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ABSTRACT 

As the number of satellite launches increases each year, it is 
only natural that an interest in the safety and monitoring of 
these systems would increase as well. However, as a system 
becomes more complex, generating a high-fidelity model that 
accurately describes the system becomes complicated. There-
fore, imploring a data-driven method can provide to be more 
beneficial for such applications. This research proposes a 
novel approach for data-driven machine learning techniques 
on the detection and isolation of nonlinear systems, with a 
case-study for an in-orbit closed loop-controlled satellite with 
reaction wheels as actuators. High-fidelity models of the 3-
axis controlled satellite are employed to generate data for 
both nominal and faulty conditions of the reaction wheels. 
The generated simulation data is used as input for the isola-
tion method, after which the data is pre-processed through 
feature extraction from a temporal, statistical, and spectral 
domain. The pre-processed features are then fed into various 
machine learning classifiers. Isolation results are validated 
with cross-validation, and model parameters are tuned using 
hyperparameter optimization. To validate the robustness of 
the proposed method, it is tested on three characterized da-
tasets and three reaction wheel configurations, including 
standard four-wheel, three-orthogonal, and pyramid. The re-
sults prove superior performance isolation accuracy for the 
system under study compared to previous studies using alter-
native methods (Rahimi & Saadat, 2019, 2020). 

1. INTRODUCTION 

With the ever-growing number of satellites being launched 
into space, it is crucial that the health monitoring and safety 
of these systems be advanced enough to compensate for the 
lack of redundant components and their decreasing size. The 
attitude determination and control subsystem (ADCS), which 
employs reaction wheels (RWs) as actuators, is one of the 

most critical components of a satellite subsystem. By accel-
erating or decelerating the flywheels attached to the electric 
motor, RWs can correct the satellite’s orientation or perform 
maneuvers under disturbances (Rahimi et al., 2017). Smaller 
satellites require less cost for design and mass-production, 
meaning multiple can be launched into space at a time. There-
fore, to ensure reliability and mission success, the health and 
maintenance of these systems are essential. As a result, fault 
detection and isolation (FDI) methods for ADCS has devel-
oped great incentive to be improved and advanced.  

The two main categories for FDI approaches are model-based 
and data-driven. In model-based approaches, the continuous 
comparison between the actual system state and nominal state 
is conducted and in turn, generates residuals. This is achieved 
by using a mathematical model of the system with ideal be-
havior. One major advantage of this method is that it has the 
ability to provide a description of the dynamic behavior and 
physical understanding of the system (Tidriri et al., 2016). 
However, developing an accurate mathematical model that 
considers uncertainties and modeling errors is difficult due to 
some uncertainties being unquantifiable. As previously men-
tioned, model-based methods compare the available data with 
prior information and generate residuals. One method of re-
sidual generation is through observer-based techniques. If the 
system is observable (i.e., it is possible to determine the entire 
system behavior from the outputs) and the process parameters 
are known, then it is possible to estimate the output of a pro-
cess with an observer and the residuals. In (Jia et al., 2019), 
two Non-Linear Observers (NLO) are developed to robustly 
reconstruct bias faults and effectiveness factors of RWs, and 
a systematic observer design method is obtained. Fault-toler-
ant attitude control for the spacecraft system was not consid-
ered in this study, however.  Four classifiers, Random Forest 
(RF), SVM, Partial Least Squares (PLS), and Naïve Bayes 
(NB), are combined to create a fusion framework for FDI in 
RWs (Nozari et al., 2019). In (Nemati et al., 2019), nonlinear 
observers are used for fault diagnosis of spacecraft. The ob-
servers are designed to ensure convergence of the estimation 
error to zero for the nominal nonlinear system. Fault isolation 
is achieved using a General Observer Scheme (GOS). 
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However, when dealing with model-based approaches, there 
are certain limiting factors such as system complexity, high 
dimensionality, nonlinearity processing. 

Data-driven approaches focus on analyzing system outputs 
and rely immensely on large amounts of data, allowing these 
methods to perform well with large-scale and complex sys-
tems, as well as reduce time and costs since the development 
of models is unnecessary. This approach can be beneficial if 
no mathematical model or expert knowledge about a system 
is available.  

A highly nonlinear dynamic system is the result of modelling 
the complexity of a single RW. More RWs can be placed into 
the assembly combined with the attitude and dynamics of the 
satellite in orbit. If the parameters of interest are non-meas-
urable to the FDI scheme, it becomes difficult to detect faults 
and isolate their root causes. When conducting data-driven 
FDI, there are two critical factors any scheme should have, 1) 
generation of a feature subset, 2) selection of the most opti-
mal classifier. Research conducted by (ElDali & Kumar, 
2021) proposed a growing neural network for aircraft engine 
fault diagnosis, detection, and prognostics. The model opti-
mized the Long-Short Term Memory (LSTM) algorithm and 
was used to detect failure for RWs in the pyramid configura-
tion. The model tried to detect failures in the four RWs by 
calculating a Health Index value. A value between 0 and 1, 
with the latter representing a greater chance of failure. The 
values were acquired from the residuals of the acquired speed 
values and the predicted ones. The study (Lee et al., 2020) 
addresses fault detection and identification in the RWs of 
nanosatellites based on a Deep Learning (DL) algorithm. 
Fault detection is accomplished using the residuals between 
the measured attitude and the estimated attitude. Trial and er-
ror were used to optimize the learning and hyperparameters 
of the LSTM model used within this study. However, this 
technique did not consider the temporal elements of the atti-
tude information and was more likely to misjudge because 
only the instantaneous values were used.  

Most of the research above also involves instances where re-
sidual generation is applied through analytical models. This 
method, however, does not do well in explaining the facility 
point behind the detected faults. Mixed learning models are 
limited to the performance of the best classifier used within 
the ensemble. If other classifiers have limitations, it can hin-
der the overall accuracy of the method. Furthermore, most 
methods deal with only one RW and do not consider multiple 
faults or different RW assemblies. Based on the open litera-
ture of past studies, a research objective was established. 
Which is the design and development of a data-driven FDI 
scheme that is capable of autonomously isolating the location 
of faults within a nonlinear system, with a case-study for an 
in-orbit closed-loop controlled satellite with reaction wheels 
as actuators This method is to be developed to be applicable 
to other systems, however it is being designed for this specific 
application.  To achieve the above research objective, Time 

Series Feature Extraction Library (TSFEL) transforms the 
time-domain data into a feature-space state. The new feature 
space is then fed as input into multiple machine learning 
models (MLMS). Sensitivity analysis of missing sensors, 
missing values and noise analysis was also conducted on var-
ious datasets. The robustness of this method was also tested 
on three different configurations of the Reaction Wheel As-
semblies (RWA). Lastly, k-fold cross-validation is used to 
validate the results. The choice for using less computationally 
expensive methods versus more advanced and highly compu-
tational methods was made to ensure applicability and acces-
sibility of the proposed in this study on a broader range of 
satellite units with lower-end computational capacities. This 
is particularly important as smaller satellites with limited ca-
pacity may not house supercomputers onboard, and compu-
tational power and energy consumption can be limiting fac-
tors in deploying such algorithms for the FDI of such units. 

