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ABSTRACT 

Breakdowns and unplanned shutdowns in industrial 
processes and equipment can lead to significant loss of 
availability and revenue. It is imperative to perform optimal 
maintenance of such systems when signs of abnormal 
behavior are detected and before they propagate and lead to 
catastrophic failure. This is particularly challenging in 
systems with interconnected multiple components as it is 
difficult to isolate the effect of one component on the 
operation of other components in the system. In this work, 
an ensemble approach based on Cascaded Convolutional 
neural network and Long Short-term Memory (CC-LSTM) 
network models is proposed for detecting and predicting the 
time of onset of faults in interconnected multicomponent 
systems. The performance of the ensemble CC-LSTM 
model was demonstrated on an industrial 4-component 
system and was found to improve the accuracy of onset time 
predictions by ~15% compared to individual CC-LSTM 
models and ~25-40% compared to commonly used deep 
learning techniques such as dense neural networks, 
convolutional neural networks and LSTMs. The CC-LSTM 
and the ensemble models also had the lowest missed 
detection rates and zero false positive rates making them 
ideal for real-time monitoring and fault detection in 
multicomponent systems.  

1. INTRODUCTION 

Prognostics and Health Management (PHM) deals with 
optimal maintenance of industrial equipment and systems to 
minimize breakdowns and unplanned shutdowns, lower the 
cost of maintenance and inventory, and reduce the time to 
repair critical assets. In complex industrial equipment 

comprising multiple interconnected components faults in 
one component may propagate to other components leading 
to accelerated degradation and failure of the entire 
equipment resulting in significant loss of availability and 
revenue. Examples of interacting multicomponent systems 
include mechanical equipment such as motors, gearboxes 
and bearings used in industrial machinery, power grids, 
water distribution systems, wind turbines and gas turbines. 
The interactions among the components could be:  

• Direct physical contact, e.g., in gearboxes where 
multiple gears mesh together, a crack or pitting in one 
of the gears could impact the working of the other gears 
and lead to accelerated failure of the system 

• Indirect via material or energy streams, e.g., in gas 
turbines, faults in the combustors can lead to improper 
temperature control of the combusted gas which can 
lead to overheating/erosion of the turbine blades 
downstream 

Such systems typically have evolving operating 
environment that start in a normal mode of operation but go 
into abnormal mode due to faults or degradation of one or 
more components. It is important to detect the earliest 
possible signs of faults (as close as possible to the onset of 
abnormal operation) so that appropriate operational changes 
or maintenance activities can be undertaken before the faults 
lead to catastrophic failure of the system.   

In recent years, with abundant availability of sensor data 
and advances in computing power, data-driven models have 
been used extensively for abnormal behavior detection in 
industrial systems (Chalapathy & Chawla, 2019). An 
extensive survey of data-driven techniques used for 
predictive maintenance of industrial equipment, especially 
for fault diagnosis and estimation of remaining useful life 
(RUL) has been presented by (Zhang, Yang, & Wang, 
2019). Among the data-driven models, neural networks are 
of particular interest due to their ability to model complex 
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nonlinearities in industrial systems (Zhao, Zhang, Ge, & 
Liu, 2016) and learn abstract features from sensor data 
automatically without expert knowledge (Yuan & Tian, 
2019) and their capability to deal with the inherently 
changing nature of industrial processes (Shang, Yang, 
Huang, & Lyu, 2014). Several networks such as 
shallow/deep neural networks (DNNs), autoencoders, 
sequence-based recurrent neural networks (RNNs) and its 
variants such as gated recurrent units (GRUs) and long 
short-term memory (LSTM), and convolutional neural 
networks (CNNs) have been used for fault detection and 
diagnosis, and RUL estimation.  

Of these networks, LSTM network-based approaches have 
been used extensively for anomaly detection in industrial 
processes as they are capable of learning long-term temporal 
dependencies from operations data (Zhou, Sun, Liu, & Lau, 
2015). For example, a LSTM-based encoder-decoder 
scheme was used to detect anomalies in real-world multi-
sensor turbofan engines (Malhotra, et al., 2016) as well as 
anomaly detection in discrete manufacturing plants 
(Lindemann, Jazdi, & Weyrich, 2020). An unsupervised 
LSTM based technique was proposed to detect abnormal 
operation in mechanical systems (Li, Li, Wang, & Wang, 
2019). Recently, Bi-directional LSTM (Bi-LSTM), which is 
an extension of LSTM, has been used to perform anomaly 
detection in cyber-networks (Aljbali & Roy, 2021). A 
survey of the use of LSTM networks for anomaly detection 
in industrial systems was presented by (Lindemann, 
Maschler, Sahlab, & Weyrich, 2021).  

 While largely used for image processing and analysis 
(Krizhevsky, Sutskever, & Hinton, 2017), CNNs have been 
extended for industrial anomaly detection as  the network 
can perform 1-Dimensional (1D) convolution and extract 
generalized abstract features from time series data without 
having to perform hand-crafted feature engineering 
(Kiranyaz, et al., 2021). CNN-based techniques have been 
used extensively for industrial bearing anomaly detection 
and fault diagnosis using vibration data (Eren, Ince, & 
Kiranyaz, 2019) (Wang, Guo, Song, Gao, & Li, 2019) 
(Hasan, Sohaib, & Kim, 2019) (Wang, Mao, & Li, 2020), 
fault diagnosis of rotating machinery (Li, Zou, Jiang, & 
Zhou, 2019) and anomaly detection in industrial control 
systems (Lai, Zhang, & Liu, 2019).  

