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ABSTRACT 

The automotive industry is witnessing its next phase of 
transformation. The vehicles are getting defined by software, 
becoming intelligent, connected and more complex to design, 
develop and analyze. For these complex vehicles, prognostics 
and proactive maintenance has become ever more critical 
than before.  

OEMs and suppliers analyze probable failures that a vehicle 
component is likely to encounter, define fault codes to 
identify those failures, and provide procedure or guided steps 
to resolve them. For smarter vehicles, it is required that 
vehicles be capable to catch potential problems as soon as the 
component’s condition starts to deteriorate and becomes a 
failure. These failures could be known (defined) or new 
(undefined). Given the vehicle development timelines and 
increasing complexity, many problems are not analyzed at 
design stage and remain undetected before production. 
Hence, no fault code or test case exist for them. Diagnosing 
such problems become very difficult, postproduction.  

The aim of this paper is to propose a Machine Learning (ML) 
based framework which utilizes minimally labelled or 
unlabeled sensor data generated from a vehicle system at a 
given frequency. The framework utilizes an ML model to 
identify any anomalous behavior or aberration, and flag it for 
further review. This framework can be adopted on large 
amount of real time or time series data to identify known as 
well as undefined failures early. These models could be 
deployed on cloud or on edge (on vehicles) for analyzing 
real-time sensor data for a given system/component and flag 
any anomaly. It could further be utilized to create a part 
specific Predictive Maintenance (PM) model to provide 
proactive warnings and prevent downtime. 

1. INTRODUCTION 

The electronic components and amount of data being 
produced from vehicles has increased exponentially. 
Advances in computing and storage capabilities, and 
connectivity, has created opportunities to leverage data, 
analyze any potential failures, unearth hidden patterns, and 
derive insights in an automated manner using ML which 
could help OEM take informed decisions. 

The data values of vehicle sensors indicate the underlying 
behavior of the system. If the sensor values are as per the 
expected behavior of the system, then the data could be 
termed as ‘Good’ data and if the values indicate deterioration 
in the system, then it could be termed as ‘Symptomatic’ data. 
If this tagging information, whether data is good or 
symptomatic is present for each data point, then the data 
could be termed as ‘labeled data’ else the data is termed as 
‘unlabeled data’. 

Depending upon availability of labels in data, the correct ML 
technique needs to be selected. ML is primarily of three 
types—Supervised, Unsupervised and Semi-supervised. 
Supervised ML requires the data to be labeled, while for 
unsupervised learning label information is not required. Semi 
supervised is a combination of the two where unsupervised 
modeling is utilized first to label the data followed by 
supervised model. 

The telemetry data received from the vehicle may contain 
symptomatic data, but since it is not labelled in the context or 
would require huge amount of effort to label it, it is difficult 
to model it with supervised learning. 

This paper proposes an Anomaly detection framework which 
could be adopted to capture any aberration in the vehicle 
component utilizing related data. This framework would not 
require symptomatic data; therefore, it can work with 
unlabeled data.  

Anomaly in automotive data can be categorized into point 
and contextual anomaly. Point anomaly is when an individual 
data instance can be considered as anomalous with respect to 
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the rest of data. Contextual anomaly is when a data instance 
is anomalous in a specific context but not otherwise 
(Chandola, Banerjee & Kumar, 2009). The anomaly 
detection framework we are proposing works well on both 
point and contextual anomaly.  

This framework proposes unsupervised one-class classifier 
algorithm considering the data is unlabeled (Amer, Goldstein 
& Abdennadher, 2013). To reduce the complexity and 
dimensions of the data, statistical techniques of Principal 
component analysis (PCA) is also utilized (Telgaonkar & 
Deshmukh, 2015). 

The output of anomaly detection algorithm could be a label 
or a score. A label classifies data points directly into category 
of anomalous or non-anomalous whereas a score quantifies 
the extent of anomaly in the vehicle component with a 
numeric score which is compared to a threshold value. Values 
above threshold are marked as anomaly. Additionally 
multiple thresholds marking low, medium, or high could be 
defined to indicate severity of anomaly in the component. 
Further Vehicle Health Index could be created by combining 
severity of multiple components 

The proposed framework utilizes score method to define the 
anomaly, as apart from flagging an anomaly it also provides 
the extent or severity of anomaly, and hence is superior to 
label method.  

