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ABSTRACT 

Companies utilize highly accelerated limit testing (HALT) to 

ensure efficient product development by accelerating loading 

conditions in the qualification process. The aim of qualitative 

accelerated testing such as HALT is to effectively and clearly 

identify early behavioral anomalies. To this end, this study 

utilizes machine learning techniques for detecting anomalies 

in servomotors in electronic products subjected to HALT. A 

case study was conducted using a programmable robot kit 

with 12 servomotors. HALT comprises five types of stress: 

thermal conditioning (cold and heat), rapid thermal change, 

vibration, and combined stresses. The anomalous behavior of 

a servomotor can be identified using a k-nearest neighbor 

algorithm and verified by inspection using the loading 

conditions and electrical responses. In addition, anomalous 

behaviors among servomotors and a control board are 

assessed using a Gaussian graph model approach. Changes in 

the Gaussian graph were assessed as anomaly scores using 

Kullback–Leibler (KL) divergence. The KL score increased 

earlier than that observed by the kNN algorithm. This implies 

that the relationship between the components aids in the early 

detection of anomalies in servomotors. The machine learning 

algorithm successfully identified the failure precursor of the 

unit. The proposed approach of HALT with the machine 

learning algorithm supports prognostic health management of 

servomotors.  

1. INTRODUCTION 

In recent years, reliability has become a concerning issue for 

connected electronic products (Kwon, et al. 2016). The 

Society 5.0 initiative established in the 5th Science and 

Technology Basic Plan in Japan (2016–2021) proposes a 

human-centered society with a fusion system of cyber and 

physical spaces (Shiroishi, Uchiyama, and Suzuki, 2018). 

Thus, connected electronic products play an important role in 

the implementation of Society 5.0. There has been an increase 

in the number of connected electronic products owing to the 

expansion of the market for such products, and this has made 

it more difficult to control their reliability (Kwon, et al. 

2016). 

Accelerated testing is used to assess product reliability; the 

objective of accelerated testing is to identify potential design 

weaknesses, provide information on item dependability, or 

achieve necessary reliability/availability improvements as 

defined by IEC 62506 (International Electrotechnical 

Commission 2013). There are three accelerated test methods 

depending on the damage model: 

1) Qualitative accelerated testing can identify the failure 

modes of the products. Further, product weaknesses 

can be addressed in the early stages of the design 

process for improving design quality.  

2) Quantitative accelerated testing employs a cumulative 

damage-based life estimation model to determine the 

reliability of the product.  

3) Quantitative time and event compressed testing 

estimates the lifetime of components where wear-out 

in active use is the major failure mode.  

 

Reliability testing can assist in the verification and validation 

of product design; several standards (e.g., MIL-STD-810) 

have been developed for reliability testing. Some failure 

modes of products are identified during reliability testing; 

however, unknown failure modes can appear after the product 

is introduced to the market. Further, reliability testing 

requires a long time and limits competitive product 

development. For example, thermal cycling testing for 

_____________________ 

Tadahiro Shibutani et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 

https://doi.org/10.36001/IJPHM.2022.v13i2.3138 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

electronic components takes several months because of the 

number of cycles required; however, some reliability issues 

remain even if products have been assessed through several 

reliability tests because the use environment of the product 

can be different from that assumed by the designer and the 

product structure can become more sophisticated, which 

makes it difficult to predict failure. 

Highly accelerated limit testing (HALT) is a qualitatively 

accelerated method used for testing electronic units (Hobbs, 

2000). Its basic concept was introduced as the phrase “highly 

accelerated life test” in 1988 (Munikoti and Dhar, 1998). 

Originally, HALT was designed to accelerate a universally 

accepted standard testing method such as MIL-STD-810. 

