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ABSTRACT

This paper presents a diagnostics-oriented aging model for
combined Selective Catalytic Reduction (SCR) and Ammo-
nia Slip Catalyst (ASC) system, along with a model-based
on-board diagnostic (OBD) method applied to both test-cell
data and on-road data from commercial trucks. The key chal-
lenge with model development was unavailability of NOx and
NH3 measurements between SCR and ASC. Since it would
have been very difficult to calibrate both SCR and ASC dy-
namics without any measurements between SCR and ASC,
therefore ASC was modeled using static look-up tables to
determine ASC’s NH3 conversion efficiency and its selectiv-
ity to NOx and N2O as a function of temperature and flow
rate. The traditional three-state single-cell ordinary differen-
tial equation (ODE) model was used for SCR. Hot Federal
Test Procedure (hFTP) was used to calibrate the model. Cold
FTP (cFTP) and Ramped Mode Cycle (RMC) were used for
validation. Results show that the SCR-ASC model can cap-
ture the aging signatures in tailpipe NOx, NH3, and N2O rea-
sonably well for cFTP, hFTP, and RMC cycles in the test-
cell data. After slight re-calibration and combining with a
simple model for commercial NOx sensor’s cross-sensitivity
to NH3, the model works reasonably well for on-road data
from commercial trucks. A model-based on-board diagnos-
tic (OBD) method has been presented with enable conditions
designed to detect operating conditions suitable for detecting
aging signatures, while minimizing false positives and false
negatives. The OBD method is applied to both test-cell and
real-world truck data with commercial NOx sensors. Results
on test-cell data demonstrate the challenges of robust SCR
monitoring even on the limited data set used in this work.
The model-based enable conditions are shown to be robust
but extremely restrictive as the OBD gets enabled at very few
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points in the test-cell data. Application on truck data showed
that the proposed OBD method can be implemented on com-
mercial trucks with limited sensors. In the truck data, the en-
able conditions were satisfied on many more points than the
test-cell data. Results on truck data show encouraging trends
between relative degradation level and the number of miles
on four trucks. In future work, these trends will be validated
using more data from commercial trucks with known aging
levels.

1. INTRODUCTION

Selective Catalytic Reduction (SCR) and Ammonia Slip Cat-
alyst (ASC) are important components of the diesel engine
aftertreatment. SCR reduces the engine-out NOx into harm-
less N2 and H2O using NH3, which is injected into the system
as Diesel Exhaust Fluid or DEF. ASC is responsible for oxi-
dizing SCR-out NH3. Thus, the SCR-ASC system minimizes
tailpipe NOx and NH3 emissions.

A major challenge with the SCR-ASC system is degradation
or aging of the SCR catalyst with time, which leads to an
increase in tailpipe NOx emissions. Therefore, it is impor-
tant for diesel-engine vehicles to be equipped with effective
model-based on-board diagnostics (OBD), which can monitor
and report catalyst degradation before it degrades beyond ac-
ceptable levels. An important step towards designing model-
based OBD is to develop a diagnostics-oriented model for
SCR-ASC.

To the best of the authors’ knowledge, most existing ag-
ing models and diagnostic strategies have only been demon-
strated in simulation. A few that have demonstrated hardware
results have used a catalyst that was aged in a controlled envi-
ronment through accelerated hydrothermal aging. Also, most
existing diagnostics-oriented models have not considered the
presence of ASC. These gaps are elaborated as follows:
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1. On-road vs test-cell/simulations: Environmental
Protection Agency (EPA) and California Air Resource
Board (CARB) have rigorous and effective test-cell rou-
tines to certify vehicles. However, their findings, from
logging over a month’s on-road OBD data from 68
trucks, show that there is significant discrepancy between
real-world and test-cell emissions (Emissions Compli-
ance & Science Division, 2018 (accessed Nov 30, 2021))
(Romijn & Kumar, 2018 (accessed Nov 30, 2021))
(“CARB approves heavy-duty OBD amendments, adopts
REAL NOx and CO2 tracking”, 2018 (accessed Nov 30,
2021)). This challenge is also reflected in the academic
literature, cited later in this section, where most aging
models and diagnostic strategies have only been demon-
strated in simulation. A few that have demonstrated
hardware results have used a catalyst that was aged in
a controlled environment through accelerated hydrother-
mal aging. Although this is a good simulation, it is still
not a perfect replication of on-road aging.

2. Intrusive vs non-intrusive: There are patents from
industry that have proposed diagnostic algorithms de-
signed to work under on-road conditions. However, most
of these algorithms are intrusive. Since the most recent
regulations contain stringent restrictions on intrusive di-
agnostics, it is important to develop non-intrusive meth-
ods that can work under on-road conditions.

3. Commercial aftertreatment system: To the best of our
knowledge, most existing literature has not considered
the presence of ASC or absence of tailpipe NH3 sensors
in commercial aftertreatment systems. Therefore, diag-
nostic algorithms that can monitor the SCR-ASC system
using a commercial tailpipe NOx sensor must be devel-
oped.

Our objective is to contribute towards filling the aforemen-
tioned gaps by developing model-based non-intrusive diag-
nostics for SCR-ASC that can work with commercial NOx
sensors.

Cummins Inc. has generously provided on-road data for four
trucks, and test-cell data for cold FTP, hot FTP, and Ramped
Mode Cycle (RMC) for degreened and aged catalysts. The
first task in the project is to develop diagnostics-oriented ag-
ing models for SCR-ASC using test-cell data, which will
then be used to develop the model-based on-board diagnos-
tic method.

A very popular approach to model catalyst degradation is to
scale some parameter in a control-oriented SCR model by an
“aging factor”. The aging factor decreases from 1 for a de-
greened catalyst to, say 0.5, for a catalyst at end-of-useful-
life (EUL). This aging factor can then be estimated using a
model-based estimator to monitor catalyst degradation. Pa-
pers from Junmin Wang’s research group have modeled ag-
ing by scaling the catalyst NH3 storage capacity, which is es-

timated using a Lyapunov-based nonlinear observer to report
catalyst age (Chen & Wang, 2016; Ma & Wang, 2017). Both
the aging model and the observer in these papers are based
on the four-state model in (Hsieh, 2010) and (Devarakonda,
Parker, Johnson, Strots, & Santhanam, 2008). Schär et al. in-
troduced the popular three-cell three-state model for SCR in
(Schär, Onder, Geering, & Elsener, 2004). Using this model,
Hu et al. simulated catalyst degradation by scaling the NOx
reduction rate (Hu, Zeng, Wei, & Yan, 2017). In another pa-
per, they scaled the NH3 storage capacity, which is estimated
using an Extended Kalman Filter (EKF) (Hu, Zeng, & Wei,
2018). Stadlbauer et al. scaled the NH3 adsorption reaction
rate in Schär et al’s model to capture catalyst degradation.
The two-cell three-state model by Upadhyay et al. is another
popular control-oriented model for urea-SCR (Upadhyay &
Van Nieuwstadt, 2002). Jiang et al. have modeled aging by
scaling the NH3 storage capacity in Upadhyay et al’s model.
Degradation is reported by estimating the storage capacity us-
ing Unscented Kalman Filter (UKF) (Jiang, Yan, & Zhang,
2019). It should be noted that none of these aging models
have been validated on an actual aged catalyst yet. Simula-
tion results for all the observers show good performance for
aging factor estimation. It should be noted that the observers
in all these papers rely on accurate tailpipe NOx and NH3

feedback, except (Ma & Wang, 2017), who have presented
an additional observer that can work with just tailpipe NOx
feedback.

Instead of capturing age through a single parameter, an al-
ternate approach is to perform separate calibrations for de-
greened and aged catalysts as done in (Surenahalli, 2013).
This resulted in different values for all parameters across de-
greened and aged catalysts.

Recent publications, by Daya et al. from Cummins Inc., on
high-fidelity aging models report that there are various types
of active sites where NH3 storage happens: Bronsted acid
sites, Cu sites and physisorbed NH3 sites. Since the impact
of aging on reaction rates and density of active sites could
be different for different sites, it is recommended that at least
two sites should be used in aging models (Daya et al., 2020;
Daya, Desai, & Vernham, 2018).

