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ABSTRACT

An essential requirement in any data analysis is to have a re-
sponse variable representing the aim of the analysis. Much
academic work is based on laboratory or simulated data, where
the experiment is controlled, and the ground truth clearly de-
fined. This is seldom the reality for equipment performance
in an industrial environment and it is common to find issues
with the response variable in industry situations. We discuss
this matter using a case study where the problem is to detect
an asset event (failure) using data available but for which no
ground truth is available from historical records. Our data
frame contains measurements of 14 sensors recorded every
minute from a process control system and 4 current motors
on the asset of interest over a three year period. In this sit-
uation the “how to” label the event of interest is of funda-
mental importance. Different labelling strategies will gen-
erate different models with direct impact on the in-service
fault detection efficacy of the resulting model. We discuss
a data-driven approach to label a binary response variable
(fault/anomaly detection) and compare it to a rule-based ap-
proach. Labelling of the time series was performed using dy-
namic time warping followed by agglomerative hierarchical
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clustering to group events with similar event dynamics. Both
data sets have significant imbalance with 1,200,000 non-event
data but only 150 events in the rule-based data set and 64
events in the data-driven data set. We study the performance
of the models based on these two different labelling strate-
gies, treating each data set independently. We describe de-
cisions made in window-size selection, managing imbalance,
hyper-parameter tuning, training and test selection, and use
two models, logistic regression and random forest for event
detection. We estimate useful models for both data sets. By
useful, we understand that we could detect events for the first
four months in the test set. However as the months progressed
the performance of both models deteriorated, with an increas-
ing number of false positives, reflecting possible changes in
dynamics of the system. This work raises questions such as
“what are we detecting?” and “is there a right way to label?”
and presents a data driven approach to support labelling of
historical events in process plant data for event detection in
the absence of ground truth data.

1. INTRODUCTION

The drive for data-driven algorithms and models to support
predictive maintenance programs continues apace — a recent
review of the literature on this topic is Carvalho et al. (2019).
However, there has been little discussion on uncertainties as-
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sociated with the assumed response variable (event of inter-
est). When it comes to equipment performance, identifying
an ‘event’ such as process upsets and equipment failures, such
identification usually involves a human in the loop. This is
often an operator or maintainer who records the time of the
event and provides a label. This label can be a fault code
and/or unstructured text describing the event. But what if the
historical records for these events are no longer available or
considered unreliable? We cannot wait for future events in
order to get a labelled data set with ground truth data. The
practical alternative is to select a response variable from the
available data. We discuss in our work the strategy to label a
binary response variable to handle a fault detection scenario
(a single type of fault).

Industrial context. The modern day mineral processing plant
is highly instrumented and can be run by a small number of
operators in a control room. Historically their role has been
to use the information on their computer displays to keep
the process in control, to anticipate loss of control events
and to take proactive or reactive measures to meet produc-
tion and recovery targets. A consequence of this investment
in instrumentation is that there is a wealth of historical pro-
cess data available and the potential to leverage it for modern
data science-driven efforts to predict upsets causing equip-
ment outages. In a number of cases the root cause of a process-
related equipment outage is loss of control of key process pa-
rameters upstream of the equipment of interest. These pro-
cess upsets cause deviations in the chemical and physical com-
positions of the product that then result in downstream equip-
ment having problems with processing the product. One ex-
ample is a higher-than-desired density product that causes
bogging in equipment such as rakes and thickeners, loss of
cyclone cut-points, blinding of screens and so on. Early de-
tection of these potential events would allow for proactive
actions to be taken to prevent unwanted downstream equip-
ment outages. However, while historical records of the pro-
cess plant instrumentation data can be found in the databases,
records of the outage events are not always readily available.
These outages may be planned events to conduct maintenance
or unplanned events associated with equipment damage or
equipment failure due to process upsets. Historically these
outage events will have been captured in hand written opera-
tor logs and even today, while a computer may be used, the
data is unstructured and the data quality may not be reliable
for analysis purposes. So the challenge for data scientists is
to determine how to label these events so that they have a re-
sponse variable for their predictive model. When the event is
associated with a single piece of the equipment, some simple
rules such as the loss of motor current may be used. However
mineral processing plants often have sub-systems made of
multiple units in parallel and series configurations and these
produce a range of different outage signatures. In this paper
we look at one such system on a real industry case study and

discuss two methods of labelling the response variable, one
using a rule-based method and the other using a data-driven
approach.

Unsupervised techniques for predictive analytics. It re-
mains unclear in the literature how the application of data
science methods can be beneficial to enhance the quality of
labelled data, particularly for predictive analytics on equip-
ment. Here, we call attention to this question and show how
such techniques can be used. We understand that data-driven
labelling can enhance the definition of events of interest and
improve the quality of labelled data.

We suggest that unsupervised techniques have potential value
in this scenario: they do not require manual intervention and
only use the data structure to group samples with similar pat-
terns. In general, approaches dealing with data-driven predic-
tive maintenance have focused on using clustering techniques
from two perspectives: as anomaly detection algorithms, and
as an intermediate step in data pre-processing. One exception
to these two perspectives is the use of clustering techniques
to classify systems using key performance/features of sub-
systems as parameters that are further used in the reliability
analysis (Cai, Zhao, & Zhu, 2020).

Clustering techniques have been widely used in the context
of anomaly detection algorithms to identify an asset’s healthy
and unhealthy condition (see Erhan et al. (2021) for a review
on the topic). In Kim et al. (2011), for instance, an auto-
associative neural network that works as a nonlinear Princi-
pal Component Analysis is trained on labelled data to find
partitions in the feature space related to normal and abnor-
mal asset conditions. An unsupervised algorithm is applied to
project new data into the learned partitions, therefore work-
ing as a soft alarm along with metrics from the trained neural
network. Another use of clustering techniques is in the pre-
processing step in data-driven frameworks. In Listou Ellef-
sen, Bjørlykhaug, Æsøy, Ushakov, and Zhang (2019), a com-
bination of neural network models and genetic algorithms are
used to estimate remaining useful life (RUL) annotated in the
dataset. The unsupervised pre-training is used to initialise
the weights of the lower layers of the neural network model
to provide an optimised initialisation of the network when
there is a reduced number of labelled data. The authors con-
clude that using an unsupervised pre-training stage provides
better results in contrast with random initialisation of neural
network weights when the availability of labelled data is an
issue.