Past research on data-driven approaches shows that these 
methods are known to have some limitations. The proposed 
method can deal with the extensive consumption of re-
sources, memory, and algorithmic complexity by applying a 
hierarchical approach to enhance the isolation scheme and 
only utilizing the appropriate resources when required.  

  The novelties of this approach are: 

1. Based on previous assessments, common feature subsets 
such as statistical features do not result in the best results. 
Therefore, an automated feature extraction library is 
used to obtain the best feature subset from a temporal, 
statistical, and spectral domain which has not been ex-
plored for this specific application, to represent the char-
acteristics of the multiple in-phase faults from different 
points of view and where most literature only consider 
one space-state transformation.  

2. Consideration of three different fault time characteris-
tics: Abrupt, Transient, and a general case. Where most 
literature mainly considers abrupt faults.  

3. Use of variable inception time and duration of the faults 
for different cases to tackle the applicability range of 
data-driven methods and broaden the scope, where other 
literature only considers constants. 

4. Classification of multiple in-phase faults where other lit-
erature primarily considers either single faults or multi-
ple out-of-phase faults.  

The remainder of this paper is organized as follows: Section 
2 presents the problem definition. Section 3 explains the 
methodology employed in the study. Section 4 presents the 
case studies used to evaluate the proposed method. Section 5 
offers insight into the results and discussion of the study. Sec-
tion 6 concludes the paper with final remarks.  

2. PROBLEM DEFINITION  

A nonlinear system in discrete-time state space can be repre-
sented in Eq. (1) 
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𝛺 = #
𝜉!"# = 𝑓(𝜉! , 𝑢! , 𝜃! , 𝑤!

$)
𝜃!"# =	𝜃! +𝑤!%

𝑦! = 𝑔(𝜉! , 𝜃!) + 𝜈!

	
 

(1) 

where at time step 𝑘, 𝜉! 	 ∈ 	ℝ& is the state vector, 𝑢𝑘	 ∈ 	ℝ' 
depicts the control input vector, 𝜃! 	 ∈ 	ℝ( , 𝑦! ∈ ℝ' , 𝑤!

$ ∈
	ℝ& , 𝑤!% ∈ 	𝑅(   and  𝑣𝑘	 ∈ 	ℝ' represent the system parame-
ter vector, measurement vector, additive process noise for 
states, additive process noise for parameters, and additive 
measurement noise, respectively. 𝑓(∙) is a nonlinear process 
model, and 𝑔(∙) is a nonlinear measurement model. Full state 
measurement 𝑦! = 𝜉! + 𝑣! is considered. In this study, it is 
under the assumption that the system component faults are 
reflected as changes in the physical system parameters 
(Sobhani-Tehrani et al., 2014). Eq. (2) describes the faulty 
system, also known as a multi-parameter fault model, with: 

𝜃! =	𝜃) + 𝛼!	 (2) 

where 𝜃) ∈ 	ℝ(	is the nominal parameter vector representa-
tion and	the fault parameter vector containing L fault ele-
ments is represented by  𝛼! ∈ 	ℝ*. By using the fault model 
given by Eq. (2), one can transform the problem of nonlinear 
fault diagnosis into the form of an on-line nonlinear parame-
ter tracking problem. Furthermore, for fault isolation, one can 
extract 𝐿 single-parameter models 	Ωi 𝑖	 = 	1, … , 𝐿 . This is 
shown in Eq. (3) below: 

Ω+: {𝜃!+ =	𝜃)+ + 𝛼!+ 								𝑖 = 1,… , 𝐿	 (3) 

The mission of the data-driven algorithm is set to classify the 
current state of the system as one of the possible 𝐿 faulty 
cases. In this study, multiple fault scenarios are considered. 

3. METHODOLOGY  

A hierarchical approach is used within this study for the 
methodology when tackling the FDI problem. This ensures a 
reduction in computation time by allocating the right re-
sources to be used only when required. A data-driven fault 
diagnosis model is created to classify multiple in-phase faults 
of a satellite RW. The data is simulated using RW data and 
then extracted for features. The features are calculated using 
TSFEL and then reduced using Recursive Feature Elimina-
tion (RFE) (Bahl et al., 2019) to produce a feature subset 
ranking. The features are fed as input for the machine learn-
ing model (MLM) as inputs for training and testing. The 
MLMs implemented within this study include Gradient 
Boosting (GB), Decision Tree (DT), Random Forest (RF), 
and Multi-Layer Perceptron. The final step includes employ-
ing tenfold – cross-validation to provide a more robust esti-
mation of feature selection. 

3.1. Data Preprocessing 

It requires much time and effort for data science experts to 
model the Machine Learning Models (MLM) and tune its hy-
perparameters. For some spacecraft systems, historical data 

is not always available for training because the data is being 
collected in real-time. This puts a limitation on the model’s 
time to tune and train the algorithm. It also makes onboard 
health monitoring a difficult task since the model would have 
to be created after the data is transmitted to Earth. Auto-ma-
chine learning can compensate for the drawbacks of normal 
machine learning techniques by automating the data pre-pro-
cessing, model selection, hyperparameter optimization and 
the interpretation of the results. To assist the MLM in accu-
rately distinguishing between nominal and fault scenarios, 
the time-series data is transformed into a feature space state. 
The features are acquired from raw time series data through 
Python package TSFEL, which extracts over 60 different fea-
tures across a spectral, temporal, and statistical domain 
(Barandas et al., 2020). The new representation of the data is 
what is used as input for the training set. The data is also fil-
tered for missing values, highly correlated features, and low 
variance features. Finally, the data is normalized before being 
fed into the MLMs.  

3.2. Feature Reduction 

Less sensitive and inaccurate features can reduce the model’s 
ability to predict faults accurately. That is why Recursive 
Feature Elimination Cross-Validation (RFECV) was imple-
mented in the pre-processing stages. RFECV is an iterative 
backward selection method that uses a classification model to 
produce a feature subset ranking instead of a feature ranking. 
All the features are fitted to the model, and at each iteration, 
the feature with the least importance is eliminated 
(Ramachandran & Siddique, 2019). For this study, RF is used 
to train the model, and for each tree, the model estimates the 
variable importance by recording the out-of-bag prediction 
accuracy for every predictor variable premutation. The dif-
ference between the prior and the altered model accuracy is 
averaged over all trees and normalized by the standard error 
at each iteration. The results for RFECV determined that the 
optimal number of features was 22, as shown in Figure 1. 