Matsumoto et al. have published the most promising paper on
SCR OBD so far as it presents an OBD method that consid-
ers the presence of ASC, works with the commercial tailpipe
NOx sensor, and is demonstrated for real-world driving con-
ditions (Matsumoto, Furui, Ogiso, & Kidokoro, 2016). A
two-cell SCR model and a single-cell ASC model are cal-
ibrated individually using SCR-in, SCR-out, and ASC-out
measurements. Both SCR and ASC models are Differential
Algebraic Equation (DAE) models, except that a discretized
equation is used to calculate NH3 storage and the equations
for tailpipe NOx and NH3 are slightly different from the com-
mon Continuous Stirred Tank Reactor (CSTR) assumption-
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based equations. Each reaction is calibrated individually us-
ing steady-state tests. The SCR-ASC model is calibrated
for both fresh and aged catalysts. The fresh and aged cat-
alyst models are used to calculate the worst acceptable per-
formance (highest possible value that could be reported by
tailpipe NOx sensor for a good catalyst) and the best unac-
ceptable performance (lowest possible value that could be re-
ported by tailpipe NOx sensor for an aged catalyst), respec-
tively at each operating point. OBD is enabled only when
the tailpipe NOx sensor value for the best unacceptable per-
formance is more than that for the worst acceptable perfor-
mance by a threshold. The OBD can only do binary classi-
fication. It can not report multiple aging levels. The OBD
is shown to work with reasonable In-Use Performance Mon-
itor Ratio (IUMPR) for the New European Driving Cycle
and about ten other driving patterns which customers actu-
ally drive. IUMPR is defined by the California Air Resources
Board (CARB) as the ratio of the number of times the OBD,
also referred to as the “diagnostic monitor” or “monitor”,
is active during vehicle operation to the number of “driving
events” during vehicle operation. In the context of IUMPR,
CARB defines a “driving event” as a trip that begins either
with an engine start or at the end of a four-hour-long contin-
uous engine-on operation, and ends with either engine stop
or after four hours of continuous engine-on operation. The
workflow in this paper is very similar to our project. How-
ever, an additional challenge for us is that we don’t have ac-
cess to SCR-out measurements. Also, the aged catalyst in this
work was prepared via accelerated aging in an electrical fur-
nace, whereas the aged catalyst in our work degraded on the
road.

To summarize, most existing literature on SCR diagnostics
have either shown results on simulation or on test-cell data
with hydrothermally aged catalyst in the lab. The key con-
tributions of this paper are:

1. Observations about the effects of real-world catalyst
degradation on tailpipe NOx, NH3, and N2O are pre-
sented based on data from test-cell experiments on a de-
greened and an aged catalyst, which degraded to end-of-
useful-life (EUL) on the road.

2. Insights from the test-cell data and observations from on-
road truck data are then used to describe challenges with
designing model-based on-board diagnostics that could
work for the aftertreatment system on commercial trucks.

3. A novel diagnostics-oriented SCR-ASC model is pre-
sented, which is shown to work reasonably well, for the
purpose of model-based OBD, for both test-cell data and
on-road data from commercial trucks. The model is cal-
ibrated on the hot FTP cycle and validated on the cold
FTP and RMC cycles in test-cell data. After slight re-
calibration and combining with a simple model for NOx
sensor’s cross-sensitivity to NH3, the model works rea-

sonably well for the purpose of model-based OBD on the
truck data as well.

4. A complete model-based OBD method is presented with
model-based enable conditions designed to detect operat-
ing conditions suitable for diagnostics, while minimizing
false positives and false negatives due to model uncer-
tainties and NOx sensor’s cross-sensitivity to NH3. The
method was applied to both test-cell data and real-world
truck data with commercial NOx sensors. The method
is shown to be robust to cross-sensitivity but the enable
conditions are very restrictive as they are satisfied at very
few points in the test-cell data. The method is shown
to be implementable on commercial trucks with limited
sensors and the results on truck-data are encouraging but
could not be validated yet as the aging levels of the cata-
lysts on these trucks are unknown.

The paper is organized as follows. First, the important details
and observations from the test-cell and truck data are pre-
sented. Based on these, the model requirements are laid out,
which is followed by a detailed description of SCR and ASC
model development, calibration, and validation. The paper
concludes with results from applying model-based OBD on
both test-cell and truck data as foundation for future work.

2. DATA

2.1. Test-cell Data

The test-cell data for this paper consists of four data-sets.
These data-sets contain emissions data for a degreened (DG)
and an end-of-useful-life (EUL) aftertreatment system, for
three drive cycles: 1) Cold Federal Test Procedure (cFTP),
2) Hot Federal Test Procedure (hFTP), and 3) Ramped Mode
Cycle (RMC). The key components of the aftertreatment sys-
tem are Diesel Oxidation Catalyst (DOC), Diesel Particulate
Filter (DPF), SCR, and ASC. Each data-set contains the fol-
lowing measurements: Engine torque; Engine speed; Diesel
Exhaust Fluid (DEF) injection rate; Engine-out NOx; DOC-
out NO, NO2; Tailpipe NOx, NH3, N2O; DOC-in, DOC-out,
SCR-in, ASC-out temperature; Exhaust flow rate. The ex-
haust layout, with the sensors available in test-cell, is shown
in Figure 1. Table 1 shows the dimensions of the exhaust
components.

Figure 1. Exhaust layout with the sensors available in test-
cell
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DOC DPF SCR ASC
Diameter (in) 13 13 13 13
Length (in) 4 7 9.5 2

Table 1. Dimensions of the key aftertreatment components in
Cummins aftertreatment system used in this work.

2.1.1. Comparing operating conditions across drive cy-
cles

Figure 2 shows the SCR-inlet quantities for cFTP, hFTP, and
RMC cycles.

Figure 2. Input signals for the three drive cycles (all signals
are normalized by dividing by their maximum value across
the three drive cycles).

Some observations regarding the operating conditions across
the three drive cycles are as follows:

1. SCR-bed temperature: hFTP has higher temperature
than cFTP during the first 600 seconds and both have
identical temperature after 600 seconds. RMC has higher
temperature than both cFTP and hFTP throughout the cy-
cle.

2. Engine-out (EO) NOx and Exhaust Flow Rate: Both
cFTP and hFTP cycles have transient changes in en-
gine torque and speed, which lead to transient engine-
out NOx and exhaust flow rate. Engine-out NOx and
flow rate are identical for cFTP and hFTP throughout
the cycle. RMC has step changes in engine torque and
speed, leading to step changes in engine-out NOx and

flow rate. The range of engine-out NOx and flow rate is
similar across the three cycles

3. Urea Dosing: Four distinct observations were made
about urea-dosing profiles for cFTP and hFTP cycles
across different time ranges. From t = 0 to t = 424 sec,
there is zero DEF dosing for cFTP unlike hFTP, which
has non-zero dosing. From t = 424 to t = 520 sec, cFTP
has higher dosing than hFTP. From t = 520 to t = 600
sec, a distinct step DEF dosing profile is observed for
both cFTP and hFTP at different times. In the last phase
beyond t = 600 sec, both cFTP and hFTP have almost
the same dosing profile. RMC again has step changes
in urea dosing, but the range is similar to the two FTP
cycles.

4. Initial NH3 storage: The exact amount of NH3 at the
start of each cycle is not known. However, the following
protocol was followed for the three cycles:

• FTP Cycles: Run two cycles of running a prepara-
tion FTP followed by a 20-minute soak. This is fol-
lowed by another preparation FTP, followed by an
overnight cold soak. The next FTP cycle is labeled
as cFTP. This is followed by another soak 20-minute
soak, and the FTP after that is labeled as hFTP.

• RMC Cycle: A preparation RMC is followed by
the measured RMC.

2.1.2. Aging Signatures

The aged catalyst in the test-cell data was assumed to be de-
graded to EUL level on the road. As shown in Figure 3,
both degreened and EUL aftertreatment systems were oper-
ated under the exact same operating conditions for each cy-
cle. Therefore, the difference in DOC-out and tailpipe (TP)
signals can be attributed to aging. And these differences in
DOC-out and tailpipe signals due to aging are called aging
signatures.

The following aging signatures were observed in the test-cell
data:

1. DOC-out NO, NO2: Engine-out NOx is rich in NO,
leading to an NO2/NO ratio less than 1. Since SCR’s
deNOx efficiency improves if NO2/NO ratio is close to
1, DOC’s job is to oxidize NO to NO2. Aftertreatment
aging leads to a decline in DOC performance, which de-
creases the DOC-out NO2/NO ratio. This was clearly
observed for all three cycles as shown in Figure 4.

2. Tailpipe N2O: Figure 5 shows tailpipe N2O for the three
cycles. EUL catalyst produced significantly higher N2O
than degreened for cFTP and hFTP, from around 600 sec
to 1000 sec. This could be because of higher SCR-out
NH3 slip from the EUL catalyst, during those times, that
gets converted to tailpipe N2O by the ASC. Both cata-
lysts produced almost identical amount of tailpipe N2O
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Figure 3. Input signals for both degreened and EUL catalysts
for the three drive cycles.

for the RMC cycle, with degreened catalyst producing
slightly higher N2O than EUL.

3. Tailpipe NH3: Tailpipe NH3 slip for all three cycles was
very low because of the presence of ASC. As shown in
Figure 6, hFTP showed slightly higher NH3 slip (around
5 ppm) for the EUL catalyst.

4. Tailpipe NOx: Aging is expected to cause a decline in
SCR performance, leading to lower deNOx or higher
tailpipe NOx. However, the test-cell data showed that
tailpipe NOx for the EUL catalyst may not be higher than
the degreened catalyst at all times. Only five segments of
data, shown in Figure 7, across the three cycles, showed
reasonably higher (>10 ppm) tailpipe NOx for the EUL
catalyst.

