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ABSTRACT

As integral components of any power plant, transformers sup-
ply the generated electricity to the grid. However, a trans-
former’s cellulose-based paper insulation and the mineral oil
in which it is immersed break down over time under stan-
dard operating conditions—or more rapidly due to potential
faults within the system. As the transformer’s mineral oil
breaks down, gases are released that can be measured and
monitored. This technical brief exhibits a collection of di-
agnostic and prognostic techniques that utilities can adopt in
lieu of labor-intensive periodic preventive maintenance rou-
tines. Furthermore, prognostic models have been incorpo-
rated using the latest version of the Institute of Electrical and
Electronics Engineers (IEEE) standard (IEEE, 2019) for dis-
solved gas analysis (DGA), thus expanding it to include es-
timation of the time to maintenance. Overall, four different
methodologies are explained, each of which aids in determin-
ing a transformer’s state of health. These methodologies in-
clude the Chendong model, the IEEE thermal life consump-
tion model (IEEE, 2012), a diagnostic model for DGA, and
a prognostic model for DGA that uses an autoregressive inte-
grated moving average (ARIMA) model. An additional im-
provement for estimating missing system parameters by using
monitoring data (i.e., a tool for parameter estimation utiliz-
ing Powell’s method) is presented, enabling the IEEE thermal
life consumption model to benefit not only the collaborating
power plant, but also the power industry at large.

1. INTRODUCTION

Transformers supply generated electricity from power plants
and are critical to the reliability of the electric transmission
grid (Coble, Ramuhalli, Bond, Hines, & Upadhyaya, 2015).
However, a transformer’s cellulose-based paper insulation and
the mineral oil in which it is immersed break down over time
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under standard operating conditions—or more rapidly due to
potential faults within the system. As the transformer’s min-
eral oil breaks down, gases are released. Key dissolved gases
(e.g., methane, hydrogen, ethylene, ethane, carbon monoxide,
carbon dioxide, oxygen, nitrogen, and acetylene) are moni-
tored, and the rates at which they are produced can be indica-
tive of the transformer’s state of health. With the installation
of a dissolved gas measurement system, these measurements
can be taken more frequently, and online monitoring has been
enabled. Dissolved gas analysis (DGA) is the premier diag-
nostic approach to monitoring and detecting faults within oil-
immersed transformers (Wani et al., 2021).

This technical brief expands on the work previously published
in (Agarwal, Lybeck, Pham, Rusaw, & Bickford, 2015), which
demonstrated the Chendong model and the Institute of Elec-
trical and Electronics Engineers (IEEE) thermal life consump-
tion model on plant data, with simulated drift to represent pri-
mary winding insulation degradation, as part of the Electric
Power Research Institute’s Fleet-wide Prognostic and Health
Management Suite software (Electric Power Research Insti-
tute (EPRI), 2012). This research expands on that work by
enabling broader usage, incorporating (IEEE, 2019) to en-
able prognostic models, and then testing the models on ac-
tual plant data. Additionally, Wani et al. provided an excel-
lent review of state-of-the-art nonlinear techniques for DGA-
based transformer fault diagnosis, but failed to mention linear
techniques such as autoregressive integrated moving average
(ARIMA), which is covered in this brief (Wani et al., 2021).

The main contributions of this brief are summarized as fol-
lows:

1. Showcasing of four complementary techniques (i.e., the
Chendong, thermal life consumption, diagnostic, and prog-
nostic models) for determining and predicting a trans-
former’s state of health, and these techniques are demon-
strated using 5 years worth of plant data.

2. Development of a parameter estimator that uses Powell’s
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method to approximate missing plant parameters within
the IEEE thermal life consumption model, thus enabling
broader usage of the model within industry.

3. Utilization of (IEEE, 2019) to develop a prognostic model
to calculate remaining time until maintenance, based on
dissolved gas measurements.

After a transformer’s state of health is estimated using dis-
solved gas and temperature measurements, maintenance can
be scheduled proactively, thus leading to cost savings, as fail-
ures and unplanned outages can be avoided. Use cases were
developed using actual plant data to demonstrate how these
methodologies can be applied to a power plant transformer,
and how these models synergize to diagnose and predict trans-
former conditions.

The rest of the paper is organized as follows. Section 2 de-
scribes the data used in this technical brief. Section 3 in-
troduces the four methods and the parameter estimator, out-
lines their methodologies, and explains their expected contri-
butions and value by using sample data from a nuclear power
plant (NPP). Section 4 summarizes the work and outlines the
path forward.

