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ABSTRACT

Nuclear power plants collect and store large volumes of het-
erogeneous data from various components and systems. With
recent advances in machine learning (ML) techniques, these
data can be leveraged to develop diagnostic and short-term
forecasting models to better predict future equipment condi-
tion. Maintenance operations can then be planned in advance
whenever degraded performance is predicted, thus resulting
in fewer unplanned outages and the optimization of mainte-
nance activities. This enables lower maintenance costs and
improves the overall economics of nuclear power.

This paper focuses on developing a short-term forecasting
process that leverages a feature selection process to distill
large volumes of heterogeneous data and predict specific
equipment parameters. A variety of feature selection meth-
ods, including Shapley Additive Explanations (SHAP) and
variance inflation factor (VIF), were used to select the opti-
mal features as inputs for three ML methods: long short-term
memory (LSTM) networks, support vector regression (SVR),
and random forest (RF). Each combination of model and in-
put features was used to predict a pump bearing temperature
both 1 and 24 hours in advance, based on actual plant sys-
tem data. The optimal inputs for the LSTM and SVR were
selected using the SHAP values, while the optimal input for
the RF consisted solely of the response variable itself. Each
model produced similar 1-hour-ahead predictions, with root
mean square errors (RMSEs) of roughly 0.006. For the 24-
hour-ahead predictions, differences could be seen between
LSTM, SVR, and RF, as reflected by model performances of
0.036 ± 0.014, 0.0026 ± 0, and 0.063 ± 0.004 RMSE, re-
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spectively. As big data and continuous online monitoring be-
come more widely available, the proposed feature selection
process can be used for many applications beyond the predic-
tion of process parameters within nuclear infrastructure.

1. INTRODUCTION

Nuclear plant sites collect and store large volumes of data
from various equipment and systems. These datasets typi-
cally include plant process parameters, maintenance records,
technical logs, online monitoring data, and equipment fail-
ure data. The collection of such data affords an opportunity
to leverage data-driven machine learning (ML) and artificial
intelligence technologies to provide diagnostic and prognos-
tic capabilities within the nuclear power industry. However,
these datasets are potentially unstructured and collected at
different temporal and spatial resolutions. Handheld (i.e.,
manual) measurements are collected either at periodic inter-
vals or on an as-needed basis, while other datasets may be
streamed and archived via plant computers. The recorded pa-
rameters for a specific piece of equipment may also vary from
site to site, adding complexity to the data processing method-
ology. The unstructured nature of the data can be challenging
for developing scalable, reliable models for predicting future
equipment parameters (the terms “process parameters” and
“parameters” are used interchangeably hereinafter), without
proper data cleaning and preprocessing.

For most ML techniques, the collected data are preprocessed
and set of features are selected. It is well known that in-
put features significantly impact the model’s prediction per-
formance and training time (Zhang, Peng, Guan, & Wu,
2021; Gohel, Upadhyay, Lagos, Cooper, & Sanzetenea, 2020;
Müller, 2021; Salcedo-Sanz, Cornejo-Bueno, Prieto, Paredes,
& Garcı́a-Herrera, 2018). When facing a large number of in-
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put features, the dimensionality may be reduced through fea-
ture extraction, feature selection, or a combination of the two
(Remeseiro & Bolon-Canedo, 2019; Godwin & Matthews,
2013).

Feature extraction techniques combine the original measure-
ments in a manner that generates new features (from which
a subset can be chosen to reduce the dimensionality), or can
be used to extract useful information or features from the data
(Atamuradov, Medjaher, Dersin, Lamoureux, & Zerhouni, 2017).
One example of feature extraction, as found in wind turbine
health monitoring, is the absolute difference in blade angle
position (Godwin & Matthews, 2013). Another example of
feature extraction is principal component analysis (PCA), in
which input features are combined to produce a new set of
orthogonal features (Song, Guo, & Mei, 2010; Davò et al.,
2016). Principal components (PCs) are linear combinations
of the observed features, with the first PC extracting the max-
imum amount of information (i.e., variability) from the fea-
ture set. Subsequent PCs optimize the remaining information
contained within the feature set under the constraint of being
orthogonal (i.e., uncorrelated) to the preceding PCs (Davò et
al., 2016). Because the PCs are the eigenvectors of the as-
sociated covariance matrix, the eigenvalues are therefore re-
lated to the amount of information contained within each PC.
Feature extraction, and thus dimensionality reduction, is then
performed by removing those PCs associated with the least
amount of information.

Feature selection is the process of choosing the best combina-
tion of features from the original input feature space. Feature
selection methods are primarily divided into two categories:
filters and wrappers (Zebari, Abdulazeez, Zeebaree, Zebari,
& Saeed, 2020). Filters are open-loop methods that measure
feature characteristics (e.g., information, dependency, consis-
tency, and distance) while being fast and scalable (Zebari et
al., 2020; Remeseiro & Bolon-Canedo, 2019; Hall & Smith,
1998). Those features calculated as having the best character-
istics are then chosen as inputs for the model. Wrappers com-
bine the feature selection process with a learning algorithm,
so that the selection process is based on model performance.
This allows consideration of the dependence between vari-
ables (Karasu, Altan, Bekiros, & Ahmad, 2020; Niu, Wang,
Lu, Yang, & Du, 2020). However, wrappers are prone to
overfitting and can be computationally expensive (Zebari et
al., 2020). Hybrid and ensemble methods integrate filters and
wrappers alike, thereby benefiting from their complementary
approaches (Monirul Kabir, Monirul Islam, & Murase, 2010;
Zebari et al., 2020).

Other common feature selection techniques—apart from the
ones used in this paper—include mutual information (MI)
(Shahidi, Maraini, & Hopkins, 2020), recursive feature
elimination (Sendlbeck, Fimpel, Siewerin, Otto, & Stahl,
2021), and analysis of variance (ANOVA) tests (Bechhoefer,

Schlanbusch, & Waag, 2016). MI uses entropy as a means of
determining the amount of information” gained by each in-
put feature. MI has been used as the basis for a minimally
redundant, maximally relevant feature selection method for
multi-class support vector machine classification of railcar
conditions (Shahidi et al., 2020). Recursive feature elimina-
tion recursively trains a model, calculates a cross-validation
score, and then removes the least important feature, as de-
termined via the internal feature ranking (Sendlbeck et al.,
2021). Feature importance ranking is common to methods
such as random forest (RF). The cross-validation score is used
to determine at what point enough features have been selected
to adequately describe the system. To estimate the wear on a
gear transmission system, recursive feature elimination was
used to reduce a set of 5,650 features down to the top 15
(Sendlbeck et al., 2021). ANOVA is a statistical method that
uses hypothesis testing to determine whether a given result
or feature is significant (Sthle & Wold, 1989). ANOVA was
used to determine whether various wind turbine bearing tem-
perature measurements significantly differed from each other
(Bechhoefer et al., 2016). If the variables are not significantly
different, one of them may be removed from the analysis.
Other methods for feature extraction utilize deep learning to
automate the feature extraction step altogether. For example,
an end-to-end architecture fully automated the feature extrac-
tion process for diagnosing COVID-19 using x-ray images
(Ozturk, Talo, Azra, Baran, & Yildirim, 2020).