Another example of the use of clustering techniques in a pre-
processing step is the work of Reder, Yürüşen, and Melero
(2018). They study the relationship between wind turbine
failures and environmental variables and the degradation pro-
cess, using five wind turbine systems: gearbox, generator,
pitch system, yaw system and frequency converter. Labelled
response variables are the exact times and duration of the fail-
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ures for each turbine. They compare manually supervised and
unsupervised approaches for the labelling strategy of the in-
put parameters (not the response variable). In the supervised
case, expert opinions and information from the literature are
used to manually define the categories representing the pa-
rameters used as input to the association rule mining algo-
rithm used in their work. For instance, wind speed can be
classified as calm, low, high, etc.; or relative humidity that
can be classified according to corrosiveness. In the unsuper-
vised case, a K-means clustering is used to group the param-
eter values, so there is no expert input. Each combination
of the parameters is associated with a cluster/category, and
that category is used as input to the rule mining algorithm.
Next they compare the performance of both approaches for
the association with failure. They found that performance de-
pended on the amount of available information and the num-
ber of obtained rules (higher number of rules increases the
complexity of interpretation of the results). Both labelling
approaches generated a higher or lower number of rules for
different scenarios. For instance, the clustering algorithms
found three labels for severity, while the supervised labelling
only used two. On the other hand, the expert labelling used
eight categories for temperature, while the clustering found
three.

Our research goals. We can find many prognostics papers
in the academic literature where the problem is clearly stated,
and the data is available, labelled and organised. Often these
works are laboratory experiments where everything is con-
trolled, and hence the data is labelled clearly and well be-
haved. An extraordinary proportion of published prognostic
models are tested on just four laboratory and simulated data
sets (Ferreira & de Sousa, 2020; Lei et al., 2018): Turbo-
fan engine degradation simulation data set (Saxena & Goebel,
2008), FEMTO Bearing Data Set (Nectoux et al., 2012), Bear-
ing data sets (Lee, Qiu, Yu, & Lin, 2007), and the Milling data
set (Agogino & Goebel, 2007). In these data sets, there is
no lack of clarity around the labelling of the dependent vari-
able. However, giving our experience, there are real chal-
lenges when working with real industry problems and data
(Astfalck, Hodkiewicz, Keating, Cripps, & Pecht, 2016). The
data analysis process depends on many decisions that come
before the model selection (Sambasivan et al., 2021). How-
ever, all of this is done conditioned on trust that the response
variable is labelled ‘correctly’ and the data is related to the
problem of concern. Under this scenario our research goals
are 1) explore an unsupervised data-driven labelling of a re-
sponse variable, and 2) explore the impact of different la-
belling strategies on an end-to-end modelling process.

The paper is organised as follows. In Section 2, we describe
the case study context, data and the organisation’s motiva-
tion for the project. Section 3 describes data preparation and
shows how definitions of events affect the number and type of
events labelled in the data set. Section 4 describes the devel-

Rake A Rake B

Rake CFeedFlow

Rake motor(s)

Figure 1. Simplified diagram showing how the rakes classi-
fiers operate. Sand separation is performed by mechanically
ranking the sand up an incline.

opment of two models on each of the labelled data sets with
the results described in Section 5. Finally, Section 6 discusses
the lessons learned and implications for the prognostics com-
munity.

2. CASE STUDY

We consider a mineral processing system in which there are
three mechanical classifiers called sand rakes. The purpose of
the rakes is to separate solids (sand) from liquid (liquor). Up-
stream of the sand rakes is a complex processing plant involv-
ing chemical reactions and physical changes to the product.
The sand rakes are a set of three units arranged in series as
shown in Figure 1. Units A and C have one motor, and unit B
has two motors. Slurry (a mix of solids and liquor) flows from
rake A, B to C. The rake classifier uses rakes actuated by an
eccentric motion causing them to dip into the settled material
and to move it up the incline for a short distance. The rakes
are then withdrawn, and return to the starting-point, where the
cycle is repeated. The settled material is thus slowly moved
up the incline to the top of the classifier where it is discharged.
For a illustration of a rake classifier see Michaud (2015).

The eccentric motion of each rake is driven by four motors A,
B1, B2 and C, where B1 and B2 are the two motors of rake
B, as illustrated in Figure 1. The motor current is monitored
and is the key indicator of the operating status of the rake.
Changes in motor current are indicative of operating prob-
lems with the rakes. A loss of motor current indicates an out-
age, however this can be due to either desirable events (such
as planned maintenance) or undesirable events. Our interest
here is in an event called “bogging”. This is an unplanned
event caused by higher than desired load on the rakes, of-
ten associated with higher density and higher tonnage slurry.
This additional load causes the rakes to ’bog’ or stop mov-
ing. The remedy is for operators to free the rakes which can
involve having to manually enter the rake and dig out mate-
rial. This can create both an unwanted safety exposure for the
operator and flow loss.

Our data frame contained measurements of 14 sensors from
the process control system and 4 current motors over a three
year (2016-2018) period. Variables are collected at a fre-
quency of once per minute. Other than the rake motor current
data that is specific to that rake, all other variables are relevant
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Figure 2. Illustration of the motors currents behaviours over one year.

to the entire system. There was no supplementary informa-
tion from operator or maintenance logs provided. As a result
there are no labelled records as to which events are actual
bogging events. If labels could be generated and proved use-
ful in predicting unplanned events, the value to the company
in terms of avoiding process upsets is considerable, since these
process upsets can result in operators having to enter and
clean the sand rake units.