 
Figure 1. Recursive feature elimination 
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3.3. Machine Model Selection 

In this section, the various machine learning models imple-
mented during the study are briefly discussed. Gradient 
Boosting (GB) (Bentéjac et al., 2021) is a machine learning 
technique utilized for regression or classification. This is 
done by constructing a prediction model comprising an en-
semble of weaker models (i.e., Decision Tree). The objective 
of the GB is to minimize the loss between the actual class 
value and the predicted class value. The Random Forest (RF) 
(Probst et al., 2019) classifier consists of many individual de-
cision trees that operate as an ensemble. Each tree will return 
a class, and the class with the most votes becomes the 
model’s prediction. The low correlation between the trees 
makes RF a helpful classifier. This protects each tree from 
errors of other individual trees. A Decision Tree (DT) learns 
from data to try and approximate a sine curve (Charbuty & 
Abdulazeez, 2021). This curve has a set of if-then-else deci-
sion rules. It breaks down data into smaller subsets while in 
the same notion incrementally making an associated DT. To 
enhance the RF and DT classifiers, a meta-classifier Ada-
Boost is used. It begins by fitting the classifier on the original 
data set and continues to fit additional copies of the classifier 
on the original data. However, in successive iterations, the 
weights of the incorrectly classified instances are adjusted to 
achieve better classification. The Multi-Layer Perceptron 
(MLP) is a feed-forward Artificial Neural Network (ANN) 
(Mishra & Huhtala, 2019). It can be referred to as a network 
with multiple layers of perceptron (nodes), each with a 
threshold activation function. There are at least three layers 
of nodes in an MLP: input layer, hidden layer, and output 
layer. Besides the input layer, each node uses a non-linear ac-
tivation function. Backpropagation is used for training. The 
hyperparameters for the MLP were tuned using 
GridsearchCV to run each model with different hyperparam-
eters and return the one with the optimal hyperparameters.  

3.3.1. Training, Testing, and Validation  

The input data was trained and tested at various splits. After 
a series of runs, an 80:20 train-test split resulted in the best 
performance for the MLMs. The K-fold cross-validation 
technique is also implemented to evaluate predictive models 
by partitioning the original samples into a training set and test 
set. The benefit of this method is that all observations are 

used for both training and validation, and each observation is 
used for validation only once. 

In the following section, details on a case-study are provided 
to evaluate the performance of the proposed methodology.  

4. CASE STUDY: FAULT ISOLATION OF SATELLITE RWS 

To assess the performance of the proposed FDI method, the 
faults for RWs onboard a 3-axis controlled satellite are em-
ployed. The simulation consists of a high-fidelity nonlinear 
model of the RW, nonlinear satellite attitude dynamics, and a 
sliding mode controller (SMC), depicted in Figure 2. It 
should be noted that in this study, the simulation setup is as-
sumed to have a perfect sensor, and there is no estimator, so 
the noise system output feeds directly back into the sum junc-
tion before the controller. In the following sections, the effect 
of noise in system measurement is studied under sensitivity 
analysis discussions for the proposed method. Each compo-
nent for this case study can be detailed as follows:  

4.1.1. Satellite Dynamics 

A fully actuated rigid body spacecraft with RWs as actuators 
under external and internal torques can be expressed as: 

𝐽�̇�,-, = −𝜔,-, × (𝐽.𝜔,-, + 𝐴/0𝐽1Ω) − 𝐴𝜏/0 + 𝜏2	 (4) 
where 𝐽.  ∈ ℝ343  is the spacecraft’s moment of inertia in-
cluding the RWs and 𝐽 is defined as 𝐽 = 	 𝐽. − 𝐴𝐽1𝐴5 ,		 𝐽1 	 ∈
	ℝ646 = 	𝑑𝑖𝑎𝑔([	𝐽1#,𝐽18, 𝐽13, 𝐽16]) stands for the axial mo-
ment of inertia of each RW. the mapping matrix 𝐴	 ∈ 	𝑅346 
captures the influence of the actuator’s toques to the principal 
axes of the spacecraft. Angular velocity of the spacecraft rel-
ative to the inertial frame expressed in the body frame is de-
noted by 𝜔,-, . The external torque is represented by 𝜏2	 ∈
	ℝ34# and the torque generated by the RW is 𝜏/0. Using qua-
ternions, the kinematic equation for the spacecraft can be for-
mulated as: 

J𝑞:̇�̇�6
L =

1
2 J
𝑞6𝐼 + 𝑞:×

−𝑞:5
L𝜔,*, 	 (5) 

where the unit quaternion is represented by O
𝑞:
𝑞6P with 𝑞: ∈

ℝ34# = [𝑞#, 𝑞8, 𝑞3]5  and 𝑞6 ∈ ℝ  representing the Euler pa-
rameters that portray the spacecraft body frame orientation 
with respect to the orbital frame, where 𝑞:5𝑞: + 𝑞68 = 1. The 

 
Figure 2. Proposed FDI simulation setup 
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identity matrix is I ∈ ℝ343 and the skew-symmetric matrix 
of the quaternion vector 𝑞:× is expressed as: 

𝑞:× = Q
0 −𝑞3 𝑞8
𝑞3 0 −𝑞#
−𝑞3 𝑞# 0

S	 (6) 

4.1.2. Controller 

A simplified nonlinear sliding mode controller with quater-
nion tracking error is defined as (Kumar et al., 2018): 

𝑞2 = 𝑞<6𝑞: − 𝑞6𝑞<: + 𝑞:×𝑞<:	
𝑞26 =	𝑞<6𝑞6 + 𝑞<:5 𝑞:	

(7) 

where  𝑞<: 	 ∈ 	𝑅34# and 𝑞<6 ∈ 𝑅 and are the desired attitude, 
and 𝑞25𝑞2 + 𝑞628 = 1. The rotation matrix is given by: 

𝐶2 = (𝑞628 − 𝑞25𝑞2)𝐼 + 2𝑞25𝑞2 − 2𝑞62𝑞2×	 (8) 
Here 𝐶25𝐶2 = 1 , 𝐶2̇ = −𝜔2×𝐶2 . Relative angular velocity 
𝜔2 ∈ 𝑅34# is formulated as follows: 

𝜔2 =	𝜔,*, + 𝐶2𝜔<	 (9) 
where 𝜔< 	 ∈ 	𝑅34#	 denotes the desired angular velocity. The 
required control command is defined as:  

𝑢= = −𝜂𝐴5 >
‖>‖	

	,  𝜂 = 𝑝@ + 𝑝#‖𝑋‖ (10) 

where 𝑝@  and 𝑝#  are positive constants and 𝑋 ∈ 𝑅A4# =
	[𝑞:, 𝜔,*, ]5. The simplified required input can now be calcu-
lated for the actuator given actuator dynamics and required 
control command as (Kumar, 2018): 

𝑉B)'' = 𝑅C𝐾DE#𝑢= (11) 
where 𝑉B)'' ∈ 𝑅6×# is the voltage input to the RWs, 𝑅C ∈
𝑅6×6 = 𝑑𝑖𝑎𝑔([𝑟C#, 𝑟C8, 𝑟C3, 𝑟C6]) is the armature resistance in 
ohm and 𝐾D ∈ 𝑅6×6 = 𝑑𝑖𝑎𝑔([𝑘D#, 𝑘D8, 𝑘D3, 𝑘D6])	is the motor 
torque constant for the RWs. All control parameters includ-
ing 𝜆, 𝑝@ and 𝑝# are set to the value of 1 for the required sim-
ulations in this case study. The full derivation of this control-
ler can be found in (Godard, 2010) on pages 113 to 115. 