Though many approaches to feature selection are described in
the literature, there is still a need to objectively assess short-
term forecasting models—especially those using ML—based
on data from operating plants.

The main contributions of this paper are as follows:

1. A case study comparing the short-term forecasting capa-
bilities of three different ML techniques for predicting a
nuclear power plant’s feedwater and condensate system
(FCS) parameters, and how various input features affect
the ML model’s performance.

2. Formalization of the preprocessing steps required to in-
tegrate heterogeneous nuclear plant data. These prepro-
cessing steps include both feature selection and the nec-
essary data cleaning.

The rest of this paper is arranged as follows: Section 2 gives
the background for the paper, descriptions of each of the se-
lected models, and the data preprocessing needs; Section 3
presents the selection of the short-term forecasting models;
Section 4 details the model hyperparameters generated for
this research and compares the performance of each model,
as the input features vary; and Section 5 concludes by sum-
marizing the paper and highlighting its significance.
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2. SYSTEM AND DATA DESCRIPTION

Data in this analysis is primarily recorded from the conden-
sate pumps (CP) and condensate booster pumps (CBP) found
within the FCS. The primary purpose of the FCS is to con-
dense steam and collect the drainage in the main condenser
before purifying, preheating, and pumping the water back to
the reactor vessel (NRC, 1998). The CPs provide the driving
force for pushing the condensate through auxiliary systems
such as the steam jet air ejectors condenser, steam packing
exhaust condenser, off-gas condenser, and demineralizers—
all of which work to condition the condensate. Afterward,
the CBPs are the driving force of the flow as the condensate
travels through a string of low-pressure heaters that work to
preheat the water to the required temperature. In the boiling-
water reactor (BWR) system of interest, the condensate and
condensate booster pumps are driven by a shared motor.

The available sensor data were recorded for a 5-year period
and include variables such as:

1. Generator gross load (MW)
2. Average feedwater flow rates (million gallons/second)
3. Temperatures from the feedwater pumps, CPs, CBPs,

and associated motors (�C)
4. Pressures within the condenser, CPs, CBPs, and turbines

(psig)
5. Current to the CP and CBP drive motors (amps).

The recorded data were primarily found within the FCS, but
some temperatures, pressures, and flow rates came from other
components and subsystems such as the reactor or turbine
system. Each dataset consists of unlabeled data and is sam-
pled hourly. There was no indication as to whether any por-
tion of the data corresponded with equipment failure. Fur-
thermore, the data did not offer sufficient information to de-
termine the cause of each derate. Data preprocessing was
necessary, as the data contained missing values, outliers, and
several temperature signals that experience a clear seasonal
trend: colder in winter, warmer in summer.

2.1. Short-Term Forecasting

From data collection to decision making, the generalized steps
for producing short-term forecasting models are as follows:

1. Collect, clean, and explore the data.
2. Determine the relevant features.
3. Train and evaluate the models.
4. Visualize the results for more informed decision making.

A more detailed approach that leverages digital monitoring
capabilities to create useful diagnostic, prognostic, and short-
term forecasting models for existing nuclear plants can be
seen in Figure 1. This research is a piece of the broader vision

detailed in Figure 1. The overall project focuses on address-
ing digital monitoring challenges that range from the deploy-
ment of wireless sensor technology in the nuclear power plant
environment, to feature selection and data analytics that drive
online component monitoring, to visualization for decision-
making purposes. Each task is vital, as it ensures that the
right people get the right information at the right time.

This research focuses on the data processing and data ana-
lytics aspects of determining relevant features for short-term
forecasting models. Inputting irrelevant features into ML mod-
els not only increases training times as a result of the extra
input dimensions, but can actively hurt model performance.
For coverage of other aspects related to prognostics and fore-
casting, there is an excellent review paper covering critical
component analysis and sensor selection, along with prog-
nostic methodologies and tool evaluation (Atamuradov et al.,
2017).

2.2. Data Preprocessing

The data in this research were taken from a BWR’s FCS.
Heterogeneous signals across different systems and compo-
nents (e.g., reactor power, turbine pressures, bearing temper-
atures, and reactor feedwater pump flows) were provided to
supplement these data. The data gathered from the FCS cor-
responded to a 5-year time frame, which covered periods of
steady-state operation, derates, trips, and refueling. Steady-
state operation is broadly defined as all instances of the re-
actor operating at above 90% nominal power; however, fluc-
tuations in power can still be seen in this category. Derates
contain all observations made when the reactor is operating
at 5–90% nominal power. Derates are instances of reduced
power operations, and may be caused by environmental, op-
erational, or reliability issues. Trips, also known as scrams,
are emergency shutdowns of the reactor. The refueling time
period covers the initial ramp-down of nominal power, the
refueling outage, and the subsequent ramp up to steady-state
conditions. This research focused on predicting condensate
pump temperatures within the broadly defined steady-state
conditions.

Large groups of raw data signals are rarely the optimal choice
of model inputs. Raw data should be processed, cleaned,
and pruned to improve model performance. Raw data can be
subject to missing information, outliers, sensor and process
noise, different data scales, etc. Many of these issues can be
mitigated via filtering, replacing, or scaling, thereby reduc-
ing their effects on model performance. Data preprocessing
includes data cleaning, feature scaling, and feature selection
(Li, Verhagen, & Curran, 2019). The data preprocessing steps
implemented in this research are described in the subsections
below.
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Figure 1. Steps for leveraging digital monitoring to enable cost-effective predictive maintenance for nuclear power plants.

2.2.1. Data Cleaning

The data were cleaned, processed, and pruned before being
analyzed in the short-term forecasting models. The data clean-
ing focused on addressing any missing data, potential out-
liers, data selection, and scaling. Missing data are primar-
ily noted when the system or component is offline, in which
case the data are left as missing. However, if the compo-
nent was online and the missing data were due to a sensor or
data archival error, the missing values were interpolated us-
ing neighboring values. Daylight savings time can also be a
minor inconvenience, as it entails the skipping or duplication
of time steps, depending on the time of year. Skipped time
steps, in this instance, were assumed to share the same value
as that of the previous time step.

