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ABSTRACT 

A generic prioritization framework is introduced for 
addressing the problem of automated prioritization of region 
of interest or target selection. The framework is based on the 
assumption that clustering of preliminary data for pre-
identified regions or targets of interest within an operational 
area has already occurred, i.e., post-classification, and that 
the clustering quality can be expressed as an energy/objective 
function. Region or target of interest prioritization then 
means to rank regions or targets of interest according to their 
probability of changing the energy/objective function value 
upon subsequent hypothetical probing as opposed to actually 
conducted reexamination, i.e., thorough follow-up or in-situ 
measurements. The mathematical formalism for calculating 
these probabilities to contribute to this change of the 
energy/objective function value is introduced and validated 
through numerical simulations. Moreover, these probabilities 
can also be understood as a confidence-check of the 
classification, i.e., the pre-clustering of the preliminary data. 
The operation of the prioritization framework is independent 
of the algorithm used to pre-cluster the preliminary data, and 
supports autonomous decision making. It is widely applicable 
across many scientific disciplines and areas, ranging from the 
microscopic to the macroscopic scale. Due to its ability to 
help maximize scientific return while optimizing resource 
utilization, it is particularly relevant in the context of 
resource-constrained autonomous robotic planetary 
exploration as it may extend the Remaining Useful Lifetime 
(RUL) – a key aspect in Prognostics and Health Management 
(PHM) – of space missions. On a more general, PHM-
relevant level, the prioritization framework may provide an 
additional mechanism of identifying and correcting the 
maintenance status of system components to assist predictive 
maintenance or condition-based maintenance. 

1. INTRODUCTION 

General scientific discovery, in some instances, can be 
thought of as driven by the reexamination of (pre-)clustered 
objects within an operational area (OA) given an initial 
clustering performed by a wide variety of supervised and 
unsupervised clustering approaches. Hereby, an OA can be a 
geologic field site on another planet, an agricultural area for 
precision agriculture, a medically imaged area (e.g., 
hyperspectral imaging), such as, but not limited to the fundus 
of an eye (e.g., Johnson et al., 2007), or a petri dish with 
bacterial or fungal cultures, etc. 

Starting with a standoff/preliminary observation, a scientist 
(e.g., autonomous science craft or human scientist) seeks to 
better understand the OA through selected in-situ 
investigations, i.e., close-up measurements or investigations 
of a region or target of interest, that potentially reshape and 
alter the “knowledge” or understanding gained from the 
initial standoff observation. The question then arises which 
specific object(s) in the OA to reexamine. In an ideal situation 
the scientist or science craft will reexamine each identified 
object within that OA, but this may be prohibitive or 
unrealistic due to time and resource constraints, especially in 
the context of robotic planetary exploration, which is the 
motivation for this work. It is impractical and often even 
impossible, for example, to turn over every single rock on the 
surface of a planetary body, or to analyze each and every cell 
within a petri dish. Therefore, there is a need for a prioritized 
and automated selection of regions or targets of interest for 
in-situ or close-up/follow-up investigations to improve the 
overall understanding of the OA. 

To that effect, this paper introduces a general purpose 
prioritization framework for identifying objects, i.e., regions 
or targets of interest, in a pre-clustered scene (the OA), which 
have the potential to increase the “knowledge” about the OA. 
Hereby “knowledge” is defined as a better clustering quality, 
i.e., tightness of the clustering as expressed by an 
energy/objective function (Section 2). The prioritization 
framework introduces the method of hypothetical probing 
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whereby objects are hypothetically moved amongst the 
identified clusters by changing their respective cluster 
memberships and by adopting hypothetical rather than actual 
measurements to result in the calculation of a probability for 
that move to change the overall clustering quality. The 
hypothetical probing is not dependent on actual, additional 
measurements. 

The proposed prioritization framework is a predictive method 
that operates in the complete absence of ground truth: It uses 
only preliminary or coarse data of an OA (e.g., gathered by 
standoff measurements) to predict probability-wise which 
previously identified objects have the potential to be game 
changers when subsequently examined in-situ or up-close. 

In contrast to machine learning, confidence assessment, and 
predictive techniques that operate on noisy data or data with 
associated uncertainty (e.g., Hastie, Tibshirani, & Friedman, 
2009), the proposed prioritization framework engages after 
these methods have been applied, i.e., the data at hand, 
represented as multi-dimensional feature vectors (Section 2; 
Fig. 2), are clustered according to their respective abilities. 
Hereby, the data are assumed to be only of as good a quality 
or resolution as preliminary or standoff measurement(s) can 
afford, e.g., from aboard an aerial platform above a planetary 
surface as opposed to an in-situ measurement, i.e., ground-
truth. That means the quality/resolution of the data can only 
be increased through actual follow-up in-situ or close-up 
measurement(s) of ideally only a few well-selected regions 
or targets of interest. (Note, the term resolution hereby refers 
to both spatial and sensor/instrument resolution.) This is 
precisely where the proposed prioritization framework takes 
over by exploring via the hypothetical probing mechanism 
whether the clustering quality (assuming soft clustering) can 
be improved if: 

a) The cluster membership of a feature vector of an 
identified object hypothetically changes or gets swapped 
but the preliminary measurement, i.e., the feature vector 
itself, remains unchanged, i.e., no hypothetical follow-
up measurement is conducted; 

b) The cluster membership of a feature vector of an 
identified object hypothetically changes or gets swapped 
and the feature vector is updated with a hypothetical 
follow-up measurement by assigning it the values of the 
centroid feature vector of the target cluster it is changing 
into because these are already known from the pre-
clustering. 