Recently, hybrid CNN-LSTM networks have been proposed 
to combine the strengths of CNNs and LSTMs for modeling 
spatial and temporal patterns respectively. Kim and Cho 
(2018) have used a hybrid CNN-LSTM model for detecting 
anomalies in web traffic and demonstrated that the 
performance of the hybrid model is better than individual 
LSTMs and CNNs (Kim & Cho, 2018). Zheng et al. (2019) 
have predicted the steam temperature after the primary de-
superheating system using a hybrid CNN-LSTM model 
which is then used for fault prediction in a boiler in an 
industrial power plant unit and found that the CNN-LSTM 

network improved the accuracy of fault detection compared 
to the standalone LSTM network. Hybrid CNN-LSTM 
models have also been used for industrial abnormal 
behavior detection by (Canizo, Triguero, Conde, & Onieva, 
2019) and (Ullah, et al., 2020).  

In multi-component industrial systems, a faulty or degraded 
component can accelerate the degradation of other 
components due to interdependencies among the 
components and lead to faster system failure. It is therefore 
imperative to consider such component interactions while 
developing data-driven models for fault detection and 
diagnosis and RUL estimation in multicomponent systems. 
However, sensor data would be influenced by all the 
components, and it is challenging to isolate the effect of 
individual components on the data and thereby estimate the 
state of health of each component. In mechanical 
multicomponent systems where high frequency vibration 
data from accelerometers is available, time and/or frequency 
domain analysis may be carried out to isolate the behavior 
of each component (Assaf, Do, Scarf, & Nefti-Meziani, 
2017). However, in most industrial systems, high frequency 
data may not be available continuously or available at all as 
it results in enormous amounts of data that is difficult to 
maintain and analyze. Only low frequency data related to 
temperatures, pressures, flow rates, voltages, currents, etc. 
may be available. In such cases, researchers have used 
various other approaches to model and isolate inter-
component interactions. Such approaches include stochastic 
dependence modeling (Bian & Gebraeel, 2014), adaptive 
degradation modeling demonstrated for an electrical system 
(Prakash, Samantaray, Bhattacharyya, & Ghoshal, 2018), 
and Naïve Bayesian method (Lin, Zakwan, & Jennions, 
2020) and model-free clustering analysis (Liu, Zhao, 
Zaporowska, & Zakwan, 2020) demonstrated for an aircraft 
fuel rig.  

In this context, the problem posed by the Advanced 
Reliability Availability and Maintenance for Industries and 
Services (ARAMIS) Group is very pertinent (Cannarile, 
Compare, Bareldi, Yang, & Zio, 2020). They simulated the 
behavior of multiple industrial 4-component systems under 
evolving conditions and provided the data for fault detection 
and predicting the time of onset of abnormal operation in 
each of the components. Several researchers solved this 
problem using different approaches. Siahpour, Ainapure, Li 
and Lee (2020) have used an ensemble of CNN and LSTM 
models to predict the onset of abnormal condition but did 
not consider dependency among the components. Rocchetta, 
Petkovic and Gao (2020) have used an ensemble of support 
vector machine classifiers but did not specify if the inter-
component dependencies were considered. Altarabichi et al. 
(2020) have used a stacked generalization approach 
comprising base models composed of heterogenous ML-
based classifiers and a meta model based on random forest 
for estimation onset of abnormal operation in the 
multicomponent systems. Gupta et al. (2021) have used 
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several LSTM-based models with and without 
interdependence among the components while Yang, 
Baraldi and Zio (2022) have proposed a sparse autoencoder 
based deep learning network to capture the dependencies 
among the components and predict the onset of abnormal 
operation.  

In this work, we propose to utilize the hybrid CNN-LSTM 
network, hereby referred to as a Cascaded CNN-LSTM 
(CC-LSTM) network for abnormal operation detection in 
multi-component industrial systems. It is hypothesized that 
the spatial features abstracted from all the sensors by the 
CNN layers in the CC-LSTM network carry information 
related to the spatial dependencies among the sensors and 
the condition of health of each of the components. This 
information when combined with modeling of temporal 
dependencies by the LSTM layer is expected to improve the 
accuracy of fault detection in multicomponent systems. 
Further, some deep learning models perform better than 
others even when trained on the same dataset due to the 
stochasticity associated with training such models, and the 
overall performance of such models could be improved by 
using an ensemble of multiple models. Hence, we propose 
an approach called the Ensemble Cascaded CNN-LSTM 
(ECC-LSTM) technique which uses a weighted ensemble of 
multiple CC-LSTM models for estimating the abnormal 
onset times. The efficacy of CC-LSTM and ECC-LSTM 
models has been demonstrated on the abnormal onset time 
prediction problem posed by the ARAMIS Group 
(Cannarile, Compare, Bareldi, Yang, & Zio, 2020). The 
contributions of this work are as follows: 

•  An ECC-LSTM approach is proposed for detecting 
early signatures of faults and predicting the onset of 
abnormal operation in multi-component industrial 
systems 

•  The effect of inter-component dependency was 
evaluated by training CC-LSTM models assuming 
dependence as well as independence among the 
components  

•  The performance of CC-LSTM and ECC-LSTM 
models was compared with that of commonly used deep 
learning models  

• ECC-LSTM models improved the performance metric 
by ~15% compared to CC-LSTM models and ~25-40% 
compared to common deep learning techniques 

The rest of the paper is organized as follows: The problem 
statement and the dataset used are described in Section 2. 
The data pre-processing strategy is explained in Section 3. 
The CC-LSTM models and proposed ECC-LSTM 
methodology are explained in Section 4. Results from the 
proposed approach are presented and compared against 
those from other deep learning algorithms in Section 5. The 
findings of the study are summarized in Section 6. 

