deviation
for each feature are calculated from the training data, then
applied to both the train, validation, and test data to calculate
the standardized input by

Xi,j =
xi,j � µj

�j
(5)

where µj and �j are the mean and standard deviation of the
jth feature, xi,j is the ith value of the jth feature, and Xi,j is
the final standardized value input to the model.

3.2. Model Architectures

In this work, multiple deep convolutional neural network
(CNN) architectures are investigated for their ability to es-
timate the RUL of turbofan engines. Three primary archi-
tectures that have been shown to be successful in classifying
images were evaluated. The first uses blocks of CNN layers
similar to the Visual Geometry Group (VGG) architecture
(Simonyan & Zisserman, 2014). The second makes use of
inception modules introduced in the GoogLeNet architecture
(Szegeandy et al., 2015). The final architecture uses residual
blocks based on the ResNet architecture (He, Zhang, Ren, &
Sun, 2016). All of these models were originally developed
for image classification, so the convolutional layers are two
dimensional. To adapt these architectures for use on the time
series data from the N-CMAPSS data set, one-dimensional
convolutional layers are used. The convolutions take place
along the time axis.

3.2.1. VGG Architecture

The first architecture tested makes use of blocks of CNN lay-
ers similar to the VGG architecture. In the VGG architecture,
only small (3x3) convolution filters are used, and each block
of convolution layers is followed by a max pooling layer,
where the input is down-sampled by taking the maximum
over a 2x2 window with a stride of 2 (Simonyan & Zisser-
man, 2014). An example of an architecture making use of
this configuration and adapted for the time series data in the
N-CMAPSS data set is shown in Table 5. To adapt for the
N-CMAPSS data set, the architecture uses one-dimensional
convolutions, as opposed to the original two-dimensional
convolutions, so that the input can be a two-dimensional
matrix of columns of sensor data instead of an image.

Table 5. Example VGG architecture adapted to time se-
ries data. The convolutional layer parameters are denoted as
“Convhreceptive field sizei-hnumber of channelsi”.

Input (30x18 raw sensor data)
Conv3-64
Conv3-64
Max pool

Conv3-128
Conv3-128
Max pool

Fully connected-128
Linear activation

3.2.2. Inception Architecture

The next model architecture makes use of inception mod-
ules. Inception modules contain parallel convolutional layers
of different sizes and a single max pool layer. The outputs
of each of these parallel layers are concatenated and sent to
the next layer. The original inception network used two di-
mensional convolutions of sizes 1x1, 3x3, and 5x5 and a 3x3
max pool layer (Szegeandy et al., 2015). The use of variable-
sized convolutions allows for variable-sized features to be de-
tected within a shallower neural network. This version of the
inception module is shown in Figure 2a. To reduce the di-
mensionality of the model, convolutions of size 1x1 can be
incorporated before each convolution layer and after the max
pool layer. These convolutions are performed with a stride of
one so that the first and second dimension remain unchanged,
but the third dimension is reduced. An inception module that
incorporates dimensionality reduction is shown in Figure 2b.
An example of a model architecture making use of these in-
ception modules and adapted for the time series data in the
N-CMAPSS data set is shown in Figure 3.
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Figure 2. Inception module a) without dimensionality reduc-
tion and b) with it. Adapted from (Szegeandy et al., 2015).

3.2.3. Residual Network Architecture

The final network architecture explored in this work makes
use of residual blocks. The residual blocks use a skip con-
nection, which adds the input of a stack of two convolution
layers to the output of those two layers. These shortcut con-
nections, which do not add model parameters, are able to in-
crease the accuracy of deep neural networks (He et al., 2016).
An illustration of a residual block is shown in Figure 4.

When using the simple implementation shown in Figure 4, er-
rors can occur when the output of the two convolution layers
is not the same as the input. To correct for this, the shortcut
can be padded with zeros, or a 1x1 convolution layer can be
used to match the shortcut to the output of the convolution
layers (He et al., 2016). An example of a model architecture
making use of residual blocks and adapted for the time series
data in the N-CMAPSS data set is shown in Figure 5. This
model uses single dimensional convolutions on the shortcut
connection to correct for mismatches in the number of filters.

3.3. Model Training

Across all the failure types and tested units, flight data from
6,825 flights were used for training and testing. Within the
N-CMAPSS data set, this data is split with into development
and test sets with data from 4,089 flights (60%) in the devel-
opment set and data from 2,736 flights (40%) in the test set.
In this work, the development data was further split using 5-
fold cross validation. The average validation accuracy across
the five folds was used to tune the hyperparameters for each

Figure 3. Example inception architecture adapted to time se-
ries data. The convolutional layer parameters are denoted as
“Convhreceptive field sizei-hnumber of channelsi”.