All possible configurations for the feature vector of a 
particular object that yield a better clustering quality this way 
compared to the pre-clustering one, contribute to the overall 
probability that this object is a worthwhile candidate for 
subsequent actual in-situ or close-up measurement(s). Figure 
1 provides the motivation for and operational overview of the 
proposed prioritization framework that addresses this 
selection challenge. 

 
Figure 1: Motivation for and operational overview of the 
proposed prioritization framework, here in the context of 

multi-tiered and multi-agent autonomous robotic planetary 
exploration of Mars (e.g., Fink et al., 2005; Fink, Tarbell, & 

Jobling, 2008; Fink et al., 2022). The orbiter has a global 
view (at a lower spatial or sensor/instrument resolution but 
larger field of view) of the planetary surface and identifies 
an area for aerial platform deployment (here: blimp). The 

blimp obtains a higher resolution standoff view and 
assessment of an identified operational area and performs 
onboard preliminary clustering with established clustering 
techniques (red, yellow, and white circles). It subsequently 

engages the proposed prioritization framework that flags the 
upper right object as a candidate to be reexamined in-situ by 
one of the depicted ground-based rovers, which results in a 

correction of the cluster membership (yellow à white 
circle), i.e., a “knowledge” gain about the operational area. 
The two vectors indicate the preliminary blimp-view-based 
and the final ground-rover-based, i.e., ground-truth, feature 
vector (Section 2; Fig. 2) of the particular object that was 

flagged by the prioritization framework. 

The generic prioritization framework presented here allows 
for an automated selection of objects with the highest 
potential/probability to alter the “knowledge” landscape 
without actually having to conduct reexaminations to make 
that selection, i.e., using preliminary data only. As such, it 
supports/augments autonomous decision making, e.g., as is 
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required on autonomous science craft, with the ability to help 
maximize scientific return while optimizing resource 
utilization, especially in the context of usually resource-
constrained (autonomous) robotic planetary exploration. The 
latter is a key aspect in the field of Prognostics and Health 
Management (PHM), as the prioritization framework 
proposed here has the potential to contribute to the extension 
of the Remaining Useful Lifetime (RUL) of space missions.  

Potential cross-disciplinary application areas of such a 
generic prioritization framework range from autonomous 
planetary exploration, precision agriculture, microbiology, 
ophthalmology, to medical imaging, etc. 

The paper presents and evaluates in the following four 
different prioritization scenarios using the method of 
hypothetical probing, derives the respective mathematical 
underpinnings (Sections 2-3), and assesses the effectiveness 
of each scenario in preliminary numerical simulations 
(Sections 4-6). 

2. METHODS – BACKGROUND 

Data about identified objects in an OA, i.e., regions or targets 
of interest, may be represented or described mathematically 
in form of multi-dimensional feature vectors gathered by 
standoff or preliminary examinations of an OA (Fig. 2). For 
example, in the context of planetary surface exploration in 
general and geologic field sites in particular, features of 
objects, such as rocks or rock formations, may comprise: 
visual features, such as color, albedo, texture, etc.; geometric 
features, such as moments, angularity, compactness, extent, 
circularity, eccentricity, size, etc.; and/or multi- or 
hyperspectral data – all in numerical form (Fig. 2; e.g., Fink, 
Brooks, & Tarbell, 2018; Fink et al., 2008). 

Figure 2: Operational area, i.e., regions or targets of interest, 
represented or described mathematically in form of multi-

dimensional feature vectors, comprised of, e.g., visual, 
geometric, and (hyper)spectral features (e.g., Fink, Brooks, 

& Tarbell, 2018; Fink et al., 2008). [Source of slightly 
modified image: Fink et al., 2008] 

Pre-identified objects described by such features/feature 
vectors can be prioritized for reexamination in multiple ways, 

such as, but not limited to: (a) by utilizing metrics such as a 
dot product or Hamming distance to compare the extracted 
feature data for all the identified objects within the OA; (b) 
by calculating the average and standard deviation for all the 
identified objects within the OA to identify feature vectors 
with a large deviation for subsequent high priority 
reexamination; or (c) by clustering. 

Clustering algorithms, such as, but certainly not limited to, 
K-means (MacQueen, 1967; Duda, Hart, & Stork, 2000), 
Fuzzy C-means (Dunn, 1973; Bezdek, 1981; Sathishkumar, 
2015), EM for mixture models (Bishop, 1995), hierarchical 
clustering (Williams, 2000), and the entire plethora of deep 
learning-based clustering approaches (e.g., Karim et al., 
2021) depend on the presence of features being 
mathematically represented as feature vectors. Hereby each 
target is assigned a normalized membership value 
representing the membership confidence with respect to each 
occurring cluster (assuming soft clustering). This can be used 
to prioritize a target or sets of targets for close-up 
reexamination. For example, given an image containing a 
target that belongs to one of the pre-determined clusters with 
high confidence would be assigned a relatively low to 
medium reexamination priority, provided that sufficient 
images or measurements of this target type have been 
investigated. Clustering algorithms can also be used in 
conjunction with special-purpose models (Fink et al., 2001) 
to not only cluster the feature information and the spatial 
information of the encountered targets within an OA, but to 
organize these clusters into super-clusters, leading to a more 
global and comprehensive understanding of the OA. These 
special-purpose models are specifically tailored to the nature 
of the OA and the data types gathered within. 