Following are the key take-aways from these observations:

1. The effect of aging on DOC performance is evident from
the smaller DOC-out NO2/NO ratio for the EUL catalyst
across the three cycles.

2. The decline in SCR performance due to aging is expected
to result in an increase in tailpipe NOx and NH3 slip.
However, due to the presence of ASC, tailpipe NH3 stays
low at all times and the increase in SCR-out NH3 slip
manifests through an increase in tailpipe N2O.

3. Only five aging signatures in tailpipe NOx, i.e. reason-
ably higher (>10 ppm) tailpipe NOx for the EUL cat-
alyst than the degreened catalyst, across the three drive
cycles demonstrate that not all operating conditions will
reveal the catalyst age. This establishes the importance

Figure 4. DOC-out NO2/NO for both degreened and EUL
catalysts for the three drive cycles.

of picking the right operating conditions to enable the
diagnostics algorithm.

2.2. Truck Data

The truck data consists of four “day-files”. Each day-file
has on-road data collected using commercial on-board sen-
sors during 24-hour drive of a truck. The four day-files are
for four different trucks with 271k, 422k, 484k, and 711k
miles on them. Each day file contains several measurements
such as: Engine torque; Engine speed; Truck speed; Cruise-
control information; DPF-regeneration information; Diesel
Exhaust Fluid (DEF) injection; Engine-out NOx; Tailpipe
NOx; DOC-in, SCR-in, ASC-out temperatures; Exhaust flow
rate. The aftertreatment system on these trucks is same as the
one used to collect test-cell data. The exhaust layout, with the
sensors available on these trucks, is shown in Figure 8.

2.2.1. Operating conditions

Figure 9 shows a 7-minute segment of truck data. Differences
in accelerator pedal position, altitude, and ambient tempera-
ture demonstrate that each driver has their own driving style,
and every truck could be driven under different road, traffic,
and weather conditions. Therefore, the operating conditions
vary significantly across the four trucks.

Table 2 lists the minimum, maximum, and average values of
engine-out NOx, exhaust flow, temperature and urea dosing
over the entire day file for each truck. Notice that the average
values of exhaust flow rate and temperature are very similar
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Figure 5. Tailpipe N2O for degreened and EUL catalysts for
the three drive cycles.

across the four trucks, but the ranges and average values of
engine-out NOx and urea dose vary across the four trucks.

Truck 1 Truck 2 Truck 3 Truck 4

EO NOx
(ppm)

min 0 0 0 0
avg 403 408 573 490
max 1371 1203 2237 1647

Flow Rate
(m3/sec)

min 0 0 0 0
avg 0.35 0.27 0.35 0.30
max 0.61 0.65 0.77 0.67

SCR Bed
Temperature

(oC)

min 50 72 44 113
avg 244 243 253 241
max 314 557 354 374

Urea Dose
(ml/sec)

min 0 0 0 0
avg 0.34 0.25 0.44 0.34
max 2 1.5 2 1.8

Table 2. Summary of operating conditions across the four
trucks.

Since the inputs to the aftertreatment are unique for each
truck, it is more challenging to attribute differences in tailpipe
signals to aging as compared to the test-cell data.

2.3. Test-cell data vs Truck data

This section will compare some key aspects of the truck
and the test-cell data and their implications for model-
development and diagnostics:

1. Aging signatures In test-cell data, the two catalysts
are clearly labeled as degreened and end-of-useful-life,

Figure 6. Tailpipe NH3 for degreened and EUL catalysts for
the three drive cycles.

whereas the aging levels on the four trucks are unknown.
Also, the test-cell data has experiments where degreened
and aged aftertreatment were run under identical operat-
ing conditions. Therefore, unlike truck data, differences
in tailpipe signals for the two catalysts in test-cell data
can be attributed to aging. Therefore, the test-cell data is
more suitable for developing a model to capture aging.

2. Available signals: The test-cell data has DOC-out NO,
NO2, TP NH3, TP NOx, and TP N2O signals as com-
pared to just the TP NOx signal in the truck data. It was
shown in Subsection 2.1.2 that there are operating con-
ditions where only a subset of these signals show aging
signatures. Therefore, the test-cell data gives more in-
sight about the effects of aging as compared to the truck
data.

3. Commercial NOx sensors vs FTIR: Test-cell data has
measurements from FTIR sensors, as opposed to the
commercial NOx sensors in the truck data. Since the
commercial NOx sensors have several limitations such
as lower accuracy, cross-sensitivity to NH3, and inabil-
ity to operate below the light-off temperature, the FTIR
measurements provide a more complete and cleaner data
for modeling.

4. On-road vs In-Lab Conditions: Given the challenges
with truck data, the test-cell data is clearly more suitable
to build a model from scratch. However, the truck data
provides great insights about the challenges posed by on-
road conditions. These insights have played a key role in
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Figure 7. Aging signatures observed in tailpipe NOx for the
three drive cycles. Note that the three subplots for hFTP,
shown on the left side, are zoomed in sections from the same
test.

Figure 8. Exhaust layout with the sensors available on com-
mercial trucks.

laying down the modeling requirements, which will be
discussed in the next section.

3. THE SCR-ASC MODEL

3.1. Model Requirements

In this work, the model has been developed to primarily meet
the following requirements:

1. Accuracy requirement: The model in this work is in-
tended to be used for developing model-based diagnostic
algorithm(s). To avoid false positives and false negatives,
it is important to pick the right operating conditions to ac-
tivate the diagnostic algorithm. Therefore, unlike a con-
troller, a diagnostic method would not be running at all
times and the model doesn’t need to be accurate during
operating conditions when the OBD would not be run-
ning.
The model needs to be at its most accurate during oper-
ating conditions that are suitable for diagnostics such as
the ones where we can see a clear aging signature, i.e.

Figure 9. Segment of truck data showing differences in driv-
ing style and ambient conditions across the four trucks.

reasonable difference between EUL and degreened cata-
lysts, for tailpipe NOx. But even under these operating
conditions, the model doesn’t need to capture the data
accurately at each time-stamp of a drive cycle. Instead,
the key requirement from a diagnostics-oriented model
would be to capture the general trends in the tailpipe sig-
nals that occur as a result of aging.

2. Ability to run with commercial sensors: Apart from
exhaust gas flow rate and temperature, commercial
trucks only have engine-out and tailpipe NOx measure-
ments. Therefore, it must be possible to run the model
with just those measurements.
Even though aging signatures were observed in DOC-out
NO and NO2 signals, DOC-out NOx will be used as the
input to the model. This is because DOC-out NO and
NO2 signals are not available in commercial trucks, and
a DOC model will be required to calculate DOC-out NO
and NO2. Since the focus of current work is SCR+ASC,
the DOC dynamics will not be taken into account at this
stage.
Also, the outputs from the SCR+ASC model would be
tailpipe NOx, NH3, and N2O concentration as these mea-
surements are available in the test-cell data, and will be
used to calibrate and validate the model. However, only
the tailpipe NOx values will be used when testing the
model on data from commercial trucks.

Model Objective: To summarize, the primary objective is to
develop a diagnostics-oriented model for SCR+ASC that can
capture aging signatures observed in the test-cell data with
sensors available in commercial trucks.
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3.2. Selective Catalytic Reduction (SCR)

The SCR catalyst is responsible for reducing engine-out NOx
into harmless N2 and H2O. Diesel Exhaust Fluid (DEF),
which is a mixture of 32.5% urea and 67.5% distilled wa-
ter, is injected into the exhaust. Exhaust heat converts urea
to NH3, which is then adsorbed by the catalyst. Some of the
adsorbed NH3 reduces the NOx, and the rest gets desorbed or
oxidized.

3.2.1. SCR Reactions

The Eley Rideal mechanism is widely accepted to be an accu-
rate representation of the Urea-SCR reactions (Hsieh, 2010),
(Yuan, Liu, & Gao, 2015). The key processes and corre-
sponding chemical reactions in the Urea-SCR system as per
the Eley Rideal mechanism are as follows:

1. Urea to NH3 conversion.
Thermolysis:

(NH2)2CO ��! HNCO+NH3 (1)

Hydrolysis:

HNCO+H2O ��! NH3 +CO2 (2)

2. NH3 adsorption and desorption.

NH3 + ✓free  �! NH3(ads) (3)

where ✓free is the number of moles of catalyst sites avail-
able for NH3 adsorption.

3. NOx reduction.
Standard SCR reaction:

4NH3(ads) + 4NO+O2 ��! 4N2 + 6H2O (4)

Fast SCR reaction:

4NH3(ads) + 2NO+ 2NO2 ��! 4N2 + 6H2O (5)

Slow SCR reaction:

8NH3(ads) + 6NO2 ��! 7N2 + 12H2O (6)

Slow reaction is usually ignored when writing the dy-
namic equations, as it is much slower than the fast and
the standard reactions.