However, stresses introduced by HALT were too high for 

using the same reliability model as that employed in 

traditional accelerated life testing methods (Gray and 

Paschkewitz, 2016). The IEC standard 62506 defines HALT 

as a “highly accelerated limit test,” and its purpose is 

identifying specific failure modes of units by generating 

external stresses, which include temperature, 

vibration/shock, or a combination of vibration/shock and 

thermal cycling (International Electrotechnical Commission 

2013). The HALT process comprises multiple stress steps for 

extracting operational and destructive limits to various 

stresses such as temperature and vibration. The operational 

limit is defined as a “soft” failure when the unit can still 

operate with the stress removed; the destructive limit, a 

“hard” failure when the unit requires repair. Functional tests 

were performed during HALT to determine the operational 

limit of the system. 

HALT has been adopted for many products, and some 

companies utilize HALT to further improve the design 

process for their products (Gray and Paschkewitz, 2016; 

Prakash, 1998). For example, Allied Telesyn established an 

HALT facility at a New Zealand Research and Development 

Center; several product faults were identified before the 

product was introduced into the market (Gray and 

Paschkewitz, 2016). In addition to hardware faults, software 

faults such as abnormal light-emitting diode (LED) activity, 

switch tuning errors, and system crashes are also identified.  

The failure modes identified under HALT vary according to 

different applications. Charki et al. (2011) conducted a 

statistical analysis of HALT to study the robustness of a 

product and discussed the recommendations on experimental 

conditions of HALT. Catelani and Ciania (2014) proposed a 

customized HALT process for avionics applications. Chen et 

al. (2013) performed HALT for DC/DC converters; they also 

considered additional functional stresses to identify the 

failure modes related to DC/DC converters. To this end, they 

monitored several key parameters such as output voltage, 

efficiency, and ripple for identifying the operating limits. 

Some failure modes can be identified by monitoring the key 

parameters. Li and Feng (2006) applied HALT to determine 

the thermal fatigue of solder joints in surface mount 

technology (SMT) main boards. Several procedures have 

been proposed to improve HALT to predict the lifetime of 

products (Aoki et al., 2019). However, unexpected failures 

occur during the HALT process because multiple 

environmental stresses are applied to main boards. Li and 

Feng concluded that HALT can quickly identify the operating 

limits of products, but it is difficult to develop accelerated 

models for predicting the lifetime of products with multiple 

stresses such as HALT. Thus, HALT is limited by its 

dependence on product characteristics and loading 

conditions.  

A critical issue in the use of HALT is the identification of the 

failure modes of products, which is achieved based on the 

functional tests introduced under HALT. When potential 

failure modes are identified, the criteria of the functional test 

can be determined based on the physics of failure (Aoki et al., 

2019; Pecht, 2009). Multiple stresses induced by HALT are 

different from those in the field environment, and there 

remains an uncertainty in detecting the weak point of a 

system. Sakamoto et al. compared failure modes observed at 

HALT with the results of the failure mode and effect analysis 

(FMEA) (Sakamoto, Hirata, and Shibutani, 2018); it was not 

easy to identify some failure modes using FMEA. Thus, there 

is a need for another effective approach for identifying the 

failure modes at HALT. 

Anomaly detection is a key concern in functional tests (Pecht, 

2009). In conventional reliability tests, such as thermal 

cycling, monitoring is optimized to predict the failure mode. 

However, various failure modes can be found during HALT, 

which makes anomaly detection ambiguous (Sakamoto, 

Hirata, and Shibutani, 2018). Further, functional test 

monitoring requires a high sampling rate because high-

frequency random vibrations (up to 5000 Hz) are generated 

by the HALT shaking table. Thus, big data analysis is 

required to detect anomalies of the unit, and a data mining 

technique such as a machine learning algorithm is a critical 

component (Omar, 2015). 

Given this context, our study presents the anomaly detection 

of a unit under HALT using a machine-learning algorithm. 

HALT was performed using a robot kit comprising 12 

servomotors and sensors. The input/output voltage for each 

component was monitored during the test, and a machine 

learning technique was applied to monitor the data and 

identify the anomaly score of the unit. 

