
Optimal Maintenance Policy for Corroded Oil and Gas Pipelines

using Markov Decision Processes

Roohollah Heidary1, Jubilee Prasad-Rao2, Katrina M. Groth3

1,2
Global Technology Connection Inc., Atlanta, GA, 30339, USA

rheidary@globaltechinc.com

jrao@globaltechinc.com

3
Systems Risk and Reliability Analysis Lab (SyRRA), Center for Risk and Reliability, University of Maryland,

College Park, MD, 20742, USA

kgroth@umd.edu

ABSTRACT

This paper presents a novel approach to determine optimal
maintenance policies for degraded oil and gas pipelines due
to internal pitting corrosion. This approach builds a bridge
between Markov process-based corrosion rate models and
Markov decision processes (MDP). This bridging allows for
considering both short-term and long-term costs for opti-
mal pipeline maintenance operations. To implement MDP,
probability transition matrices are estimated to move from
one degradation state to the next in the pipeline degradation
Markov processes. A case study is also implemented with
four pipeline failure modes (i.e., safe, small leak, large leak,
and rupture). And four maintenance actions (i.e., do nothing,
adding corrosion inhibitors, pigging, and replacement) are
considered by assuming perfect pipeline inspections. Monte
Carlo simulation is performed on 10,000 initial pits using the
selected corrosion models and assumed maintenance and fail-
ure costs to determine an optimal maintenance policy.

1. INTRODUCTION

Corrosion is the primary failure mechanism of oil and gas
pipelines, and among different corrosion mechanisms, pit-
ting corrosion is the most common one (Heidary & Groth,
2021). Therefore, finding an optimal maintenance policy for
oil and gas pipelines undergoing pitting corrosion is an essen-
tial aspect for their integrity management (Kishawy & Gab-
bar, 2010), to minimize the cost of unnecessary maintenance
and unpredicted failures, and maximize the reliability of the
pipelines.

An optimal policy should consider both the myopic and the

Roohollah Heidary et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

long-term consequences, and MDP is a powerful modeling
technique that considers both short and long-term risks. How-
ever, MDP has rarely been used to find optimal maintenance
policies for systems that involve continuous degradation be-
cause of two main reasons: (1) A system’s degradation state
in a Markov process is not continuous but discrete, and (2)
Assigning the probability transition between states is usually
subjective and not a trivial task (Sánchez-Silva, Frangopol,
Padgett, & Soliman, 2016). The main contribution of this pa-
per is directed at the second challenge. In order to conduct an
MDP analysis, we propose a procedure to define the transi-
tion probabilities and calculate the probability transition ma-
trix. This will enable transition between states of a Markov
process for pipeline degradation due to internal pitting corro-
sion.

In contrast to the traditional reliability methods that rely on
population data, prognostics and health management (PHM)
approaches use data of the specific system/component to pre-
dict the remaining useful life (RUL) (Tsui, Chen, Zhou,
Hai, & Wang, 2015). PHM methodologies are categorized
into physics-of-failure (PoF), and data-driven approaches
(Imanian & Modarres, 2018). The prediction of PoF ap-
proaches is more reliable when these models are calibrated
with reliable data. However, since they are based on some
approximations and simplifying assumptions when the degra-
dation process is complex (e.g., pitting corrosion), it isn’t
easy to estimate the model parameters and validate the re-
sults (An, Kim, Choi, 2015). Therefore, it is more practical
to use data-driven approaches for integrity management of
pipelines undergoing pitting corrosion (Shibata, 1996; Valor,
Caleyo, Alfonso, Rivas, & Hallen, 2007). Pros and cons of
different data-driven models to be used for pipeline corrosion
are discussed elsewhere (Heidary, Gabriel, Modarres, Groth,
& Vahdati, 2018), and they ranked based on their ”appropri-
ateness” and practicality. According to (Heidary et al., 2018),
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Gamma process-based models (e.g., (Zhang & Zhou, 2014),
(Heidary & Groth, 2020)) and Markov process-based models
(e.g., (Valor et al., 2007; Caleyo, Vela´ zquez, Hallen, Valor,
& Esquivel-Amezcua, 2010)) are considered the best models
to model the degradation of the pipeline due to pitting corro-
sion. An important advantage of the Markov process-based
degradation models is that in conjunction with Markov de-
cision processes, Markov process-based degradation models
can be used for maintenance optimization to quantify both
short-term and long-term risks/costs of a maintenance policy.