The anomaly detection output could be consumed using 
methods such as Interactive, Semi-Autonomous and 
Autonomous (Theissler, 2013). In interactive mode no 
algorithm is used, and user does a manual analysis using 
created charts and graphs. In Semi-Autonomous mode the 
algorithm provides an output which flags a data point as 
anomaly. This needs to be confirmed by a domain expert 
before triggering any counter measure. In autonomous mode 
the anomalies are flagged, and action are taken automatically 
without any intervention. Interactive mode is time consuming 
as lot of manual analysis needs to be done to analyze all data. 
In comparison, semi-autonomous mode filters the anomalous 
scenarios, and the domain expert needs to inspect only 
filtered scenarios, confirm the anomaly, and give feedback on 
model accuracy. Once the model is perfected to catch such 
anomalous scenario it could be moved to Autonomous mode. 
For this framework we are utilizing semi-autonomous mode 
of consumption which could be converted to autonomous 
after achieving expected accuracy. 

Once an anomaly is confirmed, it could provide label for the 
data. Our framework then also proposes to create a PM model 
for specific component utilizing this data for better accuracy. 

The rest of the paper is organized as follows. Section 2 
highlights the Anomaly Detection Framework describing 
different stages of the framework in brief. Section 3 provides 
Automotive Industry Example covering the system detail and 
Case study upon which we have applied this framework. 
Section 4 is for Conclusion and further discussions.  

2. ANOMALY DETECTION FRAMEWORK 

A vehicle has many different components, and each 
component could have many different parameters associated 
with it which describe its behavioral pattern. For e.g., Engine 
and ABS could be two different components in a vehicle. 
Engine itself could have many parameters such as RPM, 
temperature, speed etc. whose individual range and 
association with each other would define the behavioral 
pattern of engine. 

A component or system when operating normally without 
any fault, would exhibit certain behavioral pattern. The same 
component when about to fail, its conditions would start to 
deteriorate and likely to exhibit patterns which is 
significantly different from its normal operating pattern. An 
anomaly detection framework could help in identifying these 
deviations quickly and accurately and also help to narrow 
down the problems areas. 

We are proposing a framework which creates an anomaly 
detection (AD) model on unlabeled data and further utilizes 
this label information to create a Predictive Maintenance 
(PM) model. 

The framework consists of following stages— 
1. Data Processing 
2. Data Analysis 
3. Regime Identification 
4. Modeling 
5. Model Validation and Deployment 
6. Data Labeling 

Data Processing 
During data processing stage, a pipeline is established where 
the vehicle data is ingested into the cloud or any other 
infrastructure, extracted in usable form, transformed, and 
processed for further analysis.  

The received data could be ingested in real time as streaming 
data or as batch in text or XML format or any other flat file 
format. It needs to be processed to get the parameter values. 
Also depending upon the frequency of data, transformation 
such as aggregation of data and extraction of important 
features needs to be done. Data aggregation is important 
because at a very granular level data points may have 
fluctuations leading to inconsistent prediction result. Hence 
The incoming data is to be aggregated at a frequency which 
is neither too big nor small to capture any regime changes 
effectively in data (generally at 30 sec- 1 min). (Regimes are 
discussed in more detail in further sections) 

Data Analysis 
During data analysis the data parameters can be viewed in the 
form of graphs and charts. Pre-defined dashboard templates 
could be created for data analysis which would provide more 
insights into the data and help in identifying important 
variables for further analysis. PCA is used to reduce the 
complexity and dimensions of the data which helps in better 
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analysis. It works by generating fewer, new dimensions by 
creating linear combinations of the original data such that the 
variation in data is preserved and the new dimensions are 
uncorrelated to each other. This reduces the total number of 
dimensions while minimizing information loss and helps in 
simplifying the data analysis process.  

Regime Identification 
Many times, the behavioral pattern of a vehicle component is 
very different for different operating conditions (Regimes). 
For e.g., a vehicle carrying high load may exhibit different 
levels of rpm, fuel trim, throttle position or injection pulse 
compared to when the load is minimum. It is important to 
identify different operating characteristics or regimes of the 
vehicle and create separate local anomaly detection models 
rather than one global model, for covering complete known 
operating range. This would ensure that contextual anomalies 
are caught by the model and also leads to better accuracy as 
regime specific customizations are considered during model 
building.  

