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ABSTRACT

While the development of prognostic models is nowadays
rather feasible, its implementation and validation can still cre-
ate many challenges. One of the main challenges is the lack of
high-quality input data like operational data, environmental
data, maintenance data and the limited amount of degradation
or failure data. The uncertainty in the output of the prognos-
tic model needs to be quantified before it can be utilised for
either model validation or actual maintenance decision sup-
port. This study, therefore, proposes a generic framework
for prognostic model validation with limited data based on
uncertainty propagation. This is realised by using sensitiv-
ity indices, correlation coefficients, Monte Carlo simulations
and analytical approaches. For demonstration purposes, a
rail wear prognostic model is used. The demonstration con-
cludes that by following the generic framework, the prognos-
tic model can be validated, and as a result, realistic main-
tenance advice can be given to rail infrastructure managers,
even when limited data is available.

1. INTRODUCTION

Prognostic models are used to predict the future behaviour
of engineering systems, including their Remaining Useful
Life (RUL). The RUL is used in the maintenance decision-
making process, and it facilitates just-in-time maintenance.
To enable prognostics-based maintenance decision-making,
it is important to include all sources of uncertainty in the
RUL prediction (Sankararaman, 2015). These sources of un-
certainty, which include measurement, modelling and usage
uncertainty, have been reviewed by several researchers in-
cluding Sankararaman (2015), Atamuradov, Medjaher, and
Noureddine (2017) and Corbetta, Kulkarni, Banerjee, and
Robinson (2021). Corbetta et al. discusses four main cate-
gories of uncertainty sources, namely model, method, mea-
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sure and input. The sources in the model category include the
uncertainty in the process of model development. Uncertain-
ties arise from the assumptions made to represent physical
processes as realistically as possible through various mathe-
matical formulations. Furthermore, the method category in-
cludes algorithms, computation tools and numerical errors.
While the uncertainties of the measured category arise from
incomplete measurements, measuring equipment, human er-
rors, measuring processes and sensor installation and calibra-
tion. Finally, the input category consists of external variables
such as environmental conditions, operational conditions and
initial and boundary conditions. These four main categories
of uncertainty sources are matched with the PHM challenges
as illustrated by (Atamuradov et al., 2017), see Figure 1. The
main challenges are related to either the model or the data
such as varying operational conditions, lack of data collec-
tion, efficient approach of model validation, limited amount
of data, quality of data and improper usage of incomplete data
(Atamuradov et al., 2017; Jardine, Lin, & Banjevic, 2006;
Heng, Zhang, Tan, & Mathew, 2009).

A very often occurring problem is that only some of the in-
put and output parameters are monitored, and therefore quite
some others are not readily available. This makes especially
the prognostic model validation challenging, as model pre-
dictions based on an incomplete range of input parameters
must be compared to a limited set of measured results (e.g.
time to failure). Zhang, Xiong, He, and Pecht (2019) and
Tamssaouet, Nguyen, Medjaher, and Orchard (2021) have
discussed the validation of their proposed prognostic mod-
els including model parameter update methods based on the
Bayesian learning framework and the particle filter method.
Both studies discuss how to deal with a limited amount of
data in the process of model parameter determination, and
how to preserve part of that data to be used for model vali-
dation. However, in these approaches, the prognostic mod-
els are either data-driven or degradation-based, which any-
how need a considerable data set for model training and pa-
rameter setting (or updating). Validation is then in princi-
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Figure 1. PHM challenges adopted from (Atamuradov et al., 2017) including macro-categories of uncertainty sources.

ple always possible, although the total amount of data re-
quired for optimal training and validation might not always
be available. In the specific case of the current study, only
two measuring points are available. This directly excludes
any data-driven prognostic approach, since the training data
set is much too small. The proposed physics-based prognos-
tic model is still feasible in such a case, but with only two
observed ‘failures’, the data available for parameter determi-
nation and model validation is very limited. This situation
typically occurs in general when less than 10-20 ‘failures’ are
available, and most data-driven methods are unfeasible. As a

solution to this problem, stochastic models are used to evalu-
ate the uncertainty propagation in the model response due to
uncertainty in the input parameters (Nejadseyfi, Geijselaers,
& van den Boogaard, 2018). Uncertainty propagation analy-
ses have been performed in various scientific research fields,
ranging from healthcare (Barchiesi, Kessentini, & Grosges,
2011) and environmental modelling (Uusitalo, Lehikoinen,
Helle, & Myrberg, 2015) to engineering design (Chen, Jin,
& Sudjianto, 2005; Nejadseyfi et al., 2018) and maintenance
modelling (Gao & Zhang, 2008). Over the past decades,
various uncertainty analysis methods have been developed.
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These methods include perturbation methods using Taylor-
series expansions, Monte Carlo, and analytical methods us-
ing integrals and tensor product basis functions. The approx-
imation with Taylor-series expansion predicts the mean and
variance of the model response and is used due to its simplic-
ity (Parkinson, Sorensen, & Pourhassan, 1993), but for non-
linear response functions, when the uncertainty in the input
parameter is relatively large, this method is not sufficiently
accurate (Wu, Millwater, & Cruse, 1990). On the other hand,
the Monte Carlo method can handle both linear and nonlinear
models. Hills and Trucano (1999) concluded that the Monte
Carlo method is a robust method when considering highly
nonlinear models. However, the disadvantage is that the re-
sults are not always reproducible, fast and accurate. The com-
putational expense can be reduced when Monte Carlo is used
together with meta-models. For non-complex models that are
represented by well-established meta-models like polynomi-
als, Kriging, Radial Basis Function, etc., the analytical ap-
proach is suitable (Chen, Baghdasaryan, Buranathiti, & Cao,
2004).