2. PROBLEM DESCRIPTION 

2.1. System of Interest 

The industrial system of interest comprises J = 4 identical 
interconnected components, with operation time T, in 
arbitrary time units (atu). Data from M = 200 such industrial 
systems was provided. The components in the systems 
undergo random degradation during their operation. When 
the degradation of a component exceeds a threshold, it 
enters an abnormal state of operation. This abnormal state 
does not correspond to component failure but makes the 
operation of the system suboptimal. When all the four 
components start operating in abnormal operation, system 
failure is said to occur at time, Tf. The simulation of the 
degradation paths of all four components of all 200 systems 
had been done till the end of operation time T or till system 
failure occurs, whichever comes first. K = 10 sensors were 
installed on each component from which the level of 
degradation of the components could be estimated. The 
operating conditions and the degradation levels impact the 
sensor signals, 𝑠𝑡

𝑗,𝑚,1, … , 𝑠𝑡
𝑗,𝑚,𝐾. A fixed frequency of fs = 1 

atu−1 was used for recording sensor signals. 

2.2. Problem Statement 

The K measurements taken from the jth component of the mth 
system at time t are represented by the vector 𝑥𝑡

𝑗,𝑚 =
[𝑠𝑡
𝑗,𝑚,1, … , 𝑠𝑡

𝑗,𝑚,𝐾]. The label of the component is denoted as 
𝑦𝑡
𝑗,𝑚 ∈ 0, 1 where 0 and 1 indicate normal and abnormal 

operation respectively at time t. The time at which the 
component enters first into an abnormal state, referred to as 
Time of Onset of Abnormal Behavior (TOAB) is 
represented as 𝜏𝑗,𝑚. This means that when t < 𝜏𝑗,𝑚, 𝑦𝑡

𝑗,𝑚= 0 
and when t >= 𝜏𝑗,𝑚, 𝑦𝑡

𝑗,𝑚= 1. It is possible that 𝜏𝑗,𝑚  > T, 
which means that the component has not entered abnormal 
operation in its lifetime. Given a training set of sensor data 
𝑥𝑡
𝑗,𝑚 and its labels 𝑦𝑡

𝑗,𝑚, the objective is to detect the TOAB 
of all J components in the test systems. 

2.3. Performance Metric 

For evaluating the performance metric, testing dataset 
containing the sensor data of Mtest four-component systems 
was considered. The ground truth time at which the jth 
component of the mth system first enters into abnormal 
operation is denoted as 𝜏𝑗,𝑚. 𝜏𝑗,𝑚 is fixed to be NaN (Not A 
Number) if the component had not entered abnormal state in 
its entire lifetime. 

�̂�𝑗,𝑚 is the estimate of 𝜏𝑗,𝑚 that is to be found, for any m =1, 
. . . , Mtest and j = 1, . . . , J. �̂�𝑗,𝑚 should be set to NaN, if a 
component’s entry into abnormal operation had not been 
detected. The error of estimating the time 𝜏𝑗,𝑚 with �̂�𝑗,𝑚 is 
defined by Eq. (1): 
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∆𝑗,𝑚=

{
 
 

 
 𝜏

𝑗,𝑚 − �̂�𝑗,𝑚 𝜏𝑗,𝑚 ≠ 𝑁𝑎𝑁, �̂�𝑗,𝑚 ≠ 𝑁𝑎𝑁. 
0                  𝜏𝑗,𝑚 = 𝑁𝑎𝑁, �̂�𝑗,𝑚 = 𝑁𝑎𝑁.
𝑘𝑓𝑎𝑙𝑠𝑒           𝜏𝑗,𝑚 = 𝑁𝑎𝑁, �̂�𝑗,𝑚 ≠ 𝑁𝑎𝑁.
−𝑘𝑚𝑖𝑠𝑠𝑒𝑑    𝜏𝑗,𝑚 ≠ 𝑁𝑎𝑁, �̂�𝑗,𝑚 = 𝑁𝑎𝑁.

       (1) 

False alarms are penalized with an error, kfalse > T and 
missed alarms are penalized with an error, kmissed > T. The 
average error of the solution on all test components is 
quantified by the Timeliness Error, TE  (Cannarile, 
Compare, Bareldi, Yang, & Zio, 2020) that is desired to be 
as small as possible (ideally closed to zero). The expression 
for computing TE is given by Eq. (2).  

 

𝑇𝐸 = 1
4𝑀𝑡𝑒𝑠𝑡

∑ ∑ 𝜑(∆𝑗,𝑚)4
𝑗=1

𝑀𝑡𝑒𝑠𝑡
𝑚=1   (2) 

where 

𝜑(∆𝑗,𝑚) =

{
 
 

 
 1                        ∆𝑗,𝑚 < −𝑇 

(1 −  𝑒
∆𝑗,𝑚
𝑎1 )𝑏1 −𝑇 ≤ ∆𝑗,𝑚< 0

(1 −  𝑒
∆𝑗,𝑚
𝑎1 )𝑏1 0 ≤ ∆𝑗,𝑚≤ 𝑇

1                               ∆𝑗,𝑚 > 𝑇

       (3) 

𝑏1 =
1

1−𝑒
−𝑇
𝑎1

    (4) 

𝑏2 =
1

1−𝑒
−𝑇
𝑎2

    (5) 

Parameters b1 and b2 are set to obtain φ(T) = 1 and φ(−T) = 
1, respectively. Values of 13 and 10 are set for the 
parameters a1 and a2 respectively so that late estimates are 
subject to a higher penalty compared to early estimates of 
TOAB (Saxena, et al., 2008). In the paper, this proposed 
timeliness error was chosen for comparing the effectiveness 
of various techniques for detecting the onset of abnormal 
operation. 

2.4. Data Description 

The time series plots of 10 sensors for one of the 
components from a sample system are shown in Figure 1. 
The green line indicates normal operation while the red line 
indicates abnormal operation. As seen from Figure 1, the 
onset time of abnormal operation is not directly identifiable 
from individual sensors and could be a multivariate effect. 
The influence of other components on a component entering 
abnormal state is also not directly evident from visual 
inspection of data. 

Out of 800 components from all systems, 411 components 
entered abnormal operation during their lifetime. The entire 
dataset is randomly partitioned into a training set consisting 
of 150 systems and a testing set consisting of 50 systems.  