4.1.3. Actuator 

The RW used in this study is an ITHACO “’ type A’” by 
Goodrich. A high fidelity RW nonlinear model was obtained 
from Bialke (Bialke, 1998) and was integrated into the ACS 
dynamics. The RW nonlinear model, including discontinuous 
functions approximated by sinusoidal functions, can be for-
mulated as: 

𝐼/0 = 𝐺<𝜔<[𝑓3(𝜔, 𝐼/0) − 𝑓F(𝜔)] − 𝜔<𝐼/0	
+𝐺<𝜔<𝑉B)''	

�̇�/0 =
1
𝐽1
{𝑓#(𝜔) + 𝐾D𝐼/0[𝑓8(𝜔) + 1] − 𝜏:𝜔	

−𝜏B𝑓6(𝜔) + 𝜏&)+.2}	

(12) 

where 𝑓#  and 𝑓8  represent the motor disturbance, 𝑓3  denotes 
the EMF torque-limiting block. The variables 𝑓6 , 	𝑓F  and 

𝑉B)''  represent the analytical approximation of the sign 
function in the Coulomb friction block, speed limiter block 
and torque command voltage, respectively. 

4.1.4. Reaction Wheel 

As previously mentioned, the performance of three reaction 
wheel assembly configurations was studied. The proposed 
methodology was evaluated on the following configurations: 
(a) Standard four-wheel with three orthogonal RWs and one 
redundant oblique RW, (b) Pyramid configuration consisting 
of four RWs, and (c) three-orthogonal RWs (see Figure 3). 
The actuator’s torque contribution to each principal axis of 
the spacecraft body frame is mapped as follows (Ismail & 
Varatharajoo, 2010): 

Q
𝜏4
𝜏G
𝜏H
S = 𝐴/0 _

𝜏1#
𝜏18
𝜏13
𝜏16

`	 (13) 

where 𝜏4 , 𝜏G, 𝜏H are the torques applied to the satellite in the 
x, y, and z direction and 𝜏1+ is the torque generated by each 
RW on its respective axis of rotation. The mapping matrix 
(A) is as follows: 

𝐴/0# =	 Q
1 0 0
0 1 0
0 0 1

						
−𝑐𝛽𝑠𝛼
−𝑐𝛽𝑠𝛼
𝑠𝛽

S 

𝐴/08 = Q
𝑐𝛽𝑠𝛼 −𝑐𝛽𝑐𝛼 −𝑐𝛽𝑠𝛼
−𝑐𝛽𝑠𝛼 −𝑐𝛽𝑐𝛼 𝑐𝛽𝑐𝛼
𝑠𝛽 𝑠𝛽 𝑠𝛽

						
𝑐𝛽𝑠𝛼
𝑐𝛽𝑐𝛼
𝑠𝛽

S	 

𝐴/03 = Q
1 0 0
0 1 0
0 0 1

						
0
0
0
S	

(14) 

where 𝐴/0+  is the mapping matrix for configuration 𝑖  and 
𝑖 = 1	refers to the standard 4-wheel configuration, 𝑖 = 2 re-
fers to the pyramid configuration and 𝑖 = 3 refers to the 3-
orthogonal configuration. The math functions sine and cosine 
are abbreviated as c (·) and s (·), and α is the in-plane angle 
while β is the out-of-plane angle (Kök, 2012).  

 
(a) Standard 4-Wheel 

 
(b) Pyramid 

  
(c) 3-Orthogonal Wheel 

Figure 3. Reaction wheel assembly configurations 
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For the three-orthogonal wheel configuration, a separate da-
taset had to be generated to account for the proper number of 
RWs engaged. Cases 1-3 shown in Table 2 referenced in sec-
tion 4.1.5 are identical to the datasets constructed for the 
standard and pyramid configurations except for fewer reac-
tions wheels, resulting in a lower number of fault combina-
tions. 

4.1.5. Fault Formation 

The simulation data is obtained from a closed-loop ACS sim-
ulation of a three-axis stabilized low earth orbit (LEO) satel-
lite. Abrupt and transient time-varying fault cases, as well as 
a generalized fault case, are added into two of the RW com-
ponents as variations via the bus voltage (𝑉𝑏𝑢𝑠) and motor 
torque back electromotive force (BEMF) constant ( 𝑘𝑡 ). 
𝑉𝑏𝑢𝑠	and kt are modelled as the voltage drop of the power 
bus and the variations in the torque gain, respectively. The 
multi-parametrized fault model is obtained by replacing 
𝑉𝑏𝑢𝑠, 𝑗  with 𝑉𝑏𝑢𝑠, 𝑗0 + 𝛼𝑗1  and 𝑘𝑡, 𝑗  with 	𝑘𝑡, 𝑗0 + 𝛼𝑗2 , 
where j is the index for the RW unit among the units consid-
ered and 𝛼I+  are unknown fault parameters, indicating a pos-
sible fault in either the bus voltage or motor current of each 
wheel. The value for 𝛼I+ will be zero at any given time due to 
the additive form of the fault parameters. Any deviation from 
zero for any fault parameter would indicate the fault size and 
its severity. Within this study, only system satellite outputs, 
namely 𝑞  and 𝜔 are observed for faulty behavior.  Abrupt 
faults can be viewed as instantaneous faults and can lead to 
complete failure of the system. Transient faults are more tem-
porary faults within the system and may return to normal pa-
rameters given a certain amount of time. This study investi-
gates the effect of fault duration, inception of the fault, and 
severity of faults during a mission. The initial moment the 
fault is introduced into the system can be described as the in-
ception time. Duration is the length of time the fault remains 
within the system. Lastly, the severity denotes the magnitude 
by which the faulty parameter has deviated from its nominal 
values during the fault period. With these definitions in mind, 
three datasets are created when evaluating the proposed 
methods: 

1. Case 1 (abrupt fault): The inception time for the faults in 
both 𝑉𝑏𝑢𝑠 and	𝑘𝑡 are set at a random value 𝑡+ ∈ (0,10) 
seconds and the duration of these faults is defined from 
the inception time to the end of the simulation.  

2. Case 2 (transient bounded fault): Inception time for 
faults in both 𝑉𝑏𝑢𝑠	and 𝑘𝑡 are set at a random value  𝑡+ ∈
(0,10) seconds and the duration of these faults are set 
randomly within 𝑡< ∈ (10,20) second range. 