3. TRANSFORMING DATA TO A MODEL INPUT

An essential part of creating a model for detecting an event
of interest is to prepare the process control data from the 18
sensors in a format to be used for modelling. Decisions made
in this stage affect interpretations of the model and suitability
of its performance. In the following subsections we describe
the data preparation.

3.1. Identifying bogging events

Initially, we applied the following definition: “a bogging event
occurred when the rake was offline for a period between 1 and
60 minutes”. We label the response variable resulting from
this definition as the rule-based response variable.

The primary means of determining the status of the system is
the motor current reading. In Figure 2 we illustrate the behav-
ior of the motor current of each rake in a system for a period
of one year. Overall, the four time series are synchronized,
presenting common periods of offline (zero current) and pe-
riods where the currents operate in a mean operational point
at about 50% FLA (Full Load Amps). Some of these offline
events do not relate to bogging.

First we had to construct a data set using the the rule-based
response definition. We use a subset of sensor data repre-

senting the motor currents to find the event times, as per the
rule-based definition above. We perform the following two
steps:

1. For each motor current, we find patterns of continuous
“offline” periods falling in the range of one to sixty min-
utes. We consider that an event has occurred whenever
any one of the motors go offline. This step provides a set
S1 of event times with 249 events.

2. Group events that happened exactly at the same time in
two or more motors regardless of the period they persist
in the offline status. For instance, if motor A goes offline
at 15:01 and stays offline for 20 minutes, and motor B2
goes offline also at 15:01 and stays offline for 10 minutes,
they are considered as one event with a duration of 20
minutes (we consider the entire system is offline for a
given minute if one or more motors are offline together
in that minute). This step reduces the number of events
and generate a subset of S2 with 150 events.

Figure 3 shows six examples of some challenges with data
labelling. For each example in Figure 3 there are one or more
bogging events under the rule-based definition. We indicate
the start time (the time when the first motor goes offline) of
the event with a vertical dashed red line. Different colors
represent the motors of the four rakes as detailed in the legend
of Figure 3 (f). We complement the information of Figure 3
with Table 1 which shows the times and associated motor(s)
for each event in each of the six examples. We can see that
the behaviour of the four motors are quite different in each
case. In Figure 3 (a) there are six events in about 70 minutes.
We now start to recognise possible problems in the definition
of the event. The detection of a sequence of events that are
close together would be challenging for any model as there
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Examples of possible problems in the definition of a bogging event. In (a), six events (according to the rule-based
definition) happens in a short time scale (see Table 1 for details about the event times and corresponding motor(s)). In (b), three
events show synchronized behavior of motors with a short delay in time. In (c), only two motors go offline while the other two
remain online. In (d), motors were offline for a longer period than 60 minutes except that, the current of one or other motor
presented a quick online-offline-online pattern that falls into the specified interval of a bogging event. In (d), one motor went
offline for a minute without any dynamics before this event. In (f), motors were offline for longer than 60 minutes except for a
quick moment of online-offline observed for one motor.

are chances they are related. Moreover, how can the time
series of upstream process variables — which are common
to all the motors — be used to differentiate such behaviour?
In Figure 3 (b) there are three events according to the rule-
based definition, but all motors are offline together after less
then 5 minutes. In Figure 3 (c), only two of the motors go
offline, does this characterise an event? In Figure 3 (d) motors
were all offline, but the current of one motor presented two
quick online-offline-online patterns that fall into the specified
interval of a bogging event. Would this likely indicate some
maintenance intervention? In Figure 3(e) all motors seemed
to be operating normally. Still, one motor went offline for
a minute without any clear dynamics before this happened.
Could this indicate a sensor measurement error? In Figure 3
(f) motors come from a long offline period and one motor
has a quick moment of online-offline that again falls into the
specified time interval of a bogging event. Would this indicate
a maintenance period?

The result of step 2 applied in Figure 3 is a set of event times
as presented in Table 1. We performed this process for all
data sets. The resulting event times are used in Section 3.3
for feature engineering and data set labelling.

Table 1. Event times from examples presented in Figure 3.

Time Motor(s) Description

(a)

04:46 C,B2

Motor currents go to zero, but
one of them is varying.

04:47 A,B1
04:48 B2
04:49 C
04:52 C
04:54 C

(b)
03:29 C All motors have a period of

motor current zero.03:32 A
03:33 B2,B1

(c) 00:42 B2 Two motors went to motor
current zero.00:49 A

(d) 03:45 C Zero motor currents most of
the time, but only three
minutes with motor current
different from zero.

03:47 C

(e) 14:06 C A zero motor current for a sin-
gle minute.

(f) 19:54 A Long period of zero motor cur-
rent, then only one motor (after
a few minutes after motor cur-
rent changes to non-zero) get
zero again.

3.2. Data-driven event definition

The problems identified with the rule-based definition of the
response variable motivated us to construct data-driven alter-
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natives based on the dynamics of the data. The main idea is
to automate pattern matching of these dynamics in order to
facilitate the selection of suitable representatives of the event
signature by an expert. We use a time series clustering ap-
proach to filter event signatures with similar dynamics and
create a new dependent variable for our problem. Cluster-
ing analysis of time series is performed using Dynamic Time
Warping (DTW) (Muda, Begam, & Elamvazuthi, 2010) as a
measure of similarity between two time-series. Then, an ag-
glomerative hierarchical clustering is used to group similar
event dynamics. The proposed clustering approach for creat-
ing the new response variable follows the steps below.