2. EXPERIMENTAL PROCEDURE 

In this study, the unit under test is a programmable robot kit 

(Rapiro, Kiluck) that comprises 12 servomotors, a light-

emitting diode (LED) board, a distance-measuring sensor 

(GP2Y0A21YK), and an Arduino-compatible main board. A 

functional block diagram of the unit is shown in Figure 1. As 

shown in the figure, the unit uses six large and six small 

servomotors. The torques of the large and small servomotors 

at 4.8 V were 2.5 kgf-cm and 1.5 kgf-cm, respectively. Pulse 
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width modulation (PWM) was used to control the 

servomotors; a PWM signal was processed using an 8-bit 

microcontroller (ATmega328P). The power supply was 

controlled by a three-terminal regulator (LD29150) and a 

DC/DC converter (OKL-T/6-W12). The regulator was 

connected to a microcontroller, a distance-measuring sensor, 

and an LED. The DC/DC converter was used to drive the 

servomotors. The unit was operated during HALT. In this 

study, the motion of the servomotors was programmed and 

controlled using a microcontroller.  

 

 

Figure 1: Functional block diagram of unit under test. 

2.1. Stress Steps Under HALT 

HALT is used to identify the failure modes of the unit. The 

test comprised five stress steps: cold, heat, rapid thermal, 

vibration, and combined steps (International Electrotechnical 

Commission 2013). We follow a typical procedure based on 

a previous study (International Electrotechnical Commission 

2013; Charki 2011). 

1. The cold step starts at 0 °C, and the temperature 

decreases by 10 °C until the component exhibits 

anomalous behavior. The dwell time at each 

temperature is 10 min. The temperature at which failure 

occurs is set to the lower limit (LL).  

2. In the heat step, the temperature increases with a 

thermal step increment of 10 °C, and the upper limit 

(UL) is defined as the temperature of failure.  

3. The rapid thermal change test identified 

thermomechanical and/or functional failures because of 

rapid thermal changes. The upper and lower 

temperatures were set at (UL –10 °C) and (LL +10 °C) 

to avoid failure at heat/cold steps, respectively, because 

this test focused on the effect of temperature change on 

the unit. If failure modes did not appear, the maximum 

number of cycles was set to five.  

4. The vibration step identified mechanical and/or 

functional failures attributed to six degrees of freedom 

(DoF) vibration. The increment in the vibration was 10 

ms, and the duration time was 10 min; the test was 

continued until failure occurred. The level of vibration 

for the failure was set to the vibration limit (VL). If no 

failure occurred, the maximum acceleration of the 

HALT chamber was set to VL.  

5. The combined stress step identified failures attributed to 

thermal cycling and vibration. The thermal cycling and 

vibration conditions were determined using LL, UL, and 

VL.  

This study used a Qualmark Typhoon 2.5 HALT chamber. 

The 700-mm-square shaking table produced 6-DoF 

vibrations in the unit. The root mean square of the 

acceleration signal (Grms), normalized to the value of 

acceleration due to gravity, was controlled during the 

vibration and combined steps. The frequency cut-off of Grms 

was 5 kHz. The rapid thermal change was more than 60 

°C/min with liquid nitrogen and a nichrome wire heater.  

2.2. Test Conditions 

The unit was placed in the center of the vibration table and 

fixed with two poles and a string, as shown in Figure 2. 

Figure 3 shows the test conditions of the servomotors. Two 

control boards were prepared to investigate the failures. One 

control board was placed in the unit under HALT, and the 

other, outside the chamber. The servomotors of the unit were 

classified into groups A, B, and C. In group A, the control 

board was outside the HALT chamber, and the servomotors 

(head and R hand) were inside the HALT chamber. The head 

was set to move right and left at a constant speed, and the R 

Hand was set to maintain a constant angle. It was possible to 

observe the change in the servomotor with respect to the 

experimental conditions under normal usage of the power 

supply portion by monitoring these power supply voltages. 

  

 

Figure 2: Test unit fixed on vibration table. 
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Figure 3: Test condition of servomotors. 