In this paper, a Markov process-based pitting corrosion
model, a requirement to use MDP, is utilized to find an op-
timal maintenance policy. Since corrosion is a continuous
degradation process, it is more appropriate to model the cor-
rosion process with density transition rates than transition
probabilities. However, extracting the probability transition
matrix from density transition rates is challenging. In addi-
tion to assigning a proper probability transition matrix be-
tween states, another challenge lies in defining appropriate
reward or cost value for each state-action pair. A practical
framework is proposed to address these two issues in this
work. Finally, an optimal maintenance policy is estimated
for a case study by using this framework.

2. PITTING CORROSION MODELING BY MARKOV

PROCESS

The stochastic process X(t), t � 0 is a continuous-time
Markov chain (Markov process), if for all s, t � 0, and non-
negative integers i, j, x(u), 0  u  s:

P{X(t+ s) = j|X(s) = i,X(u) = x(u), 0  u < s}
= P{X(t+ s) = j|X(s) = i}

(1)

where X(t), represents the condition (state) of the system at
time t.

Equation (1) is the Markovian property. A time-continuous,
stochastic process is a Markov process if it satisfies the
Markovian property. Specifically, given that the system is in
state i at time s (X(s) = i), the future states (X(t+s)) do not
depend on the previous states (X(u) = x(u), 0  u < s). In
addition, if P{X(t + s) = j|X(s) = i} is independent of s,
the Markov process is said to have homogeneous or stationary
transition probability (Ross et al., 1996).

In Markov processes, the transition intensity, �ij , between
states i and j, is defined in such a way that the probability of
transition between states i and j in an infinitesimal time inter-
val �t, is �i�t and the probability of more than one transition
in this time interval is negligible.

Provan and Rodriguez (Provan & Rodriguez III, 1989) devel-
oped a non-homogeneous Markov process model to model

pitting corrosion for the first time, and many researchers have
used Markov processes to model pitting corrosion degrada-
tion since then. Some of those works are reviewed in (Valor
et al., 2007; Caleyo et al., 2010), and the pros and cons of
each of them are discussed in (Heidary et al., 2018). In those
works, the pipeline thickness is divided into some equally
spaced states, and by defining the last state(s) as the failure
state(s), the reliability or availability of the pipeline is calcu-
lated at each time.

The methodology that was proposed in (Timashev, Ma-
lyukova, Poluian, & Bushinskaya, 2008), is used in this re-
search to extract density transition rates between states of a
pipeline segment. (Timashev et al., 2008) has assumed that
pitting corrosion follows a homogeneous pure birth Markov
process. This means the transition is possible only from state
i to state i + 1, and transition rates between states are time-
independent. The differential equations that describe the pure
birth Markov process have the form of Kolmogorov’s forward
equations (Eq. (2)). Given the probability of being at each
state at time t, Pi(t), the homogeneous density transition rates
between states can be calculated by solving these differential
equations sequentially.

dP1(t)

dt
= ��1P1(t)

dPi(t)

dt
= +�i�1Pi�1(t)� �iPi(t), i = 2, ...,m

m = Numberofstates

(2)

where

Pi(t) =
ni(t)

N
(3)

Here ni(t) is the number of those pits that at time t their max-
imum depths are in the ith state, and N represents the total
number of pits. By solving Eqs. (2) and (3), the transition
intensities, �i, can be calculated.

When in-line inspection (ILI) data is available, the number
of pits at each state at time t can be counted and Pi(t) can
be estimated by using Eq. (3). When inspection data for a
specific pipeline is unavailable (non-piggable pipelines, pig-
gable pipelines without inspection data), a generic corrosion
growth model of the pipelines with similar operational condi-
tions and material properties is needed. For the latest case, N
initial pits are propagated through a corrosion growth model
(e.g., Eq. (15)) with Monte Carlo simulation. The number of
pits in each state at time t is counted and, by solving Eqs. (2)
and (3), the intensity transition rates between states can be
estimated.
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3. MARKOV DECISION PROCESS

A Markov Decision Process is a 4-tuple (S, A, P, R) where
S represents the finite set of the states, A is the finite set of
the actions, P is the probability transition matrix, and R is the
received reward or incurred cost per each state-action pair.
In the current context, at time step t, the maximum depth of
a pit is assumed to be in the state s 2 S, and after taking
maintenance action, a 2 A, the state of the system switches
to a new state s

0
, with transition probability P (s

0 |s, a) and
incurred cost equal to R(s, a). MDP is used here to find an
optimal policy to make a trade-off between myopic costs and
long-term costs of different maintenance actions that are dis-
cussed later. It is also assumed that the inspection is perfect
(i.e., the system’s state is investigated with certainty at each
inspection time). One way to compare the effect of each pol-
icy is to compare the value functions (long-term reward or
cost function) of different policies. Eq. (4) shows the value
function for MDPs.