This paper proposes a generic method to validate a physics-
based prognostic model with a limited or incomplete data set
using uncertainty propagation analysis. As a case study, the
rail wear prognostic meta-model as previously developed by
the authors in (Meghoe, Loendersloot, & Tinga, 2019) will be
used. The following section will first illustrate the proposed
generic framework followed by the rail wear model. There-
after the sensitivity and correlation analysis that determines
whether probability density functions for the input parameters
must be used will be discussed in Section 2.3. Then the un-
certainty propagation analysis using the Monte Carlo method
is introduced in Section 2.3 and the formulations for the ana-
lytical approach are presented in Section 2.5. Section 3 starts
with an introduction to the case study, followed by the results
of the several analyses (see Section 3.2 - 3.4). Finally, the ob-
tained probability density functions for the rail wear response
using numerical and analytical approaches are compared with
field measurement data in Section 3.5 and some conclusions
are drawn in Section 4.

2. METHODOLOGY

This section presents the proposed generic framework, the
rail wear model and the formulations for the numerical and
analytical methods for uncertainty propagation. To success-
fully validate a prognostic model, the observed or measured
results should be within the confidence bounds of the pre-
dicted results obtained from the numerical and analytical
methods. This confidence bound is derived from the uncer-
tainty in the response value obtained by considering stochas-
tically determined input parameters.

2.1. Generic framework

The proposed generic framework of this study is presented in
Figure 2. A prognostic model and input data from field mea-
surements that will be used to evaluate the prognostic model,
are the pillars of the framework. First a sensitivity analy-
sis is performed. In this sensitivity analysis the minimum
and maximum value of each input parameter set is chosen to
check which parameter has the highest influence on the re-
sponse value. Also the correlation of these parameters with
the response value is checked to conclude which parameters
should be considered as deterministic or as stochastic param-
eters. Thereafter, either a numerical or an analytical analy-
sis is carried out to quantify the uncertainty in the response
value. This response value along with its uncertainty is then
compared with field measurements. If the resulting output of
the analysis is in agreement with the field measurements then
the prognostic model is considered to be validated. If not,
then the output reveals which input parameter(s) should be
measured more accurately and new data should be gathered
from field measurements, or the prognostic model should be
improved. In this study, both a numerical and an analytical
analysis are carried out in order to investigate which method
is computationally efficient with a sufficient level of accu-
racy. It should be mentioned that the infrastructure manager
should determine the threshold for validation in order to de-
cide on how to proceed further, i.e. to collect more data or to
modify the model.

2.2. Rail wear model

From literature and maintenance experience, it can be con-
cluded that the RUL of railway tracks is mainly determined
by either the wear (Enblom, 2009; Sheinman, 2012) or
Rolling Contact Fatigue (RCF) mechanism (Soleimani &
Moavenian, 2017). RCF is kept under control by preventive
grinding (also referred to as artificial wear) of rails. Rails are
replaced when the amount of material removed from the rail-
head, resulting from natural and artificial wear, exceeds a cer-
tain critical value implying the RUL equals zero. The amount
of railhead material removal is measured by using a laser
scanning system mounted on measurement trains. Mainte-
nance interventions follow from these measurements, sup-
ported by a linear wear rate model as obtained from previ-
ous measurements. Thus, the rail wear prediction is based
on historic data and does not include different usage profiles
and changing environmental conditions. Accurate prediction
of the total amount of rail wear by considering the varying
operational conditions is expected to considerably improve
maintenance planning and reduce maintenance costs.

Several wheel/rail wear prediction models have been devel-
oped in the past decades, such as the models of Zobory (1997)
and Dirks (2015). These models include vehicle dynamics,
local contact theory, and wear calculation based on Archard’s
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Figure 2. Generic framework for model validation.

wear law (Archard, 1953) and energy dissipation (Pearce &
Sherratt, 1991). However, a relatively limited amount of at-
tention has been paid to rail wear prediction as compared to
wheel wear prediction. This is due to the fact that the wear
rate of wheels is higher. Hence, extensive descriptions on
the wheel wear prediction procedure can be found in liter-
ature (Zobory, 1997; Jendel, 2002; Enblom, 2009; Ignesti,
Innocenti, Marini, Meli, & Rindi, 2014; Ramalho, 2015).
(Enblom, 2009) proposed a procedure to predict rail wear
similar to that of wheel wear. The amount of rail wear was
overestimated when compared to field measurements and the
authors therefore suggested to proportionally scale down the
wear coefficients. (Dirks, 2015) also developed a model to
predict wheel and rail wear, but this model was only verified
for the wheels. It should be noted that all the methods devel-
oped so far propose a numerically expensive procedure for
the wheel/rail wear prediction. Despite their proven validity,
they have not been implemented by infrastructure managers
in the maintenance decision-making process due to their high
computational costs and difficulty in monitoring the required
parameters. Furthermore, the list of parameters that could
have a considerable influence on rail wear is extensive, and
not all of these parameters are monitored.