If an operating range is not defined during the design phase 
and hence is not covered as part of regime identification, it 
would need to be identified post deployment and need to be 
defined during next cycle of local model update/creation. We 
have discussed more about the possible approach to do this in 
Section 4- Conclusion 

Finding the regimes by only looking at few variables in a 
chart may be difficult. This could be done by checking the 
graphs of top few Principal Components with each other. 
Different operating regimes are likely to be seen as separate 
groups in these charts. If these regimes are clearly 
distinguishable in the groups, then rules for distinguishing 
factor needs to be charted and each datapoint is then assigned 
to a regime by running through those rules. If the regimes are 
not clearly distinguishable then unsupervised clustering 
algorithms should be run on the top ranked PCs to find 
separate clusters and mark each of those as a regime. This 
regime identification process needs to be implemented as a 
component 

During final solution deployment, this regime identification 
component needs to be deployed to classify the incoming 
aggregated data into one of the regimes and then do anomaly 
detection through that local regime model. This would ensure 
that even if the incoming data is continuously changing its 
regime, it gets addressed by correct model. 

Modeling  
Once the data parameters are analyzed and important ones are 
identified, anomaly detection algorithms such as Local 
Outlier Factor (LOF), Isolation Forest, one-class SVM etc. 
could be applied on the data. 

The model is trained on the data from telemetry device. For 
training, we utilize data which is free from any known or new 
faults or deterioration and hence could be considered as good 
data. To extract this good data, data points containing any 

failures, DTC or symptoms needs to be filtered out to get rid 
of known problems. Removing unknown or new faults is 
difficult. Reasonable level of accuracy can be achieved by a 
combination of one or more of following activities— 

• Filtering out data points containing any failures, 
DTC, or symptoms to get rid of known problems 

• Comparing data from multiple similar vehicles to 
check for similar data patterns and also getting the 
vehicle data validated by an SME Ensuring 
absence of any deterioration or symptoms.  

• Driving the vehicle in controlled conditions 
• Checking with driver to ensure that no malfunction 

and deterioration were observed during the usage 

Above measures would help in ensuring that data utilized for 
training is good data.  

Similarly, we also have the test data which ideally should be 
a combination of Good and Symptomatic data (Anomalous). 
In absence of symptomatic data for testing the model, 
synthetic data generation techniques can be used to create 
anomalous data. A good model would be one which would 
be able to differentiate between Good and symptomatic data 
with high accuracy in test data. 

The anomaly detection model is trained on train data, and it 
would provide a label or score against each data point. If it’s 
a score, a threshold value needs to be decided such that, it is 
above the score of most of the data points in train. Utilizing 
the trained model, prediction is done on test data. The 
threshold value is now compared with score of test data and 
all the points above the threshold are marked as anomaly. 
Alternatively, if the severity of anomaly needs to be marked 
then multiple threshold values could be defined indicating 
level of severity, for e.g., low, medium, or high.  

The final output from this stage would be prediction label on 
each data point in test data. 

Model Validation and Deployment 
It is important to note that not all anomalies could be 
attributed as failure, therefor any deviation found needs to be 
validated and confirmed by a Subject Matter Expert (SME) 
before being considered as a likely failure. Alternatively, if 
labels are available on the data, whether it is good or 
anomalous then accuracy of model output needs to be 
measured against the original labels. If there are multiple 
models being considered, then best model based upon a 
defined performance metrics needs to be chosen. This 
validation of model is semi-autonomous as it needs to be 
vetted.  

Once the model has been validated on test data for accuracy, 
it could be deployed in production. This would move the 
model from semi-autonomous to autonomous mode. The 
deployment can be done either offboard in cloud environment 
or onboard on vehicle itself.  
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When the system or subsystem encounters any scenario 
which is aberration from its normal behavior, the deployed 
model would produce an alert and then appropriate action can 
be triggered. 