 
Figure 1. Time series plots of the 10 sensors of a component 
 

The training set is used for development of model(s) for the 
detection of onset of abnormal operation and the testing 
dataset is used for the validation of the developed model(s). 

3. DATA PRE-PROCESSING 

The following data pre-processing steps were applied on the 
sensor signals in the training and testing datasets: 

3.1. Data Denoising 

The Butterworth Low-pass filter (Bansal, 2010) of order 2 
with suitable cutoff frequency was used to remove any high 
frequency measurement noise present in each of the 10 
sensor signals. The suitable cut-off frequency for each 
sensor signal was estimated from its frequency spectrum. 
Sample raw and denoised plots for a sensor signal are 
shown in Figure 2. 

3.2. Data Normalization 

All sensor signals were found to be adequately Gaussian-
like. Z-normalization was applied on each sensor signal, to 
obtain normalized sensor data with a mean of zero and 
standard deviation of one. Data normalization was done 
component-wise, that is, the mean and standard deviation of 
sensors from component-1 of all systems were used to 
normalize component-1 signals in all systems and the same 
procedure was applied to components 2, 3 and 4. Sensor 
signals of the testing datasets were standardized using the 
mean and standard deviations obtained from the 
corresponding training datasets. 
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Figure 2. Raw vs Denoised time series plots of sensor 1 of 

component 1 and system 1 
 

4. PROPOSED METHODOLOGY 

4.1. Cascaded CNN-LSTM (CC-LSTM) Models 

A time-series classification approach is proposed here in 
which trained cascaded CNN-LSTM or CC-LSTM classifier 
models classify the sensor data at each time step into 
‘normal behavior’ (label 0) or ‘abnormal behavior’ (label 1). 
These predicted labels are then used to determine the 
TOAB. The architecture of CC-LSTM used in this work is 
shown in Figure 3. The architecture comprises a one-

dimensional (1D) CNN network having two convolutional 
layers and a max pooling layer in sequence. These layers 
extract complex feature representations from the input 
windowed data without losing key spatial information. The 
first convolutional layer consists of F1 number of filters 
each with a filter size of Fs1. The second convolutional layer 
consists of F2 filters each with a filter size of Fs2. The two 
convolutional layers use ReLU (Rectified Linear Units) 
activation function. The max pooling layer consists of one 
filter with size P. The features extracted by the 1D-CNN 
network are input to the LSTM layer that consists of NLSTM 
number of LSTM nodes with tanh activation function. A 
dropout layer (with dropout fraction, D) is used after the 
LSTM to mitigate overfitting which is a common problem 
with neural networks. A final dense output layer with 
sigmoid activation function and one neuron is used to 
classify the input window into ‘0’ or ‘1’ labels.  

The CC-LSTM architecture shown in Figure 3 was used to 
train classification models using the training datasets from 
each of the four components of all systems. Hence, there 
were four classifier models corresponding to each of the 
four components.  The methodology followed for training 
the models and using them for predictions is depicted in 
Figure 4 and explained as follows. 

Preprocessed data in the form of two-dimensional windows 
(each window of size Ws x Nf) was given as input to train the 
CC-LSTM network shown in Figure 3 where Ws is the 
length of the window and Nf is the number of features 
considered in the model. A window shift of one time step 
was used during windowing of training as well as testing 
datasets. The label corresponding to the last time step in a 
window was taken as the label for the entire window. 

 

 
 

 
Figure 3. CC-LSTM architecture 
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Figure 4. CC-LSTM implementation 

To obtain the best possible models, the architecture of the 
CC-LSTM network was optimized via hyperparameter 
tuning using the Hyperband approach (Li, Jamieson, 
DeSalvo, Rostamizadeh, & Talwalkar, 2018). In this 
approach, hyperparameter tuning is performed in a sports 
championship style bracket wherein many models with 
different hyperparameter values are trained for a few epochs 
in every round and the top half of the models are considered 
for the next round. The hyperband algorithm uses early 
stopping and adaptive resource allocation to arrive at the 
best possible model quickly (Introduction to the Keras 
Tuner, 2022). Li et al. (2018) have demonstrated that the 
hyperband algorithm was just as effective, and 5-30 times 
faster compared to Bayesian optimization algorithms for 
several deep learning problems. Adam optimizer with 
variable learning rate and binary cross entropy loss function 
were used for training the network. 20% of training data was 
used as validation data and the value of loss function on 
validation data was monitored at every epoch during 
training. To prevent overfitting, an early stopping criterion 
was employed, i.e., training was terminated when the 
validation loss did not decrease for more than ‘n’ epochs 
(patience). In this work, network training was carried out for 
a maximum of 100 epochs and a patience value of n = 10 
was selected after experimenting with patience values up to 
50. The model with the lowest validation loss was 
considered the best model and used for predictions. The 
trends in training and validation loss for one of the CC-
LSTM models are shown in Figure 5. It can be seen from 
the figure that the validation loss was minimum at epoch 
#14 and increased after that. Therefore, the model with the 
weights at epoch #14 is considered the best model in this 
trial.  

As the system of interest comprises 4 interconnected 
components, the onset of abnormal operation in a certain 
component may be influenced by or be dependent on any of 
the other components. To determine if such an 
interdependency among the components was present, the 
following two cases of CC-LSTM models were developed 
for each of the four components:  

1. Independent Components (IC) type models: In this 
case, no dependency among the components was 
assumed and the CC-LSTM model for each component  

 
Figure 5. Trend in loss for training and validation data for a 

CC-LSTM model 

was developed using the 10 sensors corresponding to 
that component only. 

2. Dependent Components (DC) type models: In this 
case, each component was assumed to be dependent on 
the other three components. Therefore, the CC-LSTM 
model for each component was developed using 40 
sensors, i.e., 10 sensors from the component for which 
the model was built combined with the 30 sensors from 
the other three components.  