1. Use the current data and event times to determine the
time series to be used as input of the clustering algorithm.

2. Use the time series resulting from 1) to compute a dis-
tance matrix using DTW.

3. Fit Linkage Tree (Agglomerative Hierarchical Cluster-
ing).

4. Plot dendrogram and select cut-level to get clusters.
5. Apply cut-level and use expert/engineer input to discard

inconsistencies in the rule-based definition of the response
variable possibly related to maintenance, controlled tests
or sensor errors.

Determining the time-series to be used as input of the clus-
tering algorithm. Our starting point is the four time series
corresponding to the motor currents and the rule-based event
times computed from the rule-based definition – examples
are given in Figure 1. We apply three steps to prepare the
time series for the clustering algorithm. First, the event times
indicate the start of the events, but, to group similar dynamics
that are representative of pre-event and post-event, we need
to consider an interval of time before and after the event start,
respectively. For example, if we want to group the situations
as in in Figure 3 (d) we need to capture the long offline pat-
terns of the motor currents before the event, and we need
to know that they also stayed offline after the quick online-
offline-online pattern. Therefore, the first step is to determine
what the time interval will be. Our second step group events
that happen in a short time scale. For instance, if we use a
window of 10 minutes, all the events presented in Figure 3
(a) would be considered a unique event. This step maximises
the number of events that can be detected by considering a
cluster of possibly events as representative of one event.

The time interval window. The time interval should be long
enough to capture important dynamics anticipating and pro-
ceeding the event, but it shouldn’t be too long to bring infor-
mation that is related to past or future events. Our purpose
here is to group offline-online patterns of the time series that
relate or not to an event of interest. However, we checked
the number of resulting groups identified by the clustering
strategy according to time intervals of one and two hours

and window sizes of 5, 10 and 15 minutes to group similar
events. This information is presented in Table ??. We argue
that the temporal changes in the current dynamics that are
signature of the pre-event and post-events can be adequately
represented in these periods of one and two hours as the num-
ber of groups for both situations was exactly the same. For
the strategy of grouping close events, the number of resulting
clusters change only marginally for different window sizes
and should not have an significant impact in our analysis.

Given the four time series representing the current of the mo-
tors are synchronised most of the time as illustrated in Fig-
ure 2, our third step is to use the mean of all four motor cur-
rents to get one single representation of the shape of those
time series (a prototype) to be used as input for the cluster-
ing. For the situations where they are not synchronised all
time (for instance, Figure 3 (d), the resulting shape of the
prototype is still representative of the dynamics.

Using DTW to measure distance between time-series. In
time series analysis, Dynamic Time Warping (DTW) is a pop-
ular technique used to measure the similarity (or distance) be-
tween two time series (Sakoe & Chiba, 1978). It uses the dy-
namic programming method to find the best alignment (mini-
mum cumulative distance) between two temporal sequences.
DTW has been used in several pattern recognition applica-
tions as it tends to better capture points with similar geo-
metric shapes (Li, 2015). Let X = {x1, x2, ..., xN} and
Y = {y1, y2, ..., yM} denote two time series with lengths N
and M , respectively. The first step of the technique is to build
a N ⇥M cost matrix CXY , where the (ith,jth) element cor-
responds to the cumulative pairwise distance between points
Xi and Yj :

CXY [i, j] = d(xi, yj)� min
�
CXY [i� 1, j],
CXY [i, j � 1],
CXY [i� 1, j � 1]

�
(1)

The Euclidean distance is often used for computing d(xi, yj),
but other distances can be used. CXY [N,M ] will contain the
distance according to the best alignment between the two time
series. DTW works by aligning the time-series to find the
minimum cumulative distance CXY [i, j] between X[1 : i]
and Y [1 : j] as indicated in Eq. (1). This distance represents
the optimal alignment between the two time-series.

Applying Agglomerative Hierarchical Clustering. The ba-
sic principle of clustering techniques is to group time series
according to a similarity criterion. The idea is to maximise
the similarity between time series in the same cluster and
minimise the similarity between time series in different clus-
ters. While partitional or non-hierarchical clustering meth-
ods use a fixed number of clusters and a single partition of
the data, hierarchical methods use a series of partitions that
are taken progressively. If the hierarchical clustering is ag-
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glomerative, the procedure starts with N objects (time series)
as N clusters and then successively merges the clusters un-
til all time series are joined into a single cluster. Conversely,
divisive hierarchical clustering starts with all the time series
as a single cluster and splits it into progressively finer sub-
clusters. Our starting conditions are the individuals events as
defined by the rule-based response variable, and our aim is
to find similarities between them, motivating the use of the
agglomerative approach.

To perform hierarchical cluster analysis it is necessary to de-
fine three main parameters: the similarity criterion to quantify
the similarity between every pair of time series in the dataset
(DTW in our case); the linkage method, used to measure the
distance between two clusters, and number of desired clus-
ters, an issue that is directly related to where to cut the den-
drogram resulting from the clustering. We adopted the single
linkage method that assigns the distance between two clus-
ters as the closest distance between all pair of points across
the two clusters (Murtagh & Contreras, 2012).

Selecting cut-level of the Dendogram. Hierarchical cluster-
ing algorithms such as the one used here can be represented
by a dendrogram. To find suitable clusters, we need to cut the
dendrogram at a specific level. Different cut-levels will result
in different final clusters. To date, there is no clear-cut solu-
tion to automatically find the cut-level of the dendrogram, as
clustering is essentially an exploratory analysis. Hence, the
interpretation of quality of the obtained clusters will depend
on context. However, there is an extensive literature propos-
ing different criteria that can be used for this matter (Jung,
Park, Du, & Drake, 2003; Steinley & Brusco, 2007; Char-
rad, Ghazzali, Boiteau, & Niknafs, 2014). Examples include
the silhouette method (Rousseeuw, 1987), the Dunn’s validity
index (Dunn, 1973), and the gap statistic method (Tibshirani,
Walther, & Hastie, 2001). Here, we selected the cut-level
according to a visual inspection of the clusters, since the pri-
mary objective is to separate relevant failure modes from in-
consistencies presented in the data (and not to find the best
partition of the clustering).