Figure 4. Building block of residual network architecture.

model architecture, and all validation scores reported in this
work are the average across the five folds. After hyperparam-
eter tuning, the test data was used on the final trained model
from each network architecture. In the instances where three
overlapping windows are used, the amount of training data
is increased threefold, but the amount of test data remains
the same. This is because in training, the three windows are
treated independently as three separate samples each having
the same RUL label. In validation and testing, the average
RUL estimate over the three windows is used as the final pre-
diction for the unit under test.

The models were implemented in Python (version 3.8.12) us-
ing the Keras (Chollet et al., 2015) library (version 2.4.3) and
Tensorflow (Abadi et al., 2015) backend (version 2.3.0). In
training, the accuracy of the model was evaluated by taking
the mean squared error (MSE) between the predicted and ac-
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Figure 5. Example residual network architecture adapted to
time series data. The convolutional layer parameters are de-
noted as “Convhreceptive field sizei-hnumber of channelsi”.

tual remaining useful life of all the samples. MSE was used
in training for ease of implementation, but score values as
described in Eq. (4) were computed on the validation and
test data sets. During hyperparameter tuning, training was
conducted for 40 epochs, and once the final architecture was
set, the final models were trained for 60 epochs. Hyperpa-
rameters included the number of layers, number of nodes in
each layer, batch size, and drop-out rate were set using a grid-
search (L. Yang & Shami, 2020). For the model architectures,
the search space started with minimal models with few layers
and nodes and the complexity was increased until overfitting
was observed. The search space included batch sizes of 32,
64, and 128 and dropout rates of 40%, 50%, and 60%. Fol-
lowing past research, a dropout of 50% was used as the mid-
point for the dropout rate search space (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014). Ultimately,
a batch size of 64 and dropout rate of 50% were used for all
models. For both training and testing, the Adam optimizer
and a learning rate of 0.001 were used. The Adam optimizer
was used because of its recent broad adoption in deep learning
(Kingma & Ba, 2014; Ruder, 2016). Because the Adam opti-
mizer uses an adaptive learning-rate, the default initial learn-
ing rate of 0.001 can be used without tuning (Ruder, 2016).

4. RESULTS

4.1. VGG Architecture

In the development of the VGG-based model, network con-
figurations with different numbers of convolution layers and
filters were tested. The details of the best performing archi-
tecture, based on the validation score, is given in Table 6.

After the last convolution layer, the filters are flattened and
fully connected to a hidden layer with 128 cells. Dropout at
a rate of 50% is included in this layer to reduce overfitting.
In the last layer, a single node with a linear activation outputs
the RUL estimation of the flight data under investigation. The
model performed best when trained with 3 overlapping seg-
ments of 60 sensor readings from the climb stage of the flight.
The training and validation scores of this architecture, trained
with different input configurations, are compared in Table 7.
The flight stages were explored equally, but more results for
the climb stage are shown in Table 7 because models trained
with data from the climb stage produced lower scores. This
trend continued for all model architectures investigated. In
total, this model has 286,593 trainable parameters, and the
breakdown of these parameters by layer is given in Table 6.
A parity plot of the final VGG model retrained with all of the
training data is shown in Figure 6.

Table 6. Best performing VGG-based architecture. Where
not specified, all layers use the ReLU activation function.

Input (60x18 raw sensor data) # Params
Conv3-64 3,520
Conv3-64 12,352
Max pool -
Conv3-64 12,352
Conv3-64 12,352
Max pool -

Fully connected-128 245,888
Linear activation 129

Table 7. VGG-based architecture scores when trained with
different inputs.