Post deployment, there may still be rare instances of new 
vehicle operating regimes which are not defined during the 
design phase. Such instances would also be reported as 
anomalies by the system as it won’t confirm to the established 
standards however these needs to be categorized as an 
operating regime. A likely approach to achieve this has been 
discussed in Section 4- Conclusion. 

Data Labeling 
The anomalous behavior could be a symptom of a known 
problem which is likely to occur, or it could be a 
new(undefined) failure type.  This needs to be confirmed by 
an SME. Further, depending upon the criticality, this 
anomalous data information could be utilized for labeling the 
data so that a more accurate supervised predictive 
maintenance model could be created from it. 

The entire framework is summarized in the chart below. 

Data Processing 
 - Data Ingestion into platform 
 - Applying Data transformation techniques 

 
Data Analysis 

- Visual data exploration 
- Dimensionality reduction for large data 

 
Regime Identification 

- Identifying local regimes for full operating range by 
applying domain knowledge and statistical methods 

 
Modeling 

- Divide data into  
    > Train - Good data 
    > Test data - Symptomatic + Good data 
- Apply multiple algorithms and Create models for all 
local regimes 

 
Model Validation and Deployment 

- Compare confusion matrix for different models   
- Deploy the best performing model 
- Identify "Not defined" regimes and provide feedback 
for model improvement 

 
Data Labeling 

- Utilize the predicted anomalies to label the data  
- Supervised Predictive maintenance model could be 
created based on the criticality of anomaly 

Figure 1. Flowchart explaining the framework 
 

3. AUTOMOTIVE INDUSTRY EXAMPLE 

3.1. System Details 

The data on which the framework is applied, is from a fleet 
of electric off-road vehicle used for carrying load. The data is 
collected via a telematics device. The target component is 
hydraulic system, which is utilized to lift weight. For this it 
uses pressurized oil to generate movement. The system 
comprises of an oil pump which pumps the oil to cylinder. A 
control valve regulates the amount and pressure of oil needed 
to move the cylinder up and down. The oil circulates via 
return line and is stored in a reservoir tank from where it is 
filtered and fed back to the oil pump. 

Please refer the Figure 2 below: 

 
 

Figure 2. Vehicle Hydraulic System 

3.2. Case Study and Results 

Objective 
In this case-study, we are trying to do anomaly detection in 
hydraulic system and further create a predictive maintenance 
model using generated labels. The fleet data utilized had 
more than 40 vehicles collected over a year and consisted of 
multiple session data. The sampling frequency of data was 45 
parameters coming in per second. The data had fault 
information available in it. For the anomaly detection 
framework, this information was not utilized during 
modeling, however it is used for confirming the anomaly 
once flagged by the framework.  

The framework required two sets of data for training and 
testing the model respectively. The training data only 
contained good data as described in Section-2 (Modeling). 
Since the labels for the data were not directly available, we 
filtered out the good data as one which did not have any DTC 
logged in the vehicle, to ensure removal of known problems. 
We also compared data from such vehicles which each other, 
which also showed similar patterns and hence minimized the 
chances of having known problem symptoms or new 
problems. This good data was divided into separate vehicles 
with 80:20 ratio. To prevent data leak between train and test, 
a vehicle’s data was utilized either for train or test but not 

Tank 

Filter 

Pump 
Relief Valve 

Control Valve 

Cylinder 

Return Line 
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both. The vehicles with 80 percent of the data were utilized 
for training. For test data we combined data consisting of 
DTCs and symptoms related to Hydraulic system and 
remaining 20 percent of good data. This ensured that test data 
had combination of Good and Symptomatic data. 

Any cloud environment could be utilized for implementation 
of this framework. This case study was realized using Azure 
Data Factory pipeline. Following activities were employed 
for each of the framework stages— 

Data Processing 
The frequency of original data was per second because of 
which it was highly sensitive. To smoothen the data, it was 
aggregated on a 30 second tumbling window. The total 
sample count in the final dataset was close to 25K. Feature 
engineering was done on data to create features of Mean and 
Standard deviation for continuous variables. The data was 
marked for training and testing as explained above. This data 
was then stored for consumption for next stage.  

Data Analysis  
During data analysis graphs between individual variables 
were explored and variables related to Hydraulic system were 
identified. Since the number of variables were high, Principal 
Components (PC) were created for these variables and 
plotted for further exploration. 