4. NH3 oxidation.

4NH3(ads) + 3O2 ��! 2N2 + 6H2O (7)

3.2.2. SCR Model

A high-fidelity model for the Urea-SCR system will require
partial differential equations (PDEs) to represent chemical re-
actions, gas flow and convective heat transfer (Nova & Tron-
coni, 2014), (Yuan et al., 2015). However, such model would
be computationally too expensive to be embedded in a micro-

controller. Hence, several references such as (Hsieh, 2010),
(Zhao, Chen, Hu, & Chen, 2015) and (Ofoli, 2014) have used
a lumped parameter zero-dimensional model by treating the
catalyst as a continuous stirred tank reactor (CSTR) as shown
in Figure 10. The CSTR model assumes homogeneous dis-
tribution of reacting species in the catalyst which allows us-
ing ordinary differential equations (ODEs) instead of PDEs
to model the Urea-SCR system dynamics.

Figure 10. Schematic of the CSTR Model (Taken from
(Hsieh, 2010)).

The system dynamic equations for the CSTR model can then
be obtained using mass balance across the catalyst: depend-
ing on whether or not NO2 dynamics are considered, the
CSTR model can have three or four states, respectively. In
this work, the three-state CSTR model will be used for SCR
because the aftertreatment system on commercial trucks does
not have any sensor to measure NO2 concentration upstream
or downstream of SCR. The system dynamic equations for
the three-state CSTR models are given by Equation 8.

ẋ1 =
F

V
(u1 � x1)� ↵adsx1(1� x3)K + ↵desx3K

ẋ2 =
F

V
(u2 � x2)� ↵SCR(x2)(x3K)

ẋ3 = �↵SCRx2x3 + ↵adsx1(1� x3)� ↵desx3 � ↵oxix3

(8)

The temperature (T ) dependence of the reaction rates (↵i)
and catalyst NH3 storage capacity (K) is given by

↵i = Aie
� Ei

RT ,K =
S1

V
e
�S2T (9)

And the urea to NH3 conversion dynamics is given by

u̇1 =
1

⌧
(�u1 + ⌘ureau1,ideal) (10)

All the symbols in Equations 8 to 10 are described in the
Nomenclature section at the end of the paper.

8
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3.3. Ammonia Slip Catalyst (ASC)

It is difficult to get low SCR-out NOx and NH3 simultane-
ously. ASC is responsible for oxidizing the SCR-out NH3 to
N2. Therefore, for the same amount of tailpipe NOx, an SCR-
ASC system will have lower tailpipe NH3 than an SCR-only
system. However, the ASC is not perfect and it can oxidize
some SCR-out NH3 into NO and N2O.

3.3.1. ASC Reactions

The key reactions in an ASC are as follows (Shrestha et al.,
2016):

1. Conversion of NH3 to N2. This is the desired reaction.

4NH3 + 3O2 ��! 2N2 + 6H2O (11)

2. Conversion of NH3 to NO and N2O. These are the
undesired reactions.

4NH3 + 5O2 ��! 4NO + 6H2O (12)

2NH3 + 2O2 ��! N2O+ 3H2O (13)

3.3.2. ASC Model

An ODE model, with concentration of NH3, NO, and N2O
as the three states, could be developed for ASC from the re-
actions 11 to 13 using mass balance and CSTR assumptions
similar to the SCR model. Combining such model with the
three-state SCR model would give us a six-state nonlinear
ODE model for the SCR-ASC system. However, calibrat-
ing such model would be extremely difficult in the absence
of SCR-out measurements. Therefore, instead of developing
an ODE model for ASC, we have developed a look-up table
model based on ASC’s NH3 conversion efficiency and selec-
tivity to NOx and N2O. Since the look-up table doesn’t model
ASC dynamics, it won’t be able to capture the tailpipe signals
accurately at each time-stamp in the drive cycles. However,
the results will show that this model can capture the general
trends caused due to aging, which should be sufficient for
diagnostics as we discussed earlier and will also be demon-
strated in the later sections.

ASC’s NH3 conversion efficiency and selectivities to NOx
and N2O can be calculated using the following equations:

⌘NH3 =
yNH3,SCR � yNH3,TP

yNH3,SCR
(14)

SNOx =
yNOx,TP � yNOx,SCR

yNH3,SCR � yNH3,TP
(15)

SN2O =
2yN2O,TP

yNH3,SCR � yNH3,TP
(16)

where ⌘NH3 is ASC’s NH3 conversion efficiency and SNOx
and SN2O are selectivities to NOx and N2O, respectively.

Figure 11 shows the curves for ASC’s NH3 conversion effi-
ciency and sensitivities vs temperature and flow rate reported
in (Shrestha et al., 2016). Since ASC’s NH3 conversion ef-
ficiency and sensitivities are functions of temperature and
flow rate, two-dimensional look-up tables can be developed
to calculate NH3 conversion efficiency and sensitivities for
any given combination of temperature and flow rate. Since
we don’t have detailed ASC-in and ASC-out data, it won’t
be possible to obtain the exact relation from temperature and
flow rate to efficiency and selectivities. Therefore, our objec-
tive is to maintain the qualitative curves reported in (Shrestha
et al., 2016) and manipulate them empirically using the exist-
ing test-cell data such that the SCR+ASC model can match
the tailpipe signals.

The curves shown in Figure 11 are a good starting point to
develop the look-up tables because the temperatures in these
curves cover the range of values in the test-cell data. The
space velocities given by (Shrestha et al., 2016) in Figure 11
are 66k-hr�1 and 265k-hr�1, but these exact space velocity
values are not important as the curves at these values will
be manipulated to obtain the curves at three flow rate val-
ues within the range of our data. The range of exhaust vol-
ume flow rate in the data is from 0.04 m3/sec to 0.6 m3/sec.
Curves for 66k-hr�1 will be manipulated to get selectivity
vs temperature curves for a flow rate of 0.04 m3/sec and 0.2
m3/sec. And the curves for 265k-hr�1 will be manipulated to
get selectivity vs temperature curves for the flow rate of 0.7
m3/sec. This will be further elaborated in Section 3.4.1.

The step-by-step implementation of the ASC model, based on
these 2D look-up tables, is given as follows:

1. For a given temperature (T ), flow rate (F ) calculate
⌘NH3 , SNOx, and SN2O using the 2D look-up tables.

2. Calculate tailpipe NH3 using ⌘NH3 and SCR-out NH3.

yNH3,TP = (1� ⌘NH3) yNH3,SCR (17)

3. Calculate tailpipe NOx using SNOx, SCR-out NOx, SCR-
out NH3, and tailpipe NH3.

yNOx,TP = yNOx,SCR + SNOx (yNH3,SCR � yNH3,TP) (18)

4. Calculate tailpipe N2O using SN2O, SCR-out NH3, and
tailpipe NH3.

yN2O,TP =
SN2O

2
(yNH3,SCR � yNH3,TP) (19)

9
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(a) 66k hr�1 space velocity

(b) 265k hr�1 space velocity

Figure 11. Dependence of ASC’s NH3 conversion efficiency
and selectivities on temperature and flow rate, taken from
(Shrestha et al., 2016)

.

3.4. Model Calibration

Figure 12 shows the combined SCR-ASC model. Inputs to
the SCR model are: T , F , Engine-out NOx (uNOx), and In-
jected DEF (uDEF). Outputs from the SCR model and the
inputs to the ASC model are SCR-out NH3 (yNH3,SCR) and
NOx (yNOx,SCR). Tailpipe NH3 (yNH3,TP), NOx (yNOx,TP), and
N2O (yN2O,TP) are the outputs from the ASC model.

Hot FTP cycle (hFTP) data is used to calibrate the SCR and
ASC models for both degreened and EUL catalysts. Cold
FTP (cFTP) and RMC will be used for validation. Parame-
ters for the SCR model are: Pre-exponential coefficients (Ai)
and activation energies (Ei) for the reaction rates, storage ca-
pacity parameters S1, S2, Urea-to-NH3 conversion efficiency
(⌘urea), and time constant for urea-to-NH3 conversion (⌧ ).
Parametrization of the look-up tables for the ASC model will
be discussed in Section 3.4.1.

Figure 12. SCR+ASC model structure

3.4.1. Look-up tables for SN2O, ⌘NH3 , and SNOx

Look-up table for SN2O: The step-by-step procedure to ob-
tain the look-up table from temperature and flow rate to SN2O
is given as follows:

1. Extract SN2O vs temperature data from Figure 11 for 66k
hr�1 and 265k hr�1 space velocities. The values in Fig-
ure 11 are for the catalyst that was used in (Shrestha et
al., 2016). Therefore, these are not necessarily the true
selectivities for the catalyst used in this work. These
will be used as initial guesses, and will be parametrized
by offsetting the curves for SN2O vs temperature in Fig-
ure 11. Let the initial values of SN2O from Figure 11
be SN2O,init66 for 66k hr�1 space-velocity and SN2O,init265
for 265k hr�1 space-velocity. Then the look-up table for
SN2O can be parametrized as follows:

SN2O,lowflow = SN2O,init66 + p1

SN2O,midflow = SN2O,init66 + p2

SN2O,highflow = SN2O,init265 + p3

(20)

where SN2O,lowflow, SN2O,midflow, and SN2O,highflow are the
values of ASC’s selectivity to N2O at the three flow rates
of 0.04 m3/sec, 0.2 m3/sec, and 0.7 m3/sec, respectively.