The rail wear prognostic model used in this study is based on

Archard’s wear law which indicates that the amount of wear
volume loss is related to sliding distance s, normal force FN

and hardness of material H (Archard, 1953):

V = k
sFN

H
(1)

The wear coefficient k depends on the surface conditions and
is usually determined empirically e.g. by a pin on disk con-
figuration measurements. For simple calculations, the wear
coefficient for rail and wheel steels can be derived from the
wear map of Jendel (2002).

Using Archard’s law to calculate the rail wear requires de-
tailed numerical modelling of the dynamic wheel-rail contact
(to obtain the normal force and sliding distance values). To
reduce computation time, a set of meta-models has been cre-
ated, that directly relate the wear rate to a set of operational
input parameters, see Figure 3. The meta-models in this pro-
cess are in the form of second-order polynomials and are de-
fined as follows:

y(x) = �0+
kX

i=1

�ixi+
kX

i=1

�k+ixi
2+

k�1X

i=1

kX

j>i

�i,jxixj (2)

where y is the rail wear area in mm2, x is the vector of xi

which are the various input parameters and �i are the fitted
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model parameters or fit coefficients (similar to those in equa-
tion (7) and (8)).

There are nine input parameters (k=9) in the rail wear pre-
diction model which include axle load, curve radius, vehicle
speed, the longitudinal and lateral stiffness of the primary bo-
gie, rail profile geometry, material hardness, friction coeffi-
cient and rail cant. Furthermore, the rail profile geometry is
represented by the vertical wear depth at the rail head.

Although the computationally expensive rail wear models
have been replaced by meta-models, proper validation of this
prognostic model with field measurements and quantification
of the effect of input parameters’ uncertainty on the mainte-
nance decision-making process is still lacking. As the present
paper forwards a generic framework to validate a prognos-
tic model with a limited or incomplete data-set, the rail wear
prognostic model is considered to be a suitable case study.
The input parameters required for this model are derived from
(incomplete) field observations, and the output of the model
is then compared to periodic field measurements of the rail
wear. Therefore, various sources of uncertainty are present
that are unknown to the rail infrastructure managers. These
variations are eventually included in the RUL prediction.

2.3. Sensitivity and correlation analysis

A sensitivity analysis followed by a correlation analysis is
necessary prior to performing an uncertainty propagation
analysis. The outcome of the sensitivity analysis includes the
ranking of the input parameters according to the degree of in-
fluence on the response value. Whereas, the outcome of the
correlation analysis reveals the input parameters which have a
strong linear or non-linear correlation with the response value
and, therefore, should be considered as stochastic variables.
In this way, the analysis time of the uncertainty propagation
analysis is minimised since the computational efficiency de-
pends on the number of stochastic variables. The scatter in
the stochastic input parameters is then represented by their
probability distribution function (pdf).

The Sensitivity Index (SI) is calculated from two scenarios
per input parameter i to estimate its individual sensitivity
(Pannell, 1997):

SIi =
ymax,i � ymin,i

ymax,i
(i = 1, ..., k) (3)

where ymin,i and ymax,i represent the response values for
the input parameter at its minimum and maximum setting,
respectively.

Next, n Monte Carlo (MC) simulations with the prognostic
model are performed to determine the Spearman correlation
coefficients that can be calculated with the following equation

(Mukaka, 2012):

⇢(xi, y) = 1�
6

nP
j=1

dj

n(n2 � 1)
(4)

where xi is the input vector where only the i
th input parame-

ters is varied such that n different values are taken in the MC
simulation and thus n values of the response y are obtained.
The n input (xi) and n output (y) values are then ranked from
highest to lowest and thereafter dj is calculated as the dif-
ference in ranking. If xi and y are ordered identically, dj is
always 0, and ⇢ = 1, which indicates a maximum positive
correlation. The value of the correlation coefficient is gener-
ally between -1 and +1, where a correlation coefficient of 0
indicates that no correlation exists between the input param-
eter and response value. A strong correlation is represented
by a relatively high (absolute) value for the correlation coeffi-
cient, i.e. close to ±1. If the input parameter has both a high
correlation coefficient and a high sensitivity index then the as-
sociated input parameter has to be considered as a stochastic
variable.

2.4. Numerical uncertainty propagation analysis

For the numerical uncertainty propagation analysis similar to
the correlation analysis, MC simulation is applied to gener-
ate a number of samples from the input parameter’s data sets,
which are then used to evaluate the prognostic model. The
first step includes stochastic selection of samples from the
input’s distribution, and then the resulting set of model out-
puts can be seen as a stochastic sample of the distribution of
the output (Kennedy & O’Hagan, 2001). The mean, standard
deviation and shape of the distribution can be used to quan-
tify the uncertainty propagation. This usually requires a large
number of model runs.

2.5. Analytical uncertainty propagation analysis

In the analytical approach of the uncertainty propagation
analysis, the mean and variance of the response are calcu-
lated. Given a response y = f(x) with x being the vector
with all input parameters which can be either stochastic or
deterministic and xR being the vector with only the stochas-
tic input parameters such that xR 2 R, the mean and variance
of the response are defined as follows (Chen et al., 2005):

µ(x) =
Z

f(x)pR(xR)dxR (5)

�
2(x) =

Z ⇥
f(x)� µ(x)

⇤2
pR(xR)dxR (6)

where pR(xR) is the probability distribution function of the
stochastic input parameters. The analytical approach assumes
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Figure 3. Rail wear estimation process by means of meta-models (Meghoe et al., 2019).

the response to be normally distributed as the input parame-
ters are also assumed to be normally distributed.