2. DATA DESCRIPTION

Online dissolved gas analyzers were installed in three trans-
formers, with help from the collaborating NPP. These sensors
recorded gas concentrations and insulating oil temperatures
over a 5-year period, using an initial hourly sampling fre-
quency that was reduced to one sample every 8 hours for the
final year. The measurements were first cleaned of any out-
liers by using a rolling median filter, then interpolated to pro-
duce an even sampling frequency throughout the data. The
recorded measurements included the quantity of key gases
such as hydrogen, methane, nitrogen, acetylene, ethylene,
ethane, carbon monoxide, carbon dioxide, oxygen, and water,
along with other relevant parameters such as ambient temper-
ature and oil pressure/temperature. The level of 2-Furaldehyde
required for the Chendong model was not a measurement
recorded by the online monitoring sensor. This value was
recorded yearly during a more intensive oil analysis.

3. METHODOLOGY

The primary objective of this research was to leverage previ-
ous knowledge to develop a deployable package for use by
industry. Additionally, prognostic models were incorporated
using the latest version of the IEEE standard (IEEE, 2019) for
dissolved gas analysis (DGA), thus expanding it to include
estimation of the remaining time until maintenance. An addi-
tional improvement for estimating missing system parameters
from monitoring data (i.e., a tool for parameter estimation uti-
lizing Powell’s method) is presented, enabling the IEEE ther-
mal consumption model to benefit not only the collaborating

NPP but also the power industry at large, in cases in which
some of the system parameters are unknown.

Each of the five different methodologies contributes to the
health monitoring of transformer systems and the determi-
nation of a transformer’s remaining time until maintenance.
These methodologies are:

1. The Chendong model for calculating the remaining use-
ful life (RUL) of a transformer’s insulation by relating
the 2-Furaldehyde level to the degree of polymerization
(Chendong, 1991).

2. The IEEE thermal life consumption model for estimating
the hot-spot temperature within the insulation, based on
the ambient temperature and the transformer’s load con-
ditions, to estimate an accelerated aging factor (Agarwal,
Lybeck, & Pham, 2014; IEEE, 2012).

3. A parameter estimator that predicts any single missing
plant parameter within the IEEE thermal life consump-
tion model. Many plant-specific variables (e.g., the ratio
of load losses, thermal heat capacities, and transformer
losses) are required for this model. Some of these pa-
rameters may not be known, available, or even measured
by the utility.

4. A model for diagnosing the cause of high gas concentra-
tions and rates, based on information in the IEEE Guide
for the Interpretation of Gases Generated in Mineral Oil-
Immersed Transformers (IEEE, 2019).

5. An ARIMA prognostic model for predicting future key
gas concentrations to indicate when maintenance may
become necessary (Naim, Mahara, & Idrisi, 2018).

The following subsections summarize the implemented and
demonstrated models, and describes the key aspects of the
methodology used in each approach. Each model incorpo-
rates different inputs and produces actionable outputs. Figure
1 lists the expected outputs and value gained by using each
model, and visually illustrates their synergy for transformer
health monitoring. Additional information on each model can
be found in the cited references.

3.1. Chendong Model

As the paper insulation in the transformer ages, the cellulose
polymer chains break down into shorter lengths, decreasing
the tensile strength. The average length of these cellulose
polymers is referred to as the degree of polymerization (DP),
which is also the average number of glucose monomers in the
polymer chain. Directly testing for either tensile strength or
DP is difficult (Stebbins, Myers, & Shkolnik, 2003); however,
via Eq. 1, the Chendong model relates the 2-Furaldehyde
level in the transformer’s oil—an organic compound that is
readily measurable—to the DP of the insulating material:
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Figure 1. These four models synergize with regard to transformer health monitoring by incorporating different inputs to produce
actionable outputs.