Model Flight Overlap Train Validation
Input Stage Used Score Score
60x18 Climb Yes 5.43 5.87
60x18 Climb No 6.32 6.67
30x18 Climb Yes 5.89 6.27
120x18 Climb Yes 5.53 5.98
60x18 Cruise Yes 7.03 7.64
60x18 Descent Yes 6.84 7.24

4.2. Inception Architecture

In testing the inception architecture, the number of inception
modules and fully connected layers, as well as the numbers
of filters and nodes in each were varied. The details of the
architecture that yielded the best score on the validation data
is shown in Table 8. Three inception modules are used in
the network. In the first module, the dimensionality reduc-
tions before the convolution layers are not included so that
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Figure 6. Parity plot for the VGG-based model.

the first convolutions see the raw signal. This is done be-
cause the input data is relatively small with 18 sensor read-
ings, so the benefits of dimensionality reduction are minimal.
In the second and third modules, the dimensionality reduction
is included because the stacked filters from the first inception
module expand the dimensionality. After the last inception
module, the convolution filters are flattened and fully con-
nected to a hidden layer with 256 cells. Dropout at a rate of
50% is included in this layer to reduce overfitting. Finally,
in the last layer, a single node with a linear activation outputs
the RUL estimation of the flight data under investigation. The
training and validation scores of this architecture, trained with
different input configurations, are compared in Table 10. In
total, the model has 2.05 million trainable parameters. The
breakdown of these parameters by layer is shown in Table 9.
A parity plot of the final inception model retrained with all of
the training data is shown in Figure 7.

4.3. Residual Network Architecture

To test the performance of residual architecture, models with
varying numbers of residual blocks and fully connected lay-
ers, and varied numbers of filters and nodes in each were
trained. The details of the architecture that yielded the best
score on the validation data are shown in Table 11. This
model was comprised of two residual blocks after which the
convolution filters are flattened and fully connected to a hid-
den layer with 128 cells. Dropout at a rate of 50% is included
in this layer to reduce overfitting. Finally, in the last layer,
a single node with a linear activation outputs the RUL esti-
mation of the flight data under investigation. The training
and validation scores of this architecture, trained with differ-

Table 8. Best performing inception-based architecture.
Where not specified, all layers use the ReLU activation func-
tion.

Input (60x18 raw sensor data)
Max Pool

Conv1-18 Conv3-36 Conv5-36 Conv1-18
Depth Concatenation

Conv1-64 Conv1-64 Max Pool
Conv1-32 Conv3-32 Conv5-32 Conv1-32

Depth Concatenation
Conv1-64 Conv1-64 Max Pool

Conv1-32 Conv3-32 Conv5-32 Conv1-32
Depth Concatenation
Fully connected-256

Linear activation

Table 9. Number of parameters broken down by layer for the
best performing inception-based model.

Layer # Params
Inception1 5,940
Inception2 37.4 k
Inception2 41.2 k
Fully Connected 1.97 M
Linear 257
Total 2.05 M

ent input configurations, are compared in Table 12. In total,
this model contained 1.03 M trainable parameters when set-
up for a 60x18 input. Unlike the other architectures tested,
for the residual-based architectures the best performance was
for the shorter, 30 sample input as opposed to the 60. The
improvement, however, was minimal so the 60 sample input
was used for easy comparison back to the other models. A
parity plot of the final residual-based model retrained with all
of the training data is shown in Figure 8.

4.4. Comparison

The train and test scores for the final model from each cate-
gory are shown in Table 13. The means from 10-fold cross
validation are reported with their standard deviation. The
train score is from the final model trained on all training
data, and the test score is calculated on the previously unused
test set. A one-way ANOVA was performed on the cross-
validation results and found that the differences between the
models were not significant (F(2,27)=0.957 p=0.40). The
ratio of the standard deviations was 1.4, and the Q-Q plot
used to verify normal distributions is shown in Figure 9. It
is worth noting that the overlapping training sets of 10-fold
cross validation may exhibit increased type I error when used
for statistical tests (Dietterich, 1998). In addition to each

7
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Table 10. Inception-based architecture scores when trained
with different inputs.

Model Flight Overlap Train Validation
Input Stage Used Score Score
60x18 Climb Yes 5.32 5.97
60x18 Climb No 5.72 6.40
30x18 Climb Yes 5.60 6.15
120x18 Climb Yes 5.19 5.90
60x18 Cruise Yes 6.82 7.47
60x18 Descent Yes 6.45 6.95

Figure 7. Parity plot for the inception-based model.

Table 11. Best performing residual-based architecture.
Where not specified, all layers use the ReLU activation func-
tion.

Input (60x18 raw sensor data) # Params
ResidualModule-64 17,088
ResidualModule-64 24,704
Fully connected-256 983,296

Linear activation 257

model’s accuracy, it is important to compare the model size,
training time, and inference time. These values are reported
in Table 14. The reported inference times are per estimation
and are computed by taking the total time to predict all test
data points and dividing by the total number of test points.
Training was completed on an Intel Core i7 CPU with 32 GB
of RAM.