Based on the concept of tensor product basis functions, the
formulations for the mean and variance of a second-order
polynomial model, which will be used in the case study of
rail wear, and normally distributed input parameters are as
follows (Chen et al., 2005):

µ(x) = �0 +
X

i✏R
�iµi +

X

i✏R
�ii�

2
i +

X

i✏R

X

j✏R,j�i

�ijµiµj+

X

i/2R

(�i +
X

j✏R
�ijµj)xi +

X

i/2R

X

j /2R,j�i

�ijxixj (7)

�
2(x) =

X

i✏R
�
2
ii�

4
i +

X

i✏R

X

j /2R,j�i

�
2
ii�

2
i �

2
j +

X

i✏R
(�i + �iiµi

+
X

j✏R
�ijµj +

X

j /2R

�ijxj)
2
�
2
i (8)

where �ji = �ij if i > j, µi and �
2
i are the mean and variance

of the stochastic individual input parameters, xi the values of
the deterministic input parameters and the �’s are the model
parameters (i.e. fit coefficients of the second order polyno-
mial model).

3. DEMONSTRATION

In this section the demonstration of the generic framework as
depicted in Figure 2 is discussed. First the case study is intro-
duced, followed by the application of the several analyses and
concluding with the results and discussion on these analyses.

3.1. Case study introduction

As mentioned in the introduction the rail wear prognostic
model as described in Section 2.2 will be used as a case study
to demonstrate the proposed framework. The field data which

is available for rail wear is not well defined. The environ-
mental conditions, reflected in the friction coefficient, and
the operational conditions, represented by the type of trains,
are both unknown. This level of uncertainty is quite com-
mon when only observational field data is available instead
of test data from well-controlled experiments. Therefore, the
rail wear case is suitable to demonstrate the framework on
how to validate a prognostic model with limited data.

The railway track chosen for the case study is located between
the Dutch cities of Weesp and Almere. This rail section con-
tains curvatures with radii R = 1500 metres and R = 1800 me-
tres. The case study is further based on two measurement sets
from two different time periods, namely from March 2018 to
October 2018 for R = 1500 metres and from November 2018
to March 2019 for R = 1800 metres. These cases will be
further regarded as case study 1 and 2, respectively.

The uncertainty propagation in the wear prediction model is
calculated using both the numerical and analytical approach
as described in section 2. Using the input parameter distri-
butions, both approaches provide a distribution of the accu-
mulated wear, which can finally be compared to the rail wear
inspection data. From the accumulated wear distributions, the
RUL can then be predicted with confidence intervals. After
the model has been validated in this way, the rail wear predic-
tion model will enable the rail infrastructure manager to make
future RUL predictions with only limited data sets. Thus, ini-
tial estimates can be made before future usage profiles and en-
vironmental conditions are known. These estimates are valu-
able for initial (long-term) planning.

3.2. Sensitivity and correlation analysis

As depicted in Figure 2, a sensitivity and correlation analy-
sis is performed and therefore, the minimum and maximum
value for each input parameter of the wear prognostic model
are given in Table 1. The distribution is assumed to be a nor-
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mal distribution, where the minimum and maximum values
of the input parameters represent all possible values that can
occur in practice. For example, a wide range of friction coef-
ficient values is given in Table 1 because the friction in wheel-
rail contact depends on several operating environmental fac-
tors such as the ambient temperature, atmospheric humidity,
rail surface condition, friction modifiers, water, sand, grease
(lubrication), contamination, leaves, leaf mulch and water
with iron oxides and wear debris (Trummer, Lee, Lewis, &
Six, 2021; Rong et al., 2021).

Furthermore, it should be noted that some of the geometrical
and operational parameters are exactly known and are there-
fore fixed. For example, the curve radius is known from the
track geometry, and the vehicle velocity and the axle load are
measured by a wayside measuring system called Quo Vadis.
Therefore, for these three input parameters, no distribution is
provided in Table 1 and they are considered as deterministic
input parameters. The Quo Vadis system can also determine
the passing vehicle type based on the distance between the
shafts, the speed and the length of the vehicle. From the in-
formation about the vehicle type, the longitudinal and lateral
stiffness of the primary suspension of the bogie can be ex-
tracted. However, not for all vehicle types the information
could be retrieved and therefore, for the longitudinal and lat-
eral stiffness of those vehicle types a normal distribution is
used.

The calculated sensitivity indices and correlation coefficients,
which are required to determine which of the input parame-
ters are dominant and which parameter should be treated as a
stochastic variable, are presented in Table 2. The sensitivity
indices show that the friction coefficient and the hardness are
the most dominant parameters. The Spearman correlation co-
efficients suggest that the friction coefficient has the strongest
correlation with the response value followed by the longitu-
dinal stiffness, the rail cant and the hardness. Therefore, it is
decided to combine the results and thus to consider the fric-
tion coefficient, material hardness, rail cant (measured as the
difference in height between the two rails), and lateral stiff-
ness as stochastic variables. The pdf of the friction coefficient
is obtained from (Popović, Lazarević, Brajović, & Vilotijević,
2015) and the pdfs of the next three parameters are obtained
by field measurements. A normal distribution bounded by the
minimum and maximum value (see Table 1) is chosen for the
lateral stiffness, as the vehicle types that have passed the track
are unknown.