DPt =
log10(2FAL)� 1.51

0.0035
, (1)

where DPt is the DP, 2FAL is the 2-Furaldehyde level, and
1.51 and 0.0035 are empirical constants from the original cal-
culation and are used to relate DPt and 2FAL (Chendong,
1991). A lower DP means that more deterioration has oc-
curred and that a lower tensile strength is expected. To cal-
culate the insulating material’s RUL in years, the ratio of the
measured DP (DPt) to the initial DP (DP0) is determined via
Eq. 2:

RUL = 20.5 ⇤ DPt

DP0
, (2)

where 20.5 is the average insulation life expectancy (in years)
assumed in (IEEE, 2010). The Chendong model is expected
to receive two inputs for calculating RUL: the amount of 2-
Furaldehyde (in parts per million) and the DP0. The Chen-
dong model has three outputs: current DP, RUL, and sig-
nificance of the results. The significance of the results at-
tempts to describe the current DP in more descriptive, action-
able terms (e.g., healthy insulation, moderate deterioration,
extensive deterioration, and end-of-life criteria), as per Ta-
ble 1 (Abu-Siada, 2011). The calculated DP was 800 for this
transformer, which is listed as “healthy insulation” in Table 1.
Assuming the original DP of the new transformer was 1200,

then the RUL according to Eq. 2 would be 13.67 years. Each
transformer varies in terms of the DP that it begins with, so
this value should be estimated early in the transformer’s life-
cycle to achieve the most accurate prediction.

Table 1. Significance criteria for DP.

Description DPt

healthy insulation 700–1200
moderate deterioration 450–700
extensive deterioration 250–450
end-of-life criteria <250

3.2. IEEE Standard C57.91-2011 Thermal Life Consump-
tion Model

The thermal life consumption model, originally presented in
(IEEE, 2012), estimates how much life has been “consumed”
as a result of exposure to higher temperatures (IEEE, 2012;
Aizpurua, Stewart, & Mcarthur, 2019). This model calcu-
lates transformer insulation hot-spot temperatures by using
the ambient air temperature, hot-spot reference temperature,
load, and transformer-specific parameters to arrive at an aging
acceleration factor.

The hot-spot reference temperature refers to the winding hot-
spot temperature that produces an aging acceleration factor of
1.0. This hot-spot temperature may vary from asset to asset,
and should thus be calibrated. A reference hot-spot temper-
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ature of 55�C was chosen for this analysis, based on the de-
crease in the estimated RUL of the transformer following the
first year of operation. For a healthy transformer, the RUL is
assumed to decrease by one year for each year of use.

Fourteen separate variables are required as inputs for the IEEE
thermal life consumption model. If a specific variable is un-
known, the parameter estimator (see Section 3.2.1) can solve
for the missing values, assuming that the top-oil/ambient tem-
perature is known. The IEEE thermal life consumption model
first estimates the thermal hot-spot temperature by using the
ambient air temperature, load, and other plant parameters.
The aging acceleration factor (FAA) is then estimated via Eq.
3:

FAA = e
15000

THS+273�
15000

TH+273 , (3)

where THS is the reference hot-spot temperature, TH is the
calculated hot-spot temperature, 273 is the conversion from
Celsius to Kelvin, and 15,000 is an empirical value for the
insulation degradation and is akin to the activation energy
within the Arrhenius reaction rate equation (Agarwal et al.,
2014).

For a normal insulation life of 20.5 years, the RUL is calcu-
lated as being 20.5 years minus the amount of time that has al-
ready transpired and taking the aging acceleration factor into
account. Figure 2 shows the RUL prediction that was based
on the thermal life consumption model for a transformer at
the plant site.

Figure 2. Transformer RUL prediction using the thermal life
consumption model. The cyclic behavior is due to rapid RUL
decrease during hotter summer months.

In Figure 2, a cyclical pattern is evident. In general, higher
temperatures increase the speed at which the transformer in-
sulation degrades. This can be seen in Figure 2, as the insula-

tion’s RUL decreases more rapidly in summer than in winter.
Higher temperatures and loads lead to increased aging accel-
eration factors and a quicker decline in RUL. This model en-
ables easy calculation of the transformer insulation’s RUL as
a function of ambient temperature, load, and plant-specific
parameters.

3.2.1. Parameter Estimator

The parameter estimator was developed to estimate any plant-
specific parameters contained within the IEEE thermal life
consumption model. This estimator will enable further de-
ployment of the thermal life consumption model in other NPPs,
even when certain parameters are unknown. Certain plant-
specific parameters may not be measured by the utility (e.g.,
ratio of load loss at specific taps) or may perhaps be more
theoretical (e.g., a thermal time constant). The parameter es-
timator uses the known parameters, in combination with the
ambient and top-oil temperatures, to form a constrained opti-
mization problem, then solves a part of the thermal life con-
sumption model via Eqs. 4, 5, and 6:

min(|(�TTO,U ��TTO,i)(1� e
�t

⌧TO )+�TTO,i��TTO|)
(4)