In group B, the control board was inside the unit in the 

chamber, and the servomotor was outside the chamber, which 

corresponds to the R and L shoulder rolls. The R shoulder roll 

was set to move right and left at a constant speed, and the L 

shoulder roll was set to maintain a constant angle. At the 

position where these servomotors were installed in the 

chamber, a dummy servomotor that was not connected to the 

power source was installed; the shoulder and body were fixed 

with an adhesive (CEMEDINE Super X) so that the angle of 

the arm did not change. The laboratory room temperature was 

set to 25 °C; by monitoring the power supply voltage of group 

B, it was possible to observe the change in the power supply 

part with respect to the normal environmental conditions of 

the servomotor.  

In group C, the control board and eight servomotors were 

placed inside the unit under HALT. The R shoulder pitch was 

set to move right and left at a constant speed, and the other 

servomotors were set to maintain a constant angle. It was 

possible to observe the change when the power supply part 

and the servomotor were simultaneously stressed by 

monitoring the power supply voltage of group C. Table 1 

summarizes the experimental conditions for groups A–C. 

Table 1 Test conditions for control boards and servomotors 

of the unit under HALT 

Group Control 

board 

position 

Servomotor 

positions 

Servomotors 

A Outside Inside Head, R Hand 

B Inside Outside R Shoulder Roll, L 

Shoulder Roll 

C Inside  Inside Others 

 

Visual inspection was performed during each step to identify 

anomalies in the motion of the unit. The voltages of the 

components were measured for all stress steps. A total of 15 

voltage points, 12 servomotors, a distance-measuring sensor, 

and an LED, as listed in Table 2, were monitored using a data 

collection system (National Instruments, NI9205). The 

sampling rate was 8000 samples/s (Sa/s). Further, the 

temperature was monitored for thermal, rapid thermal 

changes, and combination stress steps. The T-type 

thermocouples were placed close to the control board and the 

HALT chamber. In addition, acceleration was monitored 

during the vibration stress step; the accelerometers (ICP® 

accelerometer) were attached to the head, left shoulder, and 

right foot. The sampling rate of the thermocouples and 

accelerometers was 1 Sa/s. 

 

 

 

Table 2 Measurement points  

ID Measurement points 

1 Head 

2 Right Shoulder Roll 

3 Right Shoulder Pitch 

4 Right Hand 

5 Left Shoulder Roll 

6 Left Shoulder Pitch 

7 Left Hand 

8 Right Foot Yaw 

9 Right Foot Pitch 

10 Left Foot Yaw 

11 Left Foot Pitch 

12 Waist 

13 Distance measuring sensor (IN) 

14 LED 

15 Distance measuring sensor (OUT) 

 

2.3. Anomaly Detection for Servomotors 

The anomaly detection of the unit was performed using a 

machine learning algorithm (Pecht, 2009; Ide 2015). The unit 

was operated during HALT, and the functional test monitored 

all servomotors with a high sampling rate. It is difficult to 

identify anomalies attributed to stress steps using monitoring 

data. Machine learning techniques can provide useful 

information for outlier time-series data as anomaly scores. 

Anomaly detection based on measuring data is an effective 

approach for the prognostics of the unit. In this study, the k-

nearest neighbor algorithm (kNN) was employed to detect the 

anomaly of each servomotor (He and Wang, 2007; Nesreen 

et al. 2010; Tian, et al. 2015; Kang, et al. 2016). kNN provides 

a classification of the observed data with a distance to a 

training dataset. k represents the number of nearest neighbors 
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to be considered; the anomaly score of the i-th observed data 

is defined as (He and Wang, 2007)  

𝑎𝑖 = − ln 𝑘 + 𝑀ln𝜀 + 𝐵       (1) 

Here, M, ε, and B represent the dimension of the data, 

distance between the observed data and the k-nearest 

neighbors of the normal dataset, and a constant determined 

by the characteristics of the dataset, respectively.  

A sliding window technique was used to apply kNN to time-

series data. Assume a time-series dataset, 𝒟 = {𝜉1, 𝜉2, … , 𝜉𝑇  } 

with a length of T. A subsequence time-series data with a 

length of w was defined using a sliding window technique. 