Furthermore, the sensitivity indices and correlation coeffi-
cients show which parameters are positively or negatively
correlated with the response value. For example, an increase
in the friction coefficient leads to an increase in rail wear area,
and an increase in the material hardness leads to a decrease
in rail wear area. This is as expected according to Archard’s
wear law. The wear area is inversely proportional to the mate-

rial hardness. Furthermore, a higher friction coefficient leads
to an increase in slip velocity and contact pressure, which are
both proportional to wear according to Archard’s wear law.
The vertical wear depth, which represents the present con-
dition of the rail profiles, is negatively correlated with the
response value. This means that less wear is generated by
a vehicle that travels over worn rail profiles. This is also as
expected since the considered wheel profile in the analysis is
assumed to be worn. According to Meghoe, Loendersloot,
Bosman, and Tinga (2018) the combination of worn wheels
and worn rail profiles generates a minimum amount of wear.

3.3. Numerical analysis

The input parameters that are used for the evaluation of rail
wear are mainly obtained from field measurements. The his-
togram for the vertical wear depth, see Figure 4a, is plotted
from the rail profile measurements. The histogram for the
rail cant is also derived from measurements conducted by the
same measuring device that was used to measure the rail pro-
files. Furthermore, the histogram for the hardness is plotted
from measurements taken by using a portable hardness tester,
at random locations of the specific track, see Figure 4b. As
mentioned before, the histogram for the friction coefficient
is taken from Popovici (2010), see Figure 4c. And for the
vehicle types of which the stiffness values were unknown, a
uniform distribution is assumed for both the longitudinal and
the lateral stiffness with lower and upper bounds as given in
Table 1.

The uncertainty in the wear model prediction using the nu-
merical approach is obtained by evaluating the rail wear prog-
nostic model as described in Section 2.2. To have signifi-
cant wear on moderate curved tracks, e.g. on tracks with a
curve radius larger than 1000 meters, approximately one mil-
lion wheels need to pass the track. The evaluation of this
takes hours of computation time and including the variation
in the input parameters further increases the computational
effort. Thus, considering the pdfs of the input parameters for
each passing wheel in the Monte Carlo method will result in n

evaluations for each wheel multiplied by one million wheels,
where n is the number of MC samples. As this is way too
much, the number of evaluations will be reduced from one
million to 40 by clustering the wheel passages based on the
type of wheel, type of train and axle load. Hence, the follow-
ing steps are taken (also depicted in Figure 5):

1. Split the data set of wheel passages based on the wheel
type. In this case, two groups are created, namely for
wheel type s1002 and HIT.

2. For each wheel type group, split the data set into known
and unknown longitudinal and lateral stiffness values.
This yields another two groups for each wheel type.

3. Split the data in each of the four groups in ten bins (or
clusters) based on the axle load, which results in a total

International Journal of Prognostics and Health Management, ISSN2153-2648, 2023 000 7    



Table 1. Input parameters and their ranges.

Input parameters Min Max Mean Std Unit
Vertical wear depth 0 12 6 2 [mm]
Curve radius 1500 1500 1500 0 [m]
Rail cant 90 110 100 3 [mm]
Friction coefficient 0.02 0.6 0.3 0.1 [-]
Vehicle velocity 33.33 33.33 33.33 0 [m/s]
Axle load 15 15 15 0 [ton]
Longitudinal stiffness 2.56e5 4e7 2e7 8e6 [N/m]
Lateral stiffness 2.56e5 4e7 2e7 8e6 [N/m]
Hardness 260 340 289 14.45 [HB]

(a) Measured vertical wear depths (b) Measured hardness

(c) Measured friction coefficients (d) Measured rail cant

Figure 4. Histograms for stochastic input parameters.

Table 2. Sensitivity indices and Spearman correlation coeffi-
cients for wheeltype s1002.

Input parameters Sensitivity Index Spearman coeff.
Vertical wear depth -0.07 -0.06
Rail cant 0.03 0.34
Friction coefficient 0.98 0.53
Longitudinal stiffness 0.07 0.40
Lateral stiffness 0.03 0.08
Hardness -0.28 -0.20

of 40 bins. Determine the number of wheel passings in
each bin.

4. For each bin, sample the input parameter distribution
functions n times using the MC method and define n in-
put vectors with values for the k parameters.

5. Evaluate the rail wear prognostic model (Equation 2) for
each input vector in each bin. This process ultimately
yields the probability density function for the wear area
for each bin. After that, multiply the obtained pdf of the
specific bin with the number of wheels in that bin.
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Figure 5. Reduction of number of wear evaluations.

6. Accumulate all the results (i.e. pdfs) from the 40 bins to
obtain the total response value, which in this case is the
total pdf of the wear area.

In this way, the total number of evaluations is reduced from
1.106 ⇥ n to 40 ⇥ n, where n is the number of MC simula-
tions. From field observations, it can be concluded that the
vehicle velocity for different wheel passages does not vary
significantly from the average allowable speed on a specific
track section. Therefore, the vehicle velocity is taken as a
constant.