Many of the datasets within the steady-state portions were
heavily skewed in one direction or another. Potential outliers
within these datasets were flagged as a result of being four
standard deviations away from the mean. For example, the
feedwater flow seen in Figure 2 has several potential outliers
marked. The axes in this figure, as well as the others in this
paper, have been anonymized to protect the plant’s identity.
The potential outliers were replaced using a median filter ap-
plied via a sliding window approach. The data were recorded
hourly, so a window of 51 points (slightly over 2 days worth
of data) was empirically selected as the median filter’s width.
Temperature data can often contain sensor noise, seasonal
variations, or long trains of outliers. A median filter of 700
(roughly 29 days) was used to account for seasonal variations

and long trains of outliers. Additional data cleaning for all
equipment parameters included standardizing the measure-
ments to zero mean and unit standard deviation to account
for the different scales seen within the data. Standardization
of data is generally considered a best practice before using
most ML models. After data cleaning, selecting the relevant
parameters becomes important.

The two primary feature selection techniques covered in this
paper are variance inflation factor (VIF) and Shapley Additive
Explanations (SHAP). VIF is a filter-based technique for re-
ducing multicollinearity. SHAP is a wrapper-based technique
for determining the contribution, and thus the importance, of
each input feature. Both these techniques are detailed below.

2.2.2. Variance Inflation Factors

Multicollinearity occurs when two or more predictor vari-
ables are highly correlated (Akinwande, Dikko, & Samson,
2015). This can lead to unforeseen variability in regression
analyses, as the strong relationship between the independent
variables distorts the relationship with the dependent variable.
Multicollinearity can be rectified in several ways, such as by
removing one or more of the highly correlated variables, us-
ing PCA (Daoud, 2018; Davò et al., 2016), or by utilizing
regularization techniques (e.g., ridge regression) (Yildirim &
Revan Özkale, 2019). PCA was initially tested with long
short-term memory (LSTM) neural networks, but better re-
sults were obtained by simply removing the variables that
corresponded to large VIFs.
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Figure 2. Outliers being identified and rectified for the aver-
age feedwater flow over time. The data range has been nor-
malized so that the maximum value of the variable is 1, and
the normalized horizontal axis represents the fraction of plant
operation time.

VIFs measure the amount of multicollinearity between pre-
dictor variables, and can carry a value of one or greater. A
VIF value of one represents no correlation, whereas values of
either five or 10 are commonly used to indicate highly cor-
related variables (Daoud, 2018; Akinwande et al., 2015). In
this research, a VIF of five was used to identify highly cor-
related variables that are candidates for elimination. VIF can
be calculated in two steps. The first step is to withhold one of
the predictor variables, then employ an ordinary least square
regression to predict that variable using the remaining vari-
ables, as per Eq. (1):

Xi = ↵0 + ↵i+1Xi+1 + ↵i+2Xi+2 + ...+ e, (1)

where ↵0 is a constant, e is an error term, Xi is the variable
to check for multicollinearity, and Xi+1,i+2,... are the other
predictor variables. The second step in calculating the VIF is
reflected in Eq. (2):

V IFi =
1

1�R2
i

, (2)

where R2
i is the coefficient of determination from Eq. (1).

This two-step process can be completed for each predictor
variable to determine its VIF. Variables were then removed if
their VIF was five or greater, thus eliminating multicollinear-
ity from the input space. The one exception to this rule was
the pump temperature being estimated. Because temperatures
are relatively slow-moving parameters, one would expect that
the best predictor of temperature for time t+ 1 would be the
temperature at time t. Therefore, the pump temperature re-

mained in the input space, while other parameters were re-
moved to reduce the multicollinearity in the input space.

VIF has been used to check for and remove multicollinear-
ity in a variety of different situations. VIF has been used to
check for multicollinearity between the input variables for a
multivariate logistic regression in order to determine the fac-
tors associated with the death outcome in patients suffering
from severe reactions to COVID-19 (Pan et al., 2020). No
multicollinearity was seen, as each variable had a VIF of less
than two. A multivariate logistic regression was used to de-
termine the prognostic nutritional index’s impact on postop-
erative pulmonary complications (Yu, Hong, Park, Hwang, &
Kim, 2021). They used a VIF threshold of 10 for determin-
ing highly correlated variables, then eliminated them from
the analysis. VIF was used to remove multicollinear vari-
ables before estimating the state of health for lithium-ion bat-
teries, using a gradient boosted decision tree (Zhang et al.,
2021). In their analysis, the VIF empirical cutoff was set
at 10 for strong multicollinearity, and 100 as the threshold
for removal. Each of these examples had differing cutoffs
for determining whether the predictor variable space exhib-
ited enough multicollinearity to warrant action. However, the
rules of thumb for VIF and its tolerance should be put into
context with other variables (e.g., sample size and variance of
the independent variable) that might effect the variance of the
ith regression coefficient in Eq. (1) (O’Brien, 2007). Even
though the dataset in this paper satisfies these rules of thumb,
a threshold of five was selected so as to be conservative.

2.2.3. Shapley Additive Explanations

Shapley Additive Explanations, also known as SHAP values,
are based on a game-theoretic concept that considers each in-
put feature as a “player” on a “team” of features that work to-
gether to influence the model’s overall output (Booth, Abels,
& McCaffrey, 2021). A baseline model output is first deter-
mined by averaging over all the predictions for a given model.
Each specific model prediction is then considered as a func-
tion of input features that deviates from the baseline model
output. The feature’s influence on each prediction that pushes
the output either positively or negatively is taken into con-
sideration based on different combinations of input features
(Mangalathu, Hwang, & Jeon, 2020). SHAP values use an
additive feature attribution approach, meaning that the output
is a linear combination of the input variables (Mangalathu et
al., 2020). In this manner, SHAP empirically determines the
influence each feature has on the prediction output (Booth et
al., 2021). Computing the exact solution for the SHAP val-
ues is, by nature, an exponential problem, typically leaning it
toward being infeasible (Marcilio & Eler, 2020). However,
a SHAP approximation can be made using an explanation
model. The original model f(x) is associated with the ex-
planation model g(x0) with simplified inputs x0, and is ex-
pressible as:
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f(x) ' g(x0) = �0 +
MX

i=1

�ix
0
i, (3)

where M is the number of input features, �0 represents the
baseline model output, and �i represents the SHAP values.
The SHAP values themselves can be approximated through a
variety of methods, including Kernel SHAP, Deep SHAP, and
Tree SHAP. A more detailed explanation of the SHAP value
formulation and interpretation can be found in (Lundberg &
Lee, 2017a). The SHAP library used in this research is read-
ily available through Python’s SHAP package (Lundberg &
Lee, 2017b).