2.1. Clustering Quality: A Representation of “Knowledge” 

In the following we derive an extensible prioritization 
framework, first introduced in part in Fink (2006), for 
objects, previously identified at a coarse/low resolution level 
in an OA, to be revisited more closely or in-situ for potential 
“knowledge gain” about the OA. It is assumed that 
preliminary feature or reconnaissance data about the regions 
or targets of interest have been gathered, and pre-clustering 
has occurred, using, for example, any of the clustering 
approaches listed above, etc. The quality of the data 
clustering can then be expressed in form of an 
energy/objective function E and can be formulated in more 
general mathematical terms as follows: 

[Note: the next paragraphs until Section 3 are largely 
adopted from Fink (2006) and only slightly modified] 

(1) 

 

with Mki(t) denoting the membership value of an object 
iÎ{1,…,N} with respect to cluster k at time t, with 0≤Mki(t)≤1 
and the sum of all Mki over all clusters kÎ{1,…,K} being 

€ 

E t( ) = Mki t( ) c i t( ) − cck t( )
2
− µ( )

i=1

N

∑
k=1

K

∑ ,
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normalized to 1, ci(t) the current feature vector of object i at 
time t, cck(t) the current cluster center vector (i.e., cluster 
centroid) in feature space (see definition below) of cluster k 
at time t, and µ a constant reward/penalty term that can be 
ignored without limitation of generality because of (2) below. 

The value of the energy/objective function E is a measure for 
the “knowledge” about the objects within an OA and thereby 
the OA itself. Hence, a “knowledge gain” is defined as being 
synonymous with lowering the energy/objective function 
value, i.e., obtaining a tighter clustering. In this context, 
object prioritization then means to rank individual objects or 
sets of objects according to their probability to increase the 
“knowledge”, i.e., to lower the energy/objective function E, 
upon close or in-situ reexamination. Using (1), a change in 
the energy/objective function E (i.e., ∆!) can be expressed as 
a difference between (a) the energy/objective function at a 
(future) time t, i.e., hypothetical probing (Section 3) of 
individual objects within the OA, and (b) the 
energy/objective function at a time t-1, i.e., pre-clustering of 
actually obtained/measured preliminary coarse or low 
resolution data of the identified objects within the OA: 

(2) 

 

 

 

 

 

 

 
with the cluster center vector cck calculated as follows: 
 

""#(%) =
∑ [*#+(%) ∗ "+(%)].
+/0
∑ *#+(%).
+/0

 (3). 

It should be stressed that the notion of “time” merely denotes 
an instance at which the preliminary data were gathered and 
pre-clustered (i.e., t-1), and a subsequent instance where the 
hypothetical probing is performed (i.e., t). As such, t is an 
index describing steps of a process rather than actual time. 

2.2. Calculation of Prioritization Probability 

For a particular object i*Î{1,…,N} and cluster k*Î{1,…,K} 
the following indicator function can be defined: 
 

(4) 

 

With the above definition (4), a probability P(i*) for a 
particular object i* to lower the energy/objective function E 

upon changing its current cluster membership from Mki*(t-1) 
to Mki*(t) as well as its current feature vector ci*(t-1) to ci*(t) 
according to the prioritization scenarios derived below 
(Section 3) can be expressed as: 

 
(5) 

 

or, alternatively expressed as a weighted probability, which 
is the version adopted in the remainder of this manuscript: 

 

(6) 

 

 

As a side note, it is worthwhile pointing out that the 
computational effort for calculating the probabilities P(i) for 
all N pre-identified objects in an OA is O(N×K), i.e., linear in 
N and K. This is particularly important in applications that are 
compute-constrained, such as multi-tier and multi-agent 
autonomous robotic planetary exploration (e.g., Fink et al., 
2005; Fink, Tarbell, & Jobling, 2008; Fink et al., 2022). 

3. MATHEMATICAL UNDERPINNING OF PRIORITIZATION 
FRAMEWORK – HYPOTHETICAL PROBING 

The definition (2) above is the general expression for 
determining the change in clustering quality (∆!)	between 
two clustering states at time t and t-1. However, for certain 
cases of single object hypothetical probing, the mathematical 
definition of ∆! changes as object feature vectors and thus 
cluster center vectors change their values. In the context of 
soft clustering, we discuss in detail four cases (out of many 
more possible) in the following, for which we calculate ∆! to 
exemplify the workings of the prioritization framework. 

3.1. Prioritization Case I 

Case I considers the change in clustering quality (∆!) when 
the (soft) membership of an object i* in a selected target 
cluster k* becomes 1, i.e., 100% membership, and zero for all 
other clusters (basically retroactive hard clustering): 
Mk*i*(t)=1, Mki*(t)=0 for all 	3 ≠ 3∗ , and without any 
changes (i.e., no hypothetical measurement) to the object-
defining feature vector: ci*(t)=ci*(t-1). After defining the 
object memberships of the target and source clusters, and 
keeping the memberships for all other objects i unchanged, 
we calculate ∆! as follows (note: all cluster center vectors 
cck(t) change because of the membership change for i* at t): 

 

 

€ 

ΔE = E t( ) − E t−1( )

= Mki t( ) c i t( ) − cck t( )
2
− µ( )

i=1

N

∑
k=1

K

∑

− Mki t−1( ) c i t−1( ) − cc k t −1( )
2
− µ( )

i=1

N

∑
k=1

K

∑

=
Mki t( ) c i t( ) − cc k t( )

2

−Mki t−1( ) c i t−1( ) − cc k t −1( )
2

% 

& 

' 
' 

( 

) 

* 
* k,i

∑ ,

€ 

ϕ1 ΔE k*,i*( )( ):= 1 if ΔE k*,i*( ) < 0
0 else

$ 
% 
& 

' & 
.