𝒙1 ≡ (

𝜉1

𝜉2

⋮
𝜉𝑤

) , 𝒙2 ≡ (

𝜉2

𝜉3

⋮
𝜉𝑤+1

) , … , 𝒙𝑇−𝑤+1 ≡ (

𝜉𝑇−𝑤+1

𝜉𝑇−𝑤+2

⋮
𝜉𝑇

)     (2)  

The training dataset 𝒟tr and test dataset 𝒟 were prepared for 

the kNN; 𝒟tr did not contain any anomaly data. For 𝒟tr and 

𝒟, a subsequence time-series dataset was produced as shown 

in Eq. 2. For a subsequence time-series dataset 𝒙𝑡  of test 

dataset 𝒟, k-nearest subsequence datasets were searched in 

the training dataset 𝒟tr . The anomaly score was obtained 

from the Euclidean distance between 𝒙𝑡  and the k-nearest 

subsequence dataset.  

Further, anomaly detection was carried out using R, which is 

a free software environment for statistical computing and 

graphics. The package “rflann,” which provides the R 

interface to the Fast Library for Approximate Nearest 

Neighbors, was used (Muja, Lowe, and Yee, 2017). The 

package “ff” was also used to manage large data with fast 

access (Adler, et al. 2008). 

The data for the initial 4 s of the monitoring data were used 

as the training data for each servomotor. The variation in the 

initial anomaly scores was negligible. In this study, a simple 

method is used with k = 1. The sliding window length was set 

to 10, and k = 1. These parameters depend on the 

characteristics of the dataset and the computational 

performance. The score of each servomotor was calculated 

for each stress step. 

2.4. Anomaly Detection Between Servomotors 

The failure modes of the servomotor could be affected by the 

components of the servomotor and other servomotors. The 

Gaussian graphical model (GGM) is used to characterize the 

relationships among the servomotors. The measurement 

points summarized in Table 2 are represented as nodes, and 

the relationships among the measurement points are 

represented by the precision matrix. We used a graphical 

lasso estimator to obtain the precision matrix. The precision 

matrix Λ can be obtained by maximizing  

log detΛ − tr(SΛ) − 𝜌‖Λ‖1,  (3) 
 

where S represents the sample covariance matrix and 𝜌 

represents the regularization parameter. Further, the R 

package “glasso” is used for implementing a graphical lasso. 

The anomaly score for GGM is defined as the change in the 

structure of the graph. The precision matrix changed when 

the servomotors exhibited anomalous behaviors. Changes in 

the precision matrix were assessed as anomaly scores by the 

Kullback–Leibler (KL) divergence. An anomaly score of the 

i-th observed data is expressed by 

𝑎𝑖 = 𝝈A
⊤(𝝀B − 𝝀A) +

1

2
{

𝝀B
⊤Σ̂A𝝀B

λB

−
𝝀A

⊤Σ̂A𝝀A

λA

} + ⋯ 

          … +
1

2
{ln

𝜆A

𝜆B
+ 𝜎A(𝜆B − 𝜆A)}.                                    (4)  

Here, subscripts A and B represent the training dataset and 

test dataset, respectively. 𝜆A  and 𝝀A  are the i-th diagonal 

component and row off-diagonal component vector of the 

precision matrix, respectively. Further, 𝜎A and 𝝈A are the i-th 

diagonal component and row off-diagonal component vector 

of the covariance matrix, respectively. Λ̂A and Σ̂A are defined 

as parts of the following modified precision matrix ΛA.  

ΛA = (
Λ̂A 𝝀A

𝝀A
⊤ 𝜆A

) , ΛA
−1 = (

Σ̂A 𝝈A

𝝈A
⊤ 𝜎A

) .  (5) 

 

Anomaly detection was conducted in the same manner as 

kNN in Section 2.3. 

3. RESULTS OF HALT 

3.1. Cold Stress Step 

Servomotors in the chamber (groups A and C) showed 

anomalies during the cold-stress step. The initial positions of 

their shafts were observed to shift at –70 °C and in the 

direction of +15°. The output voltages for groups B and C 

servomotors were unstable at –70 °C. Further, the servomotor 

of the L Shoulder Pitch was unstable below − 10 °C; the 

lower limit was set to − 70 °C. When the chamber returned to 

room temperature, Groups A and B worked normally, which 

implies the failure was a soft failure, and the lower limit was 

set as the lower operating limit. 

