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ABSTRACT

This work explores how the causality inference paradigm may
be applied to troubleshoot the root causes of failures through
language processing and Deep Learning. To do so, the causal-
ity hierarchy has been taken for reference: associative, inter-
ventional, and retrospective levels of causality have thus been
researched within textual data in the form of a failure analysis
ontology and a set of written records on Return On Experi-
ence. A novel approach to extracting linguistic knowledge has
been devised through the joint embedding of two contextual-
ized Bag-Of-Words models, which defines both a probabilistic
framework and a distributed representation of the underlying
causal semantics. This method has been applied to the main-
tenance of rolling stock bogies, and the results indicate that
the inference of causality has been partially attained with the
currently available technical documentation (consensus over
70%). However, there is still some disagreement between
root causes and problems that leads to confusion and uncer-
tainty. In consequence, the proposed approach may be used as
a strategy to detect lexical imprecision, make writing recom-
mendations in the form of standard reporting guidelines, and
ultimately help produce clearer diagnosis materials to increase
the safety of the railway service.

1. INTRODUCTION

Natural Language Processing (NLP) provides an effective ap-
proach for improving the collection and analysis of text-based
maintenance data, and eventually enable accurate decision-
making (Brundage, M. P., Weiss, B. A., and Pellegrino, J.,
2020). For example, in the railway maintenance business,
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axle bearings are some of the most critical rolling stock com-
ponents subject to strong safety constraints. In consequence,
many conservative overhaul actions are scheduled preventively
in the maintenance plan, which contains a lot of technical doc-
umentation about these mechanical assets. The completion
of these actions, in turn, generates useful practical feedback
on the shop floor following the inspection of the parts, which
seeks degradation signals and compiles them in written main-
tenance sheets. Additionally, unexpected failures like grease
leaks, hot axleboxes, or abnormal vibration records, get re-
ported in an issue tracking system to be then fixed correctively.
Considering all these environments together entails dealing
with a large amount of text data that is oftentimes manually
intractable, and NLP brings the automation potential to ex-
tract useful insights to advise the maintenance team, e.g., by
identifying the most probable underlying root cause to a given
problem. This approach is meant to increase the chances of
success to fix the issue, minimize the risk of a recurrent failure,
and thus maximize the availability of the fleet.

Interactive natural language interfaces help maintainers achieve
a higher success rate and a lower task completion time, which
lead to greatly improved user satisfaction (Su, Y., Awadal-
lah, A. H., Wang, M., and White, R. H., 2018). However,
many solutions require customization through the collabo-
ration between data scientists and domain specialists, and
each technical field poses its own challenges. In this sense,
Technical Language Processing (TLP) presents a holistic,
domain-driven approach, to use NLP in a technical engineer-
ing setting (Brundage, M. P., Sexton, T., Hodkiewicz, M.,
Dima, A., and Lukens, S., 2021). In TLP, maintenance docu-
ments like work orders are relatively small in size and contain
misspellings, domain-specific jargon, abbreviations, and non-
standard sentence structure. Therefore, to tackle this particular
context-dependent technical scenario, the field of causality is
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regarded as a direct description of what occurs when machines
degrade, and the root-cause analysis becomes the means to
obtain a reliable troubleshooting explanation for an abnormal
failure. In fact, linguistic representation, such as the one found
in TLP, is essentially a causal phenomenon (Stampe, D. W.,
2008).

Causality is traditionally stratified into a three-layer hierar-
chy (Pearl, J., 2019): association (i.e., plain correlation or
direction-free relationships), intervention (i.e., reasoning about
the effects of actions), and counterfactuals (i.e., retrospec-
tive reasoning). In turn, Causal Inference (CI) aims to draw
such detailed interpretations beyond mere associations from
observational data using statistical tools to infer relational
probabilities. CI distinguishes two broad classes of causal
queries: forward causal questions or the estimation of “ef-
fects of causes”, and reverse causal inference or the search for
“causes of effects” (Gelman, A., and Imbens, G., 2013). CI
can also be conceptualized as a multitask learning problem
with a set of shared layers among the factual and counterfac-
tual outcomes (Alaa, A. M., Weisz, M., and van der Schaar,
M., 2017). Similarly, decision-making is about predicting
counterfactuals (Hartford, J., Lewis, G., Leyton-Brown, K.,
and Taddy, M., 2017), and CI can potentially lead to more
informed decisions (Zheng, M., Marsh, J. K., Nickerson, J. V.,
and Kleinberg, S., 2020). The difficulty here is that all these
probabilistic quantities are not directly available in observa-
tional/factual data, so the CI problem needs to be converted
into a domain adaptation problem to figure out the mecha-
nisms that explain why observations occurred (Yao, L., Chu,
Z., Li, S., Li, Y., Gao, J., and Zhang, A., 2020).

Understanding causality is considered as one of the current
challenges for Machine Learning (ML) automation because
ML models are ultimately driven by correlations in the data,
and in general the causality implications of interest cannot
be derived from them (Ahmed, O., Träuble, F., Goyal, A.,
Neitz, A., Bengio, J., Schölkopf, B., Wüthrich, M., and Bauer,
S., 2020). Therefore, counterfactual explanations are gain-
ing prominence as a way to explain the decisions of a ML
model (Barocas, S., Selbst, A. D., and Raghavan, M., 2019).
The causality hierarchy, and the formal restrictions it entails,
explains why ML systems can attain CI as long as they model
the data beyond mere observed associations. Therefore, learn-
ing causal relations can be transformed into a supervised pre-
diction problem once the data labels indicate the causal direc-
tionality, whether explicitly or implicitly (Guo, R., Cheng, L.,
Li, J., Hahn, P. R., and Liu, H., 2020; Shalit, U., Johansson,
F. D., and Sontag, D., 2016). In this line of work, research in
ML and language understanding have recently found a great
deal of success using large neural networks, especially through
Deep Learning (DL) (Torfi, A., Shirvani, R. A., Keneshloo,
Y., Tavaf, N., and Fox, E. A., 2020; LeCun, Y. and Bengio, Y.,
and Hinton, G. E., 2015). These overparameterized and regu-
larized models constitute one of the most important ideas in

the recent history of statistics, along with CI (Gelman, A., and
Vehtari, A., 2020), and a straightforward way to learn causal
effects and counterfactual outcomes with DL is to learn repre-
sentations for features, i.e., to let the DL system automatically
discover the most effective way to represent the data directly
instead of hard-coding traditional language features. To this
end, DL-based word embeddings may provide an interesting
approach to represent linguistic causality (Li Y., and Yang T.,
2018; Hancock, J. T., and Khoshgoftaar, T. M., 2020).