3. Case 3 (transient unbounded fault): The inception time 
for faults in 𝑉𝑏𝑢𝑠	and 𝑘𝑡 are set at a random value 𝑡+ ∈
(5,55) seconds and the duration of each fault is deter-
mined randomly within 𝑡< ∈ (5,60 − 𝑡+) to not exceed 
the total simulation of 60 seconds.  

All cases include a random combination of 𝑘D  and 𝑉JK. 
faults, with a random severity for each with a set fault devia-
tion range presented in Table 1. The difference in the fault 
definitions for Cases 2 and 3 lie within the definition of their 
fault inception time and duration. The larger inception time 
for Case 3 creates a broader scope or window for fault incep-
tion, which is a better representation of real-world scenarios. 
This distinction for cases 2 and 3 makes them more complex. 

Description Case 1 Case 2 Case 3 Unit 
Fault Scenario 0-15/0-7 0-15/0-7 0-15/0-7 integer 
𝑘D in fault 0/1 0/1 0/1 binary 
𝑉JK.	in fault 0/1 0/1 0/1 binary 
𝑘D	inception 0-10 0-10 5-55 sec 
𝑉JK. inception 0-10 0-10 5-55 sec 
𝑘D duration 0-60 10-20 ∗ sec 
𝑉JK. duration 0-60 10-20 ∗ sec 
𝑘D severity 29 ± 2 29 ± 2 29 ± 2 mN·m/A 
𝑉JK. severity 6 ± 2 6 ± 2 6 ± 2 Volt 

Table 1. Fault scenario input format 

4.1.6. Dataset Structure 

This section provides details of the dataset used for this study. 

4.1.6.1 Raw Data 
As previously mentioned, it is assumed that the faults injected 
into the RW units can be detected and isolated by evaluating 
the satellite output parameters. The satellite attitude parame-
ters include quaternions, 𝑞#  to 𝑞6 , and angular speed 𝜔#	to 
𝜔3. Based on the desired conditions for the case scenarios 
presented in section 4.5, input values are fed into the 
MATLAB simulator, which returns the raw data used as input 
for the FDI algorithm. For this study, 5,000 simulations per 
scenario were run to create a data set, and since there are 16 
scenarios, 80,000 simulations were collected to create one da-
taset. Since the data pertaining to 𝑞6 is not independent of 𝑞# 
to 𝑞3 they were omitted when fed into the FDI algorithm dur-
ing the pre-processing stage. Of the 80,000 CSV files stored, 
each one contains a data set of simulation time step of 0.1 
seconds, and each simulation has a time length of 60 seconds; 
therefore, 600 rows are generated. The number of columns is 
determined as 2 × 8 = 16 for two sets of 4 parameters re-
lated to the nominal and faulty parameters. This raw data is 
later transformed into the three different domains through 
TSFEL, which extracts features from a spectral, statistical, 
and temporal domain as previously mentioned, and ulti-
mately is fed into the MLMs. Combination theory is used to 
calculate the total number of combinations for a four-wheel 
and three-wheel RW assembly, which can be seen in Eq. (15) 

𝐿 = 	lm
𝑛
𝑝o = 	l

𝑛!
𝑝! (𝑛 − 𝑝)!

&

LM#

&

LM#

	 (15) 

where 𝑝 is the number of faulty units at time step 𝑘, and 𝑛 is 
the number of available units that could become faulty. To be 
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able to refer to each combination (fault scenario), all possible 
cases are assigned a number in Table 2 for each RW wheel 
assembly configuration. The fault scenarios for the standard 
four-wheel and pyramid configurations are the same, while 
because of the number of wheels involved in the assembly, 
the scenario numbers and combinations are different for the 
3-orthogonal assembly. Once the simulations are executed 
via the inputs for fault scenarios in Table 1 and the satellite 
ACS setup in Figure 2, the satellite measurables q and ω are 
stored in comma-separated value (CVS) files for each simu-
lation separately in the format presented in Table 2 where FW 
refers to faulty wheels. All the CSV files are used as input for 
training and testing the MLMs to evaluate their performance 
under the proposed method and compare their merits. 

Configuration No. FW No. FW 
Standard or Pyramid 0 None 8 2,3 
 1 1 9 2,4 

 2 2 10 3,4 
 3 3 11 1,2,3 
 4 4 12 1,2,4 
 5 1,2 13 1,3,4 
 6 1,3 14 2,3,4 
 7 1,4 15 1,2,3,4 

3-Orthogonal 0 None 4 1,2 
 1 1 5 1,3 
 2 2 6 2,3 
 3 3 7 1,2,3 

Table 2. Fault scenarios for RW assemblies 

Item Unit Description 
Time sec time in simulation 
𝑞+,N2C(DNG - nominal quaternion 
𝜔+,N2C(DNG rad/sec nominal angular speed for satellite 
𝐼/0,+N2C(DNG A nominal current of 𝑅𝑊+  
𝜔/0+,N2C(DNG rad/sec nominal angular speed of 𝑅𝑊+  
𝑞+,OCK(DG - faulty quaternion 
𝜔+,OCK(DG rad/sec faulty angular speed for satellite 
𝐼/0+,OCK(DG A faulty current of 𝑅𝑊+  
𝜔/0+,OCK(DG rad/sec faulty angular speed of 𝑅𝑊+  

Table 3. RW simulation outputs 

5. RESULTS AND DISCUSSION 

The accuracy of classification methods, as discussed in Sec-
tion 3, which is employed for the FDI problem discussed in 
Section 2 for the data acquired in the case study detailed in 
Section 4, is presented in, Table 4, Table 5, and Table 6. 

The simulation is tested at a size of 20%. For the cross-vali-
dation, the random forest classifier was employed to save on 
computational costs, the splitting strategy was set to 10-folds, 
and the parameter that was varied in this analysis was the max 
depth of the trees.  

Method Case 1 (%) Case 2 (%) Case 3 (%) 
Gradient Boosting  98.56 80.86 24.64 
Random Forest 98.91 69.61 24.36 
Decision Tree 92.32 59.14 19.20 
MLP 85.64 69.16 21.78 

Table 4. Standard 4-wheel configuration accuracy 

Method Case 1 (%) Case 2 (%) Case 3 (%) 
Gradient Boosting  97.87 51.31 51.65 
Random Forest 96.82 54.64 56.05 
Decision Tree 93.66 42.19 42.91 
MLP 81.42 32.92 32.27 

Table 5. Pyramid configuration accuracy 

Method Case 1 (%) Case 2 (%) Case 3 (%) 

Gradient Boosting  98.02 90.20 36.78 
Random Forest 97.65 88.5 35.64 
Decision Tree 94.18 83.20 29.77 
MLP 94.16 78.2 26.34 

Table 6. 3-Orthogonal configuration accuracy 

From the results listed in the tables above, the classifier’s 
ability to predict is significantly affected by the fault severity 
and duration definitions given with the scope of the simulated 
time series. The case definition described in Section 4.1.5 
shows that case 3 is below adequate for any real-world appli-
cations. This can be anticipated due to a combination of 1) 
the fault inception time initiating nearing the end of the sim-
ulation time and 2) the fault duration being relatively short. 
These two problems stem from the influence of the controller. 
Since the controller compensates for the system when detect-
ing a fault, if the inception time and duration of the fault are 
not distinct enough, then the system has a hard time classify-
ing the faults. In practical applications of in-orbit satellites, 
cases 1 and 2 are more practical. If a commanded orientation 
change causes a fault to occur, the fault will most likely per-
sist to the following command, representing the cases out-
lined in section 4.1.5. If the MLM fails to identify the fault 
during a maneuver, the fault will be present in the following 
command, leading to a true-positive prediction. The learning 
curves, validation curves, and precision-recall graphs can be 
seen in Appendix A. 