Figure 4 presents examples of events grouped in four clus-
ters. Motor current dynamics represented by the first two
clusters in Figure 4 could be indicative of maintenance sched-
uled events or controlled tests. On the other hand, there is an
increase in the motor currents before the event on the last two
groups in Figure 4. We can also observe that such events fol-
low a chain of offline patterns. In the rule-based definition of
our response variable, these events in a chain are considered
distinct.

Using expert/engineer input to discard inconsistencies in
the rule-based definition of events. The clusters are use-
ful to separate events with specific dynamics. However, after
applying the clustering, a visual inspection by an expert was
performed to filter the events in the clusters that are unlike

to be representative of real bogging events (like the situations
presented in Figure 3) and/or the first two groups of Figure 4.

3.3. Feature engineering and data labelling

A standard way to proceed with the data labelling is to use
event times to create a minute-based binary response vari-
able (transforming the task into a classification problem). For
each minute, a value of zero represents non-event times, and
a value of one represents event times. There are other pos-
sible procedures to analyse/model our data that are based on
signal process or time series analysis, for instance. However,
we aim to discuss the impact of different choices in data ac-
quisition and preparation, showing possible effects of deci-
sions through data analysis steps that occur before and after
the model. That is, we focus here on the whole process and
not on specific techniques.

Figure 5 presents details of the labelling process. For each
minute of data, we have the sensor data (18 values) and the
binary response variable associate to it (we exemplify the ap-
proach using only the motor current values). First, we can
see that when there are two events, only one minute apart, the
rule-based definition will consider them as separate. This is
another indication that the rule-based definition poses chal-
lenges for a model; either there is not enough data to detect
the second event or would it be two different events? The
training process will, therefore, discard this event. Second,
we can also observe another decision in the process: we dis-
card the data related to the event’s duration (yellow are in
Figure 5). In the example, the duration of the event of motor
A (red line) is the longest and therefore determines the area
to be discarded. Third, a period after the event might also
be discarded, or we can decide to use all available data, as
illustrated in the figure. We note that the feature engineer-
ing process utilising a sliding window approach will need to
wait for the first k minutes after the event to have enough
data to process the features (similar to not being able to detect
the second event), where k is the size of the sliding window.
Under a data-driven process we have many decisions to take
when preparing the data.

After this process, we have a data frame of minute-scale data,
with 18 columns indicating the sensor data and one column
showing the binary response variable. Finally, we discard
data when the motors currents are zero for longer than sixty
minutes. There are, however, situations when only one or a
combination of the motors are offline together. Therefore, we
have considered that a regular operation condition of the asset
is when all motors currents are not offline, and then we opted
to discard the data when one or more motors are offline.

After the data pre-processing step, we can proceed with fea-
ture extraction strategies. The usual approach for feature en-
gineering when dealing with time series data is to use an over-
lapping sliding window of size k to extract statistics descrip-
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Figure 4. Time series plots of rake motor current dynamics according to four clusters. In Cluster 1, the motors stay offline
except for short moments of current peaks and falls. In Cluster 2, the rakes go online after a long offline period. In the Cluster
3, the rakes were operating, and an increase in the rake currents (most prominent in C rake) can be observed in all cases before
an event. Motor current levels are unstable after the event. Finally, in Cluster 4, the current rises similar to Cluster 3 however
there is an extended period in which motor current levels are unstable and this is accompanied by a number of events within a
time interval of about 1.5 hours, where one or more rakes go offline again.
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Figure 5. The process of creating a binary response variable
for the training set. For each minute, we consider the value of
the sensor data (here we show the four motor current values to
simplify) and associate a label to it. A label of 1 indicates the
event (blue 1’s indicate an event at 06:59 and another event
at 07:00), while a label 0 indicates no event. We discard the
data during the event as represented by the yellow are in the
figure.

tors to summarise the dynamic information of the time se-
ries in that window. A step size s defines how we move the
window forward. If s = k the window do not overlap. If

s = 1 the window overlap in k � 1 elements. A simplified
diagram of this process is presented in Figure 6. The label
associated to each widow is given by the value of the binary
response value at each time k. The features we used include
eight statistic descriptors of each window: the mean, the stan-
dard deviation, the maximum value, the minimum value, and
the 10%, 25%, 50%, 75%, and 90% percentiles.

4. MODEL

We used the features extraction processing described in the
previous section as input to two models: a Logistic Regres-
sion and a Random Forest. We used a Grid-search strat-
egy with cross-validation to estimate the hyper-parameters of
each model. We also normalised the features to have zero
mean and unit standard deviation. We have substantial imbal-
anced data, with over 1,200,000 non-event data and less than
150 events in, for example, the rule-based labelled data set.

We have two strategies to handle the imbalanced data: 1) run
the model as the data is (imbalanced data (ID) strategy); and
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Figure 6. Feature engineering in a sliding window approach.
Several features are extracted from the time series inside each
window. The step size s define how we extract features from
consecutive windows of size k. The label of each window is
determined as the corresponding value of the binary response
at time k of the window.

Table 2. Hyper-parameter range for fine-tuning grid search
with cross-validation.

Model Hyper-Parameter Grid
LR � (penalisation parameter) 2 (0.01, 10)
RF max depth None, 5, 10, 20, 30

number of estimators 20, 50, 100
max features ’auto’, ’sqrt’, ’log2’

Both threshold 2 (0, 1)

2) consider a balanced data set based on a sub-sampling (bal-
anced data (BD) strategy). We chose the balanced accuracy
(BA) as a metric to select the best model on the training data.
The balanced accuracy (BA) is defined as (TPR+TNR)/2,
where TPR= tp/(tp + fn), TNR= tn/(tn + fp), tp is the
number of true positives, fp is the number of false positives,
tn is the number of true negatives, and fn is the number of
false negatives. This metric considers the number of correct
event detections in both categories (event and non-event). We
discuss the model selection in Section 5. The best model in
the training stage selected according to each strategy is used
on the (imbalanced/full) test set, that is left untouched. The
balanced data strategy (2) works as follows:

1. We select all the p events samples and sample (at ran-
dom) without replacement p non-events samples. This
gives us a balanced version of the training dataset, with
p non-event samples and p event samples.