The approach for reducing the number of prognostic model
evaluations is considered to be robust and reliable as the re-
sults obtained from following these steps were compared with
the conservative method of evaluating each of the one million
wheels separately. The resulting difference turned out to be
only 7.3% (see Table 3), whereas the gained computational
efficiency is enormous. Note that the number of bins is cho-
sen based on a convergence study, indicating that using 40
bins yields the proper balance between model accuracy and
computation time. The input parameters that are used in this
convergence study are similar to the mean values for the input
as presented in Table 1.

Table 3. Convergence study results.

Number of bins Wear area [mm2] Difference [%]
40 22.99 7.3
400 22.28 4.0
20000 21.98 2.6
Actual number of wheels 21.43 0

3.4. Analytical analysis

The analytical approach as described in section 2.4 is ap-
plicable when the input parameters are normally distributed.
Therefore, the mean and standard deviation of the actual dis-
tributions for the vertical wear depth, rail cant, material hard-
ness and friction coefficient, as depicted in Figure 4, were
calculated such that the pdfs are approximated as normal dis-
tributions. For the pdfs that were far from normal, multiple
normal distributions with weight factors were used. Finally,
the mean and standard deviation for the lateral stiffness were
obtained from its uniform distribution. Using these inputs,
equation 7 and 8 are then used to translate these uncertainties
to the mean and variance of the prognostic model response,
i.e. the amount of wear.

In Meghoe et al. (2019), it was shown that a single prognostic
model did not fully cover all operating conditions. There-
fore, multiple sets of model parameters (�ij) were derived.
In this work, these different parameter sets have been used to
propagate the uncertainties (equation 7 and 8), and in the end
one resulting mean and variance value have been determined.
These overall values are obtained as the weighted average of
the various models, using the number of passing wheels asso-
ciated to each of them as weight factor.

3.5. Results and discussion

Table 4 shows the uncertainty propagation analysis results for
case study 1 and 2, obtained from various MC simulations
(with 100, 500 and 1000 samples), as well as from the analyt-
ical analysis. Table 4 also presents the measured wear area in
terms of the mean and standard deviation, based on the mea-
surements conducted at randomly selected locations along the
curved tracks. The predicted wear area for a track with a cer-
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tain curve radius is assumed to represent the average wear
over its entire length.

Table 4. Wear area results in [mm2]

Method Case study 1 Case study 2
Mean Std Mean Std

Measurement 14.31 5.97 5.04 2.18
MC100 (normal distribution) 23.18 11.62 - -
MC100 (actual distribution) 20.52 12.15 6.47 3.97
MC500 (actual distribution) 19.38 12.08 6.39 3.80
MC1000 (actual distribution) 19.49 11.21 6.01 3.73
Analytical 20.81 11.77 6.83 3.59

The results in Table 4 show that the predicted wear area is
closer to the measured wear area for an increasing number of
MC simulations. However, the difference between these sim-
ulations is not very large, so 100 simulations are considered to
be an adequate number. For the MC simulations of case study
1 with 100 samples, both the actual distribution and an as-
sumed normal distribution for the input parameters are used.
It can be concluded that the obtained mean and standard devi-
ation for the response value are closer to the measured results
when using the actual pdfs for the input parameters than when
using the normal distributions. The relative difference error
(calculated with respect to the mean of the measured results)
between the two methods is 18.58%. This means that in case
of limited data, assuming a normal distribution can lead to a
prediction with approximately 20% offset. This also implies
that by using a normal distribution in this specific case a con-
servative maintenance decision will be taken, which means
that the rail is replaced while it was still in relatively good
condition.

Table 4 also presents the results for case study 2. For case
study 2, only the friction coefficient and the lateral stiffness
are considered as stochastic input parameters as the remain-
ing parameters, such as the vertical wear depth, the rail cant
and the material hardness, were locally measured. The rela-
tive difference between the mean of the MC simulations with
100 samples and the mean of the measured results for case
study 2 is 28.37% whereas the relative difference for case
study 1 is 43.40%. These results show the significance of
an improved data set. But even knowing three additional in-
put parameters, the relative difference of approximately 30%
is still rather high. This may be considered unacceptable, but
a direct comparison of the mean values of these two distribu-
tions is not appropriate, as will be discussed below. However,
the deviation of this specific measurement from the simulated
results means that either the friction coefficient or the lateral
stiffness (which are both uncertain in this case) have a sig-
nificant influence on rail wear. From the sensitivity and cor-
relation analysis results (see Table 2) it can be seen that the
friction coefficient has both a higher sensitivity index and a
higher correlation coefficient value compared to the lateral

stiffness.

Figure 6 presents the local wear results for the tracks with
curve radius R=1500 meters and R=1800 meters. The mea-
surement numbers (or locations) are six meters apart from
each other. Furthermore, the spatially dependent parameters
such as the vertical wear depth, rail cant and material hard-
ness are also plotted in this figure. The influence of the ma-
terial hardness is clearly visible in this figure. Whenever the
hardness is at its maximum, the wear area calculated from
the MC simulation is at its minimum. This conclusion was
also drawn from the sensitivity analysis results. Furthermore,
the majority of the measured values are within the confidence
bounds of the simulation results. For R=1500m, 14 out of
15 measurements are within the confidence bounds and for
R=1800m, 8 out of 11 measurements. Note that for a cou-
ple of measurements performed on R=1800m, incorrect mea-
surements have been discarded from the data set.