Specifically, Word Embeddings (WE) are dense, fixed-length
word vectors, built using word co-occurrence statistics as per
the distributional hypothesis (Almeida, F., and Xexéo, G.,
2019). WE learn representations of high-level abstract con-
cepts of the kind humans manipulate with language, away
from the perceptual space, and they exhibit some geometric
relational properties (Bengio, Y., 2017), which can ultimately
be used to conduct lexical comparisons (Tan, L., Zhang, H.,
Clarke, C. L. A., and Smucker, M. D., 2015). Thus, this data
representation can be regarded as an approach to cognition
and artificial intelligence (Maguire, P., Mulhall, O., Maguire,
R., and Taylor, J., 2015). Moreover, WE are computationally
efficient (Levy, O., and Goldberg, Y., 2014), and therefore they
need less data to successfully train statistical models (Goth,
G., 2016), as is the case in TLP. Regarding semantics, WE
also expose word senses (Yaghoobzadeh, Y., Kann, K., Hazen,
T. J., Agirre, E., and Schütze, H., 2019), but they may ex-
perience the meaning conflation deficiency that arises from
representing a word with all of its possible meanings as a sin-
gle vector (Camacho-Collados, J., and Pilehvar, M. T., 2018).
Nevertheless, WE constructed using arbitrarily contextualized
language have further improved representational performance,
possibly helping in the semantic disambiguation of machine
decay (Levy & Goldberg, 2014; Peters, M. E., Neumann, M.,
Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.,
2018). In this line, WE also lead the way to process language
in Prognostics and Health Management (PHM) because they
display a high flexibility that is only attained by avoiding task-
specific engineered features (Fink, O., Wang, Q., Svensén, M.,
Dersin, P., Lee, W.-J., and Ducoffe, M., 2020).

The troubleshooting objective pursued in this article is inter-
esting for the PHM community to enhance the maintenance
business (Leao, B. P., Fitzgibbon, K. T., Puttini, L. C., and de
Melo, G. P. B., 2008). Realizing a comprehensive monitoring
of system data, a timely detection of system abnormalities,
and troubleshooting are all worthy goals, and the recent ex-
ponential growth of PHM patents is a point of support for
these advantages (Liu, Z., Jia, Z., Vong, C.-M., Han, W., Yan,
C., and Pecht, M., 2018). Current troubleshooting tools rely
on fault tree analysis, extensive electronic manuals or expert
system methods to assist the maintainer in identifying faulty
system components (Naveed, A., Li, J., Saha, B., Saxena, A.,
and Vachtsevanos, G., 2012). The approach presented in this
paper combines these complementary methods through the
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exploitation of technical text data from different environments,
which is aligned with the scope of PHM (Brundage, M. P.,
Sexton, T., Hodkiewicz, M., Dima, A., and Lukens, S., 2021).

This work applies the CI paradigm to PHM using DL through
a contextualized WE to better troubleshoot the root causes
of failures and help improve their diagnostics. To do so, it
exploits two different linguistic environments where causality
is expected to be observed. On the one hand, an ontological
reference framework based on a Failure Mode, Mechanism,
and Effect Analysis (FMMEA), which provides a scholarly
structure of causality driven by degradation. On the other hand,
an actual record on Return On Experience (ROX), the data of
which have been explicitly written for the purpose of explain-
ing the root causes of the reported failures. In both environ-
ments, several experts inherently identify which properties of
the observations describe spurious correlations unrelated to the
causal explanation of interest, and which properties represent
the phenomenon of interest, i.e., the stable invariant correla-
tions (Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz,
D., 2019). In this controlled analysis dealing with experimen-
tal data, invariant correlation implies causation. Therefore,
DL and WE should be adequate tools to extract the textual
regularities that represent causality (Mitrovic, J., McWilliams,
B., Walker, J., Buesing, L., and Blundell, C., 2021), and thus
they may be used to rate the level of agreement between CI
theory and practice for troubleshooting. Specifically, a proba-
bilistic Causality-Contextualized WE (CCWE) is trained with
the ROX data, and the FMMEA-based failure ontology data
is then used to evaluate the alignment between the two en-
vironments, which is expected to be reasonably high. This
hypothesis is validated experimentally using the technical doc-
umentation related to rolling stock bogies. Figure 1 shows a
diagram of the proposed analysis workflow for clarity.

The article is organized as follows: Section 2 describes the
data, i.e., the bogie FMMEA and ROX records, the way the
ontology has been created, and the strategy to build a CCWE.
Section 3 conducts a graphical analysis of the whole failure
network to discover structurally interesting points, a proba-
bilistic analysis of the ROX-based CCWE to assess the causal
relationships in practice, and the integration of the two per-
spectives, including a distributed representation of causality.
Section 4 discusses the limitations of the proposed approach
through the comparison with an alternative spectral embed-
ding and the modeling of textual sequences. Finally, Section 5
concludes the manuscript showing how the concept of causal-
ity in bogie failures has been partially attained with the current
technical documentation, and how it may be improved with
the approach presented in this work.

2. MATERIALS AND METHODS

In this section, a FMMEA for bogies is used to build a failure
ontology of their degradation, and a text database of ROX data

Training

Inference

ROX

FMMEA

CCWE

𝑝(𝐹𝑀𝑀𝐸𝐴;𝑅𝑂𝑋)

Figure 1. Diagram of the probabilistic analysis workflow per-
formed in this work, which evaluates the level of agreement
between two causality-rich environments: the Failure Mode,
Mechanism, and Effect Analysis (FMMEA) on the theoretical
side, and the Return On Experience (ROX) on the practical
side. A Causality-Contextualized Word Embedding (CCWE)
is developed to model and evaluate the relevant causal linguis-
tic regularities.

is used to build a practical CCWE.

2.1. Failure Ontology

The FMMEA is an efficient tool to analyze system and com-
ponent failures, and identify their main causes or mechanisms
of failure (Atamuradov, V., Medjaher, K., Dersin, P., Lam-
oureux, B., and Zerhouni, N., 2017). Knowledge of the failure
mechanisms that are likely to produce the degradation that can
lead to eventual failures in the monitored assets is important
to succeed in the implementation of a PHM solution (Mathew,
S., Das, D., Rossenberger, R., and Pecht, M., 2008). There-
fore, the FMMEA is one of the tools used for the effective
assessment of risk, and so it is a vital part of an organization’s
strategic management. However, it is costly to produce and
hardly reusable due to its text-based description in natural
language (Ebrahimipour, V., Rezaie, K., and Shokravi, S.,
2010). To overcome this situation, an ontology-based solution
is advised to extract and reuse FMMEA knowledge from the
available text documents (Rehman, Z., and Kifor, C. V., 2016).