SHAP values have primarily been used to try to explain how
a specific feature affects the model’s output. For exam-
ple, SHAP values with a Cox hazards model were used by
Lundberg, Erion, and Lee (2018) to identify the most impor-
tant features that increase your odds of death over the next
20 years (e.g., age, sex, systolic blood pressure, and poverty
index), and were also used by Mangalathu et al. (2020) to
identify the most important features in predicting shear wall
failure modes. SHAP values were used by Pokharel, Sah,
and Ganta (2021) as a feature selection method before im-
plementing ML methods (e.g., extreme gradient boosting and
support vector regression [SVR]) to predict the total energy
consumption of electric vehicles under realistic conditions,
using parameters such as trip distance, tire type, power, and
air conditioning. ML is often criticized as a black-box ap-
proach, but SHAP values can lead to more interpretable mod-
els. For example, SHAP values were used by Hong, Lee,
Lee, Ko, and Hur (2020) to analyze feature contributions af-
ter prognosing the remaining useful life of turbofan engines.
Our use of SHAP values, however, is to improve model fea-
ture selection by eliminating unimportant signals before they
are inputted to the final model. Irrelevant or redundant inputs
increase both the dimensionality of the data and the compu-
tational cost of finding the global minimum (Alzubi, Nayyar,
& Kumar, 2018).

3. SHORT-TERM FORECASTING MODEL SELECTION

This paper focuses on applying feature selection to data-
driven approaches for short-term forecasting of plant param-
eters. Data-driven methods are excellent because every com-
ponent interaction need not be modeled to produce usable re-
sults. These methods are generally inexpensive to create, and
are quicker to develop than their physics-based counterparts
(Diez-Olivan, Del Ser, Galar, & Sierra, 2019). The primary
limitation of data-driven methods is the data themselves. The
data must be plentiful and cover the entire expected range
of operations. Extrapolation that leads to non-physical re-
sults can occur for predictions outside the range of the train-
ing dataset (Diez-Olivan et al., 2019). Data may not exist
for all desired conditions. For example, new or mission-

critical systems may not have the run-to-failure or opera-
tional data required to produce adequate forecasting models
for certain operating conditions. Even with these shortcom-
ings, data-driven models are widely used and implemented.
This research focuses on three particular models for the short-
term forecasting of plant parameters: LSTM neural networks,
SVR, and RF. These models represent a wide variety of ML
capabilities, as one is a neural network, one is kernel-based,
and one is composed of decision trees. Other ML models
could have been chosen, but these were selected due to their
time series forecasting capabilities and ease of implementa-
tion within the Python coding environment.

3.1. Long Short-Term Memory

LSTM is a type of recurrent neural network (RNN) that incor-
porates unique memory cells to learn long-term relationships
between the inputs and outputs (Hochreiter & Schmidhuber,
1997). As with classical RNNs, LSTM networks process
temporal information to develop the relationship between pre-
vious inputs and the current output. However, LSTM net-
works have a hidden state that serves as memory and inter-
acts with the current output (Kong et al., 2017). This stored,
hidden state is updated as new inputs arrive. A forget gate
is also common in LSTM architectures as a means of forget-
ting some of the previous memory cell states, thus helping
boost performance. The output of the forget gate is used to
inform and update the hidden state of the LSTM. Many differ-
ent types of activation functions can be used within the LSTM
layers (Farzad, Mashayekhi, & Hassanpour, 2019). Num-
ber of hidden layers, batch size, and number of epochs are
examples of hyperparameters that must be optimized before
implementing the fitted model into the system. In this pa-
per, a grid search approach was used to optimize the LSTM
hyperparameters, but random and Bayesian search methods
could also have been used (Cabrera et al., 2020; Greff, Srivas-
tava, Koutnı́k, Steunebrink, & Schmidhuber, 2016). A more
detailed guide to constructing LSTM networks is found in
(Greff et al., 2016).

3.2. Support Vector Regression

Support vectors were originally introduced for classification,
but later expanded to include regression (Drucker et al., 1997).
SVR is a kernel-based regression technique featuring two pri-
mary components: a kernel function and an optimization rou-
tine. The kernel function first transforms the data into a higher
dimensional feature space. The optimization routine then tries
to minimize the generalization error. The solution then de-
pends only on a subset of the training data (i.e., support vec-
tors) that lies along the separation boundary (Jain, Smith,
Culligan, & Taylor, 2014). In this paper, a radial basis func-
tion kernel was implemented.
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3.3. Random Forest

RF is a decision tree ensemble usable for either classification
or regression (Moon, Kim, Son, & Hwang, 2018). The output
is chosen based on a majority vote from the group of decision
trees comprising the RF. Because a lone decision tree is sub-
ject to high variance and noise, the RF addresses this by gen-
erating multiple trees, using bootstrapped samples from the
training data (Pham, Luo, & Finley, 2020; Chornovol, Kon-
dratenko, Sidenko, & Kondratenko, 2020). Overall, RF is a
straightforward, easy-to-implement ML model with relatively
few hyperparameters to optimize (e.g., total number of trees
to generate, minimum number of samples to split, and split
criteria). The RF models generated in this research used an
ensemble of 100 decision trees, each having at least two sam-
ples to split. The split criterion was based on the weighted
impurity decrease equation given in Eq. (4):

Nt

N
⇤ (I �Ntr/Nt ⇤ Ir �Ntl/Nt ⇤ Il) > 0, (4)

where Nt is the number of samples at the current node, N
is the total number of samples, I is the impurity, Ntr is the
number of samples in the right child, Ir is the right impurity,
Ntl is the number of samples in the left child, and Il is the
left impurity (Pedregosa et al., 2011). This weighted impu-
rity calculates whether or not the subsequent split would be
beneficial.

4. RESULTS

As was mentioned, the plant data used for analysis in this sec-
tion came from a BWR system and were anonymized to pro-
tect plant privacy. As a result, all data shown remain in stan-
dardized form, with zero mean and unit variance, and have
been shifted slightly.

4.1. Metrics Used and Model Parameters

The model outputs were compared using the root mean square
error (RMSE) and mean absolute error (MAE), which can be
calculated via Eq. (5) and Eq. (6), respectively.