The optimized parameter values of the CC-LSTM network 
for IC and DC type models along with the corresponding 
network training parameters are shown in Table 1. For IC 
and DC type models, the search spaces for hyperparameters 
were as follows: F1 and F2 were experimented at values of 
[32, 64, 128, 256, 512, 1024], Fs1 and Fs2 at values of [3, 5], 
NLSTM at values of [32, 64, 128, 256, 512, 1024], D at values 
of [0.1, 0.2, 0.3] and batch size at values of [32, 64, 128, 
256]. Here, it should be noted that the CC-LSTM network 
parameters were optimized for the first component and the 
same parameters were used for training the models for the 
other components as the components are identical in nature.  

Each trained CC-LSTM model used a window/segment of 
sensor data for making a binary label prediction of 0 or 1. 
The predictions were then used for computing TOAB as 
follows:  A window of size, Wpost x Nf was considered with 

Table 1. Optimized network and training parameters 

Layer/Parameter IC Type 
Models 

DC Type 
Models 

1D convolutional 
Layer 1  F1 = 64, Fs1 = 5 F1 = 128, Fs1 = 3 

1D convolutional 
Layer 2 F2 = 32, Fs2 = 3 F2 = 256, Fs2 = 5 

Max Pooling Layer, P 2 2 
LSTM nodes, NLSTM 64 256 
Dropout, D 0.2 0.1 
Batch size 256 128 
Window size, Ws 50 50 
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Wpost = 10. If all the predicted labels in the window were 1, 
then that window’s start time was considered to be the 
TOAB. If no windows with all predicted labels of 1 were 
detected in a component’s lifetime, then the component was 
classified as normal and TOAB was set to be NaN. For any 
system in the testing dataset, the TOAB was estimated for 
each of its four components. 

4.2. Ensemble of Cascaded CNN (ECC)-LSTM Models 

It was observed that all CC-LSTM models could not 
estimate the TOAB with a high degree of accuracy. This 
was largely due to the intrinsic randomness in the training of 
deep learning algorithms. As the training and performance 
of deep learning models depend on the initial random values 
of the weights and biases, few sets of random initializations 
of the weights and biases resulted in models with lower 
accuracy w.r.t estimation of TOAB. To overcome this issue 
and exploit the randomness to our advantage, a weighted 
ensemble of multiple CC-LSTM models is proposed for 
estimating the TOAB. Ensemble of CC-LSTM models gives 
less weightage to poorly performing CC-LSTM models and 
more weightage to better models ensuring reliable 
predictions of TOAB overall. The ECC-LSTM approach 
consists of two phases: the training phase and the testing 
phase. 

The training phase of the ECC-LSTM approach is shown in 
Figure 6. Similar to the training of CC-LSTM models, 
component-wise modelling is performed for ECC-LSTM 
i.e., separate models were developed for each of the four 
components. For each component, N=10 number of CC-
LSTM models were developed by training on the 150 
systems using different random initializations for network 
weights and biases. The approach for training individual 
CC-LSTM models is discussed in Section 4.1. Each of the N 
CC-LSTM models was used to predict the TOAB of the 
components in the training dataset which was then used to 
compute the timeliness error (specified in Section 2.3) for 
each of the N CC-LSTM models. The computed timeliness 
errors were an indication of the training effectiveness of 
each model and are stored to be used as weights in the 
testing phase. 

The testing phase of the ECC-LSTM approach is depicted in 
Figure 7. For a given component, TOAB predictions from 
the corresponding trained N CC-LSTM models of that 
component were considered. The procedure for estimation 
TOAB from individual CC-LSTM models was the same as 
that discussed in Section 4.1. From the N TOAB 
predictions, the number of models detecting the component 
as being in normal operation (Nnormal) and the number of 
models detecting the component as being abnormal 
operation (Nabnormal) were calculated. If Nnormal was greater 
than Nabnormal, then the test component was classified as 
being in normal operation throughout its life and TOAB for 
the component was set to be NaN. On the other hand, if 
Nnormal is lower than Nabnormal, the test component was 

 
Figure 6. Training phase of ECC-LSTM approach 

 

 
Figure 7. Testing phase of ECC-LSTM approach 

classified as being in abnormal operation and the TOAB for 
the component was then obtained as a weighted average of 
the TOABs predicted by the Nabnormal models using the 
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inverse of timeliness errors of the Nabnormal models as 
weights. 

5. RESULTS AND DISCUSSION 

All the deep learning models in the paper were trained using 
the Keras 2.4.0 package (Keras API Reference, 2021). The 
results were obtained on a computing system with Intel 
Core i7-8650U CPU and 16 GB RAM. 

5.1. Dependency among Components 

For IC (10 sensors as inputs) and DC (40 sensors as inputs) 
type models, 10 trials with a different random initialization 
of the network in each trial were conducted to obtain 
reliable results. This resulted in 10 CC-LSTM models for 
each of the 4 components. Using each of the models, the 
timeliness error on the testing dataset consisting of 50 
systems was computed. The mean and standard deviation of 
the timeliness errors for the two types of models for each of 
the 4 components and all components combined are shown 
in Table 2 and Figure 8. From the table, it can be observed 
that the timeliness error obtained from IC type models is in 
the range 0.059 to 0.095 and that obtained from DC type 
models is in the range 0.139 to 0.235. For each component 
and all components combined, IC models resulted in lower 
mean timeliness errors (at least 40% lower) compared to DC 
models. The differences in the timeliness errors from IC and 
DC models can be seen clearly in Figure 8. To confirm that 
the timeliness errors from both the types of models were 
statistically different, a two-sample t-test (Snedecor & 
Cochran, 1989) was conducted with the following null and 
alternate hypotheses: 

H0: TEIC = TEDC 

Ha: TEIC ≠ TEDC 

Test Statistic, T = �̅�𝐼𝐶− �̅�𝐷𝐶

√𝑠𝐼𝐶
2

𝑁𝐼𝐶
+
𝑠𝐷𝐶
2

𝑁𝐷𝐶

 

where:  
TEIC and TEDC are timeliness errors from IC and DC type 
models, 
NIC and NDC are the sample sizes or number of trials of IC 
and DC type models, 