2. After the first step, we have SN2O values for several tem-
peratures at each of the three flow rates. At each flow
rate, SN2O is calculated for other temperatures in hFTP
using piece-wise cubic Hermite interpolation. Then for
each temperature, SN2O is calculated for other flow rates
in hFTP using linear interpolation. Note that cubic inter-
polation is used to capture the nonlinear selectivity-vs-
temperature curves in Figure 11, whereas linear interpo-
lation is used for flow rate as we have selectivity values
for only three flow rates, making it unnecessary and in-
feasible to use nonlinear interpolation.

3. After the second step, we have SN2O values for
many temperatures and flow rates. Then the tem-
perature, flow rate and selectivity values are stacked

10
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together to form a 2D interpolant using MATLAB’s
scatteredInterpolant function. This interpolant is
the 2D look-up table that can calculate SN2O for any com-
bination of temperature and flow rate.

Look-up table for ⌘NH3 : It is possible to obtain the look-up
table for ⌘NH3 by extracting ⌘NH3 vs temperature data from
Figure 11, and following a similar process to the look-up ta-
ble for SN2O. However, as shown in Figure 13, the SCR-out
NH3 slip, calculated using ⌘NH3 vs temperature curves from
Figure 11, is less than yNH3,TP + 2yN2O,TP. This would imply
that SN2O = 2yN2O,TP/ (yNH3,SCR � yNH3,TP) > 1, which is
not possible. Therefore, the look-up table for ⌘NH3 is created

Figure 13. Comparison of yNH3,SCR, calculated using ⌘NH3 ,
and yNH3,TP + 2yN2O,TP.

using the following alternate approach:

1. At each time-stamp in hFTP, calculate SCR-out NH3 us-
ing SN2O, tailpipe NH3, and tailpipe N2O using the fol-
lowing equation:

yNH3,SCR = yNH3,TP +
2yN2O,TP

SN2O
(21)

2. Calculate ⌘NH3 from yNH3,SCR and yNH3,TP using Equa-
tion 14.

3. Stack temperature, flow rate, and ⌘NH3 at each time-
stamp using scatteredInterpolant to obtain the
look-up table from temperature and flow rate to ⌘NH3 .

Look-up table for SNOx: SNOx can be calculated from
yNH3,SCR, yNH3,TP, yNOx,SCR, and yNOx,TP using Equation 15.
However, since test-cell data does not have SCR-out mea-
surements, yNOx,SCR is unknown. Therefore, Equation 15 can
be parametrized as follows:

SNOx =
p4(yNOx,TP)

yNH3,SCR � yNH3,TP
(22)

where p4 is the fraction of tailpipe NOx produced from NH3

oxidation by ASC. This equation assumes that p4 is a con-
stant, which may not be true in general. However, this is
a reasonable assumption to calculate approximate values of
SNOx for model calibration.

The look-up tables for both degreened and EUL catalysts
were developed using these steps. Figure 14 shows the NH3

conversion efficiency and selectivities vs temperature and
flow rate, based on these look-up tables. Note that the curves
for the degreened and EUL catalysts are generally very close
to each other, which is a sanity check because the same SN2O
vs temperature data was used for both degreened and EUL
catalysts when creating the look-up table for SN2O and there-
fore it was expected that similar look-up tables will be ob-
tained for both. The slight differences between the curves
for degreened and EUL catalyst, shown in Figure 14, could
be attributed to numerical differences caused due to slightly
different operating conditions and tailpipe signals for the two
catalysts.

Since these curves look qualitatively similar to the ones in
Figure 11, these look-up tables could be used as reasonable
initial guesses for the ASC model, which can be calibrated by
tuning p1, p2, p3, and p4. Note that ⌘NH3 , SNOx, and SN2O are
zero below 200oC, which is the threshold for ASC activation.

Figure 14. ⌘NH3 , SNOx, and SN2O vs temperature and flow
rate, based on the 2D look-up tables for degreened (DG) and
EUL catalyst.
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3.4.2. Current Calibration Approach for SCR+ASC
Model

As mentioned earlier, hFTP is used to calibrate the SCR+ASC
model. The following steps summarize the procedure to run
the SCR+ASC model:

1. Integrate the three-state ODE Equations 8 to get SCR-out
NH3 and NOx.

2. Calculate ⌘NH3 , SNOx, and SN2O at each time point using
the look-up tables from T , F .

3. Calculate tailpipe NH3 from ⌘NH3 and yNH3,SCR.
4. Calculate tailpipe NOx from SNOx, yNOx,SCR, yNH3,TP, and

yNH3,SCR.
5. Calculate tailpipe N2O from SN2O, yNH3,TP, and

yNH3,SCR.

The parameters for the SCR-ASC model can be identified by
solving the following optimization problem:

min
✓SCR,✓ASC

J =
t2X

t=t1

�
e
2
NH3,TP + e

2
NOx,TP + e

2
N2O,TP

�

subject to Ai, Ei, S1, S2 > 0

0 < ⌘urea < 1

0 < ⌧ < 50

�1 < p1, p2, p3 < 1

0 < p4 < 1

where
ei,TP = yi,TP � ŷi,TP

✓SCR = [Ai, Ei, S1, S2, ⌘urea, ⌧ ]

✓ASC = [p1, p2, p3, p4]

(23)

where yi,TP are the true tailpipe signals and ŷi,TP are the
model-out values. Also note that t1 and t2 denote the times
during which clear aging signature was observed in hFTP
data. This implies that we want good model accuracy only
when the operating conditions are favorable for diagnostics.

The Trust-region-reflective algorithm, using MATLAB’s
lsqnonlin, was used to solve the optimization problem to
obtain the fits shown in Figure 15.

Visually, the fits shown in Figure 15 are reasonable for all
tailpipe signals. To quantify these fits, Table 3 shows the val-
ues of average modeling error in ppm and as a fraction (rmean)
of average value of the true signals. Note that the average
error for tailpipe NOx and tailpipe NH3 is less than 1 ppm
for both DG and EUL catalysts. However, it is still 37% of
the average value of true tailpipe NOx for the DG catalyst,
which is around 2 ppm. The average error for tailpipe N2O is
around 0.2 ppm for the DG catalyst and around 6.4 ppm for
the EUL catalyst, which is about 23% of the average value
of true tailpipe N2O. Average error values in Table 3 demon-
strate that very low modeling error could still be a significant

Figure 15. TP signal fits for degreened and EUL catalysts
after calibrating the model on hFTP cycle.

fraction of the true signal value if the signal itself is small.
But, it will be shown in Section 4 that a model-based diag-
nostic method could be designed to handle modeling error up
to 10 ppm in tailpipe NOx. So, even if the modeling error is
significant with respect to the true signal value, the model can
be considered accurate enough for the OBD method in Sec-
tion 4 to capture the aging signatures if the modeling error is
less than 10 ppm.

One observation from Figure 15 is that the model is not able
to capture the second spike in tailpipe N2O between 900-
950 seconds. The reason for this spike is not exactly clear
at this point, but it could be due to conditions favoring NH3

desorption, such as relatively low engine-out NOx, low flow
rate and high exhaust temperature, leading to high SCR-out
NH3, which then gets primarily converted to tailpipe N2O
due to conditions where ASC’s selectivity to N2O is high.
Our model’s inability to capture this spike could primarily be
attributed to the SCR model underestimating SCR-out NH3

at that time. This will be analyzed more carefully in future to
improve model calibration.

It should be noted that the pre-exponential coefficient, S1, of
the catalyst NH3 storage capacity was the only free parameter
when calibrating the model for the EUL catalyst. Therefore,
the only difference between parameters for the degreened and
the EUL catalysts is S1. It is likely that other parameters, if
left free, could also have taken different values for the EUL
catalyst than the degreened one. But since the model could
capture the trends due to aging by just changing S1, it can
be concluded that S1 is adequate to capture the catalyst age.

12



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Avg Error
(ē,ppm)

Avg True Value
(ȳi,TP, ppm)

rmean = ē
ȳi,TP

DG EUL DG EUL DG EUL
TP NH3 0.28 0.79 1.75 5.36 0.16 0.15
TP N2O 0.23 6.43 14.37 27.67 0.01 0.23
TP NOx 0.67 0.12 1.83 5.81 0.37 0.02

Table 3. Average modeling error, in ppm and as a fraction
(rmean) of average value of the true signal, to quantify the
tailpipe signal fits for hFTP shown in Figure 15.

However, the effect of other parameters could be explored in
future work.

3.5. Model Validation

cFTP, RMC, and truck data are used to validate the
SCR+ASC model. This section will present the model val-
idation results on these data-sets.

3.5.1. Model Validation on cFTP Cycle

Figure 16 shows the validation fits for both degreened and
EUL catalysts.

Figure 16. TP signal fits after ASC calibration for degreened
and EUL catalysts for cFTP, which was used for validation.