The RMSE is given as:

RMSE =

vuut 1

N

NX

i=1

|ŷi � yi|2, (5)

where N is the total number of predictions, ŷi is the model’s
predicted output, and yi is the observed output.

The MAE is given as:

MAE =
1

N

NX

i=1

|ŷi � yi|, (6)

where N is the total number of predictions, ŷi is the model’s
predicted output, and yi is the observed output. Lower RMSE
and MAE values indicate better accuracy. RMSE tends to
punish outliers more as the error is squared, while the MAE
increases linearly.

The hyperparameters for LSTM are important components
that help determine the quality of the model’s predictions and
thus the usefulness of the end product. However, this paper
primarily focuses on how the choice of input features affects
model performance. Optimal LSTM hyperparameters were
identified using a grid search method for one set of input vari-
ables and prediction horizons from this dataset, then the best
results for the hyperparameters were used for all the LSTMs
thereafter. The chosen hyperparameters are given in Table
1. The model was trained for a maximum of 250 epochs, or
until the validation loss did not improve for 10 consecutive
epochs. Early stoppage of training was implemented to pre-
vent overfitting the model to the training data. The dropout
layer and L1 & L2 regularizers were all added to improve the
LSTM network’s robustness by reducing overfitting. The hy-
perparameters for the RF model can be seen in Table 2. The
hyperparameters for the SVR, found through a grid search,
are shown in Table 3.

Table 1. LSTM parameters

Hyperparameter Value
Number of LSTM units 1000

Number of layers 4
Batch size 64

Epochs up to 250
Dropout 20%

Validation split 10%
Optimizer Adam

Activation function ReLu
Learning rate 0.0001
Loss function mean square error

L1 & L2 regularizer 1e-5

Table 2. RF parameters

Hyperparameter Value
Number of trees 1000
Measure Quality squared error

Bootstrapping True

Table 3. SVR parameters

Hyperparameter Value
C 46.416
✏ 0.044
� 0.464
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4.2. Datasets Based on VIF and SHAP Analysis

The target variable to predict in this analysis was the pump
bearing temperature, using different combinations of the 78
recorded variables (e.g., reactor power, feedwater flows, tem-
peratures, pressures, and other parameters recorded through-
out the plant). Parameter values from associated systems
such as turbine control systems were included among the
78 recorded variables. The possible input features were the
recorded variables after preprocessing. These variables were
grouped and used as predictors, per the criteria listed in Ta-
bles 4 and 5, respectively. The previous three time steps were
used as model inputs for each model (e.g., the last 3 hours
were used as inputs for the 1-step model.) No further fea-
ture engineering occurred, as this paper’s primary objective
was to identify the best combination of features from a se-
lect set of features. The first feature set used all 78 variables,
regardless of their relationship to the pump’s bearing temper-
ature. This feature set represents the input feature space when
no feature selection was used, and provides a comparison that
highlights why feature selection is necessary. The second fea-
ture set started with all 78 variables, then those variables with
a VIF of five or more were removed so as to eliminate the
multicollinearity within this feature set. By eliminating the
multicollinearity from the set by using VIF as the basis for
feature selection, the total number of features dropped from
78 to 36. Note that the current pump bearing temperature was
never removed from any of the feature sets, as it is the single
best predictor of future pump bearing temperatures. The next
feature set consisted solely of the variables that had a corre-
lation of 0.9 or greater with the predicted pump bearing tem-
perature. More specifically, these variables were the current
pump bearing temperature as well as three bearing tempera-
tures from other pumps. All these variables highly correlated
with each other. After removing multicollinearity from this
feature set, the only remaining variable was the current pump
bearing temperature itself. Used on its own, this temperature
can be seen as a control group for determining whether the in-
formation added by the other variables actively helps or hurts
model performance.

The next feature set contained variables that had a correlation
of 0.8 or greater with the pump bearing temperature. These 14
variables included turbine exhaust temperatures, pump bear-
ing temperatures, and pump motor temperatures. Using the
VIF values to remove any multicollinearity from this feature
set reduced the number of variables from 14 to six, while still
retaining the same variety of features (i.e., redundant turbine
exhaust and bearing temperatures were removed from the fea-
ture set). One feature set was location-based (i.e., variables
within the same loop were grouped together) and contained
variables within the same loop as the predicted variable, in-
cluding feedwater temperatures/pressures, pump bearing and
motor temperatures, and condenser pressure. Using the VIF
values, the location-based feature set was reduced from 11

variables to eight.

The final feature set was based on the SHAP values calculated
for every variable in order to predict the temperature of a spe-
cific bearing within pump 1. Because the mean SHAP value
represents the average impact a variable has on the model
output, it was utilized to define feature importance, as the
most important features are those that most greatly affect the
model’s outcome. The four most important variables, accord-
ing to the magnitude of the mean SHAP values, were all pump
bearing temperatures, as shown in Table 6. Pump 1 had mul-
tiple bearings, each with recorded temperatures, so the target
variable being predicted was labeled pump 1a. Pump 1b re-
lated to the temperature of a separate bearing on the same
pump as pump 1a. Pump 1a’s temperature had the greatest
impact on the prediction outcome. Although the temperature
measurement site for pump 1b was physically close to pump
1a, it contained little in the way of useful new information,
thus leading to a low mean SHAP value.

4.3. Short-Term Forecasting Model Performance

Each of the feature sets was used as an input to make 1- and
24-hour-ahead predictions using LSTM, SVR, and RF. Since
LSTM and RF results can vary based on the seed being used
to train the weights or bootstrap, each model was then re-
trained 10 times in order to compute the average RMSE and
its standard deviation. The mean RMSE and its standard de-
viation, each multiplied by 1,000 for easier viewing, can be
seen in Table 4. A lower mean RMSE represents better pre-
diction accuracy, while a lower standard deviation represents
more consistent model results. Based on the mean RMSE for
1-hour-ahead predictions, Table 4 shows the three top models
to be RF using one variable, LSTM using the correlation >
0.8 with VIF reduction, and LSTM using SHAP-determined
inputs. Table 5 shows the mean MAE and its standard devi-
ation multiplied by 1,000. These results show that SVR pro-
vided more consistent results than the other models for this
dataset.