An ontology is a network of standard concepts and terms in a
given domain that shows their properties and the relations be-
tween them to represent knowledge (Ebrahimipour, V., Rezaie,
K., and Shokravi, S., 2010). There is a growing interest in the
potential value of ontologies to codify structures of meaning
for maintenance (Sexton, T., Hodkiewicz, M., Brundage, M. P.,
and Smoker, T., 2018). To this end, TLP is the way to go to au-
tomatically extract valuable insights regarding the many facets
of reliability, maintenance, and planning (Navinchandran, M.,
Sharp, M. E., Brundage, M. P., and Sexton, T. B., 2019). The
ontology augments human decision-making by relying on di-
versified information (Polenghi, A., Roda, I., Macchi, M., and
Pozzetti, A., 2022), especially when real-life maintenance data
is used in its design. Conforming to the vocabulary that is
widely used by maintenance professionals and practitioners is
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a major catalyst for widespread acceptance and uptake (Karray,
M. H., Ameri, F., Hodkiewicz, M., and Louge, T., 2019). Ad-
ditionally, to tackle CI with the ontology, its topology needs
to represent a Structural Causal Model (SCM) framework be-
cause its organization is essential for performing causality
learning tasks such as counterfactual reasoning (Schölkopf, B.,
Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal,
A., and Bengio, Y., 2021). Explicitly, a SCM consists of a set
of explanatory variables, outcome variables, and unobserved
variables, connected by a set of functions that determine their
relational values (Pearl, J., 2009).

For the analysis of bogie failures framed in this work, a FM-
MEA approach is recommended to reduce blindness, subjec-
tivity, and over-reliance on the personal experience (Li, Y.-H.,
Wang, Y.-D., and Zhao, W.-Z., 2009). And for the successful
application of CI, assumptions about the mechanisms underly-
ing the observed data also need to be specified (Sharma, A.,
and Kiciman, E., 2020). To this end, the approach proposed by
Atamuradov and colleagues is taken for reference in this work,
and thus its contents are not questioned here (Atamuradov,
V., Medjaher, K., Dersin, P., Lamoureux, B., and Zerhouni,
N., 2017). Their failure analysis defines three fields that are
described as follows, along with the related causal structure:

Failure Mechanism Fundamental manner in which a com-
ponent can fail ! Unobserved variable that is the Root
Cause of an observed Problem, e.g., fatigue or wear

Failure Mode Manner by which a failure is physically ob-
served, although in certain contexts, the Failure Effect (i.e,
the impact of the Mechanism) can also be found in this
field ! Outcome variable that represents a Problem that
is experienced, e.g., surface defects, rotation difficulty, or
reduction of suspension effect

Component Explanatory variable that describes the context
of a Problem, e.g., wheel or gearbox

Components are related to Failure Modes, which in turn are
then related to Failure Mechanisms. If these relationships
are likened to an ISO 13379 standard causal tree with faults,
symptoms, and descriptors (ISO, 2003), the resulting failure
ontology is shown in Figure 2, where the directed edges in-
dicate the (assumed) direction of causation (Imbens, G. W.,
2020).

2.2. Return On Experience

ROX is a holistic approach to understand and increase the
value of investments across customer, employee, and leader-
ship experience (PwC, 2019). It is strictly related to the First
Time Right management principle, which aims to minimize
the number of product issues that get past design release and
cause rework, leading to dissatisfied customers (Leuenberger,
H., Puchkov, M., and Schneider, B., 2013). Specifically, ROX
is a data-driven quality strategy that focuses on identifying
and eliminating the root cause of the problems and ensure

that the improvement is sustained (Smetkowska, M., and Mru-
galska, B., 2018). To this end, tagging and curating already
existing textual data can be a first step toward structuring
content (Sexton, T. B., and Brundage, M. P., 2019), but this
work goes beyond this step and processes data that have been
specifically written for the purpose of describing the causal
sources of the reported problems. Therefore, unlike regular
observational data, ROX records are hardly marred by selec-
tion biases, confounding factors, and other such weak points,
and thus they may be treated as experimental or interventional
data.

The ROX database of use in this work contains around 500
records written by many experts following a feasible collabo-
rative approach (Hastings, E. M., Sexton, T., Brundage, M. P.,
and Hodkiewicz, M., 2019). However, different technicians
rarely describe the same Problem in an identical manner or
register (Conrad, S., 2019). This leads to description inconsis-
tencies within the database and makes it difficult to categorize
issues or learn from similar causal relationships (Sharp, M.
E., Sexton, T. B., and Brundage, M. P., 2017). Therefore, a
statistics-based TLP approach is needed to put the focus on
factual data and strip grammatical artifacts, e.g., by filtering
out stop words, lemmatizing, etc. This provides a systematic
methodology to create computable knowledge (Sexton, T.,
Hodkiewicz, M., Brundage, M. P., and Smoker, T., 2018).

By definition, plain text data are intrinsically unstructured.
However, in the ROX database each record conducts a specific
troubleshooting analysis in isolation, and the causal connec-
tions are organized into the following fields:

Problem Subject title, description of the reported Failure
Mode, and details of its technical impact.

Root Cause Description of the Failure Mechanism of the
issue following an investigation, and the main reason of
non-detection.

Business context Strategic unit: trains, rail services, rail
control, and infrastructure.

System context Technical scope: air supply, passengers,
roof, door, and bogie.

Issue context Domain category: mechanical, documenta-
tion, electrical, and assembly.

Table 1 shows some examples of bogie ROX database entries
to illustrate the nature of these data (note that the majority of
the instances are mechanical issues).

To further understand the characteristics of these technical text
data, which justifies the TLP-based approach, Figure 3 shows
the power-law distribution of its ranked word frequencies com-
pared to what is expected in natural language (Zanette, D.
H., and Montemurro, M. A., 2005). Note that the technical
language curve has a positive offset with respect to natural lan-
guage. This increased word frequency spectrum may indicate
that this technical language shows a reduced vocabulary and
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Fretting corrosion

Leakage

Oil reservoir leakage

Seals wear

Grease quality degradation IHigh Temperature Ageing, Mechanical Ageing, ContaminationW

Micropitting / Macropitting

Scuffing

Fatigue crack propagation

Spalling

Fatigue ISubsurface / Surface initiated fatigueW

Fracture and Cracking IForced fracture / Fatigue
fracture / Thermal crackingW

Impact

Scaling

Shelling

Thermal shock

Wear IAbrasive / AdhesiveW
Metal build-up

Bogie frame

Subsurface initiated bending fatigue Material deformation IYielding, CreepW

Wheel

Axle bearing

Axle box

Inner and outer springs

Centering springs

Primary damper

Emergency springs

Air spring

Vertical damper

Lateral damper

Gearbox bearings
Gearbox gears

Gearbox

Surface defects

Loss of structural integrity

Subsurface defects

Rotates with difficulty or cannot rotate

Reduction of the primary suspension effect

Reduction of the centering effect

Reduction of the damping effect

Reduction of emergency suspension effect

Reduction of the secondary suspension effect

Reduction of the vertical damping effect

Reduction of the lateral damping effect

Bad or insufficient lubrication

Figure 2. FMMEA-based bogie failure ontology linking Component (black boldface) to Failure Mode (red italics) and then to
Failure Mechanism (blue).