Table 4 shows the average modeling error, in ppm and as a
fraction (rmean) of average value of the true signal, to quantify
the validation fits shown in Figure 16. Very small values of
true TP NH3 signals lead to large rmean values and bad visual
fit for the EUL catalyst, but the fit is reasonable as the average
error values are less than 10 ppm. Visual fits for TP N2O and
NOx are decent, supported by low average error values. Large
rmean values can again be attributed to small signal values.

Avg Error
(ē,ppm)

Avg True Value
(ȳi,TP, ppm) rmean

DG EUL DG EUL DG EUL
TP NH3 4.2 8.1 0.6 0.5 6.39 17.31
TP N2O 2.4 7 9.7 13.4 0.24 0.52
TP NOx 0.5 2.7 1.8 2.9 0.25 0.91

Table 4. Average modeling error, in ppm and as a fraction
(rmean) of average value of the true signal, to quantify the
tailpipe signal fits for cFTP shown in Figure 16.

3.5.2. Model Validation on RMC Cycle

Ideally, the training data for the ASC look-up tables should
cover a wider range of temperature and flow rate than the
validation data because look-up tables can not extrapolate.
However, the maximum temperature across the FTP cycles
is 270oC. But the temperature for the RMC cycle ranges
from 260oC to 350oC. Therefore, the look-up tables in Fig-
ure 14 have to be extended for the RMC cycle by follow-
ing the procedure in Section 3.4.1 using the ASC parame-
ter values (p1, p2, p3, p4) obtained from calibrating the model
on the hFTP cycle. Figure 17 shows the updated curves for
NH3 conversion efficiency and selectivities vs temperature
and flow rate.

Figure 17. ⌘NH3 , SNOx, and SN2O vs temperature and flow
rate, extended to RMC cycle.

Figure 18 shows that reasonable fits, quantified by low aver-
age error values in Table 5, were obtained for both degreened
and EUL catalysts.

3.5.3. Model Validation on Truck Data

Since the duty cycles for the trucks are different to the cycles
in test-cell data, the pre-exponential coefficient of the NOx re-
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Figure 18. TP signal fits for degreened and EUL catalysts for
RMC, which was used for model validation.

Avg Error
(ē,ppm)

Avg True Value
(ȳi,TP, ppm) rmean

DG EUL DG EUL DG EUL
TP NH3 0.34 0.98 2.14 2.18 0.16 0.45
TP N2O 0.93 3.81 13.03 9.42 0.07 0.40
TP NOx 1.52 5.52 15.42 15.79 0.1 0.35

Table 5. Average modeling error, in ppm and as a fraction
(rmean) of average value of the true signal, to quantify the
tailpipe signal fits for RMC shown in Figure 18.

duction reaction (ASCR) had to be adjusted to make the model
work for truck data. Also, since the catalyst degradation lev-
els on the trucks are unknown, the model is considered to be
“performing reasonably” if any of the following conditions is
satisfied:

1. The measured TP NOx is close to the TP NOx value es-
timated by the DG catalyst model, or

2. The measured TP NOx is close to the TP NOx value es-
timated by the EUL catalyst model, or

3. the measured TP NOx is more than the TP NOx value es-
timated by the DG catalyst model but less than the EUL
catalyst model.

These conditions will be elaborated and quantified in the next
section. Figure 19 shows an example of each of these condi-
tions from the truck data. Table 6 shows that the model be-
haves reasonably, based on the three points mentioned above,
for a significant number of points for all four trucks.

Using a simple cross-sensitivity model to improve the fits:
Since the commercial tailpipe NOx sensor on the trucks is
cross-sensitive to NH3, the results in Table 6 could be im-
proved by incorporating a simple model for cross-sensitivity.

Figure 19. Examples from truck data where the model be-
haves reasonably.

Truck 1 Truck 2 Truck 3 Truck 4
No. of
points where
T>200o

C

32036 57852 67500 55678

No. of points
where model is
reasonable

18515 47919 41591 24253

%. of points
where model is
reasonable

57.8% 82.8% 61.6% 43.5%

Table 6. Model performance on truck data quantified by the
number and percentage of points where model behaves rea-
sonably.

The tailpipe NOx and NH3 values can be combined as follows
to incorporate cross-sensitivity in both DG and EUL models:

yNOx,cross = yNOx,TP,model + � (yNH3,TP,model)

Though the cross-sensitivity factor � can vary with temper-
ature, it is a common approach to use a constant value for
simplicity (Bonfils, Creff, Lepreux, & Petit, 2014; Hsieh &
Wang, 2011; Schar, Onder, & Geering, 2006). It has been
reported in (Hsieh & Wang, 2011) that the cross-sensitivity
factor can range from 0 to 2. Therefore, in this paper, � was
varied from 0 to 2 for each truck to find the value that results
in the best fit. Figure 20 shows that fits improved significantly
for each truck by using this simple cross-sensitivity model
with an appropriate �. After incorporating cross-sensitivity,
the percentage of points where the model is reasonable in-
creased to 86.6%, 85.6%, 69.8%, and 80% for Trucks 1 to 4,
respectively.
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Figure 20. Percentage of points where the DG and EUL
models behave reasonably for the truck data vs the cross-
sensitivity factor �.

The next section will discuss some model-based enable con-
ditions applied to both test-cell and truck data.

4. MODEL-BASED OBD STRATEGY

In this section, we propose an OBD strategy based on our DG
and EUL catalyst models. The key idea is to infer catalyst
degradation level by comparing the measured tailpipe NOx
to its value estimated by both DG and EUL models. The fol-
lowing sections will describe the enable conditions, precise
diagnostic criteria, and results on both test-cell and truck data
in detail.

4.1. Model-based Enable Conditions

Unlike a controller, OBD doesn’t need to run at all times. It
is important to pick the right conditions to activate the OBD.
These conditions are called enable conditions. The enable
conditions should minimize false positives and false negatives
while maintaining a good In-use-performance-monitoring-
ratio (IUMPR).

The fundamental objective of formulating enable conditions
is to detect and pick operating conditions where a degraded
catalyst would perform significantly differently to a de-
greened one. In other words, we need to pick operating con-
ditions which are likely to produce aging signatures.

Since the OBD needs to detect catalyst degradation on com-
mercial trucks using just tailpipe NOx measurements, we
tried to find operating conditions in test-cell data where we
see more than 10% difference in deNOx efficiency of the DG
and the EUL catalysts.

However, observations from test-cell data, such as the one
shown in Figure 21, showed that very similar operating con-
ditions could lead to very different separability between DG
and EUL catalysts based on %deNOx. Despite very simi-

lar values of DEF dosing, engine-out NOx, temperature, and
flow rate, the difference between %deNOx of DG and EUL
catalyst is more than 10% for the operating conditions plotted
in blue and very small for the ones plotted in red. This shows
that the separability between DG and aged catalysts depends
not just on the present operating conditions but on the dy-
namics that happened in the past, which could be captured
by a model. This establishes the importance of formulating
model-based enable conditions.

Figure 21. A section of test-cell data showing that very sim-
ilar operating conditions could lead to different separability
between DG and EUL catalysts based on %deNOx.

In this paper, we propose the following steps to pick operat-
ing conditions where aging signatures are expected to occur
according to our model:

1. Filter 1: Run both DG and EUL catalyst models so
that model-out TP NOx values could be compared to
measured TP NOx. Since our model can’t run at tem-
peratures less than 200oC, only the points where the SCR
bed temperature is greater than 200oC are selected in this
step. Note that the data points are separated by 200 ms
in the test-cell data and 1.2 seconds in the truck data.

2. Filter 2: From the points selected in step 1, select points
where the model behaves reasonably, i.e.,at least one
of the following conditions is satisfied:
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|yNOx,TP,meas � yNOx,TP,DG model| < 20 ppm OR
|yNOx,TP,meas � yNOx,TP,DG model|

yNOx,TP,meas
< 0.2 OR

|yNOx,TP,meas � yNOx,TP,EUL model| < 20 ppm OR
|yNOx,TP,meas � yNOx,TP,EUL model|

yNOx,TP,meas
< 0.2 OR

yNOx,TP,DG model < yNOx,TP,meas < yNOx,TP,EUL model OR
yNOx,TP,DG model < yNOx,TP,EUL model < yNOx,TP,meas � 20 OR
yNOx,TP,DG model < yNOx,TP,EUL model < 0.8yNOx,TP,meas

(24)
Note that the first five conditions in Equation 24 quan-
tify the three points listed in Section 3.5.3, which corre-
spond to the catalysts with aging levels from DG to EUL.
The last two conditions in Equation 24 were added to
include catalysts that have degraded beyond EUL level.
For the conditions in Equation 24, the threshold in mod-
eling error is chosen to be 20 ppm or 20%, because the
commercial NOx sensor has an uncertainty of 10 ppm
or 10%, and the maximum average modeling error in
tailpipe NOx across the three drive cycles was slightly
less than 10 ppm. So, the measurement and modeling
uncertainty were combined to choose 20 ppm or 20% as
the threshold for this enable condition.