LSTM, the structure of which is described in Table 1, seem-
ingly benefits from selectively choosing which variables to
pair with the response variable in the input space. The ad-
dition of too many unrelated variables diminished the model
performance. SVR does not seem to suffer as greatly from
this limitation, since reasonable results were produced when
using all variables. SVR also had results comparable to those
of LSTM and RF when using only the current value of the
response variable as an input. SVR outperformed LSTM and
RF when using eight or more variables. RF had the most
sporadic results of the three models. The most accurate and
consistent model resulted from using only the response vari-
able. Inclusion of additional, very highly correlated variables
significantly increased the mean RMSE and MAE, as demon-
strated by the feature sets with correlations of 0.8 or higher.
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Table 4. Comparison of model performance (RMSE * 1e3)

1-hour ahead 24-hour ahead
Selection Method # Features LSTM SVR RF LSTM SVR RF

All 78 318 ± 258 34 92 ± 4 326 ± 26 44 132 ± 9
All with VIF reduction 36 206 ± 18 18 83 ± 4 365 ± 19 32 85 ± 6

Corr >0.9 4 8 ± 4 7 114 ± 10 37 ± 4 39 238 ± 14
Feature By itself 1 7 ± 4 8 6 ± 0.2 36 ± 2 27 51 ± 1

Corr >0.8 14 29 ± 7 11 95 ± 13 160 ± 9 28 130 ± 11
Corr >0.8 with VIF 6 6 ± 1 9 9 ± 1 52 ± 5 27 60 ± 4

Location-based 11 15 ± 3 7 61 ± 10 117 ± 15 33 153 ± 19
Location-based with VIF 8 14 ± 5 13 61 ± 10 124 ± 9 46 97 ± 14

SHAP Values 2 6 ± 2 6.6 35 ± 2 36 ± 14 26 63 ± 4

Table 5. Comparison of model performance (MAE * 1e3)

1-hour ahead 24-hour ahead
Selection Method # Features LSTM SVR RF LSTM SVR RF

All 78 296 ± 27 15 83 ± 6 342 ± 35 99.8 95 ± 9
All with VIF reduction 36 226 ± 18 1.6 26 ± 1 332 ± 25 30.5 45 ± 1

Correlation >0.9 4 7 ± 3 16 65 ± 1 34 ± 4 18.9 127 ± 9
Feature By itself 1 5 ± 3 0.8 2 ± 1 25 ± 3 17.8 33 ± 2

Corr >0.8 14 41 ± 6 1.5 59 ± 5 149 ± 8 18.8 91 ± 8
Corr >0.8 with VIF 6 8 ± 4 1.5 5 ± 1 36 ± 4 27.2 55 ± 2

Location-based 11 5 ± 2 2.3 38 ± 2 86 ± 17 18.9 59 ± 8
Location-based with VIF 8 14 ± 6 2.5 31 ± 2 106 ± 11 23.9 61 ± 15

SHAP Values 2 5 ± 1 0.7 11 ± 1 24 ± 1 17.4 35 ± 1

In general, the reduced standard deviation for the RMSE in-
dicates that utilizing VIF values to remove multicollinearity
invariably improves model consistency.

The 1-hour-ahead predictions made by LSTM, SVR, and RF
using SHAP-determined inputs can been seen in Figure 3.
We again emphasize that the axes have been anonymized to
protect the plant’s privacy. The test data cover temperatures
over a 10-month period. The average temperature is seen to
decrease before slowly increasing again. This is a seasonal ef-
fect caused by the temperature of the local water source used
as the plant’s heat sink. This seasonal effect can be seen in the
bearing temperature, which ran cooler in the winter months
and hotter in the summer months. The zoomed-in portion of
the inset graph in Figure 3 better captures the models’ esti-
mate. LSTM and SVR capture the pump temperature trends
very well, as seen by the low mean RMSE and MAE. For
LSTM and SVR, the SHAP-determined inputs produced the
best results with respect to the mean RMSEs and MAEs for
both prediction horizons. However, the best RF models con-
tained only the response variable as an input. By adding more
variables, a long train of outliers begins to crop up. The out-
liers for the 1-hour-ahead prediction using RF can be seen in
Figure 3. The majority of the model’s predictions are close
to the actual measurement. However, a large, prolonged de-
viation can be seen between hours 1,000 and 2,000, and an-
other large deviation can be seen around hour 6,200 (both
indicated by red arrows). These deviations were not seen in

Figure 3. Predictions of pump temperature 1 hour ahead, us-
ing the SHAP-determined input to LSTM, SVR, and RF mod-
els.

the results from the LSTM and SVR, which used the same
training dataset. This suggests that LSTM and SVR are more
adept at learning the relationships between multiple predictor
variables in a regression analysis.

Each of the feature sets in Tables 4 and 5 was also used as
an input to predict the pump bearing temperature 24 hours
ahead, using LSTM, SVR, and RF. Making a multi-step-ahead
prediction can be more complicated than a single-step-ahead
prediction, so two different methods were examined. First, a
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recursive method was tested. The LSTM model was used to
make one-step-ahead predictions, then the output was looped
into the input so the model could make another one-step-
ahead prediction. By repeating this process multiple times,
the one-step-ahead model can make 24-hour-ahead predic-
tions. However, any error seen between the estimated and
actual values during the one-step-ahead prediction was prop-
agated, as the model uses the estimated prediction with its
error to make the next prediction. Over a 24-step process,
this led to poor results and a higher RMSE (i.e., 4.81) for the
LSTM when just using the feature by itself. This is signifi-
cantly larger that the direct method’s mean RMSE of 0.036,
reported in last three columns in Table 4.

For the direct method, the training and test data were first
decimated to only include data recorded once every 24 hours.
In this way, the models would still only be making one-step-
ahead predictions, but that step would be for 24 hours rather
than 1 hour. When a direct approach was taken, the 1- and 24-
hour-ahead predictions generated similar results. In general,
LSTM performs better with fewer, more focused features, and
VIF reduction helps enhance model consistency by reducing
the standard deviation of the RMSE. SVR consistently per-
formed the best of the three models in regard to the 24-hour-
ahead prediction. Again, each SVR’s RMSE was on the same
order of magnitude, suggesting that this model is robust with
regard to inputs. RF saw its best performance by using only
the feature itself, and once again demonstrated poor perfor-
mance when using highly correlated variables. It appears RF
has a more difficult experience combining information con-
tained within multiple variables for regression.

To better compare the results from the 1- and 24-hour-
ahead predictions, LSTM, SVR, and RF results using SHAP-
determined inputs are given in Figure 4. Unlike the previous
1-hour-ahead predictions, the 24-hour-ahead predictions are
not as accurate, as seen by the variability in the zoomed-in
portion. Larger changes in bearing temperatures can occur
over a 24-hour period than over a 1-hour period.