therefore the same words may need to be used more often. In
a similar descriptive vein, Figure 4 shows the distribution of
technical ROX text lengths as word counts per record along
with some comparative hints regarding natural language. Note
that the statistical ROX length mode is around 8 words, which
is far from the optimum contemporary readability indication
of 17 words (DuBay, W. H., 2004). Such short texts have
some unique characteristics that make them difficult to han-
dle. For instance, they do not always observe the syntax of
written language, they contain limited context, and they give
rise to ambiguity as more than one meaning may be conveyed,
leading to vagueness and confusion (Wang, Z., and Wang,
H., 2016). Moreover, the ROX length distribution shows a
tail of longer texts that get increasingly difficult to read, and
also over 35 words the quality of a language model decreases
rapidly (Bahdanau, D., Cho, K., and Bengio, Y., 2015).

2.3. Causality-Contextualized Word Embedding

The original conception of a WE related a single word to its
local context given a shallow window of proximity (Mikolov,
T., Chen, K., Corrado, G., and Dean, J., 2013). However,
this principle does not hold for CI because the context of the

related texts is different. In this work, the goal is to learn the
causal relationships between Problems (i.e., Failure Modes)
and their Root Causes (i.e., Failure Mechanisms) through
their respective textual expressions. To do so, a binary-valued
Bag-Of-Words (BOW) model is considered to account for the
presence of multiple words concurrently (Le, Q., and Mikolov,
T., 2014). Note that the syntax is not retained as this model
focuses on the overall semantics through the lexicon. In turn,
the input and output vocabularies are also dependent on their
causal roles, and regarding that an effective method depends
on the size of the vocabulary (Chen, W., Grangier, D., and
Auli, M., 2015), both Root Cause and Problem lexicons are
considered in the present WE model.

The proposed implementation of the CCWE for troubleshoot-
ing is based on an encoder-decoder DL architecture using the
causal concept of refinements (Mitrovic, J., McWilliams, B.,
Walker, J., Buesing, L., and Blundell, C., 2021), see Figure 5.
Root Causes are probabilistically modeled given their Prob-
lems and some Context, which is a situational hint to enhance
language models (Yu, W., Zhu, C., Li, Z., Hu, Z., Wang, Q., Ji,
H., and Jiang, M., 2020), and may be stripped from the model
once trained. The CCWE is exploited with a contrastive esti-
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Table 1. ROX database examples of bogie system failures reported by maintenance services.

Issue context Problem Root Cause
mechanical vertical damper failure, seal-

ing defect
as per supplier investigation report the failure mode is the primer glue departed from
the metal parts. considers it was because the metal parts were not cleaned well while
in the pre treatment process the primer glue can’t adhere well to the metal parts so it
will cause debonding issue during operation.

mechanical anti roll bar assembly knock-
ing noise, excessive noise

a light stick slip phenomena is the root causes of the noise. it is decided to change the
knuckle as per updated design from supplier hyed for one complete train set. currently
in claim situation with supplier for them parts are compliant to specification.

mechanical oil leakage from gear box
unit, loss of tightness

as per supplier rca it is confirmed that the gear lubricating oil from the drainage hole
leakage caused by the labyrinth ring tw of roundness error. oil leakage causes in the
process of the part in ngc in sheet2 the process of operation not suitable for the mode
of transportation easy to cause roundness error of deformation when parts fall off or
pressure deformation.

assembly conical spring bonding issue,
loss of regulation

debonding beetwen rubber material and steel frame incorrect handling of adhesived
parts by operators before putting them into the mould. the cleanliness of localalized
area is jeopardized and it disturb the bonding process between rubber and interface. it
was not possible to detect during the validation tests the parts tested did not presented
failure. the issue happens when submitted to load sometimes with few milage or more
than 150.000 km for example.

Figure 3. Ranked word relative frequency distribution of
technical ROX text data versus natural language. The exponent
of the power laws is shown in brackets.

mation framework, which discriminates between the observed
data and some artificially generated noise (Gutmann, M., and
Hyvärinen, A., 2010; Mnih, A., and Teh, Y. W., 2012; Mikolov,
T., Sutskever, I., Chen, K., Corrado, G., and Dean, J., 2013).
This approach is attained through jointly learning a series of
nonlinear logistic regressions using an output logistic activa-
tion function and a cross-entropy cost criterion for training.
Bias terms are also considered because of the multiple-word
instances with different lengths (there is no basis to assume
that the embedding will be centered around the origin). Also,
being a DL solution the model is expected to be overparameter-
ized, so the use of Dropout layers is recommended to manage
words that belong to regions of poor overlap in the feature
space (Alaa, A. M., Weisz, M., and van der Schaar, M., 2017).
Specifically, the input layer is followed by a Dropout layer

Figure 4. Word count frequency distribution of technical ROX
text data records along with natural language readability indi-
cations.

to deal with long texts because these are more likely to have
words deactivated, therefore equaling their potential impact
to that of shorter instances. And the embedding layer, which
is smaller than the BOW-based layers, is also followed by
another Dropout layer to adjust its representational expressive-
ness and manage ambiguity more effectively (Yaghoobzadeh,
Y., Kann, K., Hazen, T. J., Agirre, E., and Schütze, H., 2019).

The proposed CCWE model gives the following probability
directly:

p(Root Cause|Problem,Context)

However, an explicit formulation through the embedding bot-
tleneck layer is advantageous to study the geometric properties
of its distributed representation, see Eq. (1).
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𝑤2𝑃

𝑤|𝑃|𝑃

𝑤1𝑃

⋮

𝑤|𝐶|𝐶

𝑤1𝐶

⋮

𝑒1

⋮

𝑒2

𝑒|𝑒|

𝑤2𝑅𝐶

𝑤|𝑅𝐶|𝑅𝐶

𝑤1𝑅𝐶

⋮

𝑤3𝑅𝐶

CCWE

Root 
Cause 
BOW

Problem
BOW

Context
𝑊𝐸𝑁𝐶 𝑊𝐷𝐸𝐶

Figure 5. Encoder-decoder DL architecture of the CCWE in
inference mode. Dropout layers are used in training mode
only, and are thus not shown here for clarity.