2. We apply Grid-Search (see Table 2 for the hyper-parameters
considered) with 10-fold cross-validation on this balanced
dataset.

3. We compute the balanced accuracy (BA, defined in the
sequel) on this training set and save the model hyper-
parameters.

4. We repeat steps 1-3 m times.

5. We choose the best model (highest BA) from all m repe-
titions.

The Grid-Search and cross-validation techniques also require
the specification of an evaluation strategy when seeking the
best combination of parameters of the models. Here, we adopted
the BA metric. Given the limitations of the accuracy for im-
balanced data, the balanced accuracy is considered preferred
as an overall performance metric for a model.

A summary of the main decisions in the whole data analysis
process discussed so far is presented in Table 3.

We emphasise that while we believe these design choices to
be appropriate, the modelling building challenge is not the
focus of our paper. Many machine learning approaches could
be applied here without affecting our primary conclusion.

5. RESULTS

We split our data in the following way. For the training set, we
used data in the period 01/Mar/2016 – 31/Dec/2017, and, for
the test set, we used the period 01/Jan/2018 – 15/Dec/2018.
There are around 1,200,000 nonevent data. After we separate
the training and test sets, we verified a total of 81 events in
the training set and 69 events in the test set for the rule-based
response variable, while there are 29-31 events in the training
set and 31-33 events in the test set for the data-driven based
response variable. We now check how many of these events
can be detected in reality according to different window sizes
for each of the response variable definition. This information
is presented in Table 4. We recap that we can detect an event
only if we have at least k data samples preceding it, where k
is the window size.

The results from the data-driven labelling for the different
values of tg (time, in minutes, used to group events as a
unique event) have produced similar results in terms of which
events are identified. Similarly the results obtained for differ-
ent window sizes k identified similar events. For the sake of
brevity, we present the results considering tg = 10 for the
data-driven labelling of the response variable, and window
sizes of 1 min and 30 min for both response variables.

Our analysis is a multi-step process, described below. In
this description we necessarily select/define many aspects of
the project and hyper-parameters (see Tables 3 2). We have
considered for the Logistic Regression model an L1-penalty
(LASSO) for features selection. Again, the specifics of these
choices is not the main message of this paper. The process is
summarised as:

1. We have two data sets with different response variables:
the rule-based data, and the data-driven data. We per-
formed an independent analysis of each data set.

2. For each data sets:
(a) Our data can have current data per minute (k = 1)

or features in a sliding window of 30 minutes. The
same applies for the other sensor data. We decided
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Table 3. Hyper-parameters used in the data preparation, feature extraction, and modelling.

Step Hyper-Parameter Values used Pertinent to
Defining the events Periods of offline 1-60 minutes rule-based, data-driven

Period to consider subsequent events as a
unique event

15,20 and 30 minutes data-driven

Time before and after the event to create
time series used as input to clustering

1 and 2 hours data-driven

Feature extraction Window size 30, 50 minutes rule-based, data-driven
Step size 1 minute rule-based, data-driven

Modelling Model Logistic Regression and Random Forest rule-based, data-driven
Grid-Search evaluation metric balanced accuracy rule-based, data-driven
Dealing with imbalanced data Sub-sampling rule-based, data-driven

Table 4. Number of events that can be detected for different window sizes k and labelling strategies.

k (window sizes)
# Events 1 30 60 120

Train Test Train Test Train Test Train Test Train Test
Rule-based 81 69 32 (40%) 36 (52%) 26 (32%) 26 (38%) 20 (25%) 20 (29%) 20 (25%) 19 (26%)
Clust. (tg = 5) 31 33 31 (100%) 33 (100%) 25 (81%) 26 (79%) 19 (61%) 19 (58%) 19 (61%) 18 (55%)
Clust. (tg = 10) 29 33 29 (100%) 33 (100%) 25 (86%) 25 (76%) 19 (66%) 19 (58%) 19 (66%) 18 (55%)
Clust. (tg = 15) 29 31 29 (100%) 31 (100%) 25 (86%) 25 (81%) 19 (66%) 19 (61%) 19 (66%) 18 (58%)

to investigate the performance of the models with
the data as it is, per minute, without any featuring
extraction. Our motivation was to see if the strate-
gies of feature extraction (always assumed as better
than using the data itself) can indeed improve the
results.

(b) Imbalanced and balanced data strategies: as dis-
cussed in section 4, we have few events when com-
pared to the total entries in the data (rule-based 150,
data-driven from 60 to 64 events, from around of
1,200,000 samples).

(c) We performed the analysis considering the data as
it is (imbalanced data) and with the balanced data
strategy in the previous section.

(d) Split the data into training and testing sets. We are
using the first two years of data to train the model
and the last year (test data) to evaluate the qual-
ity of the model for event detection. The test data
is not used for any model selection nor for hyper-
parameter definition.

(e) We are considering two different class of models:
Logistic Regression and Random Forest.

(f) We used Grid-Search with k-fold (k = 10) cross-
validation to tuning (define) the hyper-parameters
values to find the best tuning for the model.

(g) The model output is a score between 0 and 1, and
we need a threshold to define if the final label will
0 (non-event) or 1 (event). For that, we optimise
the threshold (2 (0, 1)) to find the one that gave us
the best BA (the adopted metric) in the training data
and apply the same threshold in the testing data.