The FCS in this plant contained three loops. A schematic of
BWR system with a FCS system is show in Figure 5. These
loops (i.e., CP, CBP, heaters, and feed pumps) operate in par-
allel to one another. If one loop decreases its flow, the other
must take on more flow so that the reactor core receives a con-
stant supply of coolant during steady-state operation. The site
of Pump 2’s bearing temperature measurement was located
on a pump in a loop parallel to pump 1a. When the pump
works harder to push more coolant, the temperature increases.
It is suspected that this temperature fluctuation can be used to
indirectly describe the amount of flow through the pump—
and subsequently, the amount of flow through that particular
loop. Pump 2’s temperature may then be indirectly provid-
ing new information on how the train of pumps within each
loop is being operated. The site of the pump bearing temper-

Figure 4. Predictions of pump temperature 1 day ahead, using
the SHAP-determined input to LSTM, SVR, and RF models.

Figure 5. Schematic of a BWR system (Theriault, 2016).

ature measurement for pump 3 was located within the third
loop of the system. Pump 3’s bearing temperature seemed to
provide very little new information for the analysis, as indi-
cated by the low mean SHAP value in Table 6. With two out
of three flows being indirectly calculated via these tempera-
tures, the third flow may also be assumed, given an absence
of leaks or degradation, since the overall flow to the core re-
mains constant during steady-state operation. Pumps 2 and
3 may then be providing some redundant information about
the operation of the other loops. Based on the mean SHAP
values, the SHAP-determined feature set contained two vari-
ables: the bearing temperature of pump 1a (the target variable
being predicted) and the bearing temperature of pump 2.

Table 6. Mean SHAP values for determining feature impor-
tance

Component Mean (|SHAP value|)
Pump 1a 0.810
Pump 2 0.110
Pump 3 0.015
Pump 1b 0.011
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4.4. Discussion

LSTM, SVR, and RF each showed comparable results for
the 1-hour-ahead predictions when the optimal input features
were selected. Although the feature by itself provided ade-
quate results for the RF, the same results were not seen by the
other models. With a different dataset in a more complicated
setting (e.g., non-steady-state operation or under faulted con-
ditions), additional features could provide additional insights.
For the 24-hour-ahead predictions, SVR was the clear win-
ner, followed by LSTM and then RF. This does not necessar-
ily speak to LSTM’s prediction capabilities in general. For
LSTM, the model’s hyperparameters were chosen via grid
search, and these same hyperparameters were used for the en-
tirety of the study, regardless of inputs. By re-optimizing the
hyperparameters based on each feature set, the results may
improve. However, in the context of this study, it would be
harder to distinguish whether this improvement was based on
input or hyperparameter selection.

The SHAP values determined the best set of inputs for both
LSTM and SVR in this study. This is a wrapper-based method
that takes into consideration both the correlations and depen-
dencies between the inputs. VIF is a filter-based method that
primarily focuses on the input variables’ relationship with the
response variable, not the information contained within the
other predictor variables. Although VIF reduction success-
fully reduced the total amount of multicollinearity within the
input space, as well as the variability in the model predic-
tions, this does not always yield the optimal set of inputs in
comparison to other methods.

5. CONCLUSION AND FUTURE WORK

The proposed data cleaning and feature selection process can
be applied to many applications beyond the prediction of fea-
tures within nuclear infrastructure. As big data and contin-
uous online monitoring become more widely available, rele-
vant features will need to be extracted to maximize the fore-
casting ability of these models. Proper and necessary steps
should be implemented to ensure that the data are appropri-
ately sanitized before use. The forecasting models can then be
used to estimate future conditions, allowing for optimal op-
erating strategies and/or more efficient maintenance schedul-
ing. However, correlation does not always relate to causation.
One limitation of the proposed methods, especially SHAP, is
that the explanation of the feature is based on the correlation
of the feature to the model’s output. This correlation implies
causation, but such may not always be the case. Further in-
vestigation would be required to examine the plausibility of
the causation.

This research detailed a framework for data cleaning and fea-
ture selection that was then applied to several ML techniques
to predict future feature conditions within a BWR FCS. The
most accurate models were those trained on optimal inputs. In

the future, we will look to expand these predictions to encom-
pass not only steady-state operation but also non-steady oper-
ations such as derates and refueling ramp-downs. Additional
contributions to the data cleaning and feature selection pro-
cess may need to be taken into consideration, as the system
would now undergo larger—and sometimes more abrupt—
variations in operating conditions.
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Davò, F., Alessandrini, S., Sperati, S., Delle Monache,

L., Airoldi, D., & Vespucci, M. T. (2016). Post-
processing techniques and principal component anal-
ysis for regional wind power and solar irradiance
forecasting. Solar Energy, 134, 327–338. doi:
10.1016/j.solener.2016.04.049

Diez-Olivan, A., Del Ser, J., Galar, D., & Sierra, B. (2019).
Data fusion and machine learning for industrial prog-
nosis: Trends and perspectives towards industry 4.0.
Information Fusion, 50, 92–111.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., Vapnik,
V., et al. (1997). Support vector regression machines.
Advances in neural information processing systems, 9,
155–161.

Farzad, A., Mashayekhi, H., & Hassanpour, H. (2019). A
comparative performance analysis of different activa-
tion functions in lstm networks for classification. Neu-
ral Computing and Applications, 31(7), 2507–2521.

Godwin, J. L., & Matthews, P. (2013). Classification and de-
tection of wind turbine pitch faults through scada data
analysis. IJPHM Special Issue on Wind Turbine PHM,
90.

Gohel, H. A., Upadhyay, H., Lagos, L., Cooper, K.,
& Sanzetenea, A. (2020). Predictive mainte-
nance architecture development for nuclear infras-
tructure using machine learning. Nuclear Engi-
neering and Technology, 52(7), 1436–1442. doi:
10.1016/j.net.2019.12.029

Greff, K., Srivastava, R. K., Koutnı́k, J., Steunebrink, B. R.,
& Schmidhuber, J. (2016). Lstm: A search space
odyssey. IEEE transactions on neural networks and
learning systems, 28(10), 2222–2232.

Hall, M. A., & Smith, L. A. (1998). Practical feature subset
selection for machine learning.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8).