€ 

P i*( ) =
ϕ1 ΔE k,i*( )( )

k
∑

K ,

€ 

P i*( ) =
ϕ1 ΔE k,i*( )( )ΔE k,i*( )

k
∑

ΔE k,i*( )
k
∑

.
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3.2. Prioritization Case II 

Case II considers the change in clustering quality (∆!) when 
the membership of object i* is switched between a target 
cluster k*

 
and a source cluster k0: Mk*i*(t)=Mk0i*(t-1) and 

Mk0i*(t)=Mk*i*(t-1), but the object-defining feature vector ci* 

stays the same (i.e., no hypothetical measurement), i.e., 
ci*(t)=ci*(t-1). In this case, ∆! is calculated in three parts 
(note: two cluster center vectors cck0(t) and cck*(t) change 
because of the membership switch for i*): 

1. ∆! for all vectors except i* in two clusters k0 and k* 
to capture the change in quality after the cluster 
centers cck0(t) and cck*(t) are modified. 

2. ∆! for the target vector i* in the target cluster k*. 

3. ∆! for the target vector i* in the source cluster k0, 
since we excluded the calculation of ∆! for i* in the 
first part. 

Therefore, the change in clustering quality (∆!) is as follows: 

 
and after further simplification: 

 

3.3. Prioritization Case III 

Case III considers the change in clustering quality (∆!) when 
the membership of object i* is switched between target cluster 
k* and source cluster k0: Mk*i*(t)=Mk0i*(t-1) and 
Mk0i*(t)=Mk*i*(t-1), and the object-defining feature vector 
ci*(t)

 
changes to the cluster center vector of the target cluster: 

ci*(t)=cck*(t-1), i.e., hypothetical measurement is applied. In 
this case ∆! is calculated in four parts: 

1. ∆! for all vectors except i*  in all clusters to capture 
the change in quality after all cluster centers are 
modified. 

2. ∆! for the target vector i* in the target cluster k*. 

3. ∆! for the target vector i* in the source cluster k0, 
since we excluded the calculation of ∆! for i* in the 
first part. 

4. ∆! for the target vector i* with respect to the 
remaining clusters. 

Therefore, the change in clustering quality (∆!) is as follows: 

 

3.4. Prioritization Case IV 

Case IV considers the change in clustering quality (∆!) when 
the membership of object i* for the target cluster k* becomes 
1, i.e., 100% membership, and zero for all other clusters 
(basically retroactive hard clustering): Mk*i*(t)=1, Mki*(t)=0 
for all	3 ≠ 3∗ , and the object-defining feature vector ci*(t)

 

changes to the cluster center of the target cluster: 
ci*(t)=cck*(t-1), i.e., hypothetical measurement is applied. In 
this case, ∆! is calculated in four parts: 

1. ∆! for all vectors except i* in all clusters to capture 
the change in quality after all the cluster centers are 
modified. 

2. ∆! for the target vector i* in the target cluster k*. 

3. ∆! for the target vector i* in the source cluster k0, 
since we excluded the calculation of ∆! for i*  in the 
first part. 

4. ∆! for the target vector i* with respect to the 
remaining clusters. 

Therefore, the change in clustering quality (∆!) is as follows: 

 

 

 

 

4. NUMERICAL SIMULATION & VALIDATION OF 
PRIORITIZATION FRAMEWORK 

4.1. Generation of ground truth 

To test the devised prioritization framework, we created a 
sample data file to simulate Cases I-IV on blurred, i.e., noise 
added, versions of the data (Section 4.2), thus simulating the 
preliminary coarse/low resolution data resulting from a 
standoff observation of an OA. For visualization simplicity, 
the sample file had 15 two-dimensional (2D) data/feature 
vectors, partitioned in groups of 5 feature vectors that are 
close to each other to form a cluster, which results in 3 
clusters overall. To create this data file, we used a Gaussian 
distribution on 3 distinct cluster center vectors to randomly 
produce vectors that are close-by. Figure 3 shows the 
resulting 2D data vectors of the sample file. 
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Figure 3: Plot of original, unclustered feature vectors with 

standard deviation s=0.0, i.e., no blurring. 

 
Figure 4a: K-means clustering results (here: 3 clusters) of 
original feature vectors with standard deviation s=0.0 (Fig. 
3). The numbers indicate the respective feature vectors, and 
colors and symbols “+”, “x”, and “*” the respective clusters. 
 
Subsequently, we clustered these data points into the 
predetermined number of clusters, i.e., 3 in this case. For 
simplicity, we used K-means clustering since the 
prioritization framework operates post-hoc on pre-clustered 
data and thus is independent of the clustering algorithm. The 
respective 5 vectors, which are relatively close to each other, 
were clustered together as expected (Fig. 4a). This resulting 
clustering is considered the ground truth, i.e., this clustering 
combination represents the goal configuration that is aimed 
for when applying the four cases to the blurred versions of 
the 15 feature vectors, representing the preliminary 
coarse/low resolution data resulting from the standoff 
observation of the objects in the OA. 