It should also be mentioned that the configuration of the RW 
assembly influences the accuracy of the proposed method. It 
is expected that the overall accuracy of the cases for the three-
orthogonal wheel, standard four-wheel, and pyramid go from 
best to worst, respectively. This is due to the placement of the 
RWs or the lack of a redundant RW component. Since the 
three-orthogonal wheel configuration only has three wheels 
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on individual axes, it is not affected by the moments gener-
ated by the other RWs. Therefore, if there is a sudden change 
in the torque generated, there should be a more direct effect 
on the satellite’s behavior. However, this is not the case for 
the other configurations since the torque generated by these 
RWs is proportionally changing or contributing to the x, y, 
and z axes, which results in some direct effect from the three 
RWs on the x, y and z axes and some indirect contributions 
from the fourth wheel. The pyramid configuration has a more 
challenging time with this proposed method due to its assem-
bly’s symmetry. If there is an abnormality in the first two 
RWs and the same discrepancy occurs in the other two RWs 
the system will have difficulty distinguishing between the 
two faults.  

5.1. Confusion Matrices  

The model’s performance is evaluated using the test data and 
used to construct the con-fusion matrices with more details 
per each scenario. To normalize the results, the number of 
instances tested per class is used. The results for the confu-
sion matrices are demonstrated in  Table 7, Table 8, and Table 
8. 

A
ct

ua
l  

0 146 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 134 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
2 0 0 146 0 0 0 0 0 1 0 0 0 0 0 0 0 
3 0 0 0 148 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 1 131 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 153 0 0 0 0 0 0 0 0 0 0 
6 0 1 0 0 0 0 150 1 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 144 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 144 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 2 146 0 0 0 0 4 0 

10 0 0 0 6 0 0 0 0 0 0 157 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 164 0 0 0 2 
12 0 0 0 0 0 0 0 0 0 0 0 1 149 0 0 0 
13 0 0 0 0 0 0 1 0 0 0 0 0 0 152 0 0 
14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 152 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 162 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
  Predicted 

Table 7. Confusion matrix for standard 4-wheel 

Along the diagonal, the values that depict the percentage of 
instances correctly predicted can be seen. Scenario 0 refers to 
the conditions where all RW units are healthy, and the 100% 
accuracy establishes the learner’s ability to distinguish be-
tween nominal and faulty conditions. Scenario 0-4 represents 
the single faults of the RW where only one unit can fail. 
Within these sections of the confusion matrices shown above, 
there is at most only one misclassification amongst the clas-
ses. This provides great confidence in the methodology to 
identify single faults at the very least correctly. The remain-
der of the scenarios pertain to the definitions described in Ta-
ble 2. As more units fail simultaneously, the performance of 
the classifier slightly degrades. This can be explained due to 
the impact of multiple faulty units on the overall system 

behavior. As the predictions are made based on the system-
level measurements (i.e., satellite quaternions and angular ve-
locities), it is expected for the predictors to identify similar 
behavior as contributed to by similar actuator faults.  There-
fore, in any fault scenario, the system-level impact from ac-
tuator faults is similar, the predictors will identify them as the 
same scenario and this can become more evident as more ac-
tuator units become faculty simultaneously. 

A
ct

ua
l 

0 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 90 0 0 3 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 91 0 0 2 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 90 0 0 8 0 0 0 0 0 0 0 0 
5 0 0 3 0 0 93 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 2 0 0 95 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 4 0 0 94 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 88 0 0 6 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 88 0 0 2 0 0 0 
10 0 0 0 0 0 0 0 0 0 0 110 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 1 0 0 89 0 0 0 0 
12 0 0 1 0 0 0 0 0 0 8 0 0 112 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 8 0 0 89 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 5 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 108 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
  Predicted 

Table 8. Confusion matrix for pyramid 

A
ct

ua
l 

0 107 0 0 0 0 0 0 0 
1 0 92 0 0 6 0 0 0 
2 0 0 79 0 0 0 0 0 
3 0 0 0 98 0 0 3 0 
4 0 2 0 0 94 0 0 1 
5 0 0 0 0 0 91 0 5 
6 0 0 0 0 0 0 91 0 
7 0 0 0 0 0 9 0 87 

  0 1 2 3 4 5 6 7 
  Predicted 

Table 9. Confusion matrix for 3-axis orthogonal 

5.2. Sensitivity Analysis 

Although many MLMs were tested against the proposed 
method to simplify analysis results, only one machine learn-
ing classifier was used for sensitivity analysis. The model’s 
sensitivity is evaluated for missing values, missing sensors, 
and noise. 

5.2.1. Noise Analysis 

To study the effects of noisy raw data on the model’s perfor-
mance, Gaussian noise was added at multiple signal-to-noise 
ratios. Gaussian noise with a zero mean was added during the 
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study. Table 10, Table 11, and Table 12 show the results for 
the different levels of SNR on the GB classifier. Through the 
results, it is seen that the model’s performance decreases as 
the SNR decreases. The model contains a reasonable accu-
racy above 40 dB for the abrupt fault case, which is of greater 
importance to practical applications. 