V (s) = min
a2A

{R(S, a) + �
X

s0

PS,s0 (a)V (s
0
)} (4)

where � is the discount factor.

This equation defines an infinite horizon problem, which is
applicable for pipeline maintenance problems because, usu-
ally, pipelines are designed for an infinite horizon time, and
the optimal policy should be time-independent. A variety
of methods, e.g., value iteration, policy iteration, linear pro-
gramming, are developed to solve MDPs (Billinton & Allan,
1992).

In the following two subsections, assigning a proper proba-
bility transition matrix and reward function are discussed.

3.1. Probability Transition Matrix

To find the probability of being at each state at time t, the ma-
trix multiplication method that is commonly used in discrete-
time Markov chains can be used in continuous-time Markov
processes.

For discrete-time Markov chains, the probability of being in
each state at the nth time step, P (n), can be obtained by ma-
trix multiplication method ( Eq. (5))

P (n) = P (0)PTMn (5)

In this equation, P (0) is the initial probability vector which
indicates the probability of being in each state at the starting
time of the process. PTM is the probability transition matrix
for a one-time step, and n is the number of the time steps.

For continuous-time Markov processes, instead of one time
step, a probability transition matrix can be defined for a small
enough interval �t, in which the probability of more than one
transition is negligible. Proper selection of this interval plays
a critical role, and comprehensive knowledge of the system
behavior is required. When this knowledge is not available,
an approximation can be attained by selecting an initial value
for �t and then decreasing this value until the difference be-
tween the results of two consecutive values of �t are within
an acceptable tolerance (Billinton & Allan, 1992). Since in
Markov processes, the amount of time that this stochastic pro-
cess spends in a state before making a transition into a differ-
ent state is exponentially distributed (Ross et al., 1996), the
number of transitions in this interval between the two states
follows a Poisson distribution. Therefore, the initial value for
�t, can be estimated by using Eq. (6).

P (N(�t) = n) =
(��t)ne���t

n!
(6)

Where P (N(�t) = n) represents the probability of occur-
rence of n transitions in a finite time interval of length �t.
By solving Eq. (7), the initial value for �t can be estimated.
Based on this equation, the probability of more than one tran-
sition in the time interval �t is equal to one minus probability
of zero or one transition in this time interval.

P (N(�t) > 1) = 1� P (N(�t) = 0)� P (N(�t) = 1)

= 1� e��m�t(1� �m�t) = Pnegl

(7)

where Pnegl is a subjective value that if P (N(�t) > 1) <
Pnegl, it can be assumed that P (N(�t) > 1) is negligible.
�m represents the maximum transition rate between states in
this equation. The maximum transition rate is selected be-
cause it gives the minimum infinitesimal interval applicable
for other interstates. The probability transition matrix (PTM)
for this time interval, PTMInt, is calculated using Eq. (8).

PTMInt i,i = 1� �i�t, i = 1, . . . , 8

PTMInt i,i+1 = �i�t, i = 1, . . . , 7

PTMInt i,j = 0, j > i+ 1, i = 1, . . . , 8

(8)

This equation indicates that for the pure birth Markov pro-
cess, the probability of transition from state i to state i+ 1 is
�i�t, the probability of staying in the state i is 1��i�t, and
the other probabilities are zero.

After finding probability transition matrix for the time in-
terval �t, this matrix can be multiplied by itself n times
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Table 1. Different conditions that lead to different failure
modes.

d vs thk Operating pressure Failure mode

d � 0.8thk
Pft � Pop Small leak

Pft < Pop & Pft � PR Large leak
Otherwise Rupture

d < 0.8thk
Pf � Pop Safe

Pf < Pop & Pf � PR Large leak
Otherwise Rupture

(Billinton & Allan, 1992). The PTMInt is multiplied by it-
self as is given in Eq. (9) to find probability transition matrix
in each inspection interval.