CCWE = WENC · (Problem,Context) (forward)

⇠ W+
DEC

· logit ([Root Cause] ) (backward)
(1)

Note that the backward equation requires the inversion of
the non-square decoder matrix WDEC , which is not possible.
In this case, a least-squares approximation is used through
its pseudoinverse W+

DEC
. Also note that the logit function

cannot be applied to a binary-valued BOW vector because it
leads to an asymptotic overflow. In this case, the values of
the [Root Cause ] vector are clipped to 0.2 (false) and 0.8
(true). These bounds are driven by the extrema of the second
derivative of the logistic function and prevent its saturation.

Finally, the distributed representation of causality is to be ex-
ploited through the Principal Components (PC) of the CCWE
and the cosine distance between Root Cause and Problem
BOW vectors (Mikolov, T., Sutskever, I., Chen, K., Corrado,
G., and Dean, J., 2013). The angle they form in the PC space is
a common textual similarity metric utilized in semantic classi-
fication and search (Tan, S., Zhou, Z., Xu, Z., and Li, P., 2019).
And taking into account that the cosine similarity becomes
less predictive as the dimensionality increases (Yaghoobzadeh,
Y., Kann, K., Hazen, T. J., Agirre, E., and Schütze, H., 2019),
the PC representation is typically reduced to two dimensions
following the customary practice in NLP research.

3. RESULTS

Causal prediction is not a typical downstream NLP task apt
for evaluation. Therefore, the experiments conducted in this
section have been compared with human judgments on word
relations, i.e., an intrinsic evaluation (Bakarov, A., 2018). Ex-
planations have been provided through graphs, feature impor-
tance (e.g., word probabilities), visualizations (e.g., spectral
analysis), and concrete examples (Mothilal, R. K., Sharma, A.,

and Tan, C., 2020).

3.1. Causal Graphs

Graphs are a powerful representation formalism that can be
applied to a variety of aspects related to language process-
ing (Mihalcea, R., and Radev, D., 2011). With a proper choice
of nodes and edge drawing criteria and weighing, graphs can
be extremely useful for revealing regularities and patterns in
the data (Nastase, V., Mihalcea, R., and Radev, D., 2015).
Additionally, causal graphs reduce the adverse impact of latent
variables or noise (Bahadori, M. T., and Heckerman, D. E.,
2021). This section studies the failure ontology as a causal
graph to detect confounders (i.e., common root causes) as
forks, and colliders (i.e., common problems) as inverted forks.
To get an overview of these characteristics, centrality measures
have been used to pinpoint the most important nodes of the
resulting graphs.

On the one hand, the degree centrality CD(v) states that
the important nodes v are the ones that have many connec-
tions (Mihalcea, R., and Radev, D., 2011), see Eq. (2), where
V is the total number of nodes in the graph, and d is the
distance between two nodes, i.e., the minimum number of
vertices that separate them. The application of this criterion is
shown in Table 2 as a ranking of nodes, and Figure 6 shows
a graph that preserves the ontological relationships driven by
this ordered arrangement. According to the degree centrality
indicator, the confounders are the nodes related to the Failure
Modes of the suspension components (i.e., springs, damper...),
and the colliders are its Failure Mechanisms (i.e., fatigue crack,
material deformation, leakage, and the wear of seals).

CD(v) =
1

V

X

8v06=v

x, where x =

(
1 if d(v0, v) = 1

0 otherwise
(2)

On the other hand, the closeness centrality CC(v) states that
the important nodes v are the ones that are near other nodes
v0 (Mihalcea, R., and Radev, D., 2011). This proximity indica-
tor is calculated as the inverse of the sum of the path lengths
from a given node to all the other nodes, see Eq. (3). The
application of this criterion is shown in Table 3 as a ranking,
and Figure 7 shows the corresponding graph that preserves
the ontological relationships. According to the closeness cen-
trality indicator, the confounders are the nodes related to the
Failure Modes of the bearings: surface defects and rotation
difficulty. In general, note that the nodes with the greatest
centrality measures are not densely connected among them-
selves (some even show few connections), thus there are many
peripheral items to be taken into consideration.

CC(v) =
V � 1P

8v06=v
d(v0, v) (3)
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Bad or insufficient 

Rotates with difficulty

Seals wear
Reduction of the damping effect

Fatigue crack propagation

Leakage

Loss of structural integrity
Reduction of the primary suspension effect

Reduction of the lateral

Material deformation 

or cannot rotate

suspension effect
Emergency

lubrication

(Yielding, Creep)

damping effect

Reduction of the vertical
damping effect

Surface defects

Figure 6. Failure ontology subgraph driven by the nodes
with the greatest degree centrality.

Shelling

Seals wear
Surface defectsImpact

Spalling

Fatigue crack propagation

Scuffing
Wear (Abrasive wear / Adhesive wear)

Leakage

Material deformation 

or cannot rotate
t  Rotates with difficulty

Macropitting
p  Micropitting /

benndin
Subsurface initiated

bending fatigue

(Yielding, Creep)

Figure 7. Failure ontology subgraph driven by the nodes
with the greatest closeness centrality.

Table 2. Ranking of failure ontology nodes according to their
degree centrality score.

Failure Ontology Node Degree Centrality
Rotates with difficulty or cannot
rotate

0.2273

Surface defects 0.2045
Fatigue crack propagation 0.1591
Loss of structural integrity 0.1136
Leakage 0.0909
Material deformation (Yielding,
Creep)

0.0909

Seals wear 0.0682

Table 3. Ranking of failure ontology nodes according to their
closeness centrality score.

Failure Ontology Node Closeness Centrality
Fatigue crack propagation 0.2121
Leakage 0.1212
Material deformation (Yielding,
Creep)

0.1212

Seals wear 0.0909
Impact 0.0710
Surface defects 0.0682
Rotates with difficulty or cannot
rotate

0.0682

3.2. Causal Lexical Probabilities

This section conducts a preliminary study of the sensitivity of
the CCWE built with the bogie ROX data. The dimensionality
of the BOW for the Problem is |P | = 1591, for the Root Cause
it is |RC| = 2210, and for the embedding it is |e| = 300. This
configuration yields a model with more than 1M trainable
parameters. This WE has been trained using cross-validation
with a train/test data split of 80%/20%, and the resulting binary
accuracy is 0.9894. This learning result indicates that the
memorized word relationships of the CCWE are likely to
provide reliable causal associations for ROX. To illustrate the
troubleshooting capacity of the CCWE, Table 4 shows some

Table 4. Generic troubleshooting word examples obtained
with the CCWE.