3.2. Heat Stress Step 

The behavior of servomotors during the heat stress step was 

similar to that during the cold stress step. The shaft of the 

servomotors in groups A and C began to shift to more than 

40 °C, and the initial position of the shaft shifted in the 

direction of +9° at 80 °C. The heat stress step test was 

completed at 80 °C because of the heat resistance of the 

exterior resin of the unit. The servomotors worked normally 

when the chamber returned to 30 °C. The upper limit was set 

to 80 °C as the upper limit of operation. 
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3.3. Rapid Thermal Change Step 

The rapid thermal change step was performed between − 60 

°C and 70 °C. The lower and upper temperatures were 

determined from the lower and upper limits presented in 

Sections 3.1 and 3.2. Similar behaviors to the cold and heat 

stress steps were observed, and the visual inspection did not 

reveal anomalous behavior. 

3.4. Vibration Stress Step 

The visual inspection revealed no functional failure during 

the vibration stress step. The unit is not fixed to the shaking 

table directly because a function of the unit includes walking. 

Then, the 6 DoF vibration did not work as a stress to the unit. 

The vibration stress step was completed at 60 Grms, which is 

the limit of the HALT system used. The vibration limit (VL) 

was set to 60 m. 

3.5. Combined Stress Step 

The combined stress step was performed with five thermal 

cycles between − 60 °C and 70 °C. The maximum vibration 

level was set to 60 ms, and the increase in each step was set 

to 12 m. The shafts of groups A and C servomotors shifted as 

observed during the cold and heat stress steps. However, no 

functional failure occurred until the five combined cycles 

were completed.  

4. ANOMALY DETECTION OF SERVOMOTORS 

4.1. Anomaly Scores of Each Servomotor by kNN 

Anomaly scores under the cold stress step using the kNN 

algorithm are shown in Figure 4. The anomaly score was 

smoothed using the moving-average technique; the interval 

of the moving average was set to 1000. Further, the anomaly 

scores increased with decreasing temperature. In all cases, the 

score increased drastically after –70 °C. The score of the R 

hand (group A) was lower than that of the L shoulder roll 

(group B) and L shoulder pitch (group C). The score of the L 

Shoulder Pitch was increased to over 0.02 at –70 °C, and 

these values were greater compared to those of groups A and 

B. Group A servomotors were controlled by a controller 

outside the HALT chamber, and group B servomotors were 

outside the HALT chamber, as shown in Figure 3. This 

implies that both the controllers and servomotors were 

stressed by decreasing temperature. The value of the anomaly 

score depended not only on the servomotor but also on the 

control board.  

 

(a) R Hand (Group A) 

 

(b) L shoulder roll (Group B) 

 

(c) L shoulder pitch (group C). 

Figure 4 Anomaly scores of k-nearest neighbor algorithm 

under cold stress step. Dashed lines indicate temperature 

profiles. 
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(a) R Hand (Group A) 

 

(b) L shoulder roll (Group B) 

 

(c) L shoulder pitch (Group C) 

Figure 5 Anomaly scores of k-nearest neighbor algorithm 

under heat stress step. Dashed lines indicate the temperature 

profiles. 

Anomaly scores under the heat-stress step are illustrated in 

Figure 5. Anomaly scores increased with increasing 

temperature; the score of the R Hand (group A) was relatively 

low compared with those of the servomotors in groups B and 

C. The score of the L Shoulder roll drastically increased at 70 

and 80 °C. The peak value was increased to over 0.1 and 

higher than that of L Shoulder pitch (group C). The group B 

servomotors were outside the chamber. This implies that the 

interaction between the servomotor and controller is 

significant and cannot be overlooked. The score of heat-stress 

step was less than that under the cold stress step. Further, the 

cold stress step was a severe condition for the servomotors 

and the control board. 