Rule-based data set. Results from Tables 5 and 7 suggest

that both LR and RF had similar results. We have organised
the data in different ways to estimate the LR and the RF. We
considered balanced or imbalanced data; features from cur-
rent data, or sensor data (excluding the current data); no fea-
ture extraction (window size of 1 min), or featuring extraction
(window size of 30 min), as described in Section 3.3. Table 5
shows the BA metric for all scenarios, the best result for the
LR was considering balanced data, current data as features,
and window size of 30 min, achieving a BA of 0.995. For the
RF, we had two different scenarios achieving a BA of value
1. Then, we selected the one with only current data to allow
a better comparison with the LR scenario: the imbalanced
data (no need for sub-sampling), with current data features
and window size of 30 min. However, test results may be
indicating that the model over-fitted.

Table 5. The best BA considering the grid-search results on
the training set and the rule-based definition of the response
variable.

Window size (min)
1 30

LR RF LR RF
BD Current data 0.983 0.975 0.995 0.993

Sensor data 0.872 0.926 0.915 0.953

ID Current data 0.843 0.999 0.923 1.000
Sensor data 0.577 1.000 0.672 0.923

*BD: Balanced Data; ID: Imbalanced Data; LR: Logistic Regres-
sion; RF: Random Forest

The selected hyper-parameters of the best scenarios for each
model and the corresponding results on the training and test
sets are given in Tables 6 and 7, respectively. In Table 7 we
present, together with the metric BA, the metrics TNR, F1-
score, Recall, and Precision, for both training and test data
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sets. Precision is defined as tp/(tp + fp). In our case pre-
cision informs the ability of our model to identify (only the
true events. Recall is also referred as TPR. See Section 4 for
the definitions of TPR, TNR, tp, fp, tn, and fn. The F1-
score computes an harmonic mean of precision and recall as
F1 = 2 ⇥ precision⇥recall

precision+recall . This calculates the metrics for
the positive class only. On the other hand, the F1-weighted
is calculated for both the positive and negative class and the
number of samples of each class is used to balance the final
score.

Table 7 shows that the metrics for best LR are slightly worse
in the test data than in the training data. However, for RF, the
metrics in the test data are much worse than for the training
data. This particular situation is common when we have the
problem of overfitting. The model was able to fit perfectly
the train data, but generalised badly. In this case, we consider
that the RF model is not suitable to detect the events in this
data set.

An important fact is that, for a window size of 30 min, we
have originally 69 events in the test data. Nevertheless, we
have only 26 events (38% of the total) in the test data to try to
detect (see Table 4). For the other 43 events, we do not have
enough data, and we cannot produce any detection for them.
In Figure 7, we present the labelled events (those that the
labelling identified) in the test data and the detected events,
considering the LR. As we can see in the figure, the model
detected well the events in the first four months of the test
data. However, after this, we have many wrong detections
that are false positives, reflecting the poor Precision and F1
results on both training and test sets as indicated by Table 7.

Moreover, Figure 7 is suggesting that the operating pattern of
system may have changed. There is a significant deterioration
in the model performance after a period of about four months
after the models were built. To further test this, we extended
the training set to 2.5 years and reducing the test set to the
last 0.5 year. The results did not improve and presented sim-
ilar poor results on the 0.5 year test data – further supporting
our presumption of a local or global change in the system, for
instance, different operating profiles, different sand charac-
teristics, etc. Investigating this was beyond the scope of this
data analysis project.

Data-driven data set. Results obtained for the data-driven
approach are presented in Tables 8–10, and Figure 7b. The re-
sults are similar to those obtained for the rule-based data. The
best results of the models were achieved in similar scenarios.
We had similar results in the set of the hyper-parameters. The
RF model presented the overfitting problem too. However,
we have an important difference: the total number of events
in the data-driven test data is 33 (against 69 for the rule-based
data), and we have enough data to provide a model output for
25 (76%) of them (against 38% for the rule-based data). Fur-
thermore, the total number of events that we can be detected

Table 6. Scenario and hyper-parameters for the best models
of the rule-based data.

LR Balanced data
Current data features
Window size of 30 min
� = 0.1
threshold = 0.53

RF Imbalanced data
Current data features
Window size of 30 min
max depth = None
number of estimators = 100
max. features = auto
threshold = 0.26

Table 7. Results of best model for the rule-based definition
of the response variable.

LR RF
Train Test Train Test

BA 0.995 0.879 1.000 0.570
TNR 0.990 0.950 1.000 0.999

F1-score 0.006 0.002 1.000 0.108
F1-score (weighted) 0.995 0.974 1.000 0.997

Recall 1.000 0.807 1.000 0.076
Precision 0.003 0.001 1.000 0.181

with the original definition was 26 (only one more than for
the data-drive strategy). That is, when we compared the set
of events from both definitions, we verified that many of them
are the same in both data sets, and, consequently, the features
values are similar for both approaches. Then, it was expected
that the models would have similar performance. However,
this confirms that the cluster analysis performed before any
modelling to build the labelling of the events has grouped the
original events in a reasonable way. However, in theory, both
approaches have a different way of labelling the set of events,
and it is not correct to compare the metrics of these methods.

Table 8. The best balanced accuracy considering the grid-
search results on the training set and the data-driven defini-
tion of the response variable.

Window size (min)
1 30

LR RF LR RF
BD Current data 0.980 0.997 0.997 0.999

Sensor data 0.870 0.955 0.916 0.957

ID Current data 0.844 0.965 0.919 1.000
Sensor data 0.517 1.000 0.639 0.959

*BD: Balanced Data; ID: Imbalanced Data; LR: Logistic Regres-
sion; RF: Random Forest

Both rule-based and data-driven data sets resulted in lower
precision and F1-score (see tables 7 and 10. This is due to
the many false positives compared to the number of true pos-
itives. However, we recall that we have a model output for
each minute. When we compare the quantity of data in the
test set (around 420,000 minutes) to the total of false positives
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Table 9. Scenario and hyper-parameters for the best models
of the data-driven data.