Problem Possible Root Cause (Probability)
oil leak attached (0.8849), measured (0.6137),

hole (0.5733), pressure (0.2372)
bearing tightening (0.0659), vibration (0.0639),

shock (0.0495), assembly (0.0394)
gear box design (0.9062), tolerance (0.9061), oil

(0.8703), pressure (0.8237)

generic word examples.

In general, the Root Cause outcomes of the CCWE with high
probability are reasonable words that belong to the same se-
mantic field of the given Problems. Note that the probabilities
for the “bearing” component are an order of magnitude lower
than those for “oil leak” and ”gear box”. This result may be
due to the specificity of causal words like “tightening”, com-
pared to common words like “attached” or “design”. However,
there are also some noise words that typically appear in the
BOW of the Root Cause, such as “please”, “report”, “refer-
ence”, “part”, etc. This is attributed to the way the experts
provide standard ROX feedback. Also, the arrays of output
probabilities are mostly comprised of low values, and this is
mainly explained by the large space of BOW dimensionality,
which leads ROX instances to be sparse.

The geometrical characteristics of the obtained linguistic dis-
tributed representation are shown in Figure 8. Note that to
obtain this rendering, both the forward encoder and backward
decoder equations of the CCWE are needed. This distribution
shows that the Root Causes are concentrated in the center,
whereas the Problems are spread across the PC space. Thus,
the cosine similarity metric is needed to align them within
the ↵ angle, yielding a circular sector of causal likelihood. A
detailed example of the alignment between a generic Problem
like “noise” and its potential Root Causes is shown in Figure 9.
The results illustrate the incertitude of the derived causal rep-
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Figure 8. PC of the CCWE activations and the application
of the cosine distance similarity measure showing a circular
sector ↵ of causal likelihood.

Figure 9. Detailed example of a cosine distance lower than
five degrees (↵ < 5o) between the generic “noise” Problem,
its nearest Root Causes, and other close/similar Problems.

resentation as the nearest Failure Mechanisms are ”electri-
cal/rectification” and “wear”. In addition, many reasonably
related “noise” Problems (sharing the same Root Causes) are
also shown, e.g., “motoring”, “breakage”, “leakage”, “crack-
ing”, etc.

3.3. Troubleshooting Integration

This section determines if the relationships in the FMMEA-
based failure ontology correspond to high ROX-based causal
probabilities. To do so, the evaluation of whole Failure Mode
texts (as Problems P ) is conducted by taking the average prob-
ability p̄ROX(RC|P ) of the Root Cause RC words appearing
in the reported Failure Mechanisms, see Eq. (4), where N rep-
resents the words in the text being evaluated. Table 5 shows the
top-ranking failures that have been obtained. These results in-
dicate that the leading issues are related to springs and wheels,
which the latter is in accord to previous knowledge (Trilla,

A., Bob-Manuel, J., Lamoureux, B., and Vilasis-Cardona, X.,
2021). Also note that they are mostly linked to the main con-
founders, i.e., the common root causes, of the failure ontology.

p̄ROX(RCi|Pi) =
1

N

X

w2N

pROX(RCw

i
|Pi)

i 2 FMMEA Failure Ontology
(4)

In addition to this direct FMMEA/ROX relationship, it is also
necessary to determine if the cross-failure probabilities are low
and thus assert that the proposed approach shows a discrimina-
tive property. This alignment study has been determined using
the Cross-Probability Difference (XPD) variable, defined by
Eq. (5) as the difference between the direct causal probability
and the anti-causal probabilities. Note that positive probabil-
ity differences represent a good alignment between Failure
Mode and Mechanism i, whereas negative differences mean
that other Failure Mechanisms j are more relevant (according
to ROX) than the one stated in the FMMEA-based failure
ontology.

XPD(i) = p̄ROX(RCi|Pi)� p̄ROX(RCj |Pi)

8j 6= i

i, j 2 FMMEA Failure Ontology
(5)

Regarding the distribution of the XPD variable, see Figure 10,
the majority of the FMMEA statements are aligned (71.32%
of strictly positive values). The clearest textual expressions are
driven by the centering springs component. Nevertheless, there
are many cases where the difference is too small to extract
strong conclusions, as is shown by the high peak around 0.
Maybe this is due to averages including missing terms, e.g.,
specific Failure Mechanism words like “spalling”, “scaling”,
“scuffing”, and “pitting” do not appear in ROX. In addition,
there are some outlier instances showing a large misalignment,
i.e., XPD < �0.06. Some examples are listed as follows:

• Bogie frame, Surface defects ! Material deformation
(Yielding, Creep)

• Bogie frame, Surface defects ! Shelling
• Wheel, Surface defects ! Material deformation (Yield-

ing, Creep)
• Vertical damper, Reduction of the vertical damping effect

! Metal build-up

All these results may be taken for different signs of poor
writing, and thus may also be an indication to rephrase those
statements and improve the meaning they convey.

To conclude the integration analysis, Table 6 shows an indirect
evaluation of the application of the ROX-based causality to the
FMMEA-based failure ontology through the cosine distance
as the PC vector angle similarity. Bearings and suspension
components populate this ranking, which is quite similar to
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Table 5. Ranking of ROX-based average probabilities driven by FMMEA failure ontology.

Component Failure Mode Failure Mechanism p̄ROX

Centering springs Reduction of the centering effect Material deformation (Yielding, Creep) 0.0308
Wheel Surface defects Shelling 0.0208
Emergency springs Reduction of emergency suspension effect Material deformation (Yielding, Creep) 0.0184
Inner and outer springs Reduction of the primary suspension effect Material deformation (Yielding, Creep) 0.0147
Bogie frame Loss of structural integrity Material deformation (Yielding, Creep) 0.0071
Bogie frame Loss of structural integrity Fatigue crack propagation 0.0021
Bogie frame Loss of structural integrity Impact 0.0019

Figure 10. Cross-Probability Difference (XPD) distribution
visualized through the histogram.

the one driven by the causal probabilities (a slight reordering
is observed, though). In fact, angles and probabilities score
a Pearson correlation coefficient of �0.65, so the previous
probability-driven conclusions are likely to be largely extrap-
olated in this causal distributed representation. Therefore,
the FMMEA entries that display wide ROX angles may in-
dicate that a rephrasing would be beneficial to increase the
comprehension of their text (Ansari, F., 2020). Anyhow, all
these results show that the FMMEA ontology relations can
be reasonably weighted either via ROX causal probability or
distance scores, and thus obtain a SCM to validate the CI
approach using a DL-based contextualized WE.

4. DISCUSSION

Up to this point, after having completed the workflow proce-
dure, the discrepancy between FMMEA and ROX has been
solely attributed to lexical imprecision between the same
causality principles expressed in a particular environment,
context, or perspective. However, there may be other sources
of epistemic uncertainty that could help explain this diver-
gence. This section addresses some particularities about the
proposed CCWE model.