�TTO,U = �TTO,R

"
(K2

UR+ 1)

(R+ 1)

#2

(5)

R � 0 (6)

where �TTO is the top-oil temperature rise over the ambi-
ent temperature following a load change, �TTO,U is the ul-
timate top-oil temperature rise over the ambient temperature
following a load change, �TTO,i is the initial top-oil temper-
ature rise over the ambient temperature before a load change,
�TTO,R is the top-oil temperature over the ambient temper-
ature at rated load, t is the time duration, ⌧TO is the top-oil
thermal time constant, KU is the transformer load ratio be-
tween the ultimate load and the rated load, and R is the ratio
of load loss at rated load to no-load loss at the tap position. In
this example, because the ratio of load loss (R) is unknown, it
is constrained as positive definite and then estimated via the
parameter estimator algorithm. Without knowing each vari-
able within the thermal life consumption model, it cannot be
used for RUL estimations. A deeper explanation of the for-
mulation of the thermal life consumption model itself is found
in (Agarwal et al., 2014).

The estimator attempts to solve the constrained optimization
problem by using Powell’s method to minimize the error be-
tween the functional output and the known temperatures (M.
J. D. Powell, 1964). This minimization produces an esti-
mation of the missing parameter, in units suited to the de-
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sired thermal life consumption model. In this case, the plant-
specific parameter estimated is withheld due to NPP sensitiv-
ity. However, the ability to determine unknown plant param-
eters can increase the IEEE thermal life consumption model’s
applicability to other NPPs.

3.3. IEEE DGA Diagnostic Model

The IEEE DGA diagnostic model combines two internal func-
tions (i.e., the DGA status function and Duval triangle) and
was developed using the information in (IEEE, 2019).

The DGA status function takes the gas concentrations, pro-
duction rates, and transformer age, and then compares them
against the alarm threshold tables given in the IEEE-2019
standard. The threshold values in these tables are based on
manual measurements that may be more conservative than
necessary for continuous online monitoring, since the fre-
quency in which the manual measurements are taken is lower
than for online monitoring. The DGA status function returns
a value of either 1, 2, or 3, which correspond to “healthy,”
“watch,” and “warning,” respectively. “Healthy” represents
gas concentrations and rates associated with what is consid-
ered a healthy state for transformers of a given age. “Watch”
is a recommendation that manual samples be taken more fre-
quently, or that online monitoring be implemented to better
capture fast-moving trends or to more closely monitor gases
with higher concentrations than expected. Because online
monitoring is currently used for this NPP, the word “watch”
is no longer strictly appropriate, yet it serves as a useful des-
ignation that more attention may be needed. The “warning”
threshold indicates a recommendation that the plant be sur-
veyed for potential faults.

Figure 3. The methane concentration in the transformer ap-
pears to steadily increase. Alarm threshold tables given in the
IEEE-2019 standard.

Once the “warning” threshold is breached due to either a high
concentration of gas or an excessive gas production rate, gas

Figure 4. The methane production rate in the transformer ex-
ceeds the healthy threshold for much of the recorded period.

Figure 5. The transformer’s DGA status contains large
amounts of “warnings” due to the elevated methane produc-
tion rate.

concentrations and rates are passed to the Duval triangle func-
tion. Based on the concentrations and ratios of certain gases
(i.e., methane, ethane, and ethylene), the Duval triangle re-
turns a diagnosis of the cause of the fault (Duval, 2002). The
Duval triangle can differentiate from among faults such as
partial discharges, electrical faults, and thermal faults, based
on faults simulated in a laboratory environment. The Duval
triangle functions as a lookup table. Such diagnoses give the
plant maintenance team a better understanding of potential
faults that may ultimately reduce transformer’s service life.
The Duval triangle should not be used unless a fault is known
to be present, since it always returns a diagnosis, no matter
what. In the case of healthy gas concentrations/rates, the di-
agnosis would be a false one. However, the Duval triangle
is the most accurate traditional interpretation technique when
compared to others such as Doernenburg ratio, IEC ratio, and
Roger’s ratio (Gouda, El-Hoshy, & Hassan, 2018). Figure
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3 shows the concentration of methane in a transformer in-
creasing over a 5-year period. The dotted lines signal dif-
ferent “warning” thresholds, depending on the transformer’s
age. The figure indicates that, for a transformer less than nine
years old, the “warning” threshold was exceeded by mid-
2017. Figure 4 shows the production rate (parts per mil-
lion/year), as calculated via a moving average for the amount
of methane produced in the transformer over a 4-month pe-
riod. A 4- to 9-month moving average was recommended by
the IEEE-2019 standard when using manual measurements.
Any time the production rate of a gas exceeds the specified
threshold given in the IEEE-2019 standard, the DGA status
immediately changes to “warning.” Figure 5 shows the ex-
pected DGA status when using the gas concentrations and
rates from the transformer. Since the methane is increasing
at a higher-than-advisable rate, the DGA status is “warning”
(level 3) over much of the recorded data for this particular
transformer. This status may fluctuate as the rate of produc-
tion changes. Once the fault was flagged as a warning, the
gas concentrations were sent to the Duval triangle, which di-
agnosed the cause as a thermal fault of under 300�C.