4.2. Generation of standoff/preliminary observation of 
ground truth 

To simulate the standoff/preliminary observation of the 
ground truth, we generated blurred versions of the original 
feature vectors by blurring each feature vector component-
wise with a Gaussian distribution around a mean value of 
zero and a preselected standard deviation (sigma) to simulate 
the degree of standoff/preliminary observation quality, i.e., 
the degree of measurement resolution, respectively. In our 
case, we used standard deviations starting from zero (original 
data) up to sigma=3.0 in increments of 0.1 to study the 
performance of the prioritization framework (Cases I-IV) as 
a function of degree of blurriness, representing the 
standoff/preliminary observation quality or resolution (Figs. 
4b-g). 

Furthermore, similarly to the original unblurred ground truth 
feature vectors (sigma= 0.0), we pre-clustered these blurred 
feature vectors using K-means. As the feature vectors become 
increasingly blurred with increasing sigma, they move further 
away from their original feature vector locations, which 
ultimately results in cluster memberships different from the 
original, ground-truth K-means clustering, i.e., miss-
classification. This step is essential for the simulation and 
validation of the prioritization framework as it compares the 
output of Cases I-IV to the feature vectors that are miss-
classified compared to the “invisible” ground truth. The 
following graphs (Figs. 4b-g) show the initial K-means 
clustering for each of the blurred feature vector files; the 
feature vectors are numbered to keep track of each vector as 
it is increasingly blurred, i.e., increasing levels of noise 
added. 

We tested these initially clustered data files with the 
prioritization Cases I-IV to check if the blurred vectors, 
which were wrongly clustered by K-means, show a higher 
respective probability to be chosen for reexamination 
(Section 2.2). The respective probability yields a percentage 
of how likely a vector is being “placed” in the “wrong” 
cluster, thereby becoming a candidate for in-situ, close-
up/follow-up investigation. The results of such a close-up 
reexamination would stand a chance to yield the correct 
placement, e.g., through actual in-situ measurements (Fig. 1), 
thereby restoring the “invisible” ground truth, i.e., the 
“knowledge” about the operational area, which is the goal of 
the entire proposed prioritization framework. 

 

a 
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b
 

c
 

e
 

f
 

g 

Figures 4b-g: K-means clustering results (here: 3 clusters) of blurred feature vectors with increasing sigma s: (b) s=0.5; (c) 
s=1.0; (d) s=1.5; (e) s=2.0; (f) s=2.5; and (g) s=3.0. The numbers indicate the respective feature vectors, and colors and 

symbols “+”, “x”, and “*” the respective clusters. 
 

d 
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  Figure 5: Probability values (y-axes) obtained with K-means clustering, i.e., hard clustering, for Cases I-IV and sigma 
s=0.0 to 3.0 for each feature vector 1 to 15 (x-axes). Column I corresponds to Case I; II to Case II; III to Case III; and IV 

to Case IV. Row a corresponds to s=0.0; b to s=0.5; c to s=1.0; d to s=1.5; e to s=2.0; f to s=2.5; and g to s=3.0. 
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   Figure 6: Probability values (y-axes) obtained with Fuzzy C-Means clustering (with fuzzification parameter m=1.25), 
i.e., soft clustering, for Cases I-IV and sigma s=0.0 to 3.0 for each feature vector 1 to 15 (x-axes). Column I corresponds 
to Case I; II to Case II; III to Case III; and IV to Case IV. Row a corresponds to s=0.0; b to s=0.5; c to s=1.0; d to s=1.5; 

e to s=2.0; f to s=2.5; and g to s=3.0. 

 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

10 

5. SIMULATION RESULTS 

The probability outputs of the respective prioritization Cases 
I-IV for each of the 15 feature vectors as a function of sigma 
s=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, i.e., for various degrees 
of blurriness/resolution, are shown for hard clustering via K-
means (Fig. 5) and for soft clustering via Fuzzy C-Means 
(Fig. 6), the latter being implemented according to 
Sathishkumar (2015) with fuzzification parameter m=1.25. 

In the case of hard clustering, each feature vector is a 
member of exactly one cluster (membership value 1.0), 
respectively, and none of the others (membership value 0), 
both for time t (i.e., pre-clustering) and time t-1 (i.e., 
hypothetical probing). 

In the case of soft clustering, all feature vectors are members 
of all clusters, with their respective membership values 
adding up to 1.0 for time t (i.e., pre-clustering) and most of 
them for time t-1 (i.e., hypothetical probing) except for the 
feature vector describing object i* in Case I and IV (see 
Sections 3.1 and 3.4 above) which are governed by hard 
clustering. 

We also ran the prioritization Cases I-IV for extreme sigma 
values of s=10.0 and s=100.0: as expected this leads to a 
general breakdown of the prioritization framework, i.e., 
random probability value assignments that yield no useful, 
i.e., actionable, information for each of the prioritization 
Cases I-IV, because the applied degree of blurriness is so high 
that the new cluster memberships become the natural “new 
homes” of the feature vectors as opposed to their original 
ground truth ones. In these cases, there is no chance of 
recovering/revealing the ground truth, at least in the context 
of the proposed prioritization framework. 

6. DISCUSSION 

In the following the respective ability of the prioritization 
Cases I-IV to recover/reveal ground truth is discussed to 
identify candidate feature vectors for targeted close-
up/follow-up examination as a function of degree of 
blurriness: for hard clustering via K-means and for soft 
clustering via Fuzzy C-Means. 