3. Filter 3: From the points selected after the first two
steps, select points where we expect to see differ-
ence in DG and EUL catalyst based on our model.
This can be quantified either based on %deNOx or TP
NOx. For %deNOx-based filter 3, we select points where
(⌘deNOx,DG model � ⌘deNOx,EUL model) > 10%. The thresh-
old for %deNOx-based separation was chosen as 10%
based on observations from test-cell data such that it is
not too low to be affected by measurement or modeling
errors and not too high to exclude a lot of points from the
data.
The other option for this enable condition is to quantify
the separation in DG and EUL catalysts based on TP
NOx, where we select points that satisfy all of the fol-
lowing conditions:

yNOx,TP,EUL model � yNOx,TP,DG model > 20 ppm AND
yNOx,TP,EUL model � yNOx,TP,DG model

yNOx,TP,DG model
> 0.2 AND

yNOx,TP,EUL model � yNOx,TP,DG model

yNOx,TP,EUL model
> 0.2

(25)

Since the modeling error in tailpipe NOx for both DG
and EUL catalyst models is up to 10 ppm, a difference
of up to 20 ppm in yNOx,TP,DG model and yNOx,TP,EUL model
could be because of modeling error. So, to ensure that the
difference is due to an aging signature, 20 ppm or 20%

was chosen as the threshold to quantify the separation
based on tailpipe NOx.

4. Filter 4: From the points selected after the first three
steps, select points where the tailpipe NH3 is too
low for cross-sensitivity to significantly affect tailpipe
NOx sensor readings. In the existing literature, 2 is re-
ported as the maximum cross-sensitivity factor (Hsieh &
Wang, 2011). So, we select points where the tailpipe
NOx sensor reading with maximum cross-sensitivity,
yNOx + 2yNH3 , is not too different from the true read-
ing, yNOx, to affect the result of diagnostics. Therefore,
this enable condition selects the points that satisfy the
following conditions:

2

4
2yNH3,TP,DG model < 5 ppm

OR
2yNH3,TP,DG model < 0.05yNOx,TP,DG model

3

5

AND
2

4
2yNH3,TP,EUL model < 5 ppm

OR
2yNH3,TP,EUL model < 0.05yNOx,TP,EUL model

3

5

Since the goal of this enable condition is to select points
where yNH3 is too small for cross-sensitivity to affect the
result of diagnostics, the threshold was chosen as 25% of
the thresholds in Filter 2 and Filter 3.

4.2. Diagnostic criteria

For a perfect model and with perfect TP NOx measurements,
we can expect the TP NOx measurements from a DG catalyst
to overlap with the TP NOx estimated from the DG model.
As the catalyst degrades, the TP NOx measurements will be
higher than the value estimated by the DG model, and their
difference will be higher for higher degradation. For an EUL
catalyst, the measurement will overlap with the value esti-
mated by the EUL model. However, there will be false posi-
tives and false negatives because of uncertainties in the model
and imperfect measurements. This means that the TP NOx
measurements can be closer to the DG model at some sam-
ple points and to the EUL model at others. However, if the
enable conditions are designed effectively to minimize false
positives and false negatives then the TP NOx measurements
will align with the correct model according to the aging level.
Based on this, we define the following diagnostic metric to be
applied to the points selected after the four filters in Section
4.1.

The key idea in this metric is to classify each point, selected
after applying the enable conditions, as either DG, EUL, or
none. Let NDG and NEUL be the number of points classified
as DG and EUL, respectively. Then the degradation level is
quantified by the ratio of NEUL to NDG. Higher NEUL/NDG
would imply higher degradation.
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The diagnostic metric classifies a point as DG if the measured
TP NOx is closer to the value estimated by the DG model than
the one by the EUL model, i.e.

|eNOx,TP,DG model| < |eNOx,TP,EUL model|,

where

eNOx,TP,DG model = yNOx,TP,meas � yNOx,TP,DG model

eNOx,TP,EUL model = yNOx,TP,meas � yNOx,TP,EUL model

Similarly, a point is classified as EUL if the measured TP
NOx is closer to the value estimated by the EUL model than
the one by the DG model, i.e.

|eNOx,TP,DG model| > |eNOx,TP,EUL model|

Note that every point is guaranteed to be classified as either
DG or EUL by this metric.

Also note that this diagnostic metric is designed to com-
pare the degradation level across various catalysts. Therefore,
rather than giving an absolute aging level, it will give aging
level relative to a baseline catalyst with known aging level.

4.3. Results with test-cell data

We will now apply the enable conditions in Section 4.1 to
monitor both DG and catalysts during the three drive cycles
in test-cell data:

1. Filter 1: We run both DG and EUL models for all three
cycles, and only select points where SCR-bed tempera-
ture is greater than 200oC.

2. Filter 2: We then select the points where the model be-
haves reasonably. Table 7 shows that this filter removes
less than 5% of the points selected after the first filter.
This implies that the model behaves reasonably in all
three cycles for almost every point where the tempera-
ture is greater than 200oC, which is expected as we saw
good agreement between test-cell data and models.

3. Filter 3: From the points selected after applying the first
two filters, this filter selects the points where aging sig-
nature can be expected based on DG and EUL catalyst
models. This can be quantified either based on %deNOx
efficiency or TP NOx from DG and EUL models. Table
7 shows that this filter removes most of the points. Based
on %deNOx, very few but non-zero number of points are
selected from all three cycles. However, no points are se-
lected from cFTP and hFTP cycles if the filter is applied
based on TP NOx.

4. Filter 4: This filter selects points where the TP NH3,
from both EUL and DG catalysts, is too low for cross-
sensitivity to affect the OBD results. Over the three drive
cycles, this filter removed 78% of the points selected af-

ter %deNOx-based filter 3 and no points were selected
from the RMC cycle. When applied to the points selected
after TP NOx-based filter 3, only 1.2% of the points got
selected after this filter. In this case, all the selected
points are from RMC because the TP NOx-based filter
3 removed all points from cFTP and hFTP.

cFTP hFTP
DG EUL DG

Total no. of points 6014 6013 6012

Filter 1: No. of points where T>200o
C 2864 2885 3173

Filter 2: No. of points where model is
reasonable

2863 2885 3170

Filter 3: No. of
points where aging
signature is expected
based on DG and
EUL models

Based on
%deNOx

37 55 138

Based on
TP NOx 0 0 0

Filter 4: No. of
points where TP
NH3 is too low for
cross-sensitivity

after %deNOx-
based filter 3

8 0 55

after TP NOx-
based filter 3

0 0 0

hFTP RMC
EUL DG EUL

Total no. of points 6012 12005 12005

Filter 1: No. of points where T>200o
C 3177 12005 12005

Filter 2: No. of points where model is
reasonable

3174 11917 11907

Filter 3: No. of
points where aging
signature is expected
based on DG and
EUL models

Based on
%deNOx

38 18 46

Based on
TP NOx 0 1177 879

Filter 4: No. of
points where TP
NH3 is too low for
cross-sensitivity

after %deNOx-
based filter 3

9 0 0

after TP NOx-
based filter 3

0 1 24

Table 7. Number of points selected in test-cell data after ap-
plying the enable conditions

After filtering the data using enable conditions, the diag-
nostic metric was applied to the selected points. Table 8
shows that the diagnostic metric correctly classified all points
from the DG catalyst as DG for all three cycles, resulting in
NEUL/NDG = 0. For the EUL catalyst, this metric correctly
classified 22 points as EUL out of 24 points selected from the
RMC cycle by TP NOx-based enable conditions, resulting in
NEUL/NDG = 22/2 = 11. However, this metric incorrectly
classified all 9 points selected from hFTP by %deNOx-based
enable conditions as DG for the EUL catalyst. These results
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were combined over the three drive cycles and are shown in
Table 9. Table 9 shows that %deNOx-based enable condi-
tions selected 72 points whereas only 25 points were selected
by TP NOx-based enable conditions. None of the enable con-
ditions resulted in false positives, i.e., DG catalyst identified
as EUL. For %deNOx-based enable conditions, 9 out of 72
points resulted in false negatives, i.e., EUL catalyst reported
as DG, and only 2 out of 25 points for TP NOx-based enable
conditions resulted in false negatives. These results show that
the TP NOx-based enable conditions are more selective and
hence more robust to false negatives.

cFTP
DG EUL

%deNOx-based
enable conditions

Points selected 8 0
NEUL/NDG 0/8 0/0

TP NOx-based
enable conditions

Points selected 0 0
NEUL/NDG 0/0 0/0

hFTP
DG EUL

%deNOx-based
enable conditions

Points selected 55 9
NEUL/NDG 0/55 0/9

TP NOx-based
enable conditions

Points selected 0 0
NEUL/NDG 0/0 0/0

RMC
DG EUL

%deNOx-based
enable conditions

Points selected 0 0
NEUL/NDG 0/0 0/0

TP NOx-based
enable conditions

Points selected 1 24
NEUL/NDG 0/1 22/2

Table 8. Results of applying diagnostic metric to the test-cell
data selected after applying the enable conditions.