Overall, this diagnostic model possesses the tools to deter-
mine whether gas concentrations and production rates fall
within advisable limits. Once these limits are crossed, the
Duval triangle can diagnose the potential cause of the gas
concentration increase, thus enabling more targeted mainte-
nance.

3.4. IEEE DGA Prognostic Model

Built on similar tenets as the diagnostic model, the IEEE
DGA prognostic model calculates the remaining time to main-
tenance. First, the prognostic model predicts future gas con-
centrations using an ARIMA model (Naim et al., 2018). The
ARIMA model is useful because it only requires prior data
for the particular time series to be forecasted. These concen-
trations are forecast into the future at an hourly time inter-
val, until they cross the same “warning” threshold featured
in the IEEE DGA diagnostic model. The forecasted feature
includes the estimated value as well as the uncertainty of the
parameter of interest. The remaining time until maintenance
is calculated as the difference between the current time and
the time at which the forecasted value crosses the “warning”
threshold. The prognostic model should be used to estimate
when maintenance will likely be needed, not to estimate spe-
cific faults. Diagnosing faults based on these conditions is not
recommended, as the physics relating to damage and gas pro-
duction were not considered when developing this data-based
prognostic model. The forecasted values were estimated via
an ARIMA model based on past values.

Figure 6 shows an example (using carbon monoxide [CO]
data from the transformer) of forecasting into the future until
the “warning” threshold is crossed. The magenta line rep-

Figure 6. Forecasting of CO concentrations in the trans-
former. The ARIMA model estimates that the “warning”
threshold will be crossed in 2029.

resents the predicted extrapolation, with uncertainty bounds
positioned on the upper side of the forecast. Gases do not
typically leave the transformer in significant amounts unless
the transformer is being actively de-gassed. Only the upper
confidence interval and forecast are shown to be conserva-
tive in the estimate of when maintenance must be performed.
Figure 6 shows that the CO concentration will not become
an issue for this transformer for several years, since the ex-
pected forecast does not cross the “warning” threshold until
2029. The 95% confidence interval crosses earlier (i.e., in
2025). However, this is still significantly far in the future, al-
lowing for additional monitoring before a maintenance action
must be considered. This estimation should be made for each
of the monitored gases.

The prognostic model tracks and forecasts gas concentrations,
enabling estimation of when maintenance or de-gassing should
be performed, based on the earliest crossing of the “warning
threshold.” This can enable maintenance to be planned well
in advance, thus introducing new cost-saving opportunities.

4. CONCLUSION

This technical brief describes four models that synergize with
regard to transformer health monitoring. Using these mod-
els, the transformer’s remaining time to maintenance can be
estimated and potential problems diagnosed. Each of these
models uses a different set of inputs (e.g., gas concentrations,
temperatures, loads, and 2-Furaldehyde level) to estimate the
transformer’s state of health; thus, a combination of models
would provide the best results. This technical brief applied
each model to a singular, operating transformer to determine
when maintenance may be required. Although the Chendong
model and the thermal life consumption model estimated that
the insulation was healthy, the diagnostic model determined
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that a high production rate of methane was most likely due to
a thermal fault under 300�C.

Due to the tools’ modularity and robustness to inputs, they
can be implemented into a monitoring and diagnosis center
for multiple power plants that feature similar oil-immersed
transformers. The default values for each parameter within
the models are plant-specific. But in the case of the IEEE
thermal life consumption model, a single missing plant-specific
parameter can be estimated using the parameter estimation
tool, assuming that the ambient and top-oil temperature—
both common measurements—are known.
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