PTM = PTMn
Int, n = decision Interval/�t (9)

This procedure is used in this work to build a bridge between
the Markov process-based pitting corrosion models and the
MDP to find an optimal maintenance policy for degraded
pipelines due to pitting corrosion.

3.2. Risk-based Decision Making by Using MDP

Another important factor in using MDP is to define a proper
cost matrix (R(s,a)), which indicates the incurred cost given
a state-action pair. Defining this matrix without considering
different cost aspects of the system performance makes the
MDP analysis pointless or even misleading. This work uses
a risk-based cost estimation framework to investigate the in-
curred cost of different failure modes of oil and gas pipelines
under pitting corrosion.

According to (Valor, Caleyo, Alfonso, Vidal, & Hallen,
2014), there are four potential failure modes for pipelines due
to pitting corrosion: safe, small leak, large leak, and rupture.
Table 1 shows different conditions that lead to each of these
failure modes.

In this table, d represents pit depth, thk is pipe wall thickness,
Pop is operating pressure, Pft is failure pressure for a defect
of limiting depth d = 0.0009t, Pf is failure pressure for a
defect of depth d, and PR is rupture pressure for a defect of
depth d. Using 0.8thk instead of thk is according to typical
industry practice (Zhou, 2010).

Different failure pressure prediction models like B31G, B31G
modified, RSTRENG and PCORRC are available. The
PCORRC is used in this paper as an accurate model that needs
minimum defect geometry information (Zhou, 2010) and is
given by Eq. (10).

Pf = �
2�uthk

D

2

41� d

thk

0

@1� exp

0

@ �0.157lq
D(thk�d)

2

1

A

1

A

3

5

(10)

Here �u represents the ultimate tensile strength of the pipe’s
material, D is the pipe’s diameter, l is pit length in the lon-
gitudinal direction, and � is the model error with mean equal
to 0.97 and standard deviation equal to 0.105 that is added
to this model in (Leis, Stephens, et al., 1997). The rupture
pressure model that is proposed in (Kiefner, Maxey, Eiber,
& Duffy, 1973) is used in the current paper and is shown in
Eq. (11).

PR =
2.thk�u

QD
(11)

where

Q =

(q
1 + 0.6275 l2

D.thk � 0.003375 l4

(D2.thk2
l2

D.thk  50

0.032 l2

D.thk + 3.293 l2

D.thk > 50

Monte Carlo simulation is used to estimate the probability
of occurrence of each failure mode, given the state of the
Markov model (maximum depth of the pit). Using this sim-
ulation, variability of different parameters, e.g., ultimate ten-
sile strength, pipe diameter, and pipe thickness, are consid-
ered in failure and burst pressure calculation.

The next step is to find the incurred cost value for each state-
action pair, R(s, a). For this purpose, applicable maintenance
actions for a specific pipeline system must be defined based
on the available equipment and knowledge.

The incurred cost for each state-action pair can be estimated
by Eq. (12).

R(s, a) = I +Ms,a + Cs (12)

where I represents the inspection cost which is assumed to
be independent of the state of the system; Ms,a represents the
maintenance cost (e.g., maintenance equipment, shutdown
cost during maintenance operation) which depends on the
state and the action; and Cs represents the risk-based fail-
ure cost given the state of the system. By definition, the total
expected risk-based failure cost can be estimated by Eq. (13)
(Modarres, Kaminskiy, & Krivtsov, 2016).
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Table 2. Characteristics of the pipeline.

Property Values Units

Material
Type API 5L, GX52 -

Ultimate
tensile strength Normal (447, 19) MPa

Outer
diameter 610 mm

Nominal pipe
wall thickness Normal (12.00, 0.12) mm

Pit
length Normal (50.0, 7.8) mm

Cs =
FX

f=1

P (Modef |s)Cf (13)

Where F is the number of the failure modes (in this case four,
i.e., safe, small leak, large leak, rupture), P (Modef |s) is the
probability of occurring of fth failure mode, given the state of
the system, and Cf is the failure cost given the failure mode
(e.g., loss of production cost, loss of life or property cost,
environmental cost). The flowchart of the proposed approach
is shown in Figure 1 and its application is illustrated in a case
study as following.