Figure 7 shows the pdfs of the response value for case studies
1 and 2, for both the numerical and analytical approach com-
pared with the field measurements. Despite the overlap of the
measured and simulated results, the variance of the simulated
results is relatively large. The reason for this is the variance of
the friction coefficient as the only two parameters that were
considered to be stochastic were the friction coefficient and
the lateral stiffness (case study 2). And as mentioned before,
the influence of the friction coefficient on rail wear is higher
compared to the influence of the lateral stiffness, see Table
2. Due to the significant variation of the friction coefficient,
the variance in the predicted amount of wear is large. Thus
to minimise the uncertainty in response value and allow a di-
rect comparison with the measurements, the uncertainty in
the friction coefficient should be reduced. This theoretically
could be done by measuring the friction coefficient for each
wheel when it passes the track at a specific location, as the
friction coefficient is both time and space-dependent. How-
ever, this is not feasible in practice and a friction model would
have to be developed to be included in the rail wear prognos-
tic model (see "Modify model" in Figure 2).

On the other hand, it should be realised that the measure-
ment is just a small sample from the large distribution that
the prognostic model produces. For example, a series of mea-
surements are made in a certain period on a specific track sec-
tion, see Figure 6. However, the prognostic model simulates
100 different situations with the complete (possible) range of
input parameters. Therefore, it is to be expected that this re-
sults in a much wider spread because there are (most likely)
many more (extreme) situations than in the measurement set.
This is also apparent from Figure 7: the predictions give a
wider distribution than the measurement. It is therefore not
possible to fully validate the prognostic model based on just
this comparison. A full validation can only be done when
measurements would be available for all scenarios included
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(a) R = 1500m (case study 1)
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(b) R = 1800m (case study 2)

Figure 6. Local wear results for case study 1 and 2.

in the simulations. However, that will never be the case when
using field data. Still, the results do demonstrate that this
‘random’ sample is fully covered by the prognostic model,
which means that the model is not proven wrong. Compared
to a situation in which no comparison with field data can be
done, a partial validation as proposed in this work already
yields a huge improvement: it provides the user trust in the

model, showing that at least the situations that are present in
the (limited) field data set are correctly covered by the model.
This will, in absence of a full validation, at least give a certain
amount of trust in the prognostic model, which will propor-
tionally increase if it could be done for additional series of
measurements. It also means that this specific measurement
set can only be reproduced by the model if the uncertainty is
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(a) Monte Carlo simulation (case study 1) (b) Analytical results (case study 1)

(c) Monte Carlo simulation (case study 2) (d) Analytical results (case study 2)

Figure 7. Wear area results.

reduced, as is demonstrated in case study 2, see Table 5 and
Figure 7c and d. With more available input parameters (i.e.
the wear depth, cant and hardness are fully known here) the
predictions of case study 2 show less variance which are quite
close to the variance of the measurements. Table 5 shows that
the fit for case study 2 is much better (see the percentage of
overlap, mean, most occurring value etc.).

Even though case study 2 shows prediction results closer to
the measurements, case study 1 also shows 65% overlap and
the measurements are within the distribution of the predicted
results. Thus, these two measurements (samples) give confi-

dence in the proposed framework. Furthermore, the frame-
work does not only support the validation but also provides
insight in which parameter should be monitored or how the
model could be modified. In this case, it became clear that the
friction coefficient needs to be monitored more accurately or
that the prognostic model should be modified by including a
friction model to increase the model accuracy. The proposed
method allows to quantify how large the effect of an unknown
or uncertain variable is (e.g. the friction coefficient). Both
collecting additional data and modifying the model are solu-
tions to reduce such an effect. Although the method is not
able to directly determine which of those two approaches is
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Table 5. Similarity measures

Similarity measure Field data MC Diff. [%]
Average 14.31 20.52 43.40
Standard deviation 5.97 12.15 103.52
Minimum value 1.79 -0.35 119.55
Maximum value 30.60 52.00 69.93
Most occurring value 14.60 11.30 22.60
Skewness -0.15 0.79 -634.57
Kurtosis 2.25 2.63 16.79
ks2stat value 0.37

(a) Case study 1: MC simulation

Similarity measure Field data Analytical Diff. [%]
Average 14.31 20.81 45.42
Standard deviation 5.97 11.77 97.15
Minimum value 1.79 -2.33 230.17
Maximum value 30.60 59.10 93.14
Most occurring value 14.60 20.70 41.78
Skewness -0.15 0.28 -286.56
Kurtosis 2.25 3.25 44.43
ks2stat value 0.46

(b) Case study 1: Analytical

Similarity measure Field data MC Diff. [%]
Average 5.04 6.47 28.37
Standard deviation 2.18 3.97 82.11
Minimum value 0.67 0.56 16.42
Maximum value 9.77 15.40 57.63
Most occurring value 4.08 3.87 5.15
Skewness 0.29 0.79 169.15
Kurtosis 2.95 2.63 10.60
ks2stat value 0.29

(c) Case study 2: MC simulation

Similarity measure Field data Analytical Diff. [%]
Average 5.04 6.83 35.52
Standard deviation 2.18 3.59 64.68
Minimum value 0.67 0.67 0.00
Maximum value 9.77 13.90 42.27
Most occurring value 4.08 6.34 55.39
Skewness 0.29 -0.30 200.71
Kurtosis 2.95 2.78 5.74
ks2stat value 0.50

(d) Case study 2: Analytical

the best, it does allow to make a business case of additional
monitoring or modelling. For example, how much will the in-
frastructure manager gain by improving the model, and does
that outweigh the required effort for model improvement? By
also analysing this for additional data collection, a proper de-
cision can be taken.