Standard 4-Wheel 
SNR (dB) 60 50 40 30 20 10 None 
Score (%) 99.2 98.8 98.4 91.3 75.1 54.7 99.2 

3-Orthogonal Wheel 
SNR (dB) 60 50 40 30 20 10 None  
Score (%) 94.7 93.3 92.3 87.4 76.3 58.2 97.6 

Pyramid 
SNR (dB) 60 50 40 30 20 10 None  
Score (%) 97.3 97.0 96.7 90.8 72.3 48.6 96.8 

Table 10. Noise analysis for Case 1 (abrupt fault case) 

Standard 4-Wheel 
SNR (dB) 60 50 40 30 20 10 None  
Score (%) 76.1 71.4 67.0 57.2 43.1 29.3 69.6 

3-Orthogonal Wheel 
SNR (dB) 60 50 40 30 20 10 None  
Score (%) 68.3 70.4 67.2 63.7 53.7 39.9 88.5 

Pyramid 
SNR (dB) 60 50 40 30 20 10 None  
Score (%) 53.3 50.8 49.8 43.8 32.1 21.6 54.6 

Table 11. Noise analysis for Case 2 (transient fault case) 

Standard 4-Wheel 
SNR (dB) 60 50 40 30 20 10 None 
Score (%) 19.6 19.5 19.3 15.5 14.8 12.4 24.3 

3-Orthogonal Wheel 
SNR (dB) 60 50 40 30 20 10 None 
Score (%) 38.7 36.4 34.2 34.1 32.1 26.8 35.6 

Pyramid 
SNR (dB) 60 50 40 30 20 10 None 
Score (%) 52.9 51.8 50.1 43.8 31.6 22.9 56.0 

Table 12. Noise analysis for Case 3 (general fault case) 

5.2.2. Missing Sensor Analysis 

For this missing sensor analysis, the fault isolation method 
was tested under the assumption that not all sensors provide 
full measurement during the system’s operation. Therefore, 
measurements from some of the sensors are missing due to 
one or multiple failed sensors. Sensor readings are repre-
sented by the satellite quaternions (𝑞#, 𝑞8, 𝑞3) and angular ve-
locities (𝜔#, 𝜔8, 𝜔3) and the results for the analysis can be 
seen in Table 13, Table 14, and Table 15, respectively. In 
each of these tables, various combinations of working sensors 
(available measurements) are provided along with the 

isolation method accuracy for the various severity cases in-
troduced in Section 4.1.5 (i.e., Cases 1, 2, and 3).  

Available Sensors Case 1 Case 2 Case 3 
 Score (%) Score (%) Score (%) 
𝑞8, 𝑞3, 𝑞6, 𝜔#, 𝜔8, 𝜔3 99.04 73.40 11.84 
𝑞#, 𝑞3, 𝑞6, 𝜔#, 𝜔8, 𝜔3 99.16 70.44 11.47 
𝑞#, 𝑞8, 𝑞6, 𝜔#, 𝜔8, 𝜔3 97.96 73.78 12.90 
𝑞#, 𝑞8, 𝑞3, 𝜔#, 𝜔8, 𝜔3 98.79 73.28 13.90 
𝑞#, 𝑞8, 𝑞3, 𝑞6, 𝜔8, 𝜔3 98.79 73.28 13.52 
𝑞#, 𝑞8, 𝑞3, 𝑞6, 𝜔#, 𝜔3 98.21 72.13 13.65 
𝑞#, 𝑞8, 𝑞3, 𝑞6, 𝜔#, 𝜔8 97.50 70.57 12.78 
𝑞#, 𝜔#, 𝜔8, 𝜔3 98.00 71.03 12.03 
𝑞8, 𝜔#, 𝜔8, 𝜔3 97.50 73.34 13.59 
𝑞3, 𝜔#, 𝜔8, 𝜔3 99.25 69.66 12.40 
𝑞#, 𝑞8, 𝑞3, 𝑞6 96.58 73.47 13.27 
𝑞#, 𝑞3, 𝑞6 95.46 61.95 10.85 
𝑞#, 𝑞8, 𝑞6 86.56 69.06 10.28 
𝑞#, 𝑞8, 𝑞3 96.67 73.62 13.34 
𝜔#, 𝜔8, 𝜔3 98.16 70.75 11.28 

Table 13. Standard 4-Wheel missing sensor analysis 

Available Sensors Case 1 Case 2 Case 3 
 Score (%) Score (%) Score (%) 
𝑞#, 𝑞8, 𝑞3, 𝜔#, 𝜔8, 𝜔3 92.82 71.84 26.05 
𝑞8, 𝑞3, 𝜔#, 𝜔8, 𝜔3 94.59 71.78 27.55 
𝑞#, 𝑞8, 𝜔#, 𝜔8, 𝜔3 93.94 69.53 23.19 
𝑞#, 𝑞3, 𝜔#, 𝜔8, 𝜔3 90.91 69.72 23.56 
𝑞8, 𝑞3, 𝜔#, 𝜔8, 𝜔3 92.82 71.84 27.55 
𝑞#, 𝑞8, 𝑞3, 𝜔8, 𝜔3 92.38 71.16 26.30 
𝑞#, 𝑞8, 𝑞3, 𝜔#, 𝜔3 91.07 72.40 28.42 
𝑞#, 𝑞8, 𝑞3, 𝜔#, 𝜔8 90.44 71.59 24.93 
𝑞#, 𝜔#, 𝜔8, 𝜔3 89.26 66.66 24.06 
𝑞8, 𝜔#, 𝜔8, 𝜔3 87.57 69.10 23.56 
𝑞3, 𝜔#, 𝜔8, 𝜔3 93.00 68.72 23.19 
𝑞#, 𝑞8, 𝑞3 89.26 72.40 27.30 
𝑞#, 𝑞8 84.78 60.73 21.94 
𝑞#, 𝑞3 73.15 64.10 24.06 
𝑞8, 𝑞3 80.96 65.60 16.58 
𝜔#, 𝜔8, 𝜔3 88.01 67.97 26.69 

Table 14. 3-Orthogonal missing sensor analysis 

As can be seen from the results in Table 13, Table 14, and 
Table 15, when more measurements are available, the isola-
tion accuracy is higher. As the number of failed sensors in-
creases and there are fewer available measurements for the 
isolation method to work with, the accuracy decreases. Addi-
tionally, it can be observed that the accuracy of the isolation 
method decreases with the increase in case complexity (Cases 
2 and 3 compared to Case 1). This can be attributed to the 
impact of multiple units on the same measurement for the sat-
ellite at the system level. The same trend is observed in the 
following sensitivity analyses as the accuracy degrades with 
an increase in the complexity of the testing conditions. 
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Available Sensors Case 1 Case 2 Case 3 
 Score (%) Score (%) Score (%) 
𝑞8, 𝑞3, 𝑞6, 𝜔#, 𝜔8, 𝜔3 97.78 54.33 52.68 
𝑞#, 𝑞3, 𝑞6, 𝜔#, 𝜔8, 𝜔3 94.70 42.64 43.51 
𝑞#, 𝑞8, 𝑞6, 𝜔#, 𝜔8, 𝜔3 96.32 48.44 53.17 
𝑞#, 𝑞8, 𝑞3, 𝜔#, 𝜔8, 𝜔3 96.88 50.37 54.05 
𝑞#, 𝑞8, 𝑞3, 𝑞6, 𝜔8, 𝜔3 95.88 48.87 50.12 
𝑞#, 𝑞8, 𝑞3, 𝑞6, 𝜔#, 𝜔3 96.07 48.06 50.74 
𝑞#, 𝑞8, 𝑞3, 𝑞6, 𝜔#, 𝜔8 96.00 49.12 51.30 
𝑞#, 𝜔#, 𝜔8, 𝜔3 95.07 44.26 44.95 
𝑞8, 𝜔#, 𝜔8, 𝜔3 97.13 50.99 53.11 
𝑞3, 𝜔#, 𝜔8, 𝜔3 95.01 43.39 45.07 
𝑞#, 𝑞8, 𝑞3, 𝑞6 93.70 46.25 49.06 
𝑞#, 𝑞3, 𝑞6 69.70 22.81 22.75 
𝑞#, 𝑞8, 𝑞6 92.76 44.38 48.19 
𝑞#, 𝑞8, 𝑞3 94.45 46.57 50.49 
𝜔#, 𝜔8, 𝜔3 95.19 45.26 46.19 