6.1. Prioritization using Hard Clustering (here: via K-
Means) 

As a reminder for the following discussion, the cluster 
membership values for all feature vectors are exactly 1.0 for 
one particular cluster, respectively, and zero for all other 
clusters. 

As for Case I: 
The respective probability values for revisiting any of the 15 
feature vectors are zero for all sigma values up to s=2.0, 
thereby indicating no need for revisiting any of the feature 
vectors up close as the preliminary clustering would reflect 
ground truth (Fig. 5, column #1). At s=2.0, only feature 

vector 15 has a respective probability value that is greater 
than zero, indicating the need for revisiting it up close, which 
is commensurate with the fact that feature vector 15 has 
moved into a position that is halfway between its original, 
ground truth cluster, and the wrongly assigned target cluster. 
Similarly, at s=2.5 only feature vector 10 has a respective 
probability value that is greater than zero, indicating the need 
for revisiting it up close, because feature vector 10 has now 
moved halfway between its original, ground truth cluster, and 
the wrongly assigned target cluster. At that sigma value, 
feature vector 15 is now considered “native” in its wrongly 
assigned target cluster due to its proximity in feature space. 
The values of respective probabilities go back to zero for 
feature vectors 10 and 15 as sigma increases beyond 2.5 
because the feature vectors are so close to the new, wrongly 
assigned target clusters that they are now considered “native” 
in them. At that point, a potential return to ground truth via 
Case I prioritization is no longer indicated by means of in-
situ or close-up/follow-up examination. 

As for Case II: 
The reason why the results of Case II (Fig. 5, column #2) are 
the exact same as for Case I (Fig. 5, column #1) is because 
the simulation was run on an example with hard clustering 
(i.e., K-means). Therefore, when memberships of zeros and 
ones are switched (Case II) it yields the exact same results as 
giving a full membership of 1.0 to a feature vector in one 
cluster and zero memberships in all the other clusters. 

As for Case III: 
As opposed to Cases I and II, Case III assigns probabilities to 
all feature vectors simultaneously (i.e., not in sequence) 
starting with sigma as low as 0.0. Far more responsive than 
Cases I and II, Case III exhibits non-zero probability values 
as soon as the respective feature vectors move further away 
from their original clusters in feature space towards the 
ultimately wrongly assigned target clusters even while they 
are still being clustered correctly (Fig. 5, column #3). 
Moreover, it should be noted that while the probabilities for 
the wrongly classified feature vectors increase up until 
sigma=2.0, they do not drop to zero for larger sigma values, 
e.g., as is the case for sigma=3.0 in Cases I and II. This means 
that feature vectors that are now “firmly” embedded, i.e., 
considered “native,” in their wrongly assigned target clusters, 
can still be retroactively identified and flagged for targeted 
in-situ or close-up/follow-up examinations to potentially 
return to ground truth. 

As for Case IV: 
Similarly to Case III but much more amplified (i.e., all the 
way to probability saturation at 100%), Case IV assigns 
probabilities to all feature vectors simultaneously (i.e., not in 
sequence) starting with sigma as low as 0.0. As soon as the 
respective feature vectors move further away from their 
original clusters in feature space towards an ultimately wrong 
target cluster assignment due to increased blurring, Case IV 
assigns rapidly increasing probabilities in the correct order of 
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occurrence, even while the feature vectors are still being 
clustered correctly according to ground truth (Fig. 5, column 
#4). The prioritization Case IV results in the highest 
respective probability values. For example, feature vectors 10 
and 15 have a respective probability of 100% (or 1.0) when 
sigma is between 1.5 and 2.7 with only a slight decrease over 
all feature vector probabilities beyond sigma = 2.7. Again, 
this means that feature vectors which are now “firmly” 
embedded, i.e., considered “native,” in their wrongly 
assigned target clusters, can still be retroactively identified 
and flagged for targeted in-situ or close-up/follow-up 
examinations to potentially return to ground truth. 

6.2. Prioritization using Soft Clustering (here via Fuzzy C-
Means with fuzzification parameter m=1.25) 

In the following discussion, all feature vectors are members 
of all clusters, with their respective membership values 
adding up to 1.0. 

Cases II-IV (Fig. 6, columns 2-4) behave qualitatively and for 
the most part also quantitatively just like the prioritization 
counterparts using hard clustering (Fig. 5, columns 2-4). The 
only significant difference is between Cases I and II, which 
are behaving differently now when using soft-clustering 
(Sections 3.1 and 3.2 above): in particular Case I becomes 
now far more pronounced and responsive probability wise, 
because it forces a retroactive “hard clustering” for the 
particular feature vector under consideration, while all other 
feature vectors remain soft-clustered (Fig. 6, column 1). The 
probabilities for reexamination are pointing to the correct 
feature vectors though, i.e., 15 and 10. 

7. CONCLUSION & OUTLOOK 

Given the above considerations and the results, Case IV 
appears to be the most qualitatively and quantitatively 
sensitive and responsive prioritization scheme, both for hard 
(Fig. 5) and soft clustering (Fig. 6). Since non-zero 
probabilities for all feature vectors are generated starting with 
sigma=0.0, as a caveat, Case IV may potentially lead to a 
higher false-positive rate than Case III. However, since the 
premise for this entire study is that only preliminary data at a 
coarser, more uncertain or lower resolution are available, it is 
generally impossible to know what constitutes ground truth 
in an operational area unless that operational area had already 
been fully characterized before, in which case 
(re)examination would be a moot point. 