For example, by the Independent Causal Mechanisms prin-
ciple, the causal generative process of a system’s variables
is composed of autonomous modules that do not inform or

influence each other (Schölkopf, B., Locatello, F., Bauer, S.,
Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y., 2021).
In the troubleshooting probabilistic case tackled in this work,
this would imply that the conditional distribution of each Root
Cause variable (i.e., the Failure Mechanism) given its Problem
(i.e., its Failure Mode) did not inform or influence the other
causes. The presented CCWE does not respect this princi-
ple because of its multilayer neural topology trained using
the standard backpropagation procedure: the encoder layer
is influenced by all of the output cause variables, and this, in
turn, affects all the predictions through the forward propaga-
tion. However, this could also be seen as an advantage from a
multitask learning perspective (Crawshaw, M., 2020).

Additionally, performance gains of word embeddings are due
to certain system design choices such as dynamically sized
context windows and hyperparameter optimizations, rather
than the embedding algorithms themselves (Levy, O., Gold-
berg, Y., and Dagan, I., 2015). This argument leaves the door
open to considering chance as the ultimate explanatory factor
for the results obtained. At the same time, it motivates further
research study on DL-based WE.

4.1. Spectral Embedding

Probabilistic models like the CCWE can be viewed as directed
graphical models (Salakhutdinov, R., and Hinton, G., 2009).
As such, their learned knowledge may be interpreted using a
graph spectral embedding or clustering technique. A suitable
approach to extract this representation is through the factoriza-
tion of the Laplacian matrix L = D �A, which is a measure
of the local derivative of the graph (Mihalcea, R., and Radev,
D., 2011). D represents the degree matrix (i.e., the amount
of node incoming or outgoing links), and A represents the
adjacency matrix (i.e., the causal word relations). After ex-
tracting the eigencomponents of L, similar nodes must have
embeddings that are close to one another (Cai, H., Zheng, V.
H., and Chang, K. C.-C., 2018), and thus the Euclidean dis-
tance could be adequate for the similarity comparisons. This
section explores this proximity property in the present causal
degradation environment.

Figure 11 shows a representation of the two largest Lapla-
cian eigenvectors, which that aim to capture the maximum
information (in the form of variance dispersion) of the em-
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Table 6. Ranking of ROX-based cosine distance (angle similarity) driven by FMMEA failure ontology.

Component Failure Mode Failure Mechanism ↵
Gearbox bearings Rotates with difficulty or cannot rotate Wear (Abrasive wear / Adhesive wear) 0.5995
Vertical damper Reduction of the vertical damping effect Seals wear 5.9321
Axle bearing Rotates with difficulty or cannot rotate Wear (Abrasive wear / Adhesive wear) 14.6010
Primary damper Reduction of the damping effect Seals wear 15.1803
Centering springs Reduction of the centering effect Material deformation (Yielding, Creep) 17.9046
Inner and outer springs Reduction of the primary suspension effect Material deformation (Yielding, Creep) 20.4794
Wheel Surface defects Metal build-up 23.2299

Figure 11. Largest Laplacian eigenvectors � of the CCWE
directed graph and the application of the Euclidean distance
similarity measure showing a circle of causal likelihood R.

bedded causal data. Given the directed bipartite structure of
the troubleshooting scenario tackled in this work, where the
same word can be used to describe both the Root Cause and
the Problem, two degree matrices have been used: one with
the Problem word nodes (output degrees only), and the other
with the Root Cause word nodes (input degrees only). Finally,
their representations have been overlapped, showing that the
cause/effect separation is preserved in this low-dimensional
illustration. However, only the central region where the two
causal roles meet seems to be amenable to any further infer-
ence assessment.

Figure 12 shows a more detailed example over the generic
“pressure” Problem. All the Failure Mechanism terms that
appear seem reasonable given this Failure Mode, e.g., “loop”,
“zero”, “leak”, etc. However, in this case, the associated proba-
bilities seem to be unrelated to the distance scores. Moreover,
trying to replicate the “noise” Problem used before results
in incomprehensible results due to the vast amount of terms
that rapidly appear as the radius R is increased. Maybe the
factorization of the Laplacian matrix, which is strictly defined
for an undirected graph, built over a directed graph is flawed
and needs further attention.

Figure 12. Detailed example of spectral embedding over the
generic “pressure” Problem. In this troubleshooting scenario,
arrows point toward the potential Root Causes, and the related
probabilities are also shown under the words.

4.2. Language Modeling

In previous sections it has been shown that the lexicon per se is
sufficient to produce reasonable causal probabilities. However,
the principle of semantic composition states that the meaning
of a phrase can be derived from the meaning of the words
that it contains as well as the syntax that binds them (Iyyer,
M., Boyd-Graber, J., Claudino, L., Socher, R., and Daumé III,
H., 2014). Likewise, a WE captures syntactic and semantic
regularities (Mikolov, T., Yih, W.-t., and Zweig, G., 2013).
Consequently, a WE could be able to compose meaningful
phrases and thus build a language model.

Language models learn linguistic knowledge, store relational
knowledge present in the training data, and may be able to an-
swer structured queries (Petroni, F., Rocktäschel, T., Lewis, P.,
Bakhtin, A., Wu, Y., Miller, A. H., and Riedel, S., 2019). To
do so, neural encoder-decoder models pioneered by machine
translation were proposed to achieve the goal of mapping input
text to output text (Cho, K., van Merriënboer, B., Gulcehre,
C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y., 2014). An encoder network first reads and represents a
source sentence into a fixed-length vector, and a decoder net-
work then outputs a target sentence from this encoded vector.
This encoder/decoder architecture can also be extended to deal
with corpora and vocabulary sizes, and complex, long term
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structures of language (Jozefowicz, R., Vinyals, O., Schus-
ter, M., Shazeer, N., and Wu, Y., 2016). Eventually, encoder
and decoder are jointly trained to maximize the conditional
probability of a correct relationship, which is conceptually
equivalent to what is pursued in the WE but this time consid-
ering the sequentiality of words as an additional embedded
context (Liu, Q., Kusner, M. J., and Blunsom, P., 2020). This
heteroassociative property is explored in this section to relate
Root Causes to Problems for long texts.