Anomaly scores during the rapid thermal change step are 

shown in Figure 6; the scores increase at lower temperatures. 

A drastic increase is observed in the scores when the 

temperature changes from lower to upper, as shown in Figure 

6(a). The score gradually increased at the upper temperature. 

Further, the score decreased when the temperature was 

changed from upper to lower. The score of the R Hand (group 

A) was higher than those of groups B and C when the 

temperature changed from lower to upper limits. The lack of 

data observed during the rapid thermal change step was 

attributed to problems in the data collection system. 

However, this lack of data was not defined as an anomaly 

event due to HALT because the visual inspection did not 

indicate an anomaly in the motion of the servomotors.  

Anomaly scores under the vibration stress step are shown in 

Figure 7. The score was relatively low compared to the scores 

for cold, heat, and rapid thermal change steps. The anomaly 

scores under the combined stress step are shown in Figure 8. 

The trends of these scores are similar to those under the rapid 

thermal change step, as shown in Figure 6.  

 

(a) R Hand (Group A) 

 

(b) L shoulder roll (Group B) 
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(c) L shoulder pitch (group C). 

Figure 6 Anomaly scores of k-nearest neighbor algorithm 

under rapid thermal stress step. Dashed lines indicate the 

temperature profiles. 

 

 

(a) R Hand (Group A)  

 

(b) L shoulder roll (Group B) 

 

(c) L shoulder pitch (group C). 

Figure 7 Anomaly scores of k-nearest neighbor algorithm 

under vibration stress step. Dashed-dot lines indicate 

acceleration profiles. 

 

(a) R Hand (Group A) 

 

(b) L shoulder roll (Group B) 
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(c) L shoulder pitch (Group C) 

Figure 8 Anomaly scores of k-nearest neighbor algorithm 

under combined stress step. Dashed and dashed-dot lines 

indicate temperature and acceleration profiles, respectively. 

When servomotors were inside the HALT chamber, shaft 

deviation was observed at the upper and lower temperatures; 

shaft deviation depends on the specifications of the 

servomotor such as the thermal time constant. On comparing 

groups A and B, when the controller was stressed in the 

chamber (group B), the anomaly score was higher than that 

of group A. When the servomotor and the controller were 

inside the chamber (group C), the anomaly score was similar 

to that of group B; this implies the anomaly of the controller 

is dominant at the upper and lower temperatures.  

Although the inspection did not find anomalous behavior, the 

k-NN algorithm could identify different failure modes of 

servomotor drive systems under rapid thermal change steps. 

Further, the anomaly scores for the rapid thermal change and 

combined stress steps showed different trends from those for 

the cold/heat stress steps. The highest score was observed in 

group A when the temperature changed from lower to upper. 

Scores of groups B and C depended on the controllers in the 

HALT chamber because the controllers of groups B and C 

were subjected to stresses caused by HALT.  

Training data for kNN were obtained from the initial data at 

the beginning of each step. An increase in the score depended 

on the upper and lower temperatures. The increase in the 

score of group A depended on the servomotor; the score 

increased with a rapid change in temperature. Thus, a 

possible cause of anomalous behavior during rapid 

temperature changes depends on thermo-mechanical stresses. 

When temperature changes, mechanical stresses are 

generated because of the deformation mismatch between the 

materials. A precise machine component such as a 

servomotor can be affected by rapid thermal changes.  

The vibration stress step did not identify a failure mode 

because the unit was not directly fixed to the shaking table. 

Accelerations in the unit were lower than the acceleration of 

the shaking table. Thus, the anomaly score by kNN under 

vibration stress did not show a significant increase.  

4.2. Anomaly Behavior Between Servomotors by 

Gaussian Graphical Model  

As shown in the previous subsection 4.1, the interaction 

between the servomotors and controller cannot be 

overlooked. Gaussian graph models were constructed using 

15 measurement points as summarized in Table 2. Figure 9 

shows the Gaussian graphical models observed under the 

cold stress step. The regularization parameter 𝜌 was set to 

0.75. At the beginning of the cold step, as shown in Figure 

9(a), there are two clusters of servomotors (X1–X12) and 

sensors (X13–X15). Figure 9(b) shows the graph model at –

70 °C of the cold stress step, where a soft failure is observed 

as mentioned in Section 3. Two servomotors of the head (X1) 

and right hand (X4) in group A are connected and separated 

from groups B and C. The change in the topology of the graph 

implies that the interaction between components also 

changed.  