Table 12. Residual-based architecture scores when trained
with different inputs.

Model Flight Overlap Train Validation
Input Stage Used Score Score
60x18 Climb Yes 5.81 6.24
60x18 Climb No 6.65 7.25
30x18 Climb Yes 5.81 6.21
120x18 Climb Yes 5.98 6.41
60x18 Cruise Yes 7.90 8.48
60x18 Descent Yes 6.96 7.41

Figure 8. Parity plot for the residual-based model.

5. DISCUSSION

The results of this work presented in Table 13 demonstrate
that all of the CNN architectures were able to predict the RUL
with similar accuracy. The inception architecture offered the
greatest accuracy, but the increase in its performance com-
pared to the simpler VGG was minimal, considering the
increase in trainable parameters and training time. This
indicates that a very deep model is not required for RUL
estimation, so the benefits that the residual- and inception-
based architectures offer are not realized. The applicability
of CNNs on the N-CMAPSS data set, demonstrated in this
work, and their past success on the original CMAPSS data
set (Sateesh Babu, Zhao, & Li, 2016; Li et al., 2018; H. Yang
et al., 2019), show the broad applicability that they have in
RUL estimation.

To determine if the differences in the performance of the
models when using the climb portion was significant, a one-
way ANOVA was performed on the model scored obtained
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Figure 9. Q-Q plot for comparing the performance of various
model architectures.

Table 13. Comparison of the best performing architecture
from each category.

Model 10-Fold CV Train Test
Architecture Score Score Score
VGG 6.03 (SD=0.54) 5.09 5.78
Inception 6.10 (SD=0.51) 4.77 5.64
Residual 7.26 (SD=0.50) 6.40 6.14

in 10-fold cross validation. The means and standard devi-
ations from each case are reported in Table 15. The result
was that the flight stage was found to be a significant factor
for all model architectures (VGG F(2,27)=15.7 p=3.0e-5, In-
ception F(2,27)=16.9 p=1.7e-5, and Residual F(2,27)=23.9
p=1.0e-6). The ratio of the standard deviations for the VGG,
Inception, and Residual architectures were 1.5, 1.3, and 1.3
respectively. Q-Q plots used to verify normal distributions
are shown in Figure 10-12.

Tukey’s HSD Test for multiple comparisons found that for the
VGG architecture, the model difference was significant when
comparing all flight stages. For the Inception and Residual
architectures, the climb stage was significantly different from
the cruise and descent, but the cruise and descent difference
was not statistically significant. The p-values for the Tukey
test are shown in Table 16.

From the parity plots in Figures 6 - 8 it is clear that all three
models performed better as the RUL of the engine under in-
vestigation decreased. To understand this change, the scores
of each model for true RUL values below 40 and above 40 cy-
cles were computed separately. The results of the models us-
ing data with true RUL under 40 cycles are shown in Table 17
and true RUL above 40 cycles are shown in Table 18. Split-
ting the 4,089 training data in this manner left 2,214 below
an RUL of 40 cycles, and 1,875 above an RUL of 40 cycles.
Splitting the 2,736 test data points left 1,476 below an RUL

Table 14. Comparison number of trainable parameters, train-
ing time, and inference time.

Model Trainable Train Inference
Architecture Parameters Time Time
VGG 164 k 154 s 7e-5 s
Inception 2.05 M 740 s 2e-4 s
Residual 1.03 M 268 s 1e-4 s

Figure 10. Q-Q plot for comparing the performance of vari-
ous flight regions when using the VGG model architecture.

of 40 units and 1,260 data points above an RUL of 40 units.
Note that the models were not retrained with this split data,
only reevaluated. Tables 17 and 18 highlight the increase in
model accuracy as the true RUL decreases. This is not sur-
prising, as one may expect it to become easier to estimate the
RUL as the signs of wear become more obvious. With this
trend in mind, future modeling efforts may find it worthwhile
to focus efforts on making accurate estimation only after an
engine has been used for a certain number of cycles. This
has the potential to increase the model accuracy as the en-
gine nears the end of its life, where an accurate RUL estimate
becomes more valuable.

It is worth noting that the parity plots for each model show
negative estimated RUL, which does not make practical
sense. This would not occur if the model output used a
rectified linear unit (ReLU). A ReLU is linear for inputs
greater than zero and zero otherwise (Agarap, 2018). Train-
ing the models with a ReLU activation on the output node
is not practical, so instead the model is trained with a linear
activation function. The parity plots show the negative values
to illustrate the raw model outputs.