4. CASE STUDY

This section implements the proposed framework in a case
study to find an optimal maintenance policy for a pipeline
under internal pitting corrosion. The characteristics of this
pipeline are given in Table 2.

It is well-accepted that pitting corrosion growth follows a
power law function with a less-than-one positive exponent in
the form of Eq. (4) (Ossai, Boswell, & Davies, 2015), (Nuhi,
Seer, Al Tamimi, Modarres, & Seibi, 2011).

Dmax(t) = k(t� t0)
↵ (14)

Where Dmax(t) is the maximum depth of the pit, k is the
proportionality factor, t0 is the pitting initiation time, and ↵
is the exponent. k and ↵ are functions of operation parameters
(e.g. pH , temperature). This model was used in (Ossai et al.,
2015) to find the relationship between operational conditions
and depth of internal pits. The extracted model for the pit
depth growth in (Ossai et al., 2015) is used as the inputs for
this case study, which is given in Eq. (15).

Dmax(t) = e(�0+
Pk

j=1 �j�j)t↵ (15)

Table 3. Characteristics of the pipeline.

Par. Def. Units
Mean

val.

Reg. coeff.

mean val.

T Temperature
reading C 45.05 0.037

Pc CO2 partial
pressure MPa 0.148 -0.014

pH pH
reading - 7.651 -0.8446

S Sulphate ion
concen. Mg/L 34.883 -0.0033

C Chloride ion
concen. Mg/L 3375.668 0.0613

W Water cut
percentage % 0.375 0.042

R Wall shear
stress Pa 45.502 0.0037

Gs Gas prod.
rate m3/day 268316.3 -0.0467

OL Oil prod.
rate m3/day 120.419 -0.0002

Wt Water prod.
rate m3/day 181.774 -0.0076

Pt Operating
pressure MPa 6.354 -0.0142

Table 4. Pits growth model parameters.

Parameter Value

k 0.6508
↵ 0.8657

Here �0 represents the intercept, �j is regression coefficient
and yj is jth predictor variable (i.e., operational parameters)
that affects internal pitting corrosion. A summary of the ex-
tracted parameters and coefficients in (Ossai et al., 2015) are
given in Table 3 and Table 4.

The number and size of the pits on a pipeline depend on dif-
ferent parameters (e.g., parameters in Table 3). The number
of pits may vary from a few to thousands of pits (Dann &
Maes, 2018; Valor et al., 2015). In this study, the thickness
of the pipe is divided into eight equally spaced states, and by
applying Monte Carlo simulation, 10,000 initial pits are prop-
agated based on the growth model given in Eq. (15). Then,
the probability of being in each state at time T=5 years is
calculated by using Equation (3). Probability transition rates
between the states that are calculated by solving differential
Equations (2) that are given in Table 5.

It is crucial to select a proper value for time T in this pro-
cedure. The minimum value for T is when the pits’ depths
are distributed over all states. The later in the lifetime of the
pipeline this procedure is used, the more accurate the results
would be (Timashev et al., 2008). Therefore, the proposed
method in this paper is more beneficial for the aged pipelines
that have some field inspection data available. This is the case

5
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Figure 1. Proposed approach

Table 5. Results of Monte Carlo simulation.

State

(i)

ni(T ), No.

of pits in

state i at

T = 5 years

Probability

of being in

state i at

time T

�i, probability

transition rate

between state i
& state i+ 1 (year)

1 1 0.0001 1.8421
2 200 0.0200 0.9185
3 5888 0.5888 0.1509
4 3243 0.3243 0.0948
5 363 0.0363 6.6076
6 108 0.0108 22.2677
7 54 0.0054 44.5943
8 143 0.0143 0.0000

for a majority of the currently in-operation pipeline systems.

The small enough interval �t (i.e., the probability of more
than one transition is negligible in this interval) for this exam-
ple is calculated by using the procedure that is explained in
Section 3.1. By using Eq. (9) and assuming that the decision
interval is equal to 1 year, the estimated PTMs for assumed
actions are estimated.

Some maintenance actions are commonly used to mitigate
internal corrosion in oil and gas pipelines, including pig-
ging, adding corrosion inhibitors, biocides, internal coat-
ing, cladding, cathodic protection, and process optimization.