The proposed prioritization framework in general and Case 
IV in particular offer an opportunity to identify potential 
candidate objects in an operational area, characterized by 
feature vectors, for in-situ or close-up/follow-up examination 
to potentially contribute to an increase of “knowledge”, i.e., 
ground truth, without any additional measurements, i.e., via 
hypothetical probing only. This represents a unique 
opportunity, especially for autonomous robotic planetary 
exploration scenarios (e.g., Fink et al., 2005; Fink, Tarbell, & 

Jobling, 2008; Fink et al., 2022), which might otherwise be 
missed in the absence of such a prioritization framework. As 
such, the prioritization framework has the potential to help 
maximize scientific return while optimizing resource 
utilization. Especially in the context of resource-constrained 
autonomous science craft for space exploration, it has the 
potential to contribute to the extension of the Remaining 
Useful Lifetime (RUL) of a space mission or system – a key 
aspect in Prognostics and Health Management (PHM). 

As shown in Fink (2006), the above introduced prioritization 
Cases I-IV of the overarching prioritization framework can 
readily be expanded to the prioritization of n-tuples of 
objects, i.e., pairs, triplets, etc., as well as to the prioritization 
of instrument/sensor usage for in-situ, follow-up 
measurements of the prioritized objects. The latter is 
particularly critical for autonomous robotic planetary 
exploration missions, where often additional constraints have 
to be taken into account, such as risk vs. benefit 
considerations, time, power consumption, instrument/sensor 
resolution limits, spectral ranges in case of a spectrometer, 
accessibility of objects in case of a rover/lander arm, etc. 

It is also conceivable and potentially beneficial to combine 
multiple cases of the prioritization framework, e.g., to form a 
committee or ensemble. For example, Cases I-III are more 
selective and exhibit the “come” and “go” of probabilities for 
target vectors to be reexamined (Figs. 5 and 6), whereas Case 
IV is more sensitive and flags target vectors earlier. 

In addition to the RUL considerations detailed above, on a 
more general, PHM-relevant level, the proposed 
prioritization framework may assist predictive maintenance 
or condition-based maintenance by providing an additional 
mechanism of identifying system components whose actual 
maintenance status was initially wrongly classified, i.e., 
through pre-clustering of preliminary, low(er) resolution 
and/or noisy data. 

7.1. Comparison to other post-clustering quality 
improvement methodologies 

There are several extrinsic and intrinsic methods to measure 
the clustering quality post-clustering, i.e., to assess how good 
the clustering is (Han, Kamber, & Pei, 2012b). Extrinsic 
methods can be applied when ground truth is available to 
compare your clustering against. These methods comprise, 
but are not limited to (see Han, Kamber, & Pei, 2012b for 
details): cluster homogeneity, cluster completeness, “rag 
bag” or “miscellaneous” category, and small cluster 
preservation. It is important to note, that these methods are 
not applicable in autonomous robotic planetary exploration 
as ground truth not only is generally not known but the 
determination of it is the actual exploration goal. Intrinsic 
methods, in contrast, can be applied in the absence of ground 
truth. In general, these methods assess the clustering quality 
by examining cluster separation and compactness (Han, 
Kamber, & Pei, 2012b). In addition, similarity metrics 
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between feature vectors in the data set, such as silhouette 
coefficients, can be employed (Han, Kamber, & Pei, 2012b). 
However, while intrinsic methods seem in principle 
applicable in autonomous robotic planetary exploration, the 
inherent challenge is that the measured or observed data 
originate from standoff/preliminary observation, and, as 
such, mostly eliminate the similarity argument, since the 
preliminary or coarse data of an OA may not be indicative of 
or similar to the actual ground truth at all. 

The probabilities for prioritizing regions or targets of interest 
for in-situ, close-up investigation, introduced here, can also 
be understood as quantitative confidence measures of the 
classification, i.e., the pre-clustering of the preliminary data. 
Post-classification techniques, similar in purpose to the 
prioritization framework, i.e., to assess and quantify the 
reliability of classification decisions in the presence of 
inherent ambiguity of non-discriminative features, 
inadequate number of training samples, and in particular the 
degree of noise in measurements or observations have been 
proposed. For example, Banerjee et al. (2017) have devised a 
framework that allows for the incorporation of major sources 
of classification errors into a single quantitative measure, i.e., 
a confidence metric, to determine the reliability of automated 
signal classification (ASC) in non-destructive evaluation 
(NDE) applications, i.e., post-classification. To that end, the 
authors use “bootstrapping and weighting Bayes posterior 
probability with estimated noise distribution” to embed the 
effect of noise in NDE measurements into the confidence 
metric (Banerjee et al., 2017). In stark contrast, the 
prioritization framework proposed here operates only on a 
single observation or measurement of the object feature 
vectors in the OA (as is often the case in planetary 
exploration), i.e., it does not depend on the existence of 
multiple measurements that would allow bootstrapping or the 
calculation/estimation of any kind of distribution. 