Testing OBD method’s robustness to cross-sensitivity:
Since the OBD has to work with commercial NOx sensors on
trucks, it is important to test its robustness to cross-sensitivity.
The cross-sensitivity factor can change as a function of other
signals such as temperature, but the worst-case scenario was
simulated in test-cell data by using the maximum possible
value of 2 for the cross-sensitivity factor. Therefore, cross-
sensitivity was simulated in test-cell data by combining the
tailpipe NOx and NH3 measurements using the following
equation:

yNOx,cross = yNOx,TP,meas + 2yNH3,TP,meas

Then instead of yNOx,TP,meas, yNOx,cross was compared to
model-out TP NOx when applying the enable conditions and

the diagnostic metric. Table 9 shows that almost identical
results were obtained with the cross-sensitive NOx signal as
well, suggesting that the enable conditions and the diagnostic
metric are robust to cross-sensitivity.

%deNOx-based enable
conditions

No cross-
sensitivity

Cross-
sensitive
signal

Points selected 72 72
Correctly identified as
DG 63 63

False positive (DG iden-
tified as EUL) 0 0

Correctly identified as
EUL 0 0

False negative (EUL
identified as DG) 9 9

Tailpipe NOx-based en-
able conditions

No cross-
sensitivity

Cross-
sensitive
signal

Points selected 25 25
Correctly identified as
DG 1 1

False positive (DG iden-
tified as EUL) 0 0

Correctly identified as
EUL 22 23

False negative (EUL
identified as DG) 2 1

Table 9. OBD results combined over the three drive-cycles
for a clean and a cross-sensitive tailpipe NOx sensor reading.

4.4. Results with truck data

Table 10 shows the number of points selected from each truck
after applying the enable conditions. Similar to test-cell data,
filter 2 removed very few points (less than 7% of the points
selected after filter 1) from the truck data as well. Filter 3,
which selects the points where aging signature can be ex-
pected based on DG and EUL catalyst models, removed a
significant number of points as it did for test-cell data. Based
on %deNOx, filter 3 selected less than 0.6% of the points
remaining after filter 2 from all four trucks. It was less re-
strictive based on tailpipe NOx as up to 28% of the points
were selected. For the points selected after %deNOx-based
filter 3, the cross-sensitivity based filter 4 selected 64% of the
points. And it selected 60% of the points selected after TP
NOx-based filter 3.

Table 11 shows the results of applying the diagnostic met-
rics to points selected from both %deNOx-based and tailpipe
NOx-based enable conditions. Figure 22 shows NEUL/NDG
vs the number of miles on each truck. Higher NEUL/NDG im-
plies higher degradation, therefore Figure 22 shows the aging
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Truck 1 Truck 2
Total no. of points 33834 66133

Filter 1: No. of points where T>200o
C 32036 57852

Filter 2: No. of points where the model
is reasonable

30900 55576

Filter 3: No. of
points where
aging signature is
expected based
on DG and EUL
models

Based on
%deNOx

73 145

Based on
TP NOx 952 537

Filter 4: No. of
points where TP
NH3 is too low
for
cross-sensitivity

after %deNOx-
based filter 3

28 130

after TP NOx-
based filter 3

629 462

Truck 3 Truck 4
Total no. of points 79987 69848

Filter 1: No. of points where T>200o
C 67500 55678

Filter 2: No. of points where the model
is reasonable

63136 54142

Filter 3: No. of
points where
aging signature is
expected based
on DG and EUL
models

Based on
%deNOx

398 193

Based on
TP NOx 17947 4291

Filter 4: No. of
points where TP
NH3 is too low
for
cross-sensitivity

after %deNOx-
based filter 3

212 148

after TP NOx-
based filter 3

10563 2727

Table 10. Number of points selected in truck data after apply-
ing the enable conditions

trends reported by the diagnostic metrics vs the number of
miles on each truck.

Since we don’t know the actual degradation levels on these
trucks, the results can’t be validated yet. However, it is en-
couraging that the diagnostic metric gave almost identical
trends for both types of enable conditions. The only differ-
ence between the two trends is that the truck with 484k miles
is reported to be more aged than the one with 271k miles
for %deNOx-based enable conditions and vice versa for TP
NOx-based enable conditions. This is because factors such as
DPF regeneration, and different driving styles could result in
higher degradation on a truck with lesser miles on it. Another
consistent result from both enable conditions is that the truck
with 711 kmiles is reported to be have the highest degrada-
tion among the four trucks. Even though these results could
not be validated yet, mostly similar and sensible trends us-
ing different enable conditions increase the confidence in the
relative aging levels, and is an encouraging result.

Truck 1 Truck 2

%deNOx-based
enable conditions

Points selected 28 130
NEUL/NDG 1/27 87/43

TP NOx-based
enable conditions

Points selected 629 462
NEUL/NDG 332/297 335/127

Truck 3 Truck 4

%deNOx-based
enable conditions

Points selected 212 148
NEUL/NDG 116/96 98/50

TP NOx-based
enable conditions

Points selected 10563 2727
NEUL/NDG 3866/6697 2110/617

Table 11. Results of applying diagnostic metrics to the truck
data selected after applying the enable conditions based on
%deNOx and tailpipe NOx.

Figure 22. Aging trends reported by diagnostic metrics vs the
number of miles on each truck. Higher NEUL/NDG implies
higher degradation

5. CONCLUSION AND FUTURE WORK

This paper presented a diagnostics-oriented SCR-ASC model
and a model-based OBD method applied to both test-cell
data and on-road data from commercial trucks. The stan-
dard three-state single-cell ODE model, based on CSTR as-
sumption, was used to model SCR. The ASC was modeled as
2D look-up tables to determine ASC’s NH3 conversion effi-
ciency, and selectivity to NOx and N2O as a function of tem-
perature and flow rate. Even though the look-up tables don’t
model ASC dynamics, the SCR-ASC model is shown to be
capable of capturing the trends in tailpipe signals caused due
to aging in the test-cell data and work reasonably for a signif-
icant portion of on-road data from commercial trucks, when
combined with a simple model for commercial NOx sensor’s
cross-sensitivity to NH3.

19



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Based on this model, an OBD method with model-based en-
able conditions has been formulated and applied to both test-
cell and truck data with commercial NOx sensors. Results of
applying these enable conditions demonstrate the difficulty of
robust SCR monitoring due to the trade-off between the num-
ber of points where the enable conditions are satisfied and
the robustness of the diagnostics results to uncertainties. In-
creasing the robustness would result in more restrictive enable
conditions.

Results on test-cell data show that the OBD gets enabled at
very few points, which may not provide enough monitoring
time to robustly diagnose an SCR-ASC system. But the ma-
jority of points selected in the test-cell data are correctly clas-
sified as DG or EUL with zero false positives and very few
false negatives. The method is also shown to be robust to
NOx sensor’s cross-sensitivity to NH3 when the tailpipe NOx
and NH3 signals in test-cell data were combined to simulate
worst-case cross-sensitivity. However, a major limitation of
the diagnostics-oriented model, combined with the diagnos-
tics approach, is that it gets enabled at very few number of
points in the test-cell data. This will be addressed in future
by using a stochastic OBD method that quantifies the uncer-
tainty propagation from the model to the diagnostic results.

It was demonstrated that this method could be implemented
on commercial trucks with limited sensors. In the truck data,
the enable conditions were satisfied at many more number of
points than the test-cell data. Results on truck data show en-
couraging trends between relative degradation level and the
number of miles on the four trucks. However, the diagnostic
results on truck-data could not be validated at this stage be-
cause the aging levels on these trucks are unknown. In future,
more data from commercial trucks with known aging levels
will be used to validate and improve the model-based OBD
method.
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NOMENCLATURE

Ai Pre-exponential coefficient for reaction i

Ei Activation energy for reaction i in J/mol
F Exhaust gas volume flow rate in m3/sec
K SCR Catalyst NH3 storage capacity in moles
R Universal gas constant in J/mol-K
SNOx ASC’s selectivity to NOx
SN2O ASC’s selectivity to N2O
T Catalyst bed temperature in K
u1 Concentration of injected NH3 in mol/m3

u1,ideal Ideal u1 assuming instant and 100% conversion from urea to NH3

u2 Concentration of SCR-in NOx in mol/m3

V Catalyst volume in m3

x1 Concentration of SCR-out NH3 slip in mol/m3

x2 Concentration of SCR-out NOx in mol/m3

x3 Fraction of SCR catalyst storage capacity occupied by NH3

↵ads Reaction rate for NH3 adsorption to SCR catalyst
↵des Reaction rate for NH3 desorption from SCR catalyst
↵oxi Reaction rate for oxidation of adsorbed NH3 in SCR catalyst
↵SCR Reaction rate for NOx reduction by adsorbed NH3 in SCR catalyst
⌘NH3 ASC’s NH3 conversion efficiency
⌘urea Urea to NH3 conversion efficiency
⌧ Time-constant for Urea to NH3 conversion
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