Regime identification 
Next, different operating regimes were to be identified from 
the data. On plotting PC1 vs PC2 (Figure 3) we found that 
there were two main operating regimes. On further analysis 
of original data points, it is found that the differentiating 
parameter between both the regimes was the vehicle load. 
The left regime contained the datapoints when the vehicle 
was not lifting any load and right regime contains the 
datapoints when the vehicle was lifting load. This indicated 
that the characteristics of the vehicle became very different 
when operating under load and hence it is required to model 
each regime separately. 

 
Figure 3. PC1 vs PC2 plot showing two different regimes 

These regimes were then marked for each point in the data. 
The next stage of modeling was done for each regime 
separately. 

 
Modelling 
For modelling we labeled train and test data as described in 
“Section 3.2 Objective”. For test data we have taken a 
combination of good vehicle data and data from vehicles 
having DTC and symptoms. The symptoms are likely to show 
up some time before the occurrence of the DTC. This 
duration could vary from one problem to other. In this case, 
the symptom data as confirmed by SME has been marked for 
up to two hours before the occurrence of the DTC. 

We take the first regime where load is absent and train the 
model utilizing three different algorithms namely- one-class 
SVM, Isolation Forest, and Local Outlier Factor. The trained 
models were then used to predict on both train and test data. 
The prediction values were in the form of score for one-class 
SVM and directly a class label for others.  

As mentioned in section 2, since the output is a score therefor 
model can be further tuned. Based on these scores, multiple 
thresholds were tried, and ideal value was finalized such that 
maximum training datapoints which are not isolated cluster 
in the graph, lie under the threshold value. Utilizing this 
threshold, prediction labels were marked on test data and 
model’s effectiveness to identify outliers is visualized. As an 
e.g., four different threshold values and subsequent labels 
derived from one-class SVM model are plotted in Figure 4 
below.  

 
Figure 4. Labels with different threshold values 1.2 (top 
left), 1.8 (top right), 2.55 (bottom left), 4 (bottom right) 

respectively 
 

The threshold value may be tweaked as per the required 
effectiveness on test data. This is done in iterative manner. 
The final output from this stage is a prediction label on each 
data point in test data set for each of the three algorithms. 

Load = 0 
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Model validation and Deployment 
To identify the best performing model among the three 
models, we compared their performance in identifying 
anomaly in the test data. 

Provided below in Figure 5 is the confusion matrix for each 
of the algorithm on the test data.  

One class SVM 
 

Predicted Normal Predicted Anomaly 

Normal 86.12% 3.15% 

Anomaly 0.73% 10.00% 

Isolation Forest 
 

Predicted Normal Predicted Anomaly 

Normal 83.51% 5.76% 

Anomaly 1.27% 9.46% 

Local Outlier Factor 
 

Predicted Normal Predicted Anomaly 

Normal 83.98% 5.29% 

Anomaly 1.16% 9.57% 

Figure 5. Result comparison of different algorithms 
 

Figure 6 provided below depicts KPI’s of accuracy, false 
positive and false negative. 

 
One 

Class 
SVM 

Isolation 
Forest 

Local 
Outlier 
Factor 

Accuracy 96.12% 92.97% 93.56% 

False Positive 3.53% 6.45% 5.92% 

False Negative 6.77% 11.84% 10.78% 

Figure 6: KPI Comparison 
 

As could be seen from above metrices and figures, we can 
conclude that the best performance was achieved by one-
class SVM with least number of false positives and best 
accuracy. 

We now mapped the DTCs in the PC1 vs PC2 (Figure 7) to 
check visually if these were captured by the SVM algorithm. 

 

 
Figure 7. DTCs present in test data 

We also created timeseries graph for each vehicle from test 
data against PC1. Anomalous points as derived from one-
class SVM were found and were followed by DTC. One such 
vehicle data is shown in Figure 8. This provides a high 
certainty that the anomaly was indeed present as later it led 
to failure as can be seen on timeseries graph. This validates 
model’s effectiveness in capturing anomaly.  

 

 
Figure 8. Timeseries plot of PC 1 displaying DTCs in the 

data 
Comparing Figure 4, Figure 7 and Figure 8, we can derive 
that SVM captures the DTCs and also the symptomatic data 
before it as anomalies. 