�̅�𝐼𝐶  and �̅�𝐷𝐶  are means of timeliness errors from the trials of 
IC and DC type models, and  
𝑠𝐼𝐶2  and 𝑠𝐷𝐶2  are the variances of timeliness errors from the 
trials of IC and DC type models 
 
In this case, the samples sizes NIC and NDC were equal to 10 
as ten trials each were conducted for IC and DC type 
models. The null hypothesis that the timeliness errors from 
IC and DC type models are equal can be rejected if  
 

|𝑇| > 𝑡1−𝛼/2,𝜈 
 
where 𝑡1−𝛼/2,𝜈 is the critical value of the t distribution with 
ν degrees of freedom and α is the significance level. The t-
test was conducted for timeliness errors obtained for each of 
the components and all components combined. The values 
of the critical value of the t distribution at the 0.05 
significance level and the test statistic from these tests are 
shown in Table 3. It can be observed from the table that the 
test statistic is greater than the critical value for all the 
components leading to the rejection of the null hypothesis. 
This leads to the conclusion that the difference between the 
mean timeliness errors from the IC and DC type models is 
statistically significant. The lower timeliness errors from IC 
models indicated that addition of more sensors in DC 
models did not improve the prediction accuracy leading us 
to believe that there was no interdependency or only a weak 
interdependency among the components in the given 
systems. This is an interesting observation since the 
inclusion of additional sensors is typically expected to 
improve or at least maintain the prediction accuracy of deep 
learning models. However, Gupta et al. (2021) have also 
reported a similar observation that incorporating sensors 
from all the components did not improve the predictions of 
TOAB from one component. Therefore, only IC models, 
i.e., CC-LSTM models with only 10 sensors corresponding 
to each component were considered for evaluating the ECC-
LSTM approach. 

5.2. Implementation of benchmark algorithms 

The performance of the ECC-LSTM approach was 
compared with that of CC-LSTM models as well as models 
built using common neural networks such as Shallow 
Neural Network (SNN), Deep Neural Network (DNN), 
LSTM, Bi-LSTM and CNN. These models were trained for  

 

Table 2. Mean timeliness errors on the testing dataset computed using IC and DC type models. Number in brackets is the 
standard deviation of timeliness error from 10 trials  

Model Type Mean Timeliness Error for Component 
C1 C2 C3 C4 All Components 

IC 0.095 
(0.019) 

0.059 
(0.009) 

0.091 
(0.011) 

0.075 
(0.009) 

0.080 
(0.007) 

DC 0.168 
(0.017) 

0.139 
(0.029) 

0.235 
(0.036) 

0.174 
(0.012) 

0.179 
(0.016) 
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Figure 8. Comparison of timeliness errors from IC and DC 

type models. Error bars indicate standard deviation of 
timeliness error from 10 trials 

 

Table 3. Results of two sample t-tests on timeliness errors 
from IC and DC type models 

Component Test Statistic, 
|𝑻| 

Critical value, 
𝒕𝟏−𝜶/𝟐,𝝂 

C1 7.731 2.262 
C2 6.007 2.776 
C3 8.790 2.776 
C4 16.509 2.446 

All Components 13.334 2.570 
 
 each component using 10 sensors as input. They were 
trained to predict a binary output of 0 or 1 corresponding to 
normal or abnormal behavior of the components. These 
labels were then used to estimate TOAB as described in 
Section 4.1. The SNN model consisted of 1 dense hidden 
layer while the DNN model comprised 3 dense hidden 
layers. The CNN model consisted of two 1D convolutional 
layers (F1 filters with filter size of Fs1 and F2 filters with 
filter size of Fs2) followed by a max pooling layer with filter 
P, a dense layer with dropout and the output layer. The 
LSTM and Bi-LSTM models consisted of one hidden layer 
with dropout followed by the output layer. In all the models, 
the output layer was a dense layer with 1 neuron and 
sigmoid activation function. Hyperparameter tuning for 
these networks was also carried out using the hyperband 
approach detailed in Section 4.1. The optimized network 
parameters for all the models are shown in Table 4. For 
SNN and DNN models, the number of dense units in each of 
the layers and batch size were experimented at values of 
[32, 64, 128, 256, 512] and [32, 64, 128, 256] respectively. 
For the CNN model, F1 and F2 were experimented at values 
of [32, 64, 128, 256], Fs1 and Fs2 at values of [3, 5], number 
of dense units at values of [32, 64, 128], drop out at values 
of [0, 0.1, 0.2, 0.3, 0.4, 0.5] and batch size at values of [32, 
64, 128, 256]. For the LSTM and Bi-LSTM models, the 
number of units were experimented at values of [32, 64,  

Table 4: Optimized parameters for neural network models 

Model Optimized Network Parameters 

SNN Dense units: 128 
Batch size: 64 

DNN Dense units: 128, 128, 64 
Batch size: 256 

CNN 

F1 = 64, Fs1 =5 
F2 = 64, Fs2

 = 5 
Dense units: 32 
Dropout: 0.3 
Batch size: 64 

LSTM 
LSTM Units: 256 
Dropout: 0.1 
Batch size: 16 

Bi-LSTM 
Bi-LSTM Units: 256 
Dropout: 0.2 
Batch size: 256 

 
128, 256], drop out at values of [0, 0.1, 0.2, 0.3, 0.4, 0.5] 
and batch size at values between 16 and 256 with a step size 
of 16. The window size, Ws = 50 for CNN, LSTM and Bi-
LSTM models was chosen after extensive experimentation 
with varying window sizes ranging from 10 to 100. 

Due to the stochastic nature of the deep learning algorithms 
instead of relying on a single model, 10 instances of the 
models were trained for each of the techniques with a 
different random initialization of the network in each trial. 
The final timeliness error for each technique was obtained 
by averaging the timeliness errors from the 10 trials on the 
test data.  