LR Balanced data
Current data features
Window size of 30 min
� = 0.1
threshold = 0.84

RF Imbalanced data
Current data features
Window size of 30 min
max depth = None
number of estimators = 100
max. features = auto
threshold = 0.21

Table 10. Results of best model for the data-driven definition
of the response variable.

LR RF
Train Test Train Test

BA 0.997 0.925 1.000 0.6
TNR 0.994 0.970 1.000 0.999

F1-score 0.011 0.003 1.000 0.0.167
F1-score (weighted) 0.995 0.984 1.000 0.996

Recall 1.000 0.880 1.000 0.200
Precision 0.005 0.001 1.000 0.142

(around 15,000), we have around 3.5% of false positives. As
can be viewed in Figure 7a and Figure 7b, we can see that
most of the false positives are after the four months for both
data sets. Also, the F1-score weighted, that is a measure more
appropriated when we have imbalanced data, is presenting
values close to 1, for all cases (including test data), which
does not reflect the results presented in Figures 7a and 7b.
The weighted F1-score is the average of the F1-score for class
0 (nonevent) and the F1-score for class 1 (event), proportional
to the number of samples in each class. Here, the F1-score of
class 0 is close to 1, and this class corresponds to more than
99.9% of the data, leading to a weighted F1-score close to 1.

6. DISCUSSION AND CONCLUSION

This case study was motivated by attempts to improve the
predictive efficiency of a model developed to identify a dis-
ruptive and costly event in a mineral process plant. The data
for the model is drawn from the process control system. An
independent and trusted ground truth for the event is not avail-
able. This is not uncommon in industry situations today as the
operators and maintainers have not necessarily worked in en-
vironments where data collection and quality are paramount
considerations. However, today’s asset managers cannot af-
ford to wait for failure events to occur in order to build good
models, so there is considerable interest in using available
process control data to assist with predicting failures now
and in the future. A key question is how to label events.
This work considers two alternatives, the first is using a rule-
based approach suggested by the company. This identifies a

bogging event as “occurring when the rake was offline for a
period between 1 and 60 minutes”. The primary means of
determining if a rake is offline is the motor current reading.
Motor current and other sensors are recorded every minute.
This approach identifies 150 events in the three year period.
We demonstrate a data-driven approach using Dynamic Time
Warping followed by Agglomerative Hierarchical Clustering.
This groups events with similar event dynamics producing
data set with about 64 events, depending on decisions asso-
ciated with time windowing and other processing considera-
tions. Both data sets are used as inputs to two models: a Lo-
gistic Regression and a Random Forrest. Grid-search strategy
with cross-validation is used to estimate the hyper-parameters
of each model. Two different strategies are used to handle the
imbalance in the data.

Both models produce ’good’ results for the test data in four
month period after the model is built as shown in Figures 7a
and 7b. However the model performance deteriorates as we
move further away in time from when the model was built.
This is not unexpected as mineral processing plants are sub-
ject to changes in ore type that impact process dynamics.

Results on the test sets from both models illustrate the chal-
lenges with the imbalanced data and the need to explicitly
consider, and document, the scenarios and hyper-parameters
used. This is illustrated in Tables 7-11. We suggest much
greater transparency when publishing the steps taken in the
data wrangling process to manage this risk. These issues
are seldom discussed in the literature (Ferreira & de Sousa,
2020).

Increasingly in our work with industry data, we are finding
ambiguity associated with labelling, hence the focus of this
paper. This should not be a surprise as it is a human de-
pendent task and the quality of the labels is dependent on
many factors such as training, motivation, and the design and
ease of use of data capture systems (Unsworth, Adriasola,
Johnston-Billings, Dmitrieva, & Hodkiewicz, 2011; Molina,
Unsworth, Hodkiewicz, & Adriasola, 2013). We note the
challenge for data scientists, who are focused on finding a
good model, in trying to assess how well the data and its la-
bels are representative of the actual events. Problems with in-
correct labelling quickly become apparent when models are
deployed in the field on operating assets, but by then, it is too
late and much time, and money has been wasted.

For instance, if we have incorrect labelling of the events in the
anomaly detection scenario, we still can find a good model to
predict these (incorrect) events, but are they really what we
are looking for? The data analysis approaches are powerful
tools, but we must consider the aim and nature of the problem.
Therefore, the data scientists must work together with the
engineers, as well the engineers should work together with
the data scientists. We understand that this interaction is the
way to find proper solutions to the problems. We discussed
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(a) (b)

Figure 7. Event label (dashed red) vs model predictions (gray) in the test set for (a) rule-based response variable, (b) data-driven
response variable.

in the paper the fault/anomaly detection problem. However,
the extension to a multi-class response variable (multi-fault
cases) could be achieved by defining more than two classes
(fault/working) in the clustering step. For instance, the mod-
elling could be performed using multinomial logistic regres-
sion.

The demonstration of a data-driven approach to data labelling
as a means to both identify events and group events with simi-
lar dynamics is a step-forward in labelling. It allows for alter-
nate set of response variables to be considered and supports
an event-based discussion about what could be in or out of the
data frame. This data-driven approach provides an alternative
solution for industry situations where ground truth data is not
available for model estimation, and yet these models are still
necessary to better support today’s operations. One of the
wider aims of this paper is to support discussion on the gen-
eral topic of labelling of industry data.
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NOMENCLATURE

BA Balanced Accuracy
BD Balanced Data
DTW Dynamic Time Warping
F1 F1-score
fn number of false-negative
fp number of false-positive
ID Imbalanced Data
k sliding window size
� penalisation parameter
LR Logistic Regression
RF Random Forest
s step size
TNR True-Negative Ratio
TPR True-Positive Ratio
tn number of true-negative
tp number of true-positive
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