Table 5 also presents the ks2stat value which is a statistic
measure from the Kolmogorov-Smirnov test. As the distribu-
tions given in this study are non-parametric, the Kolmogorov-
Smirnov test has been selected to compare the probability
distribution functions resulting from the field measurements,
the analytical method and the numerical method. The ks2stat
value quantifies the distance between the cumulative distri-
bution functions. The distributions are different if the ks2stat
value is not close to zero. From Table 5, it can be concluded
that the numerical simulations with the exact distribution has
a lower ks2stat value compared to the analytical distribution
which is as expected and also discussed from the results of
the other similarity measures. The k2stat value can be used
by the user to specify if the model is validated or not. The
closer the k2stat value is to zero, the more similar the two
distributions are.

3.6. Application in maintenance decision making

Figure 8 depicts the wear evolution of the track considered in
case study 2 until its end of life. Through this period three
different scenarios are taken into account: 1) It is assumed
that the operational conditions remain unchanged, 2) a differ-
ent distribution is used for the friction coefficient as measured
by (Chollet, 2017) which is representative for dry contact, 3)

train traffic is doubled, hence the number of trains is dou-
bled. These three scenarios are compared with the extrapo-
lated wear rate based on previous measurements. From these
results, it can be concluded that the wear rate prediction from
historic data will overestimate the remaining useful life of the
rail (⇡ 80 years). The model for the regular scenario predicts
a slightly shorter RUL (⇡ 70 years), but in the scenarios with
changing conditions, the RUL deviates by roughly a factor
of two (⇡ 40 - 45 years), from the extrapolated value. This
demonstrates the added value of the model, as asset managers
can now use the predicted RUL values for different track sec-
tions to schedule future maintenance tasks based on variable
conditions, instead of relying on only extrapolating the mea-
surements from the past. Note that the confidence regions for
each of the simulated cases in Figure 8 are very wide. As was
discussed in section 3.5, this is caused by uncertainties in the
input parameters, especially the friction coefficient. Taking
decisions based on these results will be difficult, as for the
‘dry condition’ case the wear threshold is expected to be ex-
ceeded somewhere between 30 and 100 years of operation.
This illustrates once more that for useful predictions the ac-
tual friction coefficient must be measured or calculated. Note
further that the wear process modelled here is not the only
rail degradation mechanism. As was mentioned in section
2.2, the formation of cracks due to RCF is counteracted by
periodically (e.g. every 6 months) grinding the rails. This is
an artificial wear process with a much higher wear rate and
the effect should be added to the natural wear process in Fig-
ure 8, e.g. by adding a step-wise increase of the wear area
every time a grinding action takes place. This means that the
time at which the wear area threshold is reached will in prac-
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tice be much shorter than the 40 – 80 years in Figure 8. Still,
the slopes of the lines in Figure 8 can be used to predict the
moment in time when full replacement of the rails will be
necessary. This is a decision that has to be taken far ahead,
so a reliable prediction is required for that. The simulations
do show the relative effects of changing scenarios: doubling
the amount of traffic will on average lead to a 50% reduction
of the track lifetime. Finally, note that also more complex
(and more realistic) scenarios, where conditions change per
periods of e.g. five years, can be simulated with the model.

4. CONCLUSION

This study proposed a generic framework for the validation
of prognostic models in situations with limited data. A rail
wear prediction case was chosen for the demonstration. The
input parameter’s uncertainties were propagated such that the
resulting output (in this case, wear area) can be utilised in the
process of maintenance decision-making. The uncertainties
have been evaluated through numerical and analytical analy-
sis, and it can be concluded that both analyses yield similar
results. However, the shape of the pdf obtained with the (nu-
merical) MC simulation corresponded better with the mea-
sured results than the analytical results. On the other hand,
the analytical evaluation is ten times faster than the numeri-
cal evaluation. Hence, the user can decide which one to use
for maintenance decision purposes.

Furthermore, it can be concluded that it is possible to validate
a prognostic model with the proposed general framework.
The case study has shown that in situations where only field
data of a failure or degradation process is available, prognos-
tic model validation is challenging. The reason is that typ-
ically not all possible combinations of input parameters are
included in the data set, and also the precise values of sev-
eral input parameters might be unknown. This is in contrast
to situations where well-defined (laboratory) experiments can
be used to validate a model. The proposed framework allows
to include these uncertainties and propagate them through the
model. A limited set of measurements (i.e. field results) then
enables to check the validity of the developed model, where
the level of validation depends on the amount and variation
of measurement data.

Moreover, the rail wear case study has demonstrated that such
a prognostic model can be used for maintenance decision
making, provided that the variation in predicted wear area
can be reduced. A more accurate prediction is possible when
sufficient usage data and environmental parameters become
available, allowing a more detailed planning shortly before
the actual maintenance activities.

The proposed framework then provides insight in how to min-
imise the variance. In this case it can be recommended to use
actual pdfs for the friction coefficient or a friction model that
can provide friction coefficient values for various operational

and environmental conditions.
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