5.3. Comparison of CC-LSTM and ECC-LSTM with 
benchmark algorithms 

The mean timeliness error from all the models for each of 
the components and all components combined in the test 
dataset is shown in Figure 8. It can be observed from the 
figure that the timeliness errors for component 2 are the 
lowest across all the models indicating that all the models 
were able to capture the onset of abnormal operation in 
component 2 across all systems quite well. The timeliness 
errors for components 1, 3 and 4 are higher than those of 
component 2 across all the models. It can also be seen that 
for each component, simpler network models such as SNN 
and DNN as well as CNN resulted in higher timeliness 
errors indicating that they were unable to model the 
degradation behavior of the components. On the other hand, 
sequence-based models such as LSTM, Bi-LSTM, CC-
LSTM and ECC-LSTM captured the operating behavior of 
the components well as is evident from the lower timeliness 
errors for each component and all components combined. Of 
these, CC-LSTM and ECC-LSTM models performed better 
than all the other models with respect to timeliness error,  
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Figure 8. Component-wise comparison of timeliness errors 

of models 

highlighting the efficacy of the proposed CC-LSTM and the 
ensemble methodology.  

The mean timeliness errors from all the models for all 
components combined is shown in Figure 9 where the error 
bars represent the standard deviations of timeliness errors 
from 10 trials. It should be noted that the ECC-LSTM 
model has only one value of timeliness error and no 
standard deviation as the TOABs from ECC-LSTM model 
were estimated as a weighted mean of TOABs from the 10 
CC-LSTM models. Figure 9 shows that the mean timeliness 
error for the CC-LSTM and ECC-LSTM models are the 
lowest amongst the timeliness errors from all the models. 
The improvement in timeliness error due to the CC-LSTM 
approach compared to SNN, DNN and CNN models is 26-
32% while it is 11-16% compared to LSTM and Bi-LSTM 
models. A two-sample t-test was carried out to confirm that 
the timeliness error due to the CC-LSTM approach was 
statistically different from the timeliness error from to the 
other models using the following null and alternate 
hypotheses: 

H0: TECC-LSTM = TEM 

Ha: TECC-LSTM ≠ TEM 

where:  
TECC-LSTM is the timeliness error from CC-LSTM model 
TEM is the timeliness errors from other models where the 
subscript ‘M’ is SNN, DNN, CNN, LSTM and Bi-LSTM 
 
The values of the test statistic and the critical value of the t 
distribution at the 0.05 significance level from the tests are 
shown in Table 5. It can be observed from the table that the 
test statistic is greater than the critical value for all the 
models. Therefore, the null hypothesis can be rejected 
indicating that the improvement in the timeliness error due 
to the CC-LSTM approach is statistically significant.  

 

 
Figure 9. Mean timeliness error of models considering all 

components. Error bars indicate standard deviation of 
timeliness error from 10 trials 

 

Table 5. Results of two sample t-tests comparing the 
timeliness errors from CC-LSTM approach and other 

models 

Model Test Statistic, 
|𝑻| 

Critical value, 
𝒕𝟏−𝜶/𝟐,𝝂 

SNN 8.38 2.11 
DNN 7.91 2.14 
CNN 7.61 2.16 

LSTM 3.05 2.11 
Bi-LSTM 2.89 2.44 

 
The ECC-LSTM approach further improved the timeliness 
error by ~15% compared to the CC-LSTM models 
indicating that the ensemble approach estimated the TOAB 
in multi-component systems with a high degree of accuracy. 
Compared to the common deep learning models, the 
improvement in timeliness error due to ECC-LSTM is ~25-
40%. The improvement in estimation of TOAB due to the 
CC-LSTM and ECC-LSTM approaches may be attributed to 
the use of spatial features extracted by the CNN layers that 
capture the spatial dependencies among the sensors as well 
as incorporation of temporal effects using the LSTM layer.  

The models were also compared using common 
performance metrics such as Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), Hit Rate (HR), Missed 
Detection Rate (MDR) and False Positive Rate (FPR). HR is 
the percentage of model predictions that lie within a 
threshold of the actual onset times. In this work, HR was 
calculated for thresholds of 2.5, 5 and 10 atu (arbitrary time 
unit). MAE, RMSE and HR were calculated considering the 
components for which 𝜏𝑗,𝑚 was available and a 
corresponding �̂�𝑗,𝑚 was predicted by the model. MDR refers 
to the number of TOABs that are missed by the model and 
was expressed as a percentage of the number of components 
that entered abnormal operation. FPR refers to the number 
of falsely predicted TOABs and was expressed as a 
percentage of the number of components that did not enter  
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abnormal operation. In the test data, 92 components entered 
abnormal operation during their lifetime while 108 
components did not. For the models, HR should be as high 
as possible whereas MAE, RMSE, MDR and FPR should be 
as low as possible.  

Various performance metrics along with the mean and 
standard deviation (SD) of the timeliness error for all 
models considering all components together are shown in 
Table 6. The table shows that all performance metrics 
improved as one moved from simpler networks such as 
SNN and DNN to complex LSTM-based networks. This is 
expected in dynamic systems with evolving regimes of 
operation such as the one considered in this work. It can be 
seen that the CC-LSTM and ECC-LSTM models performed 
better than all the other models. Both these models have 
very low missed detection rates and zero false alarm rates, 
and their predictions of TOAB are fairly accurate as can be 
observed from MAE, RMSE and HR metrics. Compared to 
the CC-LSTM model, the MAE and RMSE of the ECC-
LSTM model improved 17% and 19% respectively. This 
improvement can be observed clearly in the parity plots of 
TOAB from CC-LSTM and ECC-LSTM models shown in 
Figure 10(a) and 10(b) respectively. It can be seen from the 
figure that the TOAB predictions from ECC-LSTM model 
are closer to the diagonal and within the ±10 atu threshold 
compared to the predictions from one of the CC-LSTM 
models. This is more pronounced for actual abnormal onset 
times greater than 925 indicating that the ECC-LSTM 
model could provide reliable predictions of the abnormal 
operation onset times even closer to the end of the 
operation.  