Hong, C. W., Lee, C., Lee, K., Ko, M. S., & Hur,
K. (2020). Explainable artificial intelligence for
the remaining useful life prognosis of the turbo-
fan engines. Proceedings of the 3rd IEEE Inter-
national Conference on Knowledge Innovation and
Invention 2020, ICKII 2020(1), 144–147. doi:
10.1109/ICKII50300.2020.9318912

Jain, R. K., Smith, K. M., Culligan, P. J., & Taylor, J. E.
(2014). Forecasting energy consumption of multi-
family residential buildings using support vector re-
gression: Investigating the impact of temporal and spa-
tial monitoring granularity on performance accuracy.
Applied Energy, 123, 168–178.

Karasu, S., Altan, A., Bekiros, S., & Ahmad, W. (2020).
A new forecasting model with wrapper-based feature
selection approach using multi-objective optimization
technique for chaotic crude oil time series. Energy,

212, 118750. doi: 10.1016/j.energy.2020.118750
Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y.

(2017). Short-term residential load forecasting based
on lstm recurrent neural network. IEEE Transactions
on Smart Grid, 10(1), 841–851.

Li, R., Verhagen, W. J., & Curran, R. (2019). Comparison of
data-driven prognostics models: A process perspective.
In 29th european safety and reliability conference.

Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent
individualized feature attribution for tree ensembles. In
31st conference on neural information processing sys-
tems (nips 2017). Long Beach, CA, USA.

Lundberg, S. M., & Lee, S. I. (2017a). A unified approach
to interpreting model predictions. Advances in Neural
Information Processing Systems, 2017-Decem(Section
2), 4766–4775.

Lundberg, S. M., & Lee, S.-I. (2017b). A unified approach
to interpreting model predictions. In I. Guyon et al.
(Eds.), Advances in neural information processing sys-
tems 30 (pp. 4765–4774). Curran Associates, Inc.

Mangalathu, S., Hwang, S. H., & Jeon, J. S. (2020).
Failure mode and effects analysis of RC mem-
bers based on machine-learning-based SHapley
Additive exPlanations (SHAP) approach. En-
gineering Structures, 219(May), 110927. doi:
10.1016/j.engstruct.2020.110927

Marcilio, W. E., & Eler, D. M. (2020). From explanations
to feature selection: Assessing SHAP values as fea-
ture selection mechanism. Proceedings - 2020 33rd
SIBGRAPI Conference on Graphics, Patterns and Im-
ages, SIBGRAPI 2020, 340–347. doi: 10.1109/SIB-
GRAPI51738.2020.00053

Monirul Kabir, M., Monirul Islam, M., & Murase, K. (2010).
A new wrapper feature selection approach using neural
network. Neurocomputing, 73(16-18), 3273–3283. doi:
10.1016/j.neucom.2010.04.003

Moon, J., Kim, Y., Son, M., & Hwang, E. (2018). Hybrid
short-term load forecasting scheme using random for-
est and multilayer perceptron. Energies, 11(12), 1–20.
doi: 10.3390/en11123283

Müller, I. M. (2021). Feature selection for energy sys-
tem modeling: Identification of relevant time se-
ries information. Energy and AI, 4, 100057. doi:
10.1016/j.egyai.2021.100057

Niu, T., Wang, J., Lu, H., Yang, W., & Du, P. (2020).
Developing a deep learning framework with two-stage
feature selection for multivariate financial time series
forecasting. Expert Systems with Applications, 148,
113237. doi: 10.1016/j.eswa.2020.113237

NRC. (1998). BWR/4 Technology Manual (R-104B).
Ml022830867, 1–442.

O’Brien, R. M. (2007). A caution regarding rules of thumb
for variance inflation factors. Quality and Quantity,
41(5), 673–690. doi: 10.1007/s11135-006-9018-6

12



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Ozturk, T., Talo, M., Azra, E., Baran, U., & Yildirim, O.
(2020). Automated detection of COVID-19 cases using
deep neural networks with X-ray images. Computers in
Biology and Medicine(January).

Pan, F., Yang, L., Li, Y., Liang, B., Li, L., Ye, T., . . .
Zheng, C. (2020). Factors associated with death
outcome in patients with severe coronavirus disease-
19 (Covid-19): A case-control study. International
Journal of Medical Sciences, 17(9), 1281–1292. doi:
10.7150/ijms.46614

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., . . . Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.

Pham, L., Luo, L., & Finley, A. (2020). Evaluation of Ran-
dom Forest for short-term daily streamflow forecast in
rainfall and snowmelt driven watersheds. Hydrology
and Earth System Sciences Discussions(June), 1–33.
doi: 10.5194/hess-2020-305

Pokharel, S., Sah, P., & Ganta, D. (2021). Improved predic-
tion of total energy consumption and feature analysis
in electric vehicles using machine learning and shapley
additive explanations method. World Electric Vehicle
Journal, 12(3). doi: 10.3390/wevj12030094

Remeseiro, B., & Bolon-Canedo, V. (2019). A review of fea-
ture selection methods in medical applications. Com-
puters in Biology and Medicine, 112(July), 103375.
doi: 10.1016/j.compbiomed.2019.103375

Salcedo-Sanz, S., Cornejo-Bueno, L., Prieto, L., Paredes,
D., & Garcı́a-Herrera, R. (2018). Feature selec-
tion in machine learning prediction systems for re-
newable energy applications. Renewable and Sus-
tainable Energy Reviews, 90(March), 728–741. doi:
10.1016/j.rser.2018.04.008

Sendlbeck, S., Fimpel, A., Siewerin, B., Otto, M., & Stahl,
K. (2021). Condition monitoring of slow-speed gear
wear using a transmission error-based approach with
automated feature selection. International Journal of
Prognostics and Health Management, 12(2), 1–15. doi:
10.36001/IJPHM.2021.V12I2.3026

Shahidi, P., Maraini, D., & Hopkins, B. (2020). Railcar
Diagnostics Using Minimal-Redundancy Maximum-
Relevance Feature Selection and Support Vector Ma-
chine Classification. International Journal of Prog-
nostics and Health Management, 7(4), 1–13. doi:
10.36001/ijphm.2016.v7i4.2524

Song, F., Guo, Z., & Mei, D. (2010). Feature selection
using principal component analysis. Proceedings -
2010 International Conference on System Science, En-
gineering Design and Manufacturing Informatization,
ICSEM 2010, 1, 27–30. doi: 10.1109/ICSEM.2010.14

Sthle, L., & Wold, S. (1989). Analysis of variance
(ANOVA). Chemometrics and Intelligent Labora-
tory Systems, 6(4), 259–272. doi: 10.1016/0169-
7439(89)80095-4

Theriault, K. (2016). Boiling Water Reactors. In Nu-
clear engineering handbook. CRC Press. (ISBN:
10.1201/9781315373829-5)
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