The accuracy of the CNN developed here demonstrates
that the information to make an accurate RUL prediction
is contained within a single flight’s measurements. This was
demonstrated in previous work on the original CMAPSS data
set (Sateesh Babu et al., 2016; Li et al., 2018; H. Yang et
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Figure 11. Q-Q plot for comparing the performance of var-
ious flight regions when using the Inception model architec-
ture.

Figure 12. Q-Q plot for comparing the performance of var-
ious flight regions when using the Residual model architec-
ture.

al., 2019), and its success here on the N-CMAPSS further
validates its applicability. While accurate RUL estimations
can be made using data from a single flight, the use of histor-
ical data may improve the accuracy of the RUL estimations.
Future work should investigate incorporating historical data
using recurrent architectures, such as LSTM.

One of the limitations of this work is that RUL estimations
are not explainable, or the model is not able to explain why
an RUL estimation was made. In future work, this could
be improved upon by incorporating the ability of the model
to predict what component is causing the RUL to be re-
duced. Since the N-CMAPSS data set contains multiple
failure modes across all components, and the failure mode
of each unit is labeled, future work on the N-CMAPSS data
set should consider labeling the failing component, in ad-
dition to estimating the RUL. Another limitation with this
approach is that run-to-failure data from a variety of failure
modes is needed. In cases where this is not applicable, meth-

Table 15. 10-Fold cross validation results for the influence of
the flight stage on the score of different model architectures.

Model
Architecture Climb Cruise Descent
VGG 6.03 7.57 6.73

(SD=0.54) (SD=0.77) (SD=0.50)
Inception 6.10 7.28 6.81

(SD=0.51) (SD=0.48) (SD=0.38)
Residual 6.31 7.71 7.26

(SD=0.39) (SD=0.48) (SD=0.50)

Table 16. Tukey’s HSD test p-values when comparing the
significance of the flight stage on the score of different model
architectures. Each column represents a test.

Group1 Group2 VGG Inception Residual
Climb Cruise 0.001 0.001 0.001
Climb Descent 0.046 0.0046 0.001
Cruise Descent 0.013 0.074 0.087

ods that make RUL estimations from only early cycle data,
such as that demonstrated in (Coble & Hines, 2011), should
be considered instead. Finally, the techniques used in this
work to improve model accuracy, such as averaging the result
of overlapping windows, cannot be guaranteed to extend to
other systems. Future work should consider the conditions
for applying these techniques to other systems.

6. CONCLUSION

This work demonstrated the applicability of adapting popular
image-based, two-dimensional CNN for the use of estimating
RUL from one-dimensional time series data. The residual-
and inception-based architectures were able to increase the
number of trainable parameters without overfitting, but only
the inception architecture showed an improvement, although
small, over the VGG-based model. Adapting these architec-
tures for time series data allows for RUL estimation to take
advantage of the recent advances in CNN architectures that
have been driven by image classification. The performance of
the residual- and inception-based architectures relative to the
VGG-based model indicate the complexity of image classifi-
cation architectures has surpassed what is necessary for RUL
estimation of turbofan engines and thus further advances to
image classification architectures may not benefit RUL esti-
mation.

This work also investigated which portion of the flight (climb,
cruise, or descent) contained the most information for RUL
estimation. For all model architectures investigated, the climb
portion was found to be better than the cruise or descent por-
tions. Additionally, the use of overlapping segments was in-
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Table 17. Comparison of network architectures when the true
RUL of an engine is below 40 cycles.

Model 10-Fold CV Train Test
Architecture Score Score Score
VGG 4.38 (SD=0.31) 3.91 5.10
Inception 4.61 (SD=0.52) 3.55 4.70
Residual 4.74 (SD=0.50) 5.55 5.62

Table 18. Comparison of network architectures when the true
RUL of an engine is above 40 cycles.

Model 10-Fold CV Train Test
Architecture Score Score Score
VGG 7.47 (SD=0.55) 6.24 6.45
Inception 7.58 (SD=0.62) 5.93 6.59
Residual 7.63 (SD=0.37) 7.25 6.69

vestigated. Using overlapping segments increased the amount
of training data available, and the final estimate of an engine’s
RUL was determined by averaging the model output for each
of its inputs. This approach was found to increase the av-
erage accuracy for all tested models and presents a potential
solution that other researchers can use when working with
windowed segments of time series data.
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