The specific implementation adopted in this work is based
on the Sequence-to-Sequence (S2S) approach. S2S applies
recurrent neural networks to problems whose input and output
sequences have different lengths with complicated and non-
monotonic relationships (Sutskever, I., Vinyals, O., and Le, Q.
V., 2014). Specifically, standard Long Short-Term Memory
(LSTM) networks are used due to their superior performance
for small corpora, as is the case in TLP, instead of more popular
models based on Transformers (Ezen-Can, A., 2020). Also,
model awareness of the context (e.g., through the WE) helps
understand the semantic meaning of an input sequence and
generate a more informative response (Yu, W., Zhu, C., Li, Z.,
Hu, Z., Wang, Q., Ji, H., and Jiang, M., 2020). Considering
all these points, Figure 13 shows the diagram of the proposed
causality-contextualized S2S language model using the LSTM
and the CCWE. Note that given the sequential nature of S2S,
the input/output interface to the system is no longer a BOW but
a one-hot encoded single-word vector, i.e., words are presented
and retrieved from the language model on a one-by-one basis.

Table 7 shows the plain Root Cause outputs obtained from the
system given potential generic Problems. In light of these re-
sults, the causality-contextualized language model exhibits the
performance of a “pidgin”, and this is mainly attributed to the
strict lexicon-driven text preprocessing stage. The model does
not retrieve the ROX entries literally. Instead, it displays a gen-
eralization capacity using vague words (e.g., most Problems
are blamed on “reporting” as their Root Cause). Such patho-
logical utterances, also known as hallucinations, are common
with S2S (Lee, K., Firat, O., Agarwal, A., Fannjiang, C., and
Sussillo, D., 2018). And due to the discrepancy between this
vaguely generated text and the detailed ROX reports, the ex-
posure bias problem that usually affects such autoregressive
language models is increasingly more penalizing for technical
language (Wang, C., and Sennrich, R., 2020). Also, input
Problems need to be provided using long, elaborate and ver-
bose descriptions, otherwise the model outputs nothing (i.e.,
long chains of padding symbols). This may be attributed to
the most critical components of the LSTM cell, i.e., the forget
gate and the activation function (Greff, K., Srivastava, R. K.,
Koutnı́k, J., Steunebrink, B. R., and Schmidhuber, J., 2017).

Finally, there are diminishing returns with increasing the scale
of model parameters, dataset size, and training computation,
because these variables are power laws (Kaplan, J., McCan-

Encoder
LSTM

Root Cause
Word

Problem
Word

𝑊𝐸𝑁𝐶
𝑊𝐷𝐸𝐶+

CCWE

Decoder
LSTM

CCWE

Figure 13. Diagram of the causality-contextualized S2S lan-
guage model using the LSTM and the CCWE.

Table 7. Plain troubleshooting Root Cause sentences generated
by the causality-contextualized language model given potential
generic Problems.

Problem Root Cause
oil leak found on bogie, gear box, and
wheel at high speed

report design

hot axle box bearing assembly
traction motor caught fire, smoke alert on
commercial service

report inspection

noisy blower does not turn: power elec-
tronics are not available

report failure part

dlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J., and Amodei, D., 2020), so the
potential for significant improvement needs to be driven by a
complementary source of knowledge, such as the FMMEA,
as it has been researched in this work. The causal structure of
use here shows 19 Failure Mechanisms for 12 Failure Modes
regarding 14 components, so further refinements (or general-
izations) may be observed if these values are augmented.

5. CONCLUSION

This work describes a first exploratory work on how the Causal
Inference paradigm may be applied to troubleshooting rolling
stock bogies through the extraction of linguistic knowledge
from FMMEA and ROX text data using graphs and contex-
tualized word embeddings. The overall conclusions indicate
that the inference of causality has already been attained with
the available theoretical and practical documentation, showing
a consensus greater than 70%. Interestingly, though, some
disagreement between Root Cause and Problem has arisen in
a few areas, leading to poor diagnosis results, and potentially
indicating that textual expression improvements are necessary
in the technical materials.

The central piece of this research is the construction of a
neural word embedding that differs from the state of the art,
which is focused on modeling the local context of a single
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word. The proposed model jointly embeds two whole textual
instances that belong to different (causal) contexts. In terms
of evaluation, given that CI is not a well-defined task in lan-
guage processing, the results may be questioned due to their
strict dependence on subjective human criteria. This is a clear
point of general improvement (beyond the specific purposes
of this work) toward the fair assessment of other related CI
approaches such as the Twin Networks method to estimate
the probabilities of causation (Vlontzos, A., Kainz, B., and
Gilligan-Lee, C. M., 2021), the causal regularization of neural
networks to improve their interpretability (Bahadori, M. T.,
Chalupka, K., Choi, E., Chen, R., Stewart, W. F., and Sun,
J., 2017; Shen, Z., Cui, P., Kuang, K., Li, B., and Chen, P.,
2018), or the learning of causally disentangled representations
using Variational Autoencoders (Suter, R., Miladinović, D.,
Schölkopf, B., and Bauer, S.,, 2019; Yang, M., Liu, F., Chen,
Z., Shen, X., Hao, J., and Wang, J., 2020).

In terms of application, a direct implementation of this de-
veloping approach could be driven by a retrieval-augmented
generation system for work orders to advise the maintenance
team by identifying the most probable underlying root cause
to a given problem, and reduce both the time to action and
asset downtime while increasing the safety of the railway ser-
vice (Ansaldi, S. M., Agnello, P., Pirone, A., and Vallerotonda,
M. R., 2021). This enhanced troubleshooting system would
equip a model that combines pre-trained parametric mem-
ory (i.e., the causality-contextualized word embedding) and
non-parametric memory (i.e., a classic data retrieval-based
engine) for language generation (Lewis, P., Perez, E., Piktus,
A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis,
M., Yih, W.-t-, Rocktäschel, T., Riedel, S., and Kiela, D.,
2020). However, the shortage of maintenance text data may
hinder the exploitation of this approach. Therefore, a NLP
augmentation strategy could be helpful (Bayer, M., Kaufhold,
M.-A., Buchhold, B., Keller, M., Dallmeyer, J., and Reuter, C.,
2021), although the larger the data analyzed, the greater the
chance that spurious correlations dominate the results and lead
to erroneous conclusions (Dima, A., Lukens, S., Hodkiewicz,
M., Sexton, T., and Brundage, M. P., 2021). Alternatively,
fine-tuning a bigger pre-trained language model, which has
become the de facto standard for doing transfer learning in
NLP, could also be advantageous (Li, J., Tang, T., Zhao, W.
X., and Wen, J.-R., 2021). Finally, the deployment of the pre-
sented approach to a different railway PHM asset such as the
Passenger Door System may reveal further CI insights into the
integration of FMMEA with ROX (Dinmohammadi, F., Alkali,
B., Shafiee, M., Bérenguer, C., and Labib, A., 2016), and with
the increased availability of diverse SCM, a Graph Neural
Network could expect to learn a truly holistic troubleshooting
system at the train level (Bronstein, M. M., Bruna, J., Cohen,
T., Velickovic, P., 2021).
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