Furthermore, there is a relatively scarce body of work on the 
specific problem of post-clustering improvement (by not 
changing the number of clusters, see below), particularly 
when considering the concept of hypothetical probing, i.e., 
altering the feature vectors to be clustered post-hoc, which is 
at the core of the prioritization framework introduced here. 
Most post-clustering improvement approaches only operate 
on the clustered data at hand. For example, Borlea et al. 
(2022) introduce “a way of improving the resulted clusters 
generated by the K-means algorithm by post processing the 
resulted clusters with supervised learning algorithm. The 
proposed approach is focused on improving the quality of the 
resulting clusters and not on reducing the processing time.” 
More specifically, Borlea et al. pre-cluster a data set with K-
means, and subsequently use a (data point, cluster centroid)-
based distance measure as a split criterion to divide the pre-
clustered data set into a training data set and a misclassified 
data set. They then train a supervised machine learning 
algorithm on the training data set in order to re-classify the 
data points in the misclassified data set, ultimately arriving at 

the final, improved clustering (Fig. 2 in Borlea et al. (2022)). 
The fundamental difference to our approach is that Borlea et 
al. never modify the data points (feature vectors) themselves, 
which is especially the case in prioritization cases III and IV 
because of hypothetical probing. Moreover, in none of our 
cases splitting of the pre-clustered data set and training of a 
supervised machine learning algorithm on a subset are 
required. In addition, as mentioned in Section 2.2 above, the 
computational effort of our prioritization framework is 
O(N×K), i.e., linear in the number of data points N and the 
number of clusters K, hence computationally inexpensive. 

Another example for post-clustering improvement are 
partitioning techniques or optimization techniques that allow 
reassignment of data points (feature vectors) during the 
clustering process to correct sub-optimal or incorrect initial 
clustering at a later stage (Marzo et al., 2006). As Marzo et 
al. (2006) state: “The majority of these techniques can be 
formulated as attempts to partition the set of objects so as to 
optimize some predefined criterion. These techniques employ 
three distinct procedures: (1) initiating clusters; (2) 
allocating objects to initial clusters; and (3) relocating the 
objects in alternative clusters. The differences between the 
partition techniques lie primarily in the methods for initiating 
clusters (procedure 1) and in the relocation techniques 
(procedure 3) [Everitt, 1980].” K-means (MacQueen, 1967) 
itself is such a technique. However, as mentioned before, the 
key difference to our approach is that the data points (feature 
vectors) to be clustered are not modified in the process. 

It is worth pointing out that finding/determining the natural, 
“right”, or “appropriate” number of clusters is a constantly 
encountered challenge in clustering in general, especially in 
the absence of ground truth and/or deeper insights into the 
data-generating process(es) as is the case with both in 
autonomous robotic planetary surface exploration, as it 
determines the proper granularity of the cluster analysis by 
finding a good balance between compressibility and accuracy 
(Han, Kamber, & Pei, 2012b). The prioritization framework 
introduced here does not address this challenge as the focus 
is on post-clustering, i.e., the choice of number of clusters has 
already occurred by other means, e.g., using the elbow 
method or cross-validation (Han, Kamber, & Pei, 2012a). 

Given the above, we believe our approach to post-clustering 
improvement is novel, conceptually straightforward, and 
computationally inexpensive, and therefore especially 
suitable for compute-constrained autonomous robotic 
planetary surface exploration. 

Robotic planetary surface exploration, akin to geological 
field studies, is largely investigative in nature (Gilbert, 1886; 
Baker, 2014). It is mainly focused on and driven by the 
making of discoveries that are not easily accomplished by the 
mere testing of preconceived hypotheses. Rather, new 
hypotheses are generated when encountering anomalies, i.e., 
those features or phenomena that do not fit or agree with 
preconceived hypotheses because of their identification 
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through the investigative approach (Baker, 2017). These new 
hypotheses are formulated in agreement with (and are 
dependent on) the investigator’s experience with analogues 
to the anomalies or phenomena encountered/discovered 
(Gilbert, 1896; Baker, 2014). They turn into “working 
hypotheses” (Chamberlin, 1890) that are subsequently 
assessed and judged by their resulting productivity or 
fruitfulness in guiding the investigation/exploration along to 
further productive inquiry (Baker, 2017). It is in this context 
that the prioritization framework introduced here, while 
attempting to improve upon the clustering of the feature 
vectors obtained from standoff or preliminary observations, 
effectuates in fact the process of generating working 
hypotheses during autonomous robotic planetary surface 
exploration, i.e., in the absence of human explorers on the one 
hand, and the general lack of high performance computing 
power on the other hand. 

7.2. Potential next steps 

Again, it is crucial to reiterate that the operation (not 
performance, see below) of the prioritization framework 
introduced here is completely independent of the algorithm 
used to cluster the preliminary data, because it operates post-
hoc on the pre-clustered data. As such, we used purposely 
basic clustering algorithms, i.e., K-means and Fuzzy C-
Means, as well as low-dimensional feature vectors in order to 
visualize the inner workings of the prioritization framework. 
As next steps, it will be important to investigate how the 
performance of the prioritization framework is affected by, 
but not limited to: (1) increasing feature space/vector 
dimension n; (2) pairwise Euclidean distance in n-
dimensional feature space between the initial cluster 
centroids resulting from the pre-clustering, i.e., dependence 
on the initial clustering algorithm used; and (3) noise-scaling 
behavior, such as, O(nx) with x>0, to model standoff 
observation/measurement(s) quality or resolution. As such, 
follow-up numerical simulations with higher-dimensional 
feature vectors and in the presence of various noise models 
will certainly have to be conducted to more fully explore and 
validate the capabilities, performance, and limits of the 
prioritization framework introduced here, but are beyond the 
scope of this paper which focuses on its theoretical 
underpinning. 
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