The change in the topology of the graph was assessed as 

Kullback–Leibler divergence. The anomaly score obtained 

by KL is plotted in Figure 10. The score of the L shoulder 

pitch (group C) increased at –50 °C. The score by kNN in 

Figure 4 increased gradually with a change in temperature, 

and it reached a peak value at –70 °C. The KL score showed 

an anomalous behavior before that of the kNN. The R Hand 

(Group A) was not sensitive to anomalous behaviors. The 

score of the L Shoulder Roll (Group B) dropped at –60 °C 

and increased again at –70 °C. The KL accumulates changes 

in the correlation between the variable of interest in the GGM 

and all variables that have a direct correlation. Therefore, the 

greater the number of variables that are directly correlated 

with the variable of interest, the greater is the cumulative 

change and the greater is the degree of anomaly. The KL 

score was sensitive to the change in the interaction between 

servomotors, and it could provide earlier warnings before the 

observed failure. 
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(a) Initial state 

 

(b) –70 °C 

Figure 9 Gaussian graphical models at the cold stress step. 

 

(a) R Hand (Group A) 

 

(b) L shoulder roll (group B) 

 

(c) L shoulder pitch (Group C) 

Figure 10 Anomaly score of Kullback–Leibler divergence 

under the cold stress step. 

5. CONCLUSIONS 

Voltages from electronic products subjected to HALT were 

measured using a kNN machine learning algorithm to detect 

not only anomalous behavior, but also the onset of anomalies. 

An anomaly score (metric) based on the time-series training 

data for each servomotor was calculated, and subsequence 

time-series data were defined using a sliding window 

technique and compared with the training data. This approach 

was verified through voltage monitoring and inspection.  

The anomaly score can be used as the precursor of the failure 

modes for both the controller and the servomotor. In this 

study, servomotors were classified into three groups to 

analyze the failed components of the system. When the 

control circuit board was inside the HALT chamber (groups 

B and C), the anomaly score increased to over 0.2 and 0.1 

during the cold and heat steps, respectively. However, when 

the control circuit board was outside the HALT chamber, 

anomalous behavior attributed to the servomotors was 

observed during the rapid thermal change and combined 

stress steps. These observations show that the anomalous 

behavior of the servomotors can be classified in part by the 

degree of thermal change. When both components were in the 

HALT chamber (group C), the trend of the anomaly score 

was like that of group B, wherein the control circuit board 

was subjected to HALT. An anomaly score of group C was 

higher than that of group B, which suggests that the anomaly 

score of group C included the anomalous behavior of both the 

servomotor and the control board.  

In this study, the operating limit was defined by inspection 

(e.g., the deviation from the initial position of the shaft); 

however, the anomaly score increased before the operating 

limit. For example, although the cold stress step stopped at –

70 °C based on the inspection of the voltage fluctuation of the 

servomotor and the physical observation of the shaft, the 

anomaly score increased to over 0.1, starting at–60 °C. Thus, 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

11 

the kNN algorithm indicated anomalous behavior prior to the 

physical observation of an anomaly.  

Finally, the anomalous behavior between the components 

was assessed based on the change in the graph using a 

Gaussian graphical model. When a soft failure was observed 

at the operating limit of the cold stress step, the Gaussian 

graph indicated that the components for which the control 

board outside the HALT chamber (Group A) were isolated. 

The changes in the Gaussian graph were assessed as anomaly 

scores using KL divergence. The KL score increased to over 

0.2 at –50 °C, which was earlier than that observed by the 

kNN algorithm at –60 °C. This implies that the relationship 

between the components aids in the early detection of 

anomalies in servomotors. 
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