This model is now ready to be deployed onboard (edge) or 
offboard (web service), as per the requirement for anomaly 
detection. 

Data labelling  
As labels of failure are available from anomaly detection and 
confirmed by DTC presence, an early alert failure prediction 
(Predictive maintenance) model could be created for anomaly 
captured.  

On analyzing the failure in detail, we found that anomalous 
points belonged to control valve abnormality as DTC related 
to control valve abnormality was also seen during this time 
(red color in Figure 8). Since the control valve is responsible 
for maintaining the pressure across the system, we checked 
the value of hydraulic pressure during this period and found 
it to be low (Figure 9), which indicates some abnormality 
with the Control valve. Few of the possibilities of abnormal 
control valve are Incorrect adjustments, Dirt and Particles 
holding the valve uneven or clogging of oil filter (which is a 
key maintenance item). 

No DTC 
Valve Abnormal DTC 
Filter Clogging DTC 

No DTC      Valve Abnormal DTC       Filter Clogging DTC 

PC1 

PC
1 

Time 

PC
2 
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Figure 9. Oil Pressure on time series 
 

Since, after Abnormal Control valve DTC was observed, oil 
filter clogging DTC were also observed in the data (blue color 
in Figure 8), this seems most plausible reason for control 
valve abnormality. We could safely conclude that starting of 
clogging of oil filter led to lower hydraulic pressure and 
control valve DTC and later substantial clogging resulted in 
oil filter clogging DTC. Hence, if low hydraulic pressure and 
control valve abnormality are caught early it can help 
predicting the oil filter clogging. 

This predictive maintenance supervised model would be 
more focused and effective in capturing this specific anomaly 
than generic anomaly detection model. The decision to create 
a predictive maintenance model could be taken as per the 
criticality of the anomaly. 

4. CONCLUSION 

The framework helps in providing an automation solution to 
quickly analyze the field data and provide alerts for any 
aberration. It is useful in creating early alert model for any 
known problem or new anomaly in absence of labeled data. 
The infrastructure, pipeline creation, or models could be 
configured as per the specific requirements of the problem 
and is technology agnostic. The framework also proposes to 
convert a generic anomaly detection problem to specific 
predictive maintenance problem once the labels are captured 
in the data.  

Additionally, this framework could be extended for 
improving future vehicle designs by incorporating any new 
fault type identified by the model. 

Another aspect for which this framework could be utilized is 
for creation of a Vehicle Health Index (VHI) indicating the 
overall health of the vehicle. For this, model score from 
multiple components or system could be collected and 
provided a weightage based upon the criticality. These values 
could then be aggregated to provide a VHI score of the 
vehicle. 

While the framework is likely to cover most defined 
scenarios, there could be rare instances when a specific 
operating condition is not defined during the design stage. 
These instances would be marked as an anomaly by the 
system as it won’t belong to the established local model to 
which it has been assigned. One possible approach for 
identifying such scenarios could be that when these operating 
conditions occur, it is likely to occur as multiple instances 

and these instances should show as densely populated cluster 
of anomalies as it itself is an operating regime (As an 
operating regime defined by our framework should form a 
dense cluster).  Therefor it is important that once a model has 
been deployed, its performance is monitored on a regular 
basis initially, especially when the points forming a dense 
cluster of anomalies are reported. During the performance 
monitoring, the SME would need to investigate such rare 
scenarios and confirm if it is new condition or actually an 
anomaly and if former, then going forward this data should 
be taken as feedback for improvement and considered for 
creating another local model for the new operating regime. 

This approach needs to be further explored and researched for 
effectiveness. 

5. LIST OF ABBREVIATIONS 

Provided below in Table 1 are the list of abbreviations 

AD Anomaly Detection 
DTC Diagnostic Trouble Code 
KPI Key Performance Indicator 
LOF Local Outlier Factor 
ML Machine Learning 

OEM Original Equipment Manufacturer 
PCA Principal Component Analysis 
PC Principal Component 
PM Predictive Maintenance 

SME Subject Matter Expert 
SVM Support Vector Machine 
VHI Vehicle Health Index 

Table 1. List of Abbreviations 
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