Table 15. Pyramid missing sensor analysis 

5.2.3. Missing Value Analysis 

Sensory data containing missing values are not uncommon 
due to miscommunication between channels or sensor com-
ponents. In this section, a complete analysis of the model’s 
performance with missing values is evaluated. The simulated 
data does not initially contain any missing values. Therefore, 
missing values had to be generated manually at different per-
centages. Sklearn’s Iterative Imputer was used for interpola-
tion during the data pre-processing stage to ensure the proper 
calculation of missing values. To accomplish this, the itera-
tive imputer modelled each feature with missing values as a 
function of other features using the round-robin method. To 
initialize the missing values, the mean along each column 
was used to replace the missing values. The results for the 
missing value analysis are presented in Table 16, Table 17, 
and Table 18, where MMP refers to missing measurement 
percentage ranging from 0% for full measurements availabil-
ity and up to 50% of missing measurements in the available 
data for the isolation method. 

Standard 4-wheel configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 99.3 98.1 96.9 95.5 94.3 92.4 87.5 80.2 74.3 
3-Orthogonal configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 96.8 92.8 91.8 91.6 92.1 90.7 88.7 84.3 78.1 
Pyramid configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 97.7 95.9 95.1 94.0 93.0 93.1 89.7 84.9 80.7 

Table 16. Missing value analysis for Case 1 (abrupt fault) 

As can be seen from Table 16, Table 17, and Table 18, the 
accuracy of the isolation method decreases with the increase 
in the number of missing measurements. 

Standard 4-wheel configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 69.6 64.2 61.3 59.2 58.5 59.0 52.8 49.6 44.4 
3-Orthogonal configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 88.5 54.1 50.9 50.1 49.1 47.0 45.4 41.6 37.1 
Pyramid configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 54.6 50.8 47.3 47.8 47.5 46.8 45.8 45.8 42.6 

Table 17. Missing value analysis for Case 2 (transient fault) 

Standard 4-wheel configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 24.4 18.7 18.5 18.5 17.3 18.4 16.8 15.2 14.7 
3-Orthogonal configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 36.5 31.8 34.7 34.3 33.2 31.9 30.4 27.6 25.8 
Pyramid configuration 
MMP (%) 0 1 3 5 7 10 20 35 50 
Score (%) 56.1 48.3 47.8 45.4 44.6 44.3 42.3 38.9 35.9 

Table 18. Missing value analysis for Case 3 (general fault) 

Additionally, it can be observed that the accuracy of the iso-
lation method decreases with the increase in complexity of 
the testing case (Cases 1, 2, and 3), where Case 1 is the least 
complex case, and Case 3 is the most complex case. 

5.3. Validation and Learning Curve 

As previously mentioned in Chapter 3, validation testing was 
conducted on the methodology. It is sometimes useful to plot 
the influences of a single hyperparameter instead of selecting 
multiple to find out whether the estimator selected is overfit-
ting or underfitting hyperparameter values. Based on the 
training and validation score plot, if both are low, the estima-
tor is underfitting the data. If the training score remains high 
and the validation score is low, the estimator is overfitting the 
data. Otherwise, if both are high, then the estimator is work-
ing well. Due to the random forest classifier being computa-
tional less expensive and having good accuracy results for the 
more practical case study scenario. It was selected as the es-
timator to plot the validation curves shown in Figure 4, Fig-
ure 5, and Figure 6. The learning curve shows the training 
score and validation of an estimator for various training sam-
ples. This tool examines whether it is beneficial to add more 
training data and whether the estimator suffers from a bias 
error or a variance error. The learning curves are shown in 
Figure 7, Figure 8, and Figure 9. 
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Figure 4. Validation curves for standard 4-wheel 

 
Figure 5. Validation curve for 3-orthogonal wheel 

 
Figure 6. Validation curve for pyramid 

 
Figure 7. Learning curve for standard 4-wheel 

 
Figure 8. Learning curve for 3-orthogonal wheel 

 
Figure 9. Learning curve for pyramid 

5.4. Precision and Recall Curve  

The precision and recall curve can summarize the tradeoff 
between the true positive rate and positive predictive value 
for a predictive model using various probability thresholds. 
Precision can be defined as a ratio of the number of true pos-
itives divided by the sum of the true positives and false posi-
tives and describes how well a model predicts positive classes 
using 

Precision	=	
True	Positives

True	Positives	+	False	Positives	 (16) 

The recall is the ratio of true positives divided by the sum of 
the true positive and false negatives. It is the same as sensi-
tivity as 

Recall=	
True	Positives

True	Positives	+	False	Negatives	 (17) 

A high area value under the curve represents high precision 
and recall, where a high precision translates to a low false 
positive rate, and a high recall relates to a low false negative 
rate. Thus, high results determine that the classifier is return-
ing accurate results. The precision and recall curves for the 
three configurations can be seen in Figure 10, Figure 11, and 
Figure 12. These figures show the precision-recall curves for 
each class (fault scenario) that was tested under this study.  
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6. CONCLUSION 

In this paper, the development of a data-driven fault isolation 
machine learning algorithm for nonlinear systems was inves-
tigated. The performance of the proposed method was evalu-
ated for a case study involving FDI of an ADCS system using 
RWs as actuators onboard an in-orbit satellite. An automated 
feature extraction approach was implemented to transform 
the data into three different domains, after which the feature 

reduction was utilized to find the optimal number of features 
for training. The proposed fault isolation scheme was evalu-
ated against various MLMs and with a thorough sensitivity 
analysis. The Random Forest classifier resulted in the overall 
highest accuracy achieved amongst the more applicable cases 
and the three configurations considered in this study. This 
provides enough confidence that the proposed method could 
be a successful candidate in such applications. The future 
scope of this work includes implementing a change point 

 
Figure 11. Precision and recall for standard 4-wheel configuration 

  
Figure 10. Precision and recall for 3-orthogonal wheel configuration 
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detection algorithm on the more complex testing conditions, 
Case 3, to help better present any underlying patterns in the 
dataset. Expanding upon dataset cases is also essential, as this 
study has determined that the parameters used to develop the 
faulty dataset significantly impact the ability of the machine 
learning algorithm to detect a faulty condition correctly. Ad-
ditionally, empirical data from in-orbit satellites can further 
enhance the applicability of the proposed method for real-life 
applications. 
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