Results from the current work were compared with those 
reported by Siahpour et al. (2020), Gupta et al. (2021) and 
Yang et al. (2022) on the same problem. Rocchetta et al. 
(2020) and Altarabichi et al. (2020) too worked on the 
ARAMIS problem, but the performance metrics of the 
models developed by them were not available for 
comparison. The performance of the proposed ECC-LSTM 
approach is either on par or better than that reported by 

other researchers. The timeliness error of 0.068 obtained in 
this work is slightly better than the value of ~0.075 reported 
by Siahpour et al. (2020). The values of missed detection 
and false positive rates reported by Yang et al. (2022) were 
in the ranges of 0.473-1.08% and 0.011-0.036% 
respectively. In comparison, the missed detection rate of the 
ECC-LSTM model (0.98%) is in the same range while the 
false positive rate (0%) is slightly better. It should, however, 
be noted that Yang et al. had access to and used data from 
5000 industrial systems instead of the 200 systems in this 
work. Lastly, Gupta et al. (2021) reported timeliness errors 
in the range of 0.0086-0.417. The timeliness error of 0.068 
obtained for the ECC-LSTM model is better than those 
obtained for some of their models. However, the timeliness 
error of 0.0086 obtained from their best model appeared too 
low to be practical and will have to validated independently.  

This study demonstrated that hybrid deep learning models 
such as CC-LSTM and their ensembles such as ECC-LSTM 
could improve fault detection in multicomponent systems. It 
is, however, interesting to note that the models that 
considered sensors from all the components to capture the 
inter-component dependencies (DC type) had an inferior 
performance compared to models that did not explicitly 
consider the dependencies (IC type). Such a behavior is 
unintuitive, and it is not immediately clear if it is an isolated 
characteristic of the industrial systems considered in this 
study. Additional work on other industrial multicomponent 
systems is necessary to judge the need for considering 
explicit dependencies among components when building 
models for predictive maintenance.  

Due consideration must also be given to the amount of data 
and computational effort required for training these models. 
While deep learning models in general require larger 
amounts of data for effective training, simpler deep learning 
models such as SNNs and DNNs as well as CNNs could be 
trained well with reasonable amount of data and 
computational resources due to the lesser number of 
network weights and hyperparameters. 

 

Table 6. Performance metrics of the models considering all components (atu: arbitrary time unit) 

Models Timeliness Error MAE,  
atu 

RMSE,  
atu 

HR (2.5), 
% 

HR (5),  
% 

HR (10), 
% 

MDR,  
% 

FPR,  
% Mean SD 

SNN 0.109 0.009 8.72 21.88 66.4 80.8 92.3 2.72 0.09 
DNN 0.115 0.013 7.87 19.95 62.0 79.1 91.4 2.72 0 
CNN 0.117 0.014 3.83 6.43 47.3 73.7 95.6 1.63 0 

LSTM 0.090 0.008 2.76 4.71 64.2 84.0 97.7 1.52 0 
Bi-LSTM 0.095 0.011 2.75 3.85 60.8 82.0 96.9 1.74 0 
CC-LSTM 0.080 0.007 2.29 3.34 68.7 85.7 97.8 0.98 0 

ECC-LSTM 0.068 - 1.90 2.70 72.5 90.0 100 1.09 0 
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(a) 

 
(b) 

Figure 10. Parity plot of TOABs for (a) CC-LSTM model 
(Trial #7) and (b) ECC-LSTM model. Dotted lines are ±10 

atu from the diagonal 

On the other hand, sequence-based models such as LSTM 
and Bi-LSTM and hybrid models such as CC-LSTM 
required large amounts of data to prevent overfitting as the 
number of network weights and hyperparameters was large. 
They also required considerable computational time which 
may be reduced by using GPUs. In this work, the training 
times for each SNN, DNN and CNN model were in the 
range of 1-4 hours while those for each LSTM, Bi-LSTM 
and CC-LSTM model were in the range of 12-20 hours on 
the same computing system.  

The number of component-wise models to be built is 
another consideration. In this work, one fault detection 
model was trained for each of the 4 components. This 
increases the effort for developing and maintaining the 
models. For the industrial systems considered in this work, 
as the components and their sensors are identical, either a 
common fault detection model for all components or a 
multi-output (one output per component) deep learning 

model could be developed. The efficacy of such models 
needs to be evaluated. However, most industrial systems 
may not have identical components with the same number 
of sensors, in which case, multiple fault detection models 
and/or multi-output models will have to be developed and 
maintained.  

6. CONCLUSION 

In this paper, a deep learning-based Ensemble Cascaded 
CNN-LSTM approach was proposed to improve the 
performance of individual CC-LSTM models for detecting 
the onset time of abnormal behavior in industrial multi-
component systems. ECC-LSTM predicted the TOABs as a 
weighted averaged of the onset time predictions from 
individual CC-LSTM models wherein the inverse of 
timeliness errors from the CC-LSTM models were used as 
weighting factors. The performance of the ECC-LSTM 
approach was compared with that of CC-LSTM and other 
common deep learning models. ECC-LSTM models 
performed better than all the other models in detecting the 
onset time of abnormal operation, with ~15% improvement 
in the timeliness error metric and ~17% drop in the mean 
absolute error of TOAB predictions compared to CC-LSTM 
models, and ~25-40% better than models based on 
commonly used deep learning techniques. Reliable 
predictions of abnormal behavior onset time from the 
proposed ensemble approach could be used to improve 
scheduling and inventory management for predictive 
maintenance of industrial equipment and prevent 
catastrophic failure of critical equipment. 
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