Among these methods, the application of corrosion inhibitors
to mitigate internal corrosion is the most-trusted method in
the oil and gas industry and is necessary for the use of car-
bon steel (Papavinasam, 2013). An expert team should as-
sess the applicability of each action for a specific pipeline,
and from among the identified appropriate methods, the most
cost-effective strategy would be determined by the MDP anal-
ysis.

For this case study, four maintenance actions are assumed:
Do nothing, add corrosion inhibitor, pigging, and replace-
ment. PTMInt for “do nothing” action, is calculated by us-
ing obtained �i, given in Table 5, and Eq. (8). Then, PTM
for ”do nothing” is obtained by using Eq. (9). All rows of
the PTM for ”replacement” are equal to the first row of PTM
for ”do nothing”. It is more complicated to find an accurate
pitting corrosion rate model in the presence of a maintenance
action that directly affects the pitting corrosion rate. For some
of these maintenance actions, there are instructions to simu-
late the effect of inhibitors on the corrosion rate in the labora-
tory (Papavinasam, 2013). For ”adding corrosion inhibitor”
and ”pigging” actions, PTMs are obtained by modifying PTM
for ”do nothing” subjectively. To have more reliable results,
field or lab corrosion data in the presence of these actions are
required to estimate appropriate PTMs.

In this study, it is assumed that the MCs,a (maintenance cost

6
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Table 6. Maintenance costs.

Maintenance type Cost

Do nothing 0
Adding corrosion inhibitor 200

Pigging 300
Replacement 600

Table 7. Cost of failure.

Failure mode Relative cost

Safe 0
Small leak 1000
Large leak 8000

Rupture 40000

given state and action) values are state-independent. How-
ever, on some occasions, it might be necessary to consider the
dependency between the state of the system and the cost of
the maintenance action. Maintenance costs and failure mode
costs that are assumed in this work are shown in Table 6 and
Table 7 respectively.

Based on this assumption, an optimal maintenance policy for
each section of the pipeline is calculated by both value itera-
tion and policy iteration methods as shown in Table 8. Com-
paring the cost of this policy with the cost values of several
arbitrarily selected policies confirms that the MDP identified
”optimal solution” as the minimum cost value. According to
these results, the optimal maintenance policy is ”do nothing”
when the maximum depth of pits is in state 1, ”add corrosion
inhibitor” when the maximum depth of pits is in state 2, 3, 4,
or 5, ”pigging” when the maximum depth of pits is in state
6, and ”replacement” when the maximum depth of pits is in
state 7 or 8.

5. CONCLUSIONS

An approach is proposed in this paper to identify the optimal
maintenance policy for aged oil and gas pipelines undergoing
pitting corrosion by using Markov Decision Process (MDP)
modeling. Despite different Markov process-based corrosion
rate models that have been proposed for modeling pitting cor-
rosion, MDPs have rarely been used to find optimal mainte-
nance policies for corroding pipelines. The main challenge
in using MDPs for pipelines maintenance optimization is that
estimating the probability transition matrix from the density
transition rates between states is complex. This paper mod-
eled the corrosion process by a pure birth Markov process.
The resultant density transition rates are used with the matrix
multiplication method to find the probability transition matrix
needed for the MDP analysis.

In addition, a risk-based cost estimation framework is used
to find the expected failure costs. A case study is performed
with four possible failure modes caused by pitting corrosion

Table 8. Resulting optimal maintenance policy.

State 1 2 3 4 5 6 7 8

Optimal action 1 2 2 2 2 3 4 4

(small leak, large leak, and rupture). Also, four maintenance
actions are assumed to apply to a specific pipeline. And an
optimal maintenance policy is determined by assuming hy-
pothetical costs for these failure modes, maintenance actions,
and inspections.

This paper proposed a novel approach to fill the gap between
the Markov process-based corrosion rate models and Markov
decision process for integrity management of the degraded
oil and gas pipelines due to pitting corrosion. Performing a
sensitivity analysis in terms of the cost and maintenance plan
will be an aspect of the future work of this research.

It is also worth mentioning that the lack of real ILI data is a
big challenge in the PHM of the oil and gas pipelines. Hence,
we highly recommend that the owners of oil and gas pipelines
and operating companies collect the operational conditions
and inspection data and make them available in the public
domain to make it possible for the researchers to validate their
new corrosion degradation models. This collaboration finally
leads to a decrease in the number of unexpected failures and
unnecessary maintenance of